NetBSD/sys/opencrypto/deflate.c

466 lines
12 KiB
C

/* $NetBSD: deflate.c,v 1.13 2009/03/25 01:26:13 darran Exp $ */
/* $FreeBSD: src/sys/opencrypto/deflate.c,v 1.1.2.1 2002/11/21 23:34:23 sam Exp $ */
/* $OpenBSD: deflate.c,v 1.3 2001/08/20 02:45:22 hugh Exp $ */
/*
* Copyright (c) 2001 Jean-Jacques Bernard-Gundol (jj@wabbitt.org)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This file contains a wrapper around the deflate algo compression
* functions using the zlib library (see net/zlib.{c,h})
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: deflate.c,v 1.13 2009/03/25 01:26:13 darran Exp $");
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <net/zlib.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/deflate.h>
int window_inflate = -1 * MAX_WBITS;
int window_deflate = -12;
/*
* This function takes a block of data and (de)compress it using the deflate
* algorithm
*/
static void *
ocf_zalloc(void *nil, u_int type, u_int size)
{
void *ptr;
ptr = malloc(type *size, M_CRYPTO_DATA, M_NOWAIT);
return ptr;
}
static void
ocf_zfree(void *nil, void *ptr)
{
free(ptr, M_CRYPTO_DATA);
}
u_int32_t
deflate_global(u_int8_t *data, u_int32_t size, int decomp, u_int8_t **out)
{
/* decomp indicates whether we compress (0) or decompress (1) */
z_stream zbuf;
u_int8_t *output;
u_int32_t count, result;
int error, i = 0, j;
struct deflate_buf *buf, *tmp;
size_t len, old_len;
DPRINTF(("deflate_global: size %d\n", size));
len = ZBUF;
buf = malloc(len*sizeof(struct deflate_buf), M_CRYPTO_DATA, M_NOWAIT);
if (buf == NULL)
return 0;
memset(&zbuf, 0, sizeof(z_stream));
for (j = 0; j < len; j++)
buf[j].flag = 0;
zbuf.next_in = data; /* data that is going to be processed */
zbuf.zalloc = ocf_zalloc;
zbuf.zfree = ocf_zfree;
zbuf.opaque = Z_NULL;
zbuf.avail_in = size; /* Total length of data to be processed */
if (!decomp) {
buf[i].out = malloc(size, M_CRYPTO_DATA, M_NOWAIT);
if (buf[i].out == NULL)
goto bad;
buf[i].size = size;
buf[i].flag = 1;
i++;
} else {
/*
* Choose a buffer with 4x the size of the input buffer
* for the size of the output buffer in the case of
* decompression. If it's not sufficient, it will need to be
* updated while the decompression is going on
*/
buf[i].size = size * 4;
buf[i].out = malloc(buf[i].size, M_CRYPTO_DATA, M_NOWAIT);
if (buf[i].out == NULL)
goto bad;
buf[i].flag = 1;
i++;
}
zbuf.next_out = buf[0].out;
zbuf.avail_out = buf[0].size;
error = decomp ? inflateInit2(&zbuf, window_inflate) :
deflateInit2(&zbuf, Z_DEFAULT_COMPRESSION, Z_METHOD,
window_deflate, Z_MEMLEVEL, Z_DEFAULT_STRATEGY);
if (error != Z_OK)
goto bad;
for (;;) {
error = decomp ? inflate(&zbuf, Z_PARTIAL_FLUSH) :
deflate(&zbuf, Z_PARTIAL_FLUSH);
if (error != Z_OK && error != Z_STREAM_END)
goto bad;
else if (zbuf.avail_in == 0 && zbuf.avail_out != 0)
goto end;
else if (zbuf.avail_out == 0) {
if (i == (len-1)) {
old_len = i;
len += ZBUF;
tmp = realloc(buf,len*sizeof(struct deflate_buf),
M_CRYPTO_DATA, M_NOWAIT);
if (tmp == NULL)
goto bad;
buf = tmp;
for (j = old_len; j < len; j++)
buf[j].flag = 0;
}
/* we need more output space, allocate size */
buf[i].out = malloc(size, M_CRYPTO_DATA, M_NOWAIT);
if (buf[i].out == NULL)
goto bad;
zbuf.next_out = buf[i].out;
buf[i].size = size;
buf[i].flag = 1;
zbuf.avail_out = buf[i].size;
i++;
} else
goto bad;
}
end:
result = count = zbuf.total_out;
*out = malloc(result, M_CRYPTO_DATA, M_NOWAIT);
if (*out == NULL)
goto bad;
if (decomp)
inflateEnd(&zbuf);
else
deflateEnd(&zbuf);
output = *out;
for (j = 0; buf[j].flag != 0; j++) {
if (count > buf[j].size) {
memcpy(*out, buf[j].out, buf[j].size);
*out += buf[j].size;
free(buf[j].out, M_CRYPTO_DATA);
count -= buf[j].size;
} else {
/* it should be the last buffer */
memcpy(*out, buf[j].out, count);
*out += count;
free(buf[j].out, M_CRYPTO_DATA);
count = 0;
}
}
free(buf, M_CRYPTO_DATA);
*out = output;
return result;
bad:
*out = NULL;
for (j = 0; buf[j].flag != 0; j++)
free(buf[j].out, M_CRYPTO_DATA);
free(buf, M_CRYPTO_DATA);
if (decomp)
inflateEnd(&zbuf);
else
deflateEnd(&zbuf);
return 0;
}
/*
* Initial version will perform a single gzip encapsulation,
* filling in the header,
* and appending the crc and uncompressed length.
*
* Later version will support multiple buffers with
* a flag indication final buffer. The crc is maintained
* over all buffers and appended to the output along with
* the uncompressed length after the final data buffer
* has been compressed and output.
*
* Ditto for uncompress - CRC is extracted from the final packed
* and compared against CRC of uncompressed data.
*
*/
/* constant header for the gzip */
static const char gzip_header[10] = {
0x1f, 0x8b, /* ID1 ID2 */
Z_DEFLATED, /* CM */
0, /* FLG */
0, 0, 0, 0, /* MTIME */
0, /* XFL */
0x03 /* OS (Unix) */
};
/* Followed by compressed payload */
/* Followed by uint32_t CRC32 and uint32_t ISIZE */
#define GZIP_TAIL_SIZE 8
u_int32_t
gzip_global(u_int8_t *data, u_int32_t size,
int decomp, u_int8_t **out)
{
/* decomp indicates whether we compress (0) or decompress (1) */
z_stream zbuf;
u_int8_t *output;
u_int32_t count, result;
int error, i = 0, j;
struct deflate_buf *buf, *tmp;
size_t nbufs, old_nbufs;
u_int32_t crc;
u_int32_t isize;
DPRINTF(("gzip_global: decomp %d, size %d\n", decomp, size));
nbufs = ZBUF;
buf = malloc(nbufs*sizeof(struct deflate_buf), M_CRYPTO_DATA, M_NOWAIT);
if (buf == NULL) {
DPRINTF(("gzip_global.%d: failed to malloc %d\n",
__LINE__, nbufs*sizeof(struct deflate_buf)));
return 0;
}
memset(&zbuf, 0, sizeof(z_stream));
for (j = 0; j < nbufs; j++)
buf[j].flag = 0;
zbuf.zalloc = ocf_zalloc;
zbuf.zfree = ocf_zfree;
zbuf.opaque = Z_NULL;
crc = crc32(0, NULL, 0); /* get initial crc value */
zbuf.avail_in = size; /* Total length of data to be processed */
zbuf.next_in = data; /* data that is going to be processed */
if (!decomp) {
/* compress */
DPRINTF(("gzip_global: compress[%d] malloc %d + %d + %d = %d\n",
i, size, sizeof(gzip_header), GZIP_TAIL_SIZE,
size + sizeof(gzip_header) + GZIP_TAIL_SIZE));
buf[i].out = malloc(size, M_CRYPTO_DATA, M_NOWAIT);
if (buf[i].out == NULL)
goto bad2;
buf[i].size = size;
buf[i].flag = 1;
zbuf.next_out = buf[i].out;
zbuf.avail_out = buf[i].size;
i++;
crc = crc32(crc, data, size);
DPRINTF(("gzip_compress: size %d, crc 0x%x\n", size, crc));
} else {
/* decompress */
/* check the gzip header */
if (zbuf.avail_in <= 0) {
/* Not enough data for the header & tail */
DPRINTF(("gzip_global: not enough data (%d)\n",
size));
goto bad2;
}
/* XXX this is pretty basic,
* needs to be expanded to ignore MTIME, OS,
* but still ensure flags are 0.
* Q. Do we need to support the flags and
* optional header fields? Likely.
* XXX add flag and field support too.
*/
if (memcmp(data, gzip_header, sizeof(gzip_header)) != 0) {
DPRINTF(("gzip_global: unsupported gzip header (%02x%02x)\n",
data[0], data[1]));
goto bad2;
} else {
DPRINTF(("gzip_global.%d: gzip header ok\n",__LINE__));
}
isize = *((uint32_t *)&data[size-sizeof(uint32_t)]);
DPRINTF(("gzip_global: isize = %d (%02x %02x %02x %02x)\n",
isize,
data[size-4],
data[size-3],
data[size-2],
data[size-1]));
buf[i].size = isize;
buf[i].out = malloc(buf[i].size, M_CRYPTO_DATA, M_NOWAIT);
if (buf[i].out == NULL)
goto bad2;
buf[i].flag = 1;
zbuf.next_out = buf[i].out;
zbuf.avail_out = buf[i].size;
i++;
/* skip over the gzip header */
zbuf.next_in = data + sizeof(gzip_header);
/* actual payload size stripped of gzip header and tail */
zbuf.avail_in = size - sizeof(gzip_header) - GZIP_TAIL_SIZE;
DPRINTF(("zbuf avail_in %d, avail_out %d\n",
zbuf.avail_in, zbuf.avail_out));
}
error = decomp ? inflateInit2(&zbuf, window_inflate) :
deflateInit2(&zbuf, Z_DEFAULT_COMPRESSION, Z_METHOD,
window_deflate, Z_MEMLEVEL, Z_DEFAULT_STRATEGY);
if (error != Z_OK) {
printf("deflateInit2() failed\n");
goto bad;
}
for (;;) {
DPRINTF(("pre: %s in:%d out:%d\n", decomp ? "deflate()" : "inflate()",
zbuf.avail_in, zbuf.avail_out));
error = decomp ? inflate(&zbuf, Z_PARTIAL_FLUSH) :
deflate(&zbuf, Z_PARTIAL_FLUSH);
DPRINTF(("post: %s in:%d out:%d\n", decomp ? "deflate()" : "inflate()",
zbuf.avail_in, zbuf.avail_out));
if (error != Z_OK && error != Z_STREAM_END) {
printf("deflate() or inflate() failed, error=%d\n", error);
goto bad;
} else if (zbuf.avail_in == 0 && zbuf.avail_out != 0) {
DPRINTF(("gzip_global: avail_in == 0, ending\n"));
goto end;
} else if (zbuf.avail_in == 0 && zbuf.avail_out == 0) {
DPRINTF(("gzip_global: avail_in == 0, avail_out == 0, ending\n"));
goto end;
} else if (zbuf.avail_out == 0) {
if (i == (nbufs-1)) {
old_nbufs = i;
nbufs += ZBUF;
tmp = realloc(buf,nbufs*sizeof(struct deflate_buf),
M_CRYPTO_DATA, M_NOWAIT);
if (tmp == NULL)
goto bad;
buf = tmp;
for (j = old_nbufs; j < nbufs; j++)
buf[j].flag = 0;
}
/* we need more output space, allocate size */
buf[i].out = malloc(size, M_CRYPTO_DATA, M_NOWAIT);
if (buf[i].out == NULL)
goto bad;
zbuf.next_out = buf[i].out;
buf[i].size = size;
buf[i].flag = 1;
zbuf.avail_out = buf[i].size;
i++;
} else
goto bad;
}
end:
if (decomp) {
count = result = zbuf.total_out;
} else {
/* need room for header, CRC, and ISIZE */
result = zbuf.total_out + sizeof(gzip_header) + GZIP_TAIL_SIZE;
count = zbuf.total_out;
}
DPRINTF(("gzip_global: in %d -> out %d\n", size, result));
*out = malloc(result, M_CRYPTO_DATA, M_NOWAIT);
if (*out == NULL)
goto bad;
output = *out;
if (decomp)
inflateEnd(&zbuf);
else {
deflateEnd(&zbuf);
/* fill in gzip header */
memcpy(output, gzip_header, sizeof(gzip_header));
output += sizeof(gzip_header);
}
for (j = 0; buf[j].flag != 0; j++) {
if (decomp) {
/* update crc for decompressed data */
crc = crc32(crc, buf[j].out, buf[j].size);
}
if (count > buf[j].size) {
memcpy(output, buf[j].out, buf[j].size);
output += buf[j].size;
free(buf[j].out, M_CRYPTO_DATA);
count -= buf[j].size;
} else {
/* it should be the last buffer */
memcpy(output, buf[j].out, count);
output += count;
free(buf[j].out, M_CRYPTO_DATA);
count = 0;
}
}
free(buf, M_CRYPTO_DATA);
if (!decomp) {
/* fill in CRC and ISIZE */
((uint32_t *)output)[0] = crc;
((uint32_t *)output)[1] = size;
DPRINTF(("gzip_global: size = 0x%x (%02x %02x %02x %02x)\n",
size,
output[7],
output[3],
output[5],
output[4]));
}
return result;
bad:
if (decomp)
inflateEnd(&zbuf);
else
deflateEnd(&zbuf);
bad2:
*out = NULL;
for (j = 0; buf[j].flag != 0; j++)
free(buf[j].out, M_CRYPTO_DATA);
free(buf, M_CRYPTO_DATA);
return 0;
}