NetBSD/lib/libcrypto/man/BN_generate_prime.3

227 lines
7.3 KiB
Groff

.\" $NetBSD: BN_generate_prime.3,v 1.19 2007/11/27 22:19:17 christos Exp $
.\"
.\" Automatically generated by Pod::Man v1.37, Pod::Parser v1.3
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sh \" Subsection heading
.br
.if t .Sp
.ne 5
.PP
\fB\\$1\fR
.PP
..
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. | will give a
.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used to
.\" do unbreakable dashes and therefore won't be available. \*(C` and \*(C'
.\" expand to `' in nroff, nothing in troff, for use with C<>.
.tr \(*W-|\(bv\*(Tr
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
. ds PI pi
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds -- \|\(em\|
. ds PI \(*p
. ds L" ``
. ds R" ''
'br\}
.\"
.\" If the F register is turned on, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.if \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
..
. nr % 0
. rr F
.\}
.\"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.hy 0
.if n .na
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds /
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "BN_generate_prime 3"
.TH BN_generate_prime 3 "2003-07-24" "0.9.8e" "OpenSSL"
.SH "NAME"
BN_generate_prime, BN_is_prime, BN_is_prime_fasttest \- generate primes and test for primality
.SH "LIBRARY"
libcrypto, -lcrypto
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
.Vb 1
\& #include <openssl/bn.h>
.Ve
.PP
.Vb 2
\& BIGNUM *BN_generate_prime(BIGNUM *ret, int num, int safe, BIGNUM *add,
\& BIGNUM *rem, void (*callback)(int, int, void *), void *cb_arg);
.Ve
.PP
.Vb 2
\& int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int, int,
\& void *), BN_CTX *ctx, void *cb_arg);
.Ve
.PP
.Vb 3
\& int BN_is_prime_fasttest(const BIGNUM *a, int checks,
\& void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg,
\& int do_trial_division);
.Ve
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
\&\fIBN_generate_prime()\fR generates a pseudo-random prime number of \fBnum\fR
bits.
If \fBret\fR is not \fB\s-1NULL\s0\fR, it will be used to store the number.
.PP
If \fBcallback\fR is not \fB\s-1NULL\s0\fR, it is called as follows:
.IP "\(bu" 4
\&\fBcallback(0, i, cb_arg)\fR is called after generating the i\-th
potential prime number.
.IP "\(bu" 4
While the number is being tested for primality, \fBcallback(1, j,
cb_arg)\fR is called as described below.
.IP "\(bu" 4
When a prime has been found, \fBcallback(2, i, cb_arg)\fR is called.
.PP
The prime may have to fulfill additional requirements for use in
Diffie-Hellman key exchange:
.PP
If \fBadd\fR is not \fB\s-1NULL\s0\fR, the prime will fulfill the condition p % \fBadd\fR
== \fBrem\fR (p % \fBadd\fR == 1 if \fBrem\fR == \fB\s-1NULL\s0\fR) in order to suit a given
generator.
.PP
If \fBsafe\fR is true, it will be a safe prime (i.e. a prime p so
that (p\-1)/2 is also prime).
.PP
The \s-1PRNG\s0 must be seeded prior to calling \fIBN_generate_prime()\fR.
The prime number generation has a negligible error probability.
.PP
\&\fIBN_is_prime()\fR and \fIBN_is_prime_fasttest()\fR test if the number \fBa\fR is
prime. The following tests are performed until one of them shows that
\&\fBa\fR is composite; if \fBa\fR passes all these tests, it is considered
prime.
.PP
\&\fIBN_is_prime_fasttest()\fR, when called with \fBdo_trial_division == 1\fR,
first attempts trial division by a number of small primes;
if no divisors are found by this test and \fBcallback\fR is not \fB\s-1NULL\s0\fR,
\&\fBcallback(1, \-1, cb_arg)\fR is called.
If \fBdo_trial_division == 0\fR, this test is skipped.
.PP
Both \fIBN_is_prime()\fR and \fIBN_is_prime_fasttest()\fR perform a Miller-Rabin
probabilistic primality test with \fBchecks\fR iterations. If
\&\fBchecks == BN_prime_checks\fR, a number of iterations is used that
yields a false positive rate of at most 2^\-80 for random input.
.PP
If \fBcallback\fR is not \fB\s-1NULL\s0\fR, \fBcallback(1, j, cb_arg)\fR is called
after the j\-th iteration (j = 0, 1, ...). \fBctx\fR is a
pre-allocated \fB\s-1BN_CTX\s0\fR (to save the overhead of allocating and
freeing the structure in a loop), or \fB\s-1NULL\s0\fR.
.SH "RETURN VALUES"
.IX Header "RETURN VALUES"
\&\fIBN_generate_prime()\fR returns the prime number on success, \fB\s-1NULL\s0\fR otherwise.
.PP
\&\fIBN_is_prime()\fR returns 0 if the number is composite, 1 if it is
prime with an error probability of less than 0.25^\fBchecks\fR, and
\&\-1 on error.
.PP
The error codes can be obtained by \fIERR_get_error\fR\|(3).
.SH "SEE ALSO"
.IX Header "SEE ALSO"
\&\fIopenssl_bn\fR\|(3), \fIERR_get_error\fR\|(3), \fIopenssl_rand\fR\|(3)
.SH "HISTORY"
.IX Header "HISTORY"
The \fBcb_arg\fR arguments to \fIBN_generate_prime()\fR and to \fIBN_is_prime()\fR
were added in SSLeay 0.9.0. The \fBret\fR argument to \fIBN_generate_prime()\fR
was added in SSLeay 0.9.1.
\&\fIBN_is_prime_fasttest()\fR was added in OpenSSL 0.9.5.