b8ea2c8cad
Add fast softint support for PowerPC (though only booke uses it). Redo FPU/VEC support and add e500 SPE support. Rework trap/intrs to use a common trapframe format. Support SOFTFLOAT (no hardfloat or fpu emulation) for BookE.
966 lines
27 KiB
C
966 lines
27 KiB
C
/* $NetBSD: e500_tlb.c,v 1.2 2011/01/18 01:02:52 matt Exp $ */
|
|
/*-
|
|
* Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
|
|
* Agency and which was developed by Matt Thomas of 3am Software Foundry.
|
|
*
|
|
* This material is based upon work supported by the Defense Advanced Research
|
|
* Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
|
|
* Contract No. N66001-09-C-2073.
|
|
* Approved for Public Release, Distribution Unlimited
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.2 2011/01/18 01:02:52 matt Exp $");
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <powerpc/spr.h>
|
|
#include <powerpc/booke/spr.h>
|
|
#include <powerpc/booke/cpuvar.h>
|
|
#include <powerpc/booke/e500var.h>
|
|
#include <powerpc/booke/pmap.h>
|
|
|
|
struct e500_tlb {
|
|
vaddr_t tlb_va;
|
|
uint32_t tlb_pte;
|
|
uint32_t tlb_asid;
|
|
vsize_t tlb_size;
|
|
};
|
|
|
|
struct e500_hwtlb {
|
|
uint32_t hwtlb_mas0;
|
|
uint32_t hwtlb_mas1;
|
|
uint32_t hwtlb_mas2;
|
|
uint32_t hwtlb_mas3;
|
|
};
|
|
|
|
struct e500_xtlb {
|
|
struct e500_tlb e_tlb;
|
|
struct e500_hwtlb e_hwtlb;
|
|
u_long e_refcnt;
|
|
};
|
|
|
|
static struct e500_tlb1 {
|
|
uint32_t tlb1_maxsize;
|
|
uint32_t tlb1_minsize;
|
|
u_int tlb1_numentries;
|
|
u_int tlb1_numfree;
|
|
u_int tlb1_freelist[32];
|
|
struct e500_xtlb tlb1_entries[32];
|
|
} e500_tlb1;
|
|
|
|
static inline register_t mftlb0cfg(void) __pure;
|
|
static inline register_t mftlb1cfg(void) __pure;
|
|
|
|
static inline register_t
|
|
mftlb0cfg(void)
|
|
{
|
|
register_t tlb0cfg;
|
|
__asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG));
|
|
return tlb0cfg;
|
|
}
|
|
|
|
static inline register_t
|
|
mftlb1cfg(void)
|
|
{
|
|
register_t tlb1cfg;
|
|
__asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG));
|
|
return tlb1cfg;
|
|
}
|
|
|
|
static struct e500_tlb
|
|
hwtlb_to_tlb(const struct e500_hwtlb hwtlb)
|
|
{
|
|
struct e500_tlb tlb;
|
|
register_t prot_mask;
|
|
u_int prot_shift;
|
|
|
|
tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2;
|
|
tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1));
|
|
tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1);
|
|
tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE)
|
|
| (hwtlb.hwtlb_mas3 & MAS3_RPN);
|
|
if (hwtlb.hwtlb_mas1 & MAS1_TS) {
|
|
prot_mask = MAS3_UX|MAS3_UW|MAS3_UR;
|
|
prot_shift = PTE_RWX_SHIFT - 1;
|
|
} else {
|
|
prot_mask = MAS3_SX|MAS3_SW|MAS3_SR;
|
|
prot_shift = PTE_RWX_SHIFT;
|
|
}
|
|
tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift;
|
|
return tlb;
|
|
}
|
|
|
|
static inline struct e500_hwtlb
|
|
hwtlb_read(uint32_t mas0, u_int slot)
|
|
{
|
|
struct e500_hwtlb hwtlb;
|
|
register_t tlbcfg;
|
|
|
|
if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) {
|
|
tlbcfg = mftlb0cfg();
|
|
} else if (mas0 == MAS0_TLBSEL_TLB1) {
|
|
tlbcfg = mftlb1cfg();
|
|
} else {
|
|
panic("%s:%d: unexpected MAS0 %#" PRIx32,
|
|
__func__, __LINE__, mas0);
|
|
}
|
|
|
|
/*
|
|
* ESEL is the way we want to look up.
|
|
* If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is
|
|
* fully associative, the entire slot is placed into ESEL. If tlbassoc
|
|
* is less then the number of tlb entries, the slot is split in two
|
|
* fields. Since the TLB is M rows by N ways, the lowers bits are for
|
|
* row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]).
|
|
*/
|
|
const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg);
|
|
const u_int tlbentries = TLBCFG_NENTRY(tlbcfg);
|
|
const u_int esel_shift =
|
|
__builtin_clz(tlbassoc) - __builtin_clz(tlbentries);
|
|
|
|
/*
|
|
* Disable interrupts since we don't want anyone else mucking with
|
|
* the MMU Assist registers
|
|
*/
|
|
const register_t msr = wrtee(0);
|
|
const register_t saved_mas0 = mfspr(SPR_MAS0);
|
|
mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift));
|
|
|
|
if (__predict_true(tlbassoc > tlbentries))
|
|
mtspr(SPR_MAS2, slot << PAGE_SHIFT);
|
|
|
|
/*
|
|
* Now select the entry and grab its contents.
|
|
*/
|
|
__asm volatile("tlbre");
|
|
|
|
hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0);
|
|
hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
|
|
hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
|
|
hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
|
|
|
|
mtspr(SPR_MAS0, saved_mas0);
|
|
wrtee(msr); /* restore interrupts */
|
|
|
|
return hwtlb;
|
|
}
|
|
|
|
static inline void
|
|
hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync)
|
|
{
|
|
const register_t msr = wrtee(0);
|
|
const uint32_t saved_mas0 = mfspr(SPR_MAS0);
|
|
|
|
/*
|
|
* Need to always write MAS0 and MAS1
|
|
*/
|
|
mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
|
|
mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
|
|
|
|
/*
|
|
* Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping.
|
|
*/
|
|
if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0
|
|
|| (hwtlb.hwtlb_mas1 & MAS1_V)) {
|
|
mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
|
|
}
|
|
/*
|
|
* Only need to write the RPN/prot if we are dealing with a valid
|
|
* mapping.
|
|
*/
|
|
if (hwtlb.hwtlb_mas1 & MAS1_V) {
|
|
mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
|
|
}
|
|
|
|
#if 0
|
|
printf("%s->[%x,%x,%x,%x]\n",
|
|
__func__,
|
|
hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1,
|
|
hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
|
|
#endif
|
|
__asm volatile("tlbwe");
|
|
if (needs_sync) {
|
|
__asm volatile("tlbsync");
|
|
__asm volatile("isync");
|
|
}
|
|
|
|
mtspr(SPR_MAS0, saved_mas0);
|
|
wrtee(msr);
|
|
}
|
|
|
|
static struct e500_hwtlb
|
|
tlb_to_hwtlb(const struct e500_tlb tlb)
|
|
{
|
|
struct e500_hwtlb hwtlb;
|
|
|
|
KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va);
|
|
KASSERT(tlb.tlb_size != 0);
|
|
KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0);
|
|
const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK;
|
|
if (__predict_true(tlb.tlb_size == PAGE_SIZE)) {
|
|
hwtlb.hwtlb_mas0 = 0;
|
|
hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1);
|
|
/*
|
|
* A non-zero ASID means this is a user page so mark it as
|
|
* being in the user's address space.
|
|
*/
|
|
if (tlb.tlb_asid) {
|
|
hwtlb.hwtlb_mas1 |= MAS1_TS
|
|
| MASX_TID_MAKE(tlb.tlb_asid);
|
|
hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1))
|
|
| ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT);
|
|
KASSERT(prot_mask & PTE_xR);
|
|
KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR);
|
|
CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1)));
|
|
CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT));
|
|
} else {
|
|
hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
|
|
}
|
|
if (tlb.tlb_pte & PTE_UNMODIFIED)
|
|
hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW);
|
|
if (tlb.tlb_pte & PTE_UNSYNCED)
|
|
hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX);
|
|
} else {
|
|
KASSERT(tlb.tlb_asid == 0);
|
|
KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0);
|
|
u_int cntlz = __builtin_clz(tlb.tlb_size);
|
|
KASSERT(cntlz & 1);
|
|
KASSERT(cntlz <= 19);
|
|
hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1;
|
|
/*
|
|
* TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of is not
|
|
* allowed. So 1K would be 0x00000400 giving 21 leading zero
|
|
* bits. Subtracting the leading number of zero bits from 21
|
|
* and dividing by 2 gives us the number that the MMU wants.
|
|
*/
|
|
hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2)
|
|
| MAS1_IPROT | MAS1_V;
|
|
hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
|
|
}
|
|
/* We are done with MAS1, on to MAS2 ... */
|
|
hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK);
|
|
hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK;
|
|
|
|
return hwtlb;
|
|
}
|
|
|
|
static int
|
|
e500_alloc_tlb1_entry(void)
|
|
{
|
|
struct e500_tlb1 * const tlb1 = &e500_tlb1;
|
|
|
|
if (tlb1->tlb1_numfree == 0)
|
|
return -1;
|
|
const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree];
|
|
KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0);
|
|
tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 =
|
|
MAS0_TLBSEL_TLB1 | __SHIFTOUT(slot, MAS0_ESEL);
|
|
return slot;
|
|
}
|
|
|
|
static void
|
|
e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync)
|
|
{
|
|
struct e500_tlb1 * const tlb1 = &e500_tlb1;
|
|
KASSERT(slot < tlb1->tlb1_numentries);
|
|
KASSERT(&tlb1->tlb1_entries[slot] == xtlb);
|
|
|
|
KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL)));
|
|
xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT);
|
|
hwtlb_write(xtlb->e_hwtlb, needs_sync);
|
|
|
|
const register_t msr = wrtee(0);
|
|
tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot;
|
|
wrtee(msr);
|
|
}
|
|
|
|
static void e500_tlb_set_asid(uint32_t asid)
|
|
{
|
|
mtspr(SPR_PID0, asid);
|
|
}
|
|
|
|
static void e500_tlb_invalidate_all(void)
|
|
{
|
|
/*
|
|
* This does a flash invalidate of all entries in TLB0.
|
|
* We don't touch TLB1 since we don't expect those to be volatile.
|
|
*/
|
|
#if 1
|
|
__asm volatile("tlbivax\t0, %0" :: "b"(4)); /* INV_ALL */
|
|
#else
|
|
mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FL);
|
|
while (mfspr(SPR_MMUCSR0) != 0)
|
|
;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
e500_tlb_invalidate_globals(void)
|
|
{
|
|
const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
|
|
const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
|
|
const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
|
|
const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr;
|
|
const vaddr_t kstack_hi = kstack_lo + USPACE - 1;
|
|
const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1);
|
|
const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1);
|
|
|
|
const register_t msr = wrtee(0);
|
|
for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
|
|
mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
|
|
for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
|
|
mtspr(SPR_MAS2, epn);
|
|
__asm volatile("tlbre");
|
|
uint32_t mas1 = mfspr(SPR_MAS1);
|
|
|
|
/*
|
|
* Make sure this is a valid kernel entry first.
|
|
*/
|
|
if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V)
|
|
continue;
|
|
|
|
/*
|
|
* We have a valid kernel TLB entry. But if it matches
|
|
* the stack we are currently running on, it would
|
|
* unwise to invalidate it. First see if the epn
|
|
* overlaps the stack. If it does then get the
|
|
* VA and see if it really is part of the stack.
|
|
*/
|
|
if (epn_kstack_lo < epn_kstack_hi
|
|
? (epn_kstack_lo <= epn && epn <= epn_kstack_hi)
|
|
: (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) {
|
|
const uint32_t mas2_epn =
|
|
mfspr(SPR_MAS2) & MAS2_EPN;
|
|
if (kstack_lo <= mas2_epn
|
|
&& mas2_epn <= kstack_hi)
|
|
continue;
|
|
}
|
|
mtspr(SPR_MAS1, mas1 ^ MAS1_V);
|
|
__asm volatile("tlbwe");
|
|
}
|
|
}
|
|
__asm volatile("isync");
|
|
wrtee(msr);
|
|
}
|
|
|
|
static void
|
|
e500_tlb_invalidate_asids(uint32_t asid_lo, uint32_t asid_hi)
|
|
{
|
|
const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
|
|
const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
|
|
const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
|
|
|
|
asid_lo = __SHIFTIN(asid_lo, MAS1_TID);
|
|
asid_hi = __SHIFTIN(asid_hi, MAS1_TID);
|
|
|
|
const register_t msr = wrtee(0);
|
|
for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
|
|
mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
|
|
for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
|
|
mtspr(SPR_MAS2, epn);
|
|
__asm volatile("tlbre");
|
|
const uint32_t mas1 = mfspr(SPR_MAS1);
|
|
/*
|
|
* If this is a valid entry for AS space 1 and
|
|
* its asid matches the constraints of the caller,
|
|
* clear its valid bit.
|
|
*/
|
|
if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)
|
|
&& asid_lo <= (mas1 & MAS1_TID)
|
|
&& (mas1 & MAS1_TID) < asid_hi) {
|
|
mtspr(SPR_MAS1, mas1 ^ MAS1_V);
|
|
#if 0
|
|
printf("%s[%zu,%zu]->[%x]\n",
|
|
__func__, assoc, epn, mas1);
|
|
#endif
|
|
__asm volatile("tlbwe");
|
|
}
|
|
}
|
|
}
|
|
__asm volatile("isync");
|
|
wrtee(msr);
|
|
}
|
|
|
|
static u_int
|
|
e500_tlb_record_asids(u_long *bitmap, uint32_t start_slot)
|
|
{
|
|
const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
|
|
const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
|
|
const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
|
|
const size_t nbits = 8 * sizeof(bitmap[0]);
|
|
u_int found = 0;
|
|
|
|
const register_t msr = wrtee(0);
|
|
for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
|
|
mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
|
|
for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
|
|
mtspr(SPR_MAS2, epn);
|
|
__asm volatile("tlbre");
|
|
const uint32_t mas1 = mfspr(SPR_MAS1);
|
|
/*
|
|
* If this is a valid entry for AS space 1 and
|
|
* its asid matches the constraints of the caller,
|
|
* clear its valid bit.
|
|
*/
|
|
if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) {
|
|
const uint32_t asid = MASX_TID_GET(mas1);
|
|
const u_int i = asid / nbits;
|
|
const u_long mask = 1UL << (asid & (nbits - 1));
|
|
if ((bitmap[i] & mask) == 0) {
|
|
bitmap[i] |= mask;
|
|
found++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
wrtee(msr);
|
|
|
|
return found;
|
|
}
|
|
|
|
static void
|
|
e500_tlb_invalidate_addr(vaddr_t va, uint32_t asid)
|
|
{
|
|
KASSERT((va & PAGE_MASK) == 0);
|
|
/*
|
|
* Bits 60 & 61 have meaning
|
|
*/
|
|
__asm volatile("tlbivax\t0, %0" :: "b"(va));
|
|
__asm volatile("tlbsync");
|
|
__asm volatile("tlbsync");
|
|
}
|
|
|
|
static bool
|
|
e500_tlb_update_addr(vaddr_t va, uint32_t asid, uint32_t pte, bool insert)
|
|
{
|
|
struct e500_hwtlb hwtlb = tlb_to_hwtlb(
|
|
(struct e500_tlb){ .tlb_va = va, .tlb_asid = asid,
|
|
.tlb_size = PAGE_SIZE, .tlb_pte = pte,});
|
|
|
|
register_t msr = wrtee(0);
|
|
mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0);
|
|
__asm volatile("tlbsx 0, %0" :: "b"(va));
|
|
register_t mas1 = mfspr(SPR_MAS1);
|
|
if ((mas1 & MAS1_V) == 0) {
|
|
if (!insert) {
|
|
wrtee(msr);
|
|
#if 0
|
|
printf("%s(%#lx,%#x,%#x,%x)<no update>\n",
|
|
__func__, va, asid, pte, insert);
|
|
#endif
|
|
return false;
|
|
}
|
|
mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
|
|
}
|
|
mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
|
|
mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
|
|
__asm volatile("tlbwe");
|
|
if (asid == 0)
|
|
__asm volatile("isync");
|
|
wrtee(msr);
|
|
#if 0
|
|
if (asid)
|
|
printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n",
|
|
__func__, va, asid, pte, insert,
|
|
hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
|
|
#endif
|
|
return (mas1 & MAS1_V) != 0;
|
|
}
|
|
|
|
static void
|
|
e500_tlb_read_entry(size_t index, struct tlbmask *tlb)
|
|
{
|
|
}
|
|
|
|
static void
|
|
e500_tlb_dump(void (*pr)(const char *, ...))
|
|
{
|
|
const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
|
|
const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
|
|
const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
|
|
const uint32_t saved_mas0 = mfspr(SPR_MAS0);
|
|
size_t valid = 0;
|
|
|
|
if (pr == NULL)
|
|
pr = printf;
|
|
|
|
const register_t msr = wrtee(0);
|
|
for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
|
|
struct e500_hwtlb hwtlb;
|
|
hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
|
|
mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
|
|
for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
|
|
mtspr(SPR_MAS2, epn);
|
|
__asm volatile("tlbre");
|
|
hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
|
|
/*
|
|
* If this is a valid entry for AS space 1 and
|
|
* its asid matches the constraints of the caller,
|
|
* clear its valid bit.
|
|
*/
|
|
if (hwtlb.hwtlb_mas1 & MAS1_V) {
|
|
hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
|
|
hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
|
|
struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
|
|
(*pr)("[%zu,%zu]->[%x,%x,%x]",
|
|
assoc, atop(epn),
|
|
hwtlb.hwtlb_mas1,
|
|
hwtlb.hwtlb_mas2,
|
|
hwtlb.hwtlb_mas3);
|
|
(*pr)(": VA=%#lx size=4KB asid=%u pte=%x",
|
|
tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte);
|
|
(*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n",
|
|
tlb.tlb_pte & PTE_RPN_MASK,
|
|
tlb.tlb_pte & PTE_xR ? "R" : "",
|
|
tlb.tlb_pte & PTE_xW ? "W" : "",
|
|
tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "",
|
|
tlb.tlb_pte & PTE_xX ? "X" : "",
|
|
tlb.tlb_pte & PTE_UNSYNCED ? "*" : "",
|
|
tlb.tlb_pte & PTE_W ? "W" : "",
|
|
tlb.tlb_pte & PTE_I ? "I" : "",
|
|
tlb.tlb_pte & PTE_M ? "M" : "",
|
|
tlb.tlb_pte & PTE_G ? "G" : "",
|
|
tlb.tlb_pte & PTE_E ? "E" : "");
|
|
valid++;
|
|
}
|
|
}
|
|
}
|
|
mtspr(SPR_MAS0, saved_mas0);
|
|
wrtee(msr);
|
|
(*pr)("%s: %zu valid entries\n", __func__, valid);
|
|
}
|
|
|
|
static void
|
|
e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t))
|
|
{
|
|
const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
|
|
const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
|
|
const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
|
|
const uint32_t saved_mas0 = mfspr(SPR_MAS0);
|
|
|
|
const register_t msr = wrtee(0);
|
|
for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
|
|
struct e500_hwtlb hwtlb;
|
|
hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
|
|
mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
|
|
for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
|
|
mtspr(SPR_MAS2, epn);
|
|
__asm volatile("tlbre");
|
|
hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
|
|
/*
|
|
* If this is a valid entry for AS space 1 and
|
|
* its asid matches the constraints of the caller,
|
|
* clear its valid bit.
|
|
*/
|
|
if (hwtlb.hwtlb_mas1 & MAS1_V) {
|
|
hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
|
|
hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
|
|
struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
|
|
if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid,
|
|
tlb.tlb_pte))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
mtspr(SPR_MAS0, saved_mas0);
|
|
wrtee(msr);
|
|
}
|
|
|
|
static struct e500_xtlb *
|
|
e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp)
|
|
{
|
|
struct e500_tlb1 * const tlb1 = &e500_tlb1;
|
|
struct e500_xtlb *xtlb = tlb1->tlb1_entries;
|
|
|
|
/*
|
|
* See if we have a TLB entry for the pa.
|
|
*/
|
|
for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
|
|
if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
|
|
&& xtlb->e_tlb.tlb_va <= va
|
|
&& va < xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
|
|
if (slotp != NULL)
|
|
*slotp = i;
|
|
return xtlb;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct e500_xtlb *
|
|
e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len)
|
|
{
|
|
struct e500_tlb1 * const tlb1 = &e500_tlb1;
|
|
struct e500_xtlb *xtlb = tlb1->tlb1_entries;
|
|
|
|
/*
|
|
* See if we have a TLB entry for the pa.
|
|
*/
|
|
for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
|
|
if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
|
|
&& xtlb->e_tlb.tlb_va < va + len
|
|
&& va < xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
|
|
return xtlb;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void *
|
|
e500_tlb_mapiodev(paddr_t pa, psize_t len)
|
|
{
|
|
struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(pa, NULL);
|
|
|
|
/*
|
|
* See if we have a TLB entry for the pa. If completely falls within
|
|
* mark the reference and return the pa.
|
|
*/
|
|
if (xtlb && pa + len <= xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
|
|
xtlb->e_refcnt++;
|
|
return (void *) pa;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
e500_tlb_unmapiodev(vaddr_t va, vsize_t len)
|
|
{
|
|
if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) {
|
|
struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL);
|
|
if (xtlb)
|
|
xtlb->e_refcnt--;
|
|
}
|
|
}
|
|
|
|
static int
|
|
e500_tlb_ioreserve(vaddr_t va, vsize_t len, uint32_t pte)
|
|
{
|
|
struct e500_tlb1 * const tlb1 = &e500_tlb1;
|
|
struct e500_xtlb *xtlb;
|
|
|
|
KASSERT(len & 0x55555000);
|
|
KASSERT((len & ~0x55555000) == 0);
|
|
KASSERT(len >= PAGE_SIZE);
|
|
KASSERT((len & (len - 1)) == 0);
|
|
KASSERT((va & (len - 1)) == 0);
|
|
KASSERT((pte & (len - 1)) == 0);
|
|
|
|
if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) {
|
|
if (va < xtlb->e_tlb.tlb_va
|
|
|| xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size < va + len
|
|
|| va - xtlb->e_tlb.tlb_va != pte - xtlb->e_tlb.tlb_pte)
|
|
return EBUSY;
|
|
xtlb->e_refcnt++;
|
|
return 0;
|
|
}
|
|
|
|
const int slot = e500_alloc_tlb1_entry();
|
|
if (slot < 0)
|
|
return ENOMEM;
|
|
|
|
xtlb = &tlb1->tlb1_entries[slot];
|
|
xtlb->e_tlb.tlb_va = va;
|
|
xtlb->e_tlb.tlb_size = len;
|
|
xtlb->e_tlb.tlb_pte = pte;
|
|
xtlb->e_tlb.tlb_asid = KERNEL_PID;
|
|
|
|
xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb);
|
|
xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTOUT(slot, MAS0_ESEL);
|
|
hwtlb_write(xtlb->e_hwtlb, true);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
e500_tlb_iorelease(vaddr_t va)
|
|
{
|
|
u_int slot;
|
|
struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot);
|
|
|
|
if (xtlb == NULL)
|
|
return ENOENT;
|
|
|
|
if (xtlb->e_refcnt)
|
|
return EBUSY;
|
|
|
|
e500_free_tlb1_entry(xtlb, slot, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u_int
|
|
e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1)
|
|
{
|
|
u_int slotmask = 0;
|
|
u_int slots = 0, nextslot = 0;
|
|
KASSERT(tlb1->tlb1_numfree > 1);
|
|
KASSERT(((memstart + memsize - 1) & -memsize) == memstart);
|
|
for (paddr_t lastaddr = memstart; 0 < memsize; ) {
|
|
u_int cnt = __builtin_clz(memsize);
|
|
psize_t size = min(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize);
|
|
slots += memsize / size;
|
|
if (slots > 4)
|
|
panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
|
|
__func__, __LINE__, memsize, "too fragmented");
|
|
if (slots > tlb1->tlb1_numfree - 1)
|
|
panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
|
|
__func__, __LINE__, memsize,
|
|
"insufficent TLB entries");
|
|
for (; nextslot < slots; nextslot++) {
|
|
const u_int freeslot = e500_alloc_tlb1_entry();
|
|
struct e500_xtlb * const xtlb =
|
|
&tlb1->tlb1_entries[freeslot];
|
|
xtlb->e_tlb.tlb_asid = KERNEL_PID;
|
|
xtlb->e_tlb.tlb_size = size;
|
|
xtlb->e_tlb.tlb_va = lastaddr;
|
|
xtlb->e_tlb.tlb_pte = lastaddr
|
|
| PTE_M | PTE_xX | PTE_xW | PTE_xR;
|
|
lastaddr += size;
|
|
memsize -= size;
|
|
slotmask |= 1 << (31 - freeslot); /* clz friendly */
|
|
}
|
|
}
|
|
|
|
return nextslot;
|
|
}
|
|
static const struct tlb_md_ops e500_tlb_ops = {
|
|
.md_tlb_set_asid = e500_tlb_set_asid,
|
|
.md_tlb_invalidate_all = e500_tlb_invalidate_all,
|
|
.md_tlb_invalidate_globals = e500_tlb_invalidate_globals,
|
|
.md_tlb_invalidate_asids = e500_tlb_invalidate_asids,
|
|
.md_tlb_invalidate_addr = e500_tlb_invalidate_addr,
|
|
.md_tlb_update_addr = e500_tlb_update_addr,
|
|
.md_tlb_record_asids = e500_tlb_record_asids,
|
|
.md_tlb_read_entry = e500_tlb_read_entry,
|
|
.md_tlb_mapiodev = e500_tlb_mapiodev,
|
|
.md_tlb_unmapiodev = e500_tlb_unmapiodev,
|
|
.md_tlb_ioreserve = e500_tlb_ioreserve,
|
|
.md_tlb_iorelease = e500_tlb_iorelease,
|
|
.md_tlb_dump = e500_tlb_dump,
|
|
.md_tlb_walk = e500_tlb_walk,
|
|
};
|
|
|
|
void
|
|
e500_tlb_init(vaddr_t endkernel, psize_t memsize)
|
|
{
|
|
struct e500_tlb1 * const tlb1 = &e500_tlb1;
|
|
|
|
#if 0
|
|
register_t mmucfg = mfspr(SPR_MMUCFG);
|
|
register_t mas4 = mfspr(SPR_MAS4);
|
|
#endif
|
|
|
|
const uint32_t tlb1cfg = mftlb1cfg();
|
|
tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg);
|
|
KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries));
|
|
/*
|
|
* Limit maxsize to 1G since 4G isn't really useful to us.
|
|
*/
|
|
tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg));
|
|
tlb1->tlb1_maxsize = 1024 << (2 * min(10, TLBCFG_MAXSIZE(tlb1cfg)));
|
|
|
|
#ifdef VERBOSE_INITPPC
|
|
printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB",
|
|
tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10,
|
|
tlb1->tlb1_maxsize >> 10);
|
|
#endif
|
|
|
|
/*
|
|
* Let's see what's in TLB1 and we need to invalidate any entry that
|
|
* would fit within the kernel's mapped address space.
|
|
*/
|
|
psize_t memmapped = 0;
|
|
for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
|
|
struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
|
|
|
|
xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i);
|
|
|
|
if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) {
|
|
tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i;
|
|
#ifdef VERBOSE_INITPPC
|
|
printf(" TLB1[%u]=<unused>", i);
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb);
|
|
#ifdef VERBOSE_INITPPC
|
|
printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>",
|
|
i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size,
|
|
xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte);
|
|
#endif
|
|
if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va
|
|
&& xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS)
|
|
|| (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS
|
|
&& VM_MIN_KERNEL_ADDRESS <
|
|
xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) {
|
|
#ifdef VERBOSE_INITPPC
|
|
printf("free");
|
|
#endif
|
|
e500_free_tlb1_entry(xtlb, i, false);
|
|
#ifdef VERBOSE_INITPPC
|
|
printf("d");
|
|
#endif
|
|
continue;
|
|
}
|
|
if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) {
|
|
xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT;
|
|
hwtlb_write(xtlb->e_hwtlb, false);
|
|
#ifdef VERBOSE_INITPPC
|
|
printf("+iprot");
|
|
#endif
|
|
}
|
|
if (xtlb->e_tlb.tlb_pte & PTE_I)
|
|
continue;
|
|
|
|
if (xtlb->e_tlb.tlb_va == 0
|
|
|| xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) {
|
|
memmapped += xtlb->e_tlb.tlb_size;
|
|
}
|
|
}
|
|
|
|
cpu_md_ops.md_tlb_ops = &e500_tlb_ops;
|
|
|
|
if (__predict_false(memmapped < memsize)) {
|
|
/*
|
|
* Let's see how many TLB entries are needed to map memory.
|
|
*/
|
|
u_int slotmask = e500_tlbmemmap(0, memsize, tlb1);
|
|
|
|
/*
|
|
* To map main memory into the TLB, we need to flush any
|
|
* existing entries from the TLB that overlap the virtual
|
|
* address space needed to map physical memory. That may
|
|
* include the entries for the pages currently used by the
|
|
* stack or that we are executing. So to avoid problems, we
|
|
* are going to temporarily map the kernel and stack into AS 1,
|
|
* switch to it, and clear out the TLB entries from AS 0,
|
|
* install the new TLB entries to map memory, and then switch
|
|
* back to AS 0 and free the temp entry used for AS1.
|
|
*/
|
|
u_int b = __builtin_clz(endkernel);
|
|
|
|
/*
|
|
* If the kernel doesn't end on a clean power of 2, we need
|
|
* to round the size up (by decrementing the number of leading
|
|
* zero bits). If the size isn't a power of 4KB, decrement
|
|
* again to make it one.
|
|
*/
|
|
if (endkernel & (endkernel - 1))
|
|
b--;
|
|
if ((b & 1) == 0)
|
|
b--;
|
|
|
|
/*
|
|
* Create a TLB1 mapping for the kernel in AS1.
|
|
*/
|
|
const u_int kslot = e500_alloc_tlb1_entry();
|
|
struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot];
|
|
kxtlb->e_tlb.tlb_va = 0;
|
|
kxtlb->e_tlb.tlb_size = 1UL << (31 - b);
|
|
kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX;
|
|
kxtlb->e_tlb.tlb_asid = KERNEL_PID;
|
|
|
|
kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb);
|
|
kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTOUT(kslot, MAS0_ESEL);
|
|
kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
|
|
hwtlb_write(kxtlb->e_hwtlb, true);
|
|
|
|
/*
|
|
* Now that we have a TLB mapping in AS1 for the kernel and its
|
|
* stack, we switch to AS1 to cleanup the TLB mappings for TLB0.
|
|
*/
|
|
const register_t saved_msr = mfmsr();
|
|
mtmsr(saved_msr | PSL_DS | PSL_IS);
|
|
__asm volatile("isync");
|
|
|
|
/*
|
|
*** Invalidate all the TLB0 entries.
|
|
*/
|
|
e500_tlb_invalidate_all();
|
|
|
|
/*
|
|
*** Now let's see if we have any entries in TLB1 that would
|
|
*** overlap the ones we are about to install. If so, nuke 'em.
|
|
*/
|
|
for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
|
|
struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
|
|
struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb;
|
|
if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V
|
|
&& (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) {
|
|
e500_free_tlb1_entry(xtlb, i, false);
|
|
}
|
|
}
|
|
|
|
/*
|
|
*** Now we can add the TLB entries that will map physical
|
|
*** memory. If bit 0 [MSB] in slotmask is set, then tlb
|
|
*** entry 0 contains a mapping for physical memory...
|
|
*/
|
|
struct e500_xtlb *entries = tlb1->tlb1_entries;
|
|
while (slotmask != 0) {
|
|
const u_int slot = __builtin_clz(slotmask);
|
|
hwtlb_write(entries[slot].e_hwtlb, false);
|
|
entries += slot + 1;
|
|
slotmask <<= slot + 1;
|
|
}
|
|
|
|
/*
|
|
*** Synchronize the TLB and the instruction stream.
|
|
*/
|
|
__asm volatile("tlbsync");
|
|
__asm volatile("isync");
|
|
|
|
/*
|
|
*** Switch back to AS 0.
|
|
*/
|
|
mtmsr(saved_msr);
|
|
__asm volatile("isync");
|
|
|
|
/*
|
|
* Free the temporary TLB1 entry.
|
|
*/
|
|
e500_free_tlb1_entry(kxtlb, kslot, true);
|
|
}
|
|
|
|
/*
|
|
* Finally set the MAS4 defaults.
|
|
*/
|
|
mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
|
|
|
|
/*
|
|
* Invalidate all the TLB0 entries.
|
|
*/
|
|
e500_tlb_invalidate_all();
|
|
}
|