609 lines
14 KiB
C
609 lines
14 KiB
C
/* $NetBSD: sys_eventfd.c,v 1.9 2022/02/17 16:28:29 thorpej Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2020 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: sys_eventfd.c,v 1.9 2022/02/17 16:28:29 thorpej Exp $");
|
|
|
|
/*
|
|
* eventfd
|
|
*
|
|
* Eventfd objects present a simple counting object associated with a
|
|
* file descriptor. Writes and reads to this file descriptor increment
|
|
* and decrement the count, respectively. When the count is non-zero,
|
|
* the descriptor is considered "readable", and when less than the max
|
|
* value (EVENTFD_MAXVAL), is considered "writable".
|
|
*
|
|
* This implementation is API compatible with the Linux eventfd(2)
|
|
* interface.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/eventfd.h>
|
|
#include <sys/file.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/poll.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/select.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/syscallargs.h>
|
|
#include <sys/uio.h>
|
|
|
|
struct eventfd {
|
|
kmutex_t efd_lock;
|
|
kcondvar_t efd_read_wait;
|
|
kcondvar_t efd_write_wait;
|
|
struct selinfo efd_read_sel;
|
|
struct selinfo efd_write_sel;
|
|
eventfd_t efd_val;
|
|
int64_t efd_nwaiters;
|
|
bool efd_restarting;
|
|
bool efd_has_read_waiters;
|
|
bool efd_has_write_waiters;
|
|
bool efd_is_semaphore;
|
|
|
|
/*
|
|
* Information kept for stat(2).
|
|
*/
|
|
struct timespec efd_btime; /* time created */
|
|
struct timespec efd_mtime; /* last write */
|
|
struct timespec efd_atime; /* last read */
|
|
};
|
|
|
|
#define EVENTFD_MAXVAL (UINT64_MAX - 1)
|
|
|
|
/*
|
|
* eventfd_create:
|
|
*
|
|
* Create an eventfd object.
|
|
*/
|
|
static struct eventfd *
|
|
eventfd_create(unsigned int const val, int const flags)
|
|
{
|
|
struct eventfd * const efd = kmem_zalloc(sizeof(*efd), KM_SLEEP);
|
|
|
|
mutex_init(&efd->efd_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
cv_init(&efd->efd_read_wait, "efdread");
|
|
cv_init(&efd->efd_write_wait, "efdwrite");
|
|
selinit(&efd->efd_read_sel);
|
|
selinit(&efd->efd_write_sel);
|
|
efd->efd_val = val;
|
|
efd->efd_is_semaphore = !!(flags & EFD_SEMAPHORE);
|
|
getnanotime(&efd->efd_btime);
|
|
|
|
/* Caller deals with EFD_CLOEXEC and EFD_NONBLOCK. */
|
|
|
|
return efd;
|
|
}
|
|
|
|
/*
|
|
* eventfd_destroy:
|
|
*
|
|
* Destroy an eventfd object.
|
|
*/
|
|
static void
|
|
eventfd_destroy(struct eventfd * const efd)
|
|
{
|
|
|
|
KASSERT(efd->efd_nwaiters == 0);
|
|
KASSERT(efd->efd_has_read_waiters == false);
|
|
KASSERT(efd->efd_has_write_waiters == false);
|
|
|
|
cv_destroy(&efd->efd_read_wait);
|
|
cv_destroy(&efd->efd_write_wait);
|
|
|
|
seldestroy(&efd->efd_read_sel);
|
|
seldestroy(&efd->efd_write_sel);
|
|
|
|
mutex_destroy(&efd->efd_lock);
|
|
|
|
kmem_free(efd, sizeof(*efd));
|
|
}
|
|
|
|
/*
|
|
* eventfd_wait:
|
|
*
|
|
* Block on an eventfd. Handles non-blocking, as well as
|
|
* the restart cases.
|
|
*/
|
|
static int
|
|
eventfd_wait(struct eventfd * const efd, int const fflag, bool const is_write)
|
|
{
|
|
kcondvar_t *waitcv;
|
|
int error;
|
|
|
|
if (fflag & FNONBLOCK) {
|
|
return EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* We're going to block. Check if we need to return ERESTART.
|
|
*/
|
|
if (efd->efd_restarting) {
|
|
return ERESTART;
|
|
}
|
|
|
|
if (is_write) {
|
|
efd->efd_has_write_waiters = true;
|
|
waitcv = &efd->efd_write_wait;
|
|
} else {
|
|
efd->efd_has_read_waiters = true;
|
|
waitcv = &efd->efd_read_wait;
|
|
}
|
|
|
|
efd->efd_nwaiters++;
|
|
KASSERT(efd->efd_nwaiters > 0);
|
|
error = cv_wait_sig(waitcv, &efd->efd_lock);
|
|
efd->efd_nwaiters--;
|
|
KASSERT(efd->efd_nwaiters >= 0);
|
|
|
|
/*
|
|
* If a restart was triggered while we were asleep, we need
|
|
* to return ERESTART if no other error was returned.
|
|
*/
|
|
if (efd->efd_restarting) {
|
|
if (error == 0) {
|
|
error = ERESTART;
|
|
}
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* eventfd_wake:
|
|
*
|
|
* Wake LWPs block on an eventfd.
|
|
*/
|
|
static void
|
|
eventfd_wake(struct eventfd * const efd, bool const is_write)
|
|
{
|
|
kcondvar_t *waitcv = NULL;
|
|
struct selinfo *sel;
|
|
int pollev;
|
|
|
|
if (is_write) {
|
|
if (efd->efd_has_read_waiters) {
|
|
waitcv = &efd->efd_read_wait;
|
|
efd->efd_has_read_waiters = false;
|
|
}
|
|
sel = &efd->efd_read_sel;
|
|
pollev = POLLIN | POLLRDNORM;
|
|
} else {
|
|
if (efd->efd_has_write_waiters) {
|
|
waitcv = &efd->efd_write_wait;
|
|
efd->efd_has_write_waiters = false;
|
|
}
|
|
sel = &efd->efd_write_sel;
|
|
pollev = POLLOUT | POLLWRNORM;
|
|
}
|
|
if (waitcv != NULL) {
|
|
cv_broadcast(waitcv);
|
|
}
|
|
selnotify(sel, pollev, NOTE_SUBMIT);
|
|
}
|
|
|
|
/*
|
|
* eventfd file operations
|
|
*/
|
|
|
|
static int
|
|
eventfd_fop_read(file_t * const fp, off_t * const offset,
|
|
struct uio * const uio, kauth_cred_t const cred, int const flags)
|
|
{
|
|
struct eventfd * const efd = fp->f_eventfd;
|
|
int const fflag = fp->f_flag;
|
|
eventfd_t return_value;
|
|
int error;
|
|
|
|
if (uio->uio_resid < sizeof(eventfd_t)) {
|
|
return EINVAL;
|
|
}
|
|
|
|
mutex_enter(&efd->efd_lock);
|
|
|
|
while (efd->efd_val == 0) {
|
|
if ((error = eventfd_wait(efd, fflag, false)) != 0) {
|
|
mutex_exit(&efd->efd_lock);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
if (efd->efd_is_semaphore) {
|
|
return_value = 1;
|
|
efd->efd_val--;
|
|
} else {
|
|
return_value = efd->efd_val;
|
|
efd->efd_val = 0;
|
|
}
|
|
|
|
getnanotime(&efd->efd_atime);
|
|
eventfd_wake(efd, false);
|
|
|
|
mutex_exit(&efd->efd_lock);
|
|
|
|
error = uiomove(&return_value, sizeof(return_value), uio);
|
|
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
eventfd_fop_write(file_t * const fp, off_t * const offset,
|
|
struct uio * const uio, kauth_cred_t const cred, int const flags)
|
|
{
|
|
struct eventfd * const efd = fp->f_eventfd;
|
|
int const fflag = fp->f_flag;
|
|
eventfd_t write_value;
|
|
int error;
|
|
|
|
if (uio->uio_resid < sizeof(eventfd_t)) {
|
|
return EINVAL;
|
|
}
|
|
|
|
if ((error = uiomove(&write_value, sizeof(write_value), uio)) != 0) {
|
|
return error;
|
|
}
|
|
|
|
if (write_value > EVENTFD_MAXVAL) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
mutex_enter(&efd->efd_lock);
|
|
|
|
KASSERT(efd->efd_val <= EVENTFD_MAXVAL);
|
|
while ((EVENTFD_MAXVAL - efd->efd_val) < write_value) {
|
|
if ((error = eventfd_wait(efd, fflag, true)) != 0) {
|
|
mutex_exit(&efd->efd_lock);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
efd->efd_val += write_value;
|
|
KASSERT(efd->efd_val <= EVENTFD_MAXVAL);
|
|
|
|
getnanotime(&efd->efd_mtime);
|
|
eventfd_wake(efd, true);
|
|
|
|
mutex_exit(&efd->efd_lock);
|
|
|
|
out:
|
|
if (error) {
|
|
/*
|
|
* Undo the effect of uiomove() so that the error
|
|
* gets reported correctly; see dofilewrite().
|
|
*/
|
|
uio->uio_resid += sizeof(write_value);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
eventfd_ioctl(file_t * const fp, u_long const cmd, void * const data)
|
|
{
|
|
struct eventfd * const efd = fp->f_eventfd;
|
|
|
|
switch (cmd) {
|
|
case FIONBIO:
|
|
return 0;
|
|
|
|
case FIONREAD:
|
|
mutex_enter(&efd->efd_lock);
|
|
*(int *)data = efd->efd_val != 0 ? sizeof(eventfd_t) : 0;
|
|
mutex_exit(&efd->efd_lock);
|
|
return 0;
|
|
|
|
case FIONWRITE:
|
|
*(int *)data = 0;
|
|
return 0;
|
|
|
|
case FIONSPACE:
|
|
/*
|
|
* FIONSPACE doesn't really work for eventfd, because the
|
|
* writability depends on the contents (value) being written.
|
|
*/
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return EPASSTHROUGH;
|
|
}
|
|
|
|
static int
|
|
eventfd_fop_poll(file_t * const fp, int const events)
|
|
{
|
|
struct eventfd * const efd = fp->f_eventfd;
|
|
int revents = 0;
|
|
|
|
/*
|
|
* Note that Linux will return POLLERR if the eventfd count
|
|
* overflows, but that is not possible in the normal read/write
|
|
* API, only with Linux kernel-internal interfaces. So, this
|
|
* implementation never returns POLLERR.
|
|
*
|
|
* Also note that the Linux eventfd(2) man page does not
|
|
* specifically discuss returning POLLRDNORM, but we check
|
|
* for that event in addition to POLLIN.
|
|
*/
|
|
|
|
mutex_enter(&efd->efd_lock);
|
|
|
|
if (events & (POLLIN | POLLRDNORM)) {
|
|
if (efd->efd_val != 0) {
|
|
revents |= events & (POLLIN | POLLRDNORM);
|
|
} else {
|
|
selrecord(curlwp, &efd->efd_read_sel);
|
|
}
|
|
}
|
|
|
|
if (events & (POLLOUT | POLLWRNORM)) {
|
|
if (efd->efd_val < EVENTFD_MAXVAL) {
|
|
revents |= events & (POLLOUT | POLLWRNORM);
|
|
} else {
|
|
selrecord(curlwp, &efd->efd_write_sel);
|
|
}
|
|
}
|
|
|
|
mutex_exit(&efd->efd_lock);
|
|
|
|
return revents;
|
|
}
|
|
|
|
static int
|
|
eventfd_fop_stat(file_t * const fp, struct stat * const st)
|
|
{
|
|
struct eventfd * const efd = fp->f_eventfd;
|
|
|
|
memset(st, 0, sizeof(*st));
|
|
|
|
mutex_enter(&efd->efd_lock);
|
|
st->st_size = (off_t)efd->efd_val;
|
|
st->st_blksize = sizeof(eventfd_t);
|
|
st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
|
|
st->st_blocks = 1;
|
|
st->st_birthtimespec = st->st_ctimespec = efd->efd_btime;
|
|
st->st_atimespec = efd->efd_atime;
|
|
st->st_mtimespec = efd->efd_mtime;
|
|
st->st_uid = kauth_cred_geteuid(fp->f_cred);
|
|
st->st_gid = kauth_cred_getegid(fp->f_cred);
|
|
mutex_exit(&efd->efd_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eventfd_fop_close(file_t * const fp)
|
|
{
|
|
struct eventfd * const efd = fp->f_eventfd;
|
|
|
|
fp->f_eventfd = NULL;
|
|
eventfd_destroy(efd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
eventfd_filt_read_detach(struct knote * const kn)
|
|
{
|
|
struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
|
|
|
|
mutex_enter(&efd->efd_lock);
|
|
KASSERT(kn->kn_hook == efd);
|
|
selremove_knote(&efd->efd_read_sel, kn);
|
|
mutex_exit(&efd->efd_lock);
|
|
}
|
|
|
|
static int
|
|
eventfd_filt_read(struct knote * const kn, long const hint)
|
|
{
|
|
struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
|
|
int rv;
|
|
|
|
if (hint & NOTE_SUBMIT) {
|
|
KASSERT(mutex_owned(&efd->efd_lock));
|
|
} else {
|
|
mutex_enter(&efd->efd_lock);
|
|
}
|
|
|
|
kn->kn_data = (int64_t)efd->efd_val;
|
|
rv = (eventfd_t)kn->kn_data > 0;
|
|
|
|
if ((hint & NOTE_SUBMIT) == 0) {
|
|
mutex_exit(&efd->efd_lock);
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
static const struct filterops eventfd_read_filterops = {
|
|
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
|
|
.f_detach = eventfd_filt_read_detach,
|
|
.f_event = eventfd_filt_read,
|
|
};
|
|
|
|
static void
|
|
eventfd_filt_write_detach(struct knote * const kn)
|
|
{
|
|
struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
|
|
|
|
mutex_enter(&efd->efd_lock);
|
|
KASSERT(kn->kn_hook == efd);
|
|
selremove_knote(&efd->efd_write_sel, kn);
|
|
mutex_exit(&efd->efd_lock);
|
|
}
|
|
|
|
static int
|
|
eventfd_filt_write(struct knote * const kn, long const hint)
|
|
{
|
|
struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
|
|
int rv;
|
|
|
|
if (hint & NOTE_SUBMIT) {
|
|
KASSERT(mutex_owned(&efd->efd_lock));
|
|
} else {
|
|
mutex_enter(&efd->efd_lock);
|
|
}
|
|
|
|
kn->kn_data = (int64_t)efd->efd_val;
|
|
rv = (eventfd_t)kn->kn_data < EVENTFD_MAXVAL;
|
|
|
|
if ((hint & NOTE_SUBMIT) == 0) {
|
|
mutex_exit(&efd->efd_lock);
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
static const struct filterops eventfd_write_filterops = {
|
|
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
|
|
.f_detach = eventfd_filt_write_detach,
|
|
.f_event = eventfd_filt_write,
|
|
};
|
|
|
|
static int
|
|
eventfd_fop_kqfilter(file_t * const fp, struct knote * const kn)
|
|
{
|
|
struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
|
|
struct selinfo *sel;
|
|
|
|
switch (kn->kn_filter) {
|
|
case EVFILT_READ:
|
|
sel = &efd->efd_read_sel;
|
|
kn->kn_fop = &eventfd_read_filterops;
|
|
break;
|
|
|
|
case EVFILT_WRITE:
|
|
sel = &efd->efd_write_sel;
|
|
kn->kn_fop = &eventfd_write_filterops;
|
|
break;
|
|
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
|
|
kn->kn_hook = efd;
|
|
|
|
mutex_enter(&efd->efd_lock);
|
|
selrecord_knote(sel, kn);
|
|
mutex_exit(&efd->efd_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
eventfd_fop_restart(file_t * const fp)
|
|
{
|
|
struct eventfd * const efd = fp->f_eventfd;
|
|
|
|
/*
|
|
* Unblock blocked reads/writes in order to allow close() to complete.
|
|
* System calls return ERESTART so that the fd is revalidated.
|
|
*/
|
|
|
|
mutex_enter(&efd->efd_lock);
|
|
|
|
if (efd->efd_nwaiters != 0) {
|
|
efd->efd_restarting = true;
|
|
if (efd->efd_has_read_waiters) {
|
|
cv_broadcast(&efd->efd_read_wait);
|
|
efd->efd_has_read_waiters = false;
|
|
}
|
|
if (efd->efd_has_write_waiters) {
|
|
cv_broadcast(&efd->efd_write_wait);
|
|
efd->efd_has_write_waiters = false;
|
|
}
|
|
}
|
|
|
|
mutex_exit(&efd->efd_lock);
|
|
}
|
|
|
|
static const struct fileops eventfd_fileops = {
|
|
.fo_name = "eventfd",
|
|
.fo_read = eventfd_fop_read,
|
|
.fo_write = eventfd_fop_write,
|
|
.fo_ioctl = eventfd_ioctl,
|
|
.fo_fcntl = fnullop_fcntl,
|
|
.fo_poll = eventfd_fop_poll,
|
|
.fo_stat = eventfd_fop_stat,
|
|
.fo_close = eventfd_fop_close,
|
|
.fo_kqfilter = eventfd_fop_kqfilter,
|
|
.fo_restart = eventfd_fop_restart,
|
|
};
|
|
|
|
/*
|
|
* eventfd(2) system call
|
|
*/
|
|
int
|
|
do_eventfd(struct lwp * const l, unsigned int const val, int const flags,
|
|
register_t *retval)
|
|
{
|
|
file_t *fp;
|
|
int fd, error;
|
|
|
|
if (flags & ~(EFD_CLOEXEC | EFD_NONBLOCK | EFD_SEMAPHORE)) {
|
|
return EINVAL;
|
|
}
|
|
|
|
if ((error = fd_allocfile(&fp, &fd)) != 0) {
|
|
return error;
|
|
}
|
|
|
|
fp->f_flag = FREAD | FWRITE;
|
|
if (flags & EFD_NONBLOCK) {
|
|
fp->f_flag |= FNONBLOCK;
|
|
}
|
|
fp->f_type = DTYPE_EVENTFD;
|
|
fp->f_ops = &eventfd_fileops;
|
|
fp->f_eventfd = eventfd_create(val, flags);
|
|
fd_set_exclose(l, fd, !!(flags & EFD_CLOEXEC));
|
|
fd_affix(curproc, fp, fd);
|
|
|
|
*retval = fd;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
sys_eventfd(struct lwp *l, const struct sys_eventfd_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(unsigned int) val;
|
|
syscallarg(int) flags;
|
|
} */
|
|
|
|
return do_eventfd(l, SCARG(uap, val), SCARG(uap, flags), retval);
|
|
}
|