86162a51cc
- now understands 64bit time_t and 64bit data in timezone files. - localtime(), gmtime(), asctime() and ctime() may now fail with a NULL result if time_t cannot be represented by struct tm.
2198 lines
52 KiB
C
2198 lines
52 KiB
C
/* $NetBSD: localtime.c,v 1.45 2009/12/31 22:49:16 mlelstv Exp $ */
|
|
|
|
/*
|
|
** This file is in the public domain, so clarified as of
|
|
** 1996-06-05 by Arthur David Olson.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#if defined(LIBC_SCCS) && !defined(lint)
|
|
#if 0
|
|
static char elsieid[] = "@(#)localtime.c 8.9";
|
|
#else
|
|
__RCSID("$NetBSD: localtime.c,v 1.45 2009/12/31 22:49:16 mlelstv Exp $");
|
|
#endif
|
|
#endif /* LIBC_SCCS and not lint */
|
|
|
|
/*
|
|
** Leap second handling from Bradley White.
|
|
** POSIX-style TZ environment variable handling from Guy Harris.
|
|
*/
|
|
|
|
/*LINTLIBRARY*/
|
|
|
|
#include "namespace.h"
|
|
#include "private.h"
|
|
#include "tzfile.h"
|
|
#include "fcntl.h"
|
|
#include "reentrant.h"
|
|
|
|
#if defined(__weak_alias)
|
|
__weak_alias(daylight,_daylight)
|
|
__weak_alias(tzname,_tzname)
|
|
__weak_alias(tzset,_tzset)
|
|
__weak_alias(tzsetwall,_tzsetwall)
|
|
#endif
|
|
|
|
#include "float.h" /* for FLT_MAX and DBL_MAX */
|
|
|
|
#ifndef TZ_ABBR_MAX_LEN
|
|
#define TZ_ABBR_MAX_LEN 16
|
|
#endif /* !defined TZ_ABBR_MAX_LEN */
|
|
|
|
#ifndef TZ_ABBR_CHAR_SET
|
|
#define TZ_ABBR_CHAR_SET \
|
|
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
|
|
#endif /* !defined TZ_ABBR_CHAR_SET */
|
|
|
|
#ifndef TZ_ABBR_ERR_CHAR
|
|
#define TZ_ABBR_ERR_CHAR '_'
|
|
#endif /* !defined TZ_ABBR_ERR_CHAR */
|
|
|
|
/*
|
|
** SunOS 4.1.1 headers lack O_BINARY.
|
|
*/
|
|
|
|
#ifdef O_BINARY
|
|
#define OPEN_MODE (O_RDONLY | O_BINARY)
|
|
#endif /* defined O_BINARY */
|
|
#ifndef O_BINARY
|
|
#define OPEN_MODE O_RDONLY
|
|
#endif /* !defined O_BINARY */
|
|
|
|
#ifndef WILDABBR
|
|
/*
|
|
** Someone might make incorrect use of a time zone abbreviation:
|
|
** 1. They might reference tzname[0] before calling tzset (explicitly
|
|
** or implicitly).
|
|
** 2. They might reference tzname[1] before calling tzset (explicitly
|
|
** or implicitly).
|
|
** 3. They might reference tzname[1] after setting to a time zone
|
|
** in which Daylight Saving Time is never observed.
|
|
** 4. They might reference tzname[0] after setting to a time zone
|
|
** in which Standard Time is never observed.
|
|
** 5. They might reference tm.TM_ZONE after calling offtime.
|
|
** What's best to do in the above cases is open to debate;
|
|
** for now, we just set things up so that in any of the five cases
|
|
** WILDABBR is used. Another possibility: initialize tzname[0] to the
|
|
** string "tzname[0] used before set", and similarly for the other cases.
|
|
** And another: initialize tzname[0] to "ERA", with an explanation in the
|
|
** manual page of what this "time zone abbreviation" means (doing this so
|
|
** that tzname[0] has the "normal" length of three characters).
|
|
*/
|
|
#define WILDABBR " "
|
|
#endif /* !defined WILDABBR */
|
|
|
|
static const char wildabbr[] = WILDABBR;
|
|
|
|
static const char gmt[] = "GMT";
|
|
|
|
/*
|
|
** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
|
|
** We default to US rules as of 1999-08-17.
|
|
** POSIX 1003.1 section 8.1.1 says that the default DST rules are
|
|
** implementation dependent; for historical reasons, US rules are a
|
|
** common default.
|
|
*/
|
|
#ifndef TZDEFRULESTRING
|
|
#define TZDEFRULESTRING ",M4.1.0,M10.5.0"
|
|
#endif /* !defined TZDEFDST */
|
|
|
|
struct ttinfo { /* time type information */
|
|
long tt_gmtoff; /* UTC offset in seconds */
|
|
int tt_isdst; /* used to set tm_isdst */
|
|
int tt_abbrind; /* abbreviation list index */
|
|
int tt_ttisstd; /* TRUE if transition is std time */
|
|
int tt_ttisgmt; /* TRUE if transition is UTC */
|
|
};
|
|
|
|
struct lsinfo { /* leap second information */
|
|
time_t ls_trans; /* transition time */
|
|
long ls_corr; /* correction to apply */
|
|
};
|
|
|
|
#define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
|
|
|
|
#ifdef TZNAME_MAX
|
|
#define MY_TZNAME_MAX TZNAME_MAX
|
|
#endif /* defined TZNAME_MAX */
|
|
#ifndef TZNAME_MAX
|
|
#define MY_TZNAME_MAX 255
|
|
#endif /* !defined TZNAME_MAX */
|
|
|
|
struct state {
|
|
int leapcnt;
|
|
int timecnt;
|
|
int typecnt;
|
|
int charcnt;
|
|
int goback;
|
|
int goahead;
|
|
time_t ats[TZ_MAX_TIMES];
|
|
unsigned char types[TZ_MAX_TIMES];
|
|
struct ttinfo ttis[TZ_MAX_TYPES];
|
|
char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
|
|
(2 * (MY_TZNAME_MAX + 1)))];
|
|
struct lsinfo lsis[TZ_MAX_LEAPS];
|
|
};
|
|
|
|
struct rule {
|
|
int r_type; /* type of rule--see below */
|
|
int r_day; /* day number of rule */
|
|
int r_week; /* week number of rule */
|
|
int r_mon; /* month number of rule */
|
|
long r_time; /* transition time of rule */
|
|
};
|
|
|
|
#define JULIAN_DAY 0 /* Jn - Julian day */
|
|
#define DAY_OF_YEAR 1 /* n - day of year */
|
|
#define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
|
|
|
|
/*
|
|
** Prototypes for static functions.
|
|
*/
|
|
|
|
static long detzcode(const char * codep);
|
|
static time_t detzcode64(const char * codep);
|
|
static int differ_by_repeat(time_t t1, time_t t0);
|
|
static const char * getzname(const char * strp);
|
|
static const char * getqzname(const char * strp, const int delim);
|
|
static const char * getnum(const char * strp, int * nump, int min,
|
|
int max);
|
|
static const char * getsecs(const char * strp, long * secsp);
|
|
static const char * getoffset(const char * strp, long * offsetp);
|
|
static const char * getrule(const char * strp, struct rule * rulep);
|
|
static void gmtload(struct state * sp);
|
|
static struct tm * gmtsub(const time_t * timep, long offset,
|
|
struct tm * tmp);
|
|
static struct tm * localsub(const time_t * timep, long offset,
|
|
struct tm * tmp);
|
|
static int increment_overflow(int * number, int delta);
|
|
static int leaps_thru_end_of(int y);
|
|
static int long_increment_overflow(long * number, int delta);
|
|
static int long_normalize_overflow(long * tensptr,
|
|
int * unitsptr, int base);
|
|
static int normalize_overflow(int * tensptr, int * unitsptr,
|
|
int base);
|
|
static void settzname(void);
|
|
static time_t time1(struct tm * tmp,
|
|
struct tm * (*funcp)(const time_t *,
|
|
long, struct tm *),
|
|
long offset);
|
|
static time_t time2(struct tm *tmp,
|
|
struct tm * (*funcp)(const time_t *,
|
|
long, struct tm*),
|
|
long offset, int * okayp);
|
|
static time_t time2sub(struct tm *tmp,
|
|
struct tm * (*funcp)(const time_t *,
|
|
long, struct tm*),
|
|
long offset, int * okayp, int do_norm_secs);
|
|
static struct tm * timesub(const time_t * timep, long offset,
|
|
const struct state * sp, struct tm * tmp);
|
|
static int tmcomp(const struct tm * atmp,
|
|
const struct tm * btmp);
|
|
static time_t transtime(time_t janfirst, int year,
|
|
const struct rule * rulep, long offset);
|
|
static int typesequiv(const struct state * sp, int a, int b);
|
|
static int tzload(const char * name, struct state * sp,
|
|
int doextend);
|
|
static int tzparse(const char * name, struct state * sp,
|
|
int lastditch);
|
|
static void tzset_unlocked(void);
|
|
static void tzsetwall_unlocked(void);
|
|
static long leapcorr(time_t * timep);
|
|
|
|
#ifdef ALL_STATE
|
|
static struct state * lclptr;
|
|
static struct state * gmtptr;
|
|
#endif /* defined ALL_STATE */
|
|
|
|
#ifndef ALL_STATE
|
|
static struct state lclmem;
|
|
static struct state gmtmem;
|
|
#define lclptr (&lclmem)
|
|
#define gmtptr (&gmtmem)
|
|
#endif /* State Farm */
|
|
|
|
#ifndef TZ_STRLEN_MAX
|
|
#define TZ_STRLEN_MAX 255
|
|
#endif /* !defined TZ_STRLEN_MAX */
|
|
|
|
static char lcl_TZname[TZ_STRLEN_MAX + 1];
|
|
static int lcl_is_set;
|
|
static int gmt_is_set;
|
|
|
|
#if !defined(__LIBC12_SOURCE__)
|
|
|
|
__aconst char * tzname[2] = {
|
|
(__aconst char *)__UNCONST(wildabbr),
|
|
(__aconst char *)__UNCONST(wildabbr)
|
|
};
|
|
|
|
#else
|
|
|
|
extern __aconst char * tzname[2];
|
|
|
|
#endif
|
|
|
|
#ifdef _REENTRANT
|
|
static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
|
|
#endif
|
|
|
|
/*
|
|
** Section 4.12.3 of X3.159-1989 requires that
|
|
** Except for the strftime function, these functions [asctime,
|
|
** ctime, gmtime, localtime] return values in one of two static
|
|
** objects: a broken-down time structure and an array of char.
|
|
** Thanks to Paul Eggert for noting this.
|
|
*/
|
|
|
|
static struct tm tm;
|
|
|
|
#ifdef USG_COMPAT
|
|
#if !defined(__LIBC12_SOURCE__)
|
|
long timezone = 0;
|
|
int daylight = 0;
|
|
#else
|
|
extern int daylight;
|
|
extern long timezone __RENAME(__timezone13);
|
|
#endif
|
|
#endif /* defined USG_COMPAT */
|
|
|
|
#ifdef ALTZONE
|
|
time_t altzone = 0;
|
|
#endif /* defined ALTZONE */
|
|
|
|
static long
|
|
detzcode(codep)
|
|
const char * const codep;
|
|
{
|
|
register long result;
|
|
register int i;
|
|
|
|
result = (codep[0] & 0x80) ? ~0L : 0;
|
|
for (i = 0; i < 4; ++i)
|
|
result = (result << 8) | (codep[i] & 0xff);
|
|
return result;
|
|
}
|
|
|
|
static time_t
|
|
detzcode64(codep)
|
|
const char * const codep;
|
|
{
|
|
register time_t result;
|
|
register int i;
|
|
|
|
result = (codep[0] & 0x80) ? -1 : 0;
|
|
for (i = 0; i < 8; ++i)
|
|
result = result * 256 + (codep[i] & 0xff);
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
settzname(void)
|
|
{
|
|
register struct state * const sp = lclptr;
|
|
register int i;
|
|
|
|
tzname[0] = (__aconst char *)__UNCONST(wildabbr);
|
|
tzname[1] = (__aconst char *)__UNCONST(wildabbr);
|
|
#ifdef USG_COMPAT
|
|
daylight = 0;
|
|
timezone = 0;
|
|
#endif /* defined USG_COMPAT */
|
|
#ifdef ALTZONE
|
|
altzone = 0;
|
|
#endif /* defined ALTZONE */
|
|
#ifdef ALL_STATE
|
|
if (sp == NULL) {
|
|
tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
|
|
return;
|
|
}
|
|
#endif /* defined ALL_STATE */
|
|
for (i = 0; i < sp->typecnt; ++i) {
|
|
register const struct ttinfo * const ttisp = &sp->ttis[i];
|
|
|
|
tzname[ttisp->tt_isdst] =
|
|
&sp->chars[ttisp->tt_abbrind];
|
|
#ifdef USG_COMPAT
|
|
if (ttisp->tt_isdst)
|
|
daylight = 1;
|
|
if (i == 0 || !ttisp->tt_isdst)
|
|
timezone = -(ttisp->tt_gmtoff);
|
|
#endif /* defined USG_COMPAT */
|
|
#ifdef ALTZONE
|
|
if (i == 0 || ttisp->tt_isdst)
|
|
altzone = -(ttisp->tt_gmtoff);
|
|
#endif /* defined ALTZONE */
|
|
}
|
|
/*
|
|
** And to get the latest zone names into tzname. . .
|
|
*/
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
register const struct ttinfo * const ttisp =
|
|
&sp->ttis[
|
|
sp->types[i]];
|
|
|
|
tzname[ttisp->tt_isdst] =
|
|
&sp->chars[ttisp->tt_abbrind];
|
|
}
|
|
/*
|
|
** Finally, scrub the abbreviations.
|
|
** First, replace bogus characters.
|
|
*/
|
|
for (i = 0; i < sp->charcnt; ++i)
|
|
if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
|
|
sp->chars[i] = TZ_ABBR_ERR_CHAR;
|
|
/*
|
|
** Second, truncate long abbreviations.
|
|
*/
|
|
for (i = 0; i < sp->typecnt; ++i) {
|
|
register const struct ttinfo * const ttisp = &sp->ttis[i];
|
|
register char * cp = &sp->chars[ttisp->tt_abbrind];
|
|
|
|
if (strlen(cp) > TZ_ABBR_MAX_LEN &&
|
|
strcmp(cp, GRANDPARENTED) != 0)
|
|
*(cp + TZ_ABBR_MAX_LEN) = '\0';
|
|
}
|
|
}
|
|
|
|
static int
|
|
differ_by_repeat(t1, t0)
|
|
const time_t t1;
|
|
const time_t t0;
|
|
{
|
|
/* CONSTCOND */
|
|
if (TYPE_INTEGRAL(time_t) &&
|
|
TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
|
|
return 0;
|
|
return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
|
|
}
|
|
|
|
static int
|
|
tzload(name, sp, doextend)
|
|
register const char * name;
|
|
register struct state * const sp;
|
|
register const int doextend;
|
|
{
|
|
register const char * p;
|
|
register int i;
|
|
register int fid;
|
|
register int stored;
|
|
register int nread;
|
|
union {
|
|
struct tzhead tzhead;
|
|
char buf[2 * sizeof(struct tzhead) +
|
|
2 * sizeof *sp +
|
|
4 * TZ_MAX_TIMES];
|
|
} u;
|
|
|
|
if (name == NULL && (name = TZDEFAULT) == NULL)
|
|
return -1;
|
|
{
|
|
register int doaccess;
|
|
/*
|
|
** Section 4.9.1 of the C standard says that
|
|
** "FILENAME_MAX expands to an integral constant expression
|
|
** that is the size needed for an array of char large enough
|
|
** to hold the longest file name string that the implementation
|
|
** guarantees can be opened."
|
|
*/
|
|
char fullname[FILENAME_MAX + 1];
|
|
|
|
if (name[0] == ':')
|
|
++name;
|
|
doaccess = name[0] == '/';
|
|
if (!doaccess) {
|
|
if ((p = TZDIR) == NULL)
|
|
return -1;
|
|
if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
|
|
return -1;
|
|
(void) strcpy(fullname, p); /* XXX strcpy is safe */
|
|
(void) strcat(fullname, "/"); /* XXX strcat is safe */
|
|
(void) strcat(fullname, name); /* XXX strcat is safe */
|
|
/*
|
|
** Set doaccess if '.' (as in "../") shows up in name.
|
|
*/
|
|
if (strchr(name, '.') != NULL)
|
|
doaccess = TRUE;
|
|
name = fullname;
|
|
}
|
|
if (doaccess && access(name, R_OK) != 0)
|
|
return -1;
|
|
/*
|
|
* XXX potential security problem here if user of a set-id
|
|
* program has set TZ (which is passed in as name) here,
|
|
* and uses a race condition trick to defeat the access(2)
|
|
* above.
|
|
*/
|
|
if ((fid = open(name, OPEN_MODE)) == -1)
|
|
return -1;
|
|
}
|
|
nread = read(fid, u.buf, sizeof u.buf);
|
|
if (close(fid) < 0 || nread <= 0)
|
|
return -1;
|
|
for (stored = 4; stored <= 8; stored *= 2) {
|
|
int ttisstdcnt;
|
|
int ttisgmtcnt;
|
|
|
|
ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
|
|
ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
|
|
sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
|
|
sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
|
|
sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
|
|
sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
|
|
p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
|
|
if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
|
|
sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
|
|
sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
|
|
sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
|
|
(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
|
|
(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
|
|
return -1;
|
|
if (nread - (p - u.buf) <
|
|
sp->timecnt * stored + /* ats */
|
|
sp->timecnt + /* types */
|
|
sp->typecnt * 6 + /* ttinfos */
|
|
sp->charcnt + /* chars */
|
|
sp->leapcnt * (stored + 4) + /* lsinfos */
|
|
ttisstdcnt + /* ttisstds */
|
|
ttisgmtcnt) /* ttisgmts */
|
|
return -1;
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
sp->ats[i] = (stored == 4) ?
|
|
detzcode(p) : detzcode64(p);
|
|
p += stored;
|
|
}
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
sp->types[i] = (unsigned char) *p++;
|
|
if (sp->types[i] >= sp->typecnt)
|
|
return -1;
|
|
}
|
|
for (i = 0; i < sp->typecnt; ++i) {
|
|
register struct ttinfo * ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
ttisp->tt_gmtoff = detzcode(p);
|
|
p += 4;
|
|
ttisp->tt_isdst = (unsigned char) *p++;
|
|
if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
|
|
return -1;
|
|
ttisp->tt_abbrind = (unsigned char) *p++;
|
|
if (ttisp->tt_abbrind < 0 ||
|
|
ttisp->tt_abbrind > sp->charcnt)
|
|
return -1;
|
|
}
|
|
for (i = 0; i < sp->charcnt; ++i)
|
|
sp->chars[i] = *p++;
|
|
sp->chars[i] = '\0'; /* ensure '\0' at end */
|
|
for (i = 0; i < sp->leapcnt; ++i) {
|
|
register struct lsinfo * lsisp;
|
|
|
|
lsisp = &sp->lsis[i];
|
|
lsisp->ls_trans = (stored == 4) ?
|
|
detzcode(p) : detzcode64(p);
|
|
p += stored;
|
|
lsisp->ls_corr = detzcode(p);
|
|
p += 4;
|
|
}
|
|
for (i = 0; i < sp->typecnt; ++i) {
|
|
register struct ttinfo * ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
if (ttisstdcnt == 0)
|
|
ttisp->tt_ttisstd = FALSE;
|
|
else {
|
|
ttisp->tt_ttisstd = *p++;
|
|
if (ttisp->tt_ttisstd != TRUE &&
|
|
ttisp->tt_ttisstd != FALSE)
|
|
return -1;
|
|
}
|
|
}
|
|
for (i = 0; i < sp->typecnt; ++i) {
|
|
register struct ttinfo * ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
if (ttisgmtcnt == 0)
|
|
ttisp->tt_ttisgmt = FALSE;
|
|
else {
|
|
ttisp->tt_ttisgmt = *p++;
|
|
if (ttisp->tt_ttisgmt != TRUE &&
|
|
ttisp->tt_ttisgmt != FALSE)
|
|
return -1;
|
|
}
|
|
}
|
|
/*
|
|
** Out-of-sort ats should mean we're running on a
|
|
** signed time_t system but using a data file with
|
|
** unsigned values (or vice versa).
|
|
*/
|
|
for (i = 0; i < sp->timecnt - 2; ++i)
|
|
if (sp->ats[i] > sp->ats[i + 1]) {
|
|
++i;
|
|
/* CONSTCOND */
|
|
if (TYPE_SIGNED(time_t)) {
|
|
/*
|
|
** Ignore the end (easy).
|
|
*/
|
|
sp->timecnt = i;
|
|
} else {
|
|
/*
|
|
** Ignore the beginning (harder).
|
|
*/
|
|
register int j;
|
|
|
|
for (j = 0; j + i < sp->timecnt; ++j) {
|
|
sp->ats[j] = sp->ats[j + i];
|
|
sp->types[j] = sp->types[j + i];
|
|
}
|
|
sp->timecnt = j;
|
|
}
|
|
break;
|
|
}
|
|
/*
|
|
** If this is an old file, we're done.
|
|
*/
|
|
if (u.tzhead.tzh_version[0] == '\0')
|
|
break;
|
|
nread -= p - u.buf;
|
|
for (i = 0; i < nread; ++i)
|
|
u.buf[i] = p[i];
|
|
/*
|
|
** If this is a narrow integer time_t system, we're done.
|
|
*/
|
|
if (stored >= (int) sizeof(time_t)
|
|
/* CONSTCOND */
|
|
&& TYPE_INTEGRAL(time_t))
|
|
break;
|
|
}
|
|
if (doextend && nread > 2 &&
|
|
u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
|
|
sp->typecnt + 2 <= TZ_MAX_TYPES) {
|
|
struct state ts;
|
|
register int result;
|
|
|
|
u.buf[nread - 1] = '\0';
|
|
result = tzparse(&u.buf[1], &ts, FALSE);
|
|
if (result == 0 && ts.typecnt == 2 &&
|
|
sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
|
|
for (i = 0; i < 2; ++i)
|
|
ts.ttis[i].tt_abbrind +=
|
|
sp->charcnt;
|
|
for (i = 0; i < ts.charcnt; ++i)
|
|
sp->chars[sp->charcnt++] =
|
|
ts.chars[i];
|
|
i = 0;
|
|
while (i < ts.timecnt &&
|
|
ts.ats[i] <=
|
|
sp->ats[sp->timecnt - 1])
|
|
++i;
|
|
while (i < ts.timecnt &&
|
|
sp->timecnt < TZ_MAX_TIMES) {
|
|
sp->ats[sp->timecnt] =
|
|
ts.ats[i];
|
|
sp->types[sp->timecnt] =
|
|
sp->typecnt +
|
|
ts.types[i];
|
|
++sp->timecnt;
|
|
++i;
|
|
}
|
|
sp->ttis[sp->typecnt++] = ts.ttis[0];
|
|
sp->ttis[sp->typecnt++] = ts.ttis[1];
|
|
}
|
|
}
|
|
sp->goback = sp->goahead = FALSE;
|
|
if (sp->timecnt > 1) {
|
|
for (i = 1; i < sp->timecnt; ++i)
|
|
if (typesequiv(sp, sp->types[i], sp->types[0]) &&
|
|
differ_by_repeat(sp->ats[i], sp->ats[0])) {
|
|
sp->goback = TRUE;
|
|
break;
|
|
}
|
|
for (i = sp->timecnt - 2; i >= 0; --i)
|
|
if (typesequiv(sp, sp->types[sp->timecnt - 1],
|
|
sp->types[i]) &&
|
|
differ_by_repeat(sp->ats[sp->timecnt - 1],
|
|
sp->ats[i])) {
|
|
sp->goahead = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
typesequiv(sp, a, b)
|
|
const struct state * const sp;
|
|
const int a;
|
|
const int b;
|
|
{
|
|
register int result;
|
|
|
|
if (sp == NULL ||
|
|
a < 0 || a >= sp->typecnt ||
|
|
b < 0 || b >= sp->typecnt)
|
|
result = FALSE;
|
|
else {
|
|
register const struct ttinfo * ap = &sp->ttis[a];
|
|
register const struct ttinfo * bp = &sp->ttis[b];
|
|
result = ap->tt_gmtoff == bp->tt_gmtoff &&
|
|
ap->tt_isdst == bp->tt_isdst &&
|
|
ap->tt_ttisstd == bp->tt_ttisstd &&
|
|
ap->tt_ttisgmt == bp->tt_ttisgmt &&
|
|
strcmp(&sp->chars[ap->tt_abbrind],
|
|
&sp->chars[bp->tt_abbrind]) == 0;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static const int mon_lengths[2][MONSPERYEAR] = {
|
|
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
|
|
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
|
|
};
|
|
|
|
static const int year_lengths[2] = {
|
|
DAYSPERNYEAR, DAYSPERLYEAR
|
|
};
|
|
|
|
/*
|
|
** Given a pointer into a time zone string, scan until a character that is not
|
|
** a valid character in a zone name is found. Return a pointer to that
|
|
** character.
|
|
*/
|
|
|
|
static const char *
|
|
getzname(strp)
|
|
register const char * strp;
|
|
{
|
|
register char c;
|
|
|
|
while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
|
|
c != '+')
|
|
++strp;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into an extended time zone string, scan until the ending
|
|
** delimiter of the zone name is located. Return a pointer to the delimiter.
|
|
**
|
|
** As with getzname above, the legal character set is actually quite
|
|
** restricted, with other characters producing undefined results.
|
|
** We don't do any checking here; checking is done later in common-case code.
|
|
*/
|
|
|
|
static const char *
|
|
getqzname(register const char *strp, const int delim)
|
|
{
|
|
register int c;
|
|
|
|
while ((c = *strp) != '\0' && c != delim)
|
|
++strp;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into a time zone string, extract a number from that string.
|
|
** Check that the number is within a specified range; if it is not, return
|
|
** NULL.
|
|
** Otherwise, return a pointer to the first character not part of the number.
|
|
*/
|
|
|
|
static const char *
|
|
getnum(strp, nump, min, max)
|
|
register const char * strp;
|
|
int * const nump;
|
|
const int min;
|
|
const int max;
|
|
{
|
|
register char c;
|
|
register int num;
|
|
|
|
if (strp == NULL || !is_digit(c = *strp))
|
|
return NULL;
|
|
num = 0;
|
|
do {
|
|
num = num * 10 + (c - '0');
|
|
if (num > max)
|
|
return NULL; /* illegal value */
|
|
c = *++strp;
|
|
} while (is_digit(c));
|
|
if (num < min)
|
|
return NULL; /* illegal value */
|
|
*nump = num;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into a time zone string, extract a number of seconds,
|
|
** in hh[:mm[:ss]] form, from the string.
|
|
** If any error occurs, return NULL.
|
|
** Otherwise, return a pointer to the first character not part of the number
|
|
** of seconds.
|
|
*/
|
|
|
|
static const char *
|
|
getsecs(strp, secsp)
|
|
register const char * strp;
|
|
long * const secsp;
|
|
{
|
|
int num;
|
|
|
|
/*
|
|
** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
|
|
** "M10.4.6/26", which does not conform to Posix,
|
|
** but which specifies the equivalent of
|
|
** ``02:00 on the first Sunday on or after 23 Oct''.
|
|
*/
|
|
strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp = num * (long) SECSPERHOUR;
|
|
if (*strp == ':') {
|
|
++strp;
|
|
strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp += num * SECSPERMIN;
|
|
if (*strp == ':') {
|
|
++strp;
|
|
/* `SECSPERMIN' allows for leap seconds. */
|
|
strp = getnum(strp, &num, 0, SECSPERMIN);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp += num;
|
|
}
|
|
}
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into a time zone string, extract an offset, in
|
|
** [+-]hh[:mm[:ss]] form, from the string.
|
|
** If any error occurs, return NULL.
|
|
** Otherwise, return a pointer to the first character not part of the time.
|
|
*/
|
|
|
|
static const char *
|
|
getoffset(strp, offsetp)
|
|
register const char * strp;
|
|
long * const offsetp;
|
|
{
|
|
register int neg = 0;
|
|
|
|
if (*strp == '-') {
|
|
neg = 1;
|
|
++strp;
|
|
} else if (*strp == '+')
|
|
++strp;
|
|
strp = getsecs(strp, offsetp);
|
|
if (strp == NULL)
|
|
return NULL; /* illegal time */
|
|
if (neg)
|
|
*offsetp = -*offsetp;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into a time zone string, extract a rule in the form
|
|
** date[/time]. See POSIX section 8 for the format of "date" and "time".
|
|
** If a valid rule is not found, return NULL.
|
|
** Otherwise, return a pointer to the first character not part of the rule.
|
|
*/
|
|
|
|
static const char *
|
|
getrule(strp, rulep)
|
|
const char * strp;
|
|
register struct rule * const rulep;
|
|
{
|
|
if (*strp == 'J') {
|
|
/*
|
|
** Julian day.
|
|
*/
|
|
rulep->r_type = JULIAN_DAY;
|
|
++strp;
|
|
strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
|
|
} else if (*strp == 'M') {
|
|
/*
|
|
** Month, week, day.
|
|
*/
|
|
rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
|
|
++strp;
|
|
strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp++ != '.')
|
|
return NULL;
|
|
strp = getnum(strp, &rulep->r_week, 1, 5);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp++ != '.')
|
|
return NULL;
|
|
strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
|
|
} else if (is_digit(*strp)) {
|
|
/*
|
|
** Day of year.
|
|
*/
|
|
rulep->r_type = DAY_OF_YEAR;
|
|
strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
|
|
} else return NULL; /* invalid format */
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp == '/') {
|
|
/*
|
|
** Time specified.
|
|
*/
|
|
++strp;
|
|
strp = getsecs(strp, &rulep->r_time);
|
|
} else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
|
|
** year, a rule, and the offset from UTC at the time that rule takes effect,
|
|
** calculate the Epoch-relative time that rule takes effect.
|
|
*/
|
|
|
|
static time_t
|
|
transtime(janfirst, year, rulep, offset)
|
|
const time_t janfirst;
|
|
const int year;
|
|
register const struct rule * const rulep;
|
|
const long offset;
|
|
{
|
|
register int leapyear;
|
|
register time_t value;
|
|
register int i;
|
|
int d, m1, yy0, yy1, yy2, dow;
|
|
|
|
INITIALIZE(value);
|
|
leapyear = isleap(year);
|
|
switch (rulep->r_type) {
|
|
|
|
case JULIAN_DAY:
|
|
/*
|
|
** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
|
|
** years.
|
|
** In non-leap years, or if the day number is 59 or less, just
|
|
** add SECSPERDAY times the day number-1 to the time of
|
|
** January 1, midnight, to get the day.
|
|
*/
|
|
value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
|
|
if (leapyear && rulep->r_day >= 60)
|
|
value += SECSPERDAY;
|
|
break;
|
|
|
|
case DAY_OF_YEAR:
|
|
/*
|
|
** n - day of year.
|
|
** Just add SECSPERDAY times the day number to the time of
|
|
** January 1, midnight, to get the day.
|
|
*/
|
|
value = janfirst + rulep->r_day * SECSPERDAY;
|
|
break;
|
|
|
|
case MONTH_NTH_DAY_OF_WEEK:
|
|
/*
|
|
** Mm.n.d - nth "dth day" of month m.
|
|
*/
|
|
value = janfirst;
|
|
for (i = 0; i < rulep->r_mon - 1; ++i)
|
|
value += mon_lengths[leapyear][i] * SECSPERDAY;
|
|
|
|
/*
|
|
** Use Zeller's Congruence to get day-of-week of first day of
|
|
** month.
|
|
*/
|
|
m1 = (rulep->r_mon + 9) % 12 + 1;
|
|
yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
|
|
yy1 = yy0 / 100;
|
|
yy2 = yy0 % 100;
|
|
dow = ((26 * m1 - 2) / 10 +
|
|
1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
|
|
if (dow < 0)
|
|
dow += DAYSPERWEEK;
|
|
|
|
/*
|
|
** "dow" is the day-of-week of the first day of the month. Get
|
|
** the day-of-month (zero-origin) of the first "dow" day of the
|
|
** month.
|
|
*/
|
|
d = rulep->r_day - dow;
|
|
if (d < 0)
|
|
d += DAYSPERWEEK;
|
|
for (i = 1; i < rulep->r_week; ++i) {
|
|
if (d + DAYSPERWEEK >=
|
|
mon_lengths[leapyear][rulep->r_mon - 1])
|
|
break;
|
|
d += DAYSPERWEEK;
|
|
}
|
|
|
|
/*
|
|
** "d" is the day-of-month (zero-origin) of the day we want.
|
|
*/
|
|
value += d * SECSPERDAY;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
|
|
** question. To get the Epoch-relative time of the specified local
|
|
** time on that day, add the transition time and the current offset
|
|
** from UTC.
|
|
*/
|
|
return value + rulep->r_time + offset;
|
|
}
|
|
|
|
/*
|
|
** Given a POSIX section 8-style TZ string, fill in the rule tables as
|
|
** appropriate.
|
|
*/
|
|
|
|
static int
|
|
tzparse(name, sp, lastditch)
|
|
const char * name;
|
|
register struct state * const sp;
|
|
const int lastditch;
|
|
{
|
|
const char * stdname;
|
|
const char * dstname;
|
|
size_t stdlen;
|
|
size_t dstlen;
|
|
long stdoffset;
|
|
long dstoffset;
|
|
register time_t * atp;
|
|
register unsigned char * typep;
|
|
register char * cp;
|
|
register int load_result;
|
|
|
|
INITIALIZE(dstname);
|
|
stdname = name;
|
|
if (lastditch) {
|
|
stdlen = strlen(name); /* length of standard zone name */
|
|
name += stdlen;
|
|
if (stdlen >= sizeof sp->chars)
|
|
stdlen = (sizeof sp->chars) - 1;
|
|
stdoffset = 0;
|
|
} else {
|
|
if (*name == '<') {
|
|
name++;
|
|
stdname = name;
|
|
name = getqzname(name, '>');
|
|
if (*name != '>')
|
|
return (-1);
|
|
stdlen = name - stdname;
|
|
name++;
|
|
} else {
|
|
name = getzname(name);
|
|
stdlen = name - stdname;
|
|
}
|
|
if (*name == '\0')
|
|
return -1;
|
|
name = getoffset(name, &stdoffset);
|
|
if (name == NULL)
|
|
return -1;
|
|
}
|
|
load_result = tzload(TZDEFRULES, sp, FALSE);
|
|
if (load_result != 0)
|
|
sp->leapcnt = 0; /* so, we're off a little */
|
|
if (*name != '\0') {
|
|
if (*name == '<') {
|
|
dstname = ++name;
|
|
name = getqzname(name, '>');
|
|
if (*name != '>')
|
|
return -1;
|
|
dstlen = name - dstname;
|
|
name++;
|
|
} else {
|
|
dstname = name;
|
|
name = getzname(name);
|
|
dstlen = name - dstname; /* length of DST zone name */
|
|
}
|
|
if (*name != '\0' && *name != ',' && *name != ';') {
|
|
name = getoffset(name, &dstoffset);
|
|
if (name == NULL)
|
|
return -1;
|
|
} else dstoffset = stdoffset - SECSPERHOUR;
|
|
if (*name == '\0' && load_result != 0)
|
|
name = TZDEFRULESTRING;
|
|
if (*name == ',' || *name == ';') {
|
|
struct rule start;
|
|
struct rule end;
|
|
register int year;
|
|
register time_t janfirst;
|
|
time_t starttime;
|
|
time_t endtime;
|
|
|
|
++name;
|
|
if ((name = getrule(name, &start)) == NULL)
|
|
return -1;
|
|
if (*name++ != ',')
|
|
return -1;
|
|
if ((name = getrule(name, &end)) == NULL)
|
|
return -1;
|
|
if (*name != '\0')
|
|
return -1;
|
|
sp->typecnt = 2; /* standard time and DST */
|
|
/*
|
|
** Two transitions per year, from EPOCH_YEAR forward.
|
|
*/
|
|
sp->ttis[0].tt_gmtoff = -dstoffset;
|
|
sp->ttis[0].tt_isdst = 1;
|
|
sp->ttis[0].tt_abbrind = stdlen + 1;
|
|
sp->ttis[1].tt_gmtoff = -stdoffset;
|
|
sp->ttis[1].tt_isdst = 0;
|
|
sp->ttis[1].tt_abbrind = 0;
|
|
atp = sp->ats;
|
|
typep = sp->types;
|
|
janfirst = 0;
|
|
sp->timecnt = 0;
|
|
for (year = EPOCH_YEAR;
|
|
sp->timecnt + 2 <= TZ_MAX_TIMES;
|
|
++year) {
|
|
time_t newfirst;
|
|
|
|
starttime = transtime(janfirst, year, &start,
|
|
stdoffset);
|
|
endtime = transtime(janfirst, year, &end,
|
|
dstoffset);
|
|
if (starttime > endtime) {
|
|
*atp++ = endtime;
|
|
*typep++ = 1; /* DST ends */
|
|
*atp++ = starttime;
|
|
*typep++ = 0; /* DST begins */
|
|
} else {
|
|
*atp++ = starttime;
|
|
*typep++ = 0; /* DST begins */
|
|
*atp++ = endtime;
|
|
*typep++ = 1; /* DST ends */
|
|
}
|
|
sp->timecnt += 2;
|
|
newfirst = janfirst;
|
|
newfirst += year_lengths[isleap(year)] *
|
|
SECSPERDAY;
|
|
if (newfirst <= janfirst)
|
|
break;
|
|
janfirst = newfirst;
|
|
}
|
|
} else {
|
|
register long theirstdoffset;
|
|
register long theirdstoffset;
|
|
register long theiroffset;
|
|
register int isdst;
|
|
register int i;
|
|
register int j;
|
|
|
|
if (*name != '\0')
|
|
return -1;
|
|
/*
|
|
** Initial values of theirstdoffset
|
|
*/
|
|
theirstdoffset = 0;
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
j = sp->types[i];
|
|
if (!sp->ttis[j].tt_isdst) {
|
|
theirstdoffset =
|
|
-sp->ttis[j].tt_gmtoff;
|
|
break;
|
|
}
|
|
}
|
|
theirdstoffset = 0;
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
j = sp->types[i];
|
|
if (sp->ttis[j].tt_isdst) {
|
|
theirdstoffset =
|
|
-sp->ttis[j].tt_gmtoff;
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
** Initially we're assumed to be in standard time.
|
|
*/
|
|
isdst = FALSE;
|
|
theiroffset = theirstdoffset;
|
|
/*
|
|
** Now juggle transition times and types
|
|
** tracking offsets as you do.
|
|
*/
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
j = sp->types[i];
|
|
sp->types[i] = sp->ttis[j].tt_isdst;
|
|
if (sp->ttis[j].tt_ttisgmt) {
|
|
/* No adjustment to transition time */
|
|
} else {
|
|
/*
|
|
** If summer time is in effect, and the
|
|
** transition time was not specified as
|
|
** standard time, add the summer time
|
|
** offset to the transition time;
|
|
** otherwise, add the standard time
|
|
** offset to the transition time.
|
|
*/
|
|
/*
|
|
** Transitions from DST to DDST
|
|
** will effectively disappear since
|
|
** POSIX provides for only one DST
|
|
** offset.
|
|
*/
|
|
if (isdst && !sp->ttis[j].tt_ttisstd) {
|
|
sp->ats[i] += dstoffset -
|
|
theirdstoffset;
|
|
} else {
|
|
sp->ats[i] += stdoffset -
|
|
theirstdoffset;
|
|
}
|
|
}
|
|
theiroffset = -sp->ttis[j].tt_gmtoff;
|
|
if (!sp->ttis[j].tt_isdst)
|
|
theirstdoffset = theiroffset;
|
|
else theirdstoffset = theiroffset;
|
|
}
|
|
/*
|
|
** Finally, fill in ttis.
|
|
** ttisstd and ttisgmt need not be handled.
|
|
*/
|
|
sp->ttis[0].tt_gmtoff = -stdoffset;
|
|
sp->ttis[0].tt_isdst = FALSE;
|
|
sp->ttis[0].tt_abbrind = 0;
|
|
sp->ttis[1].tt_gmtoff = -dstoffset;
|
|
sp->ttis[1].tt_isdst = TRUE;
|
|
sp->ttis[1].tt_abbrind = stdlen + 1;
|
|
sp->typecnt = 2;
|
|
}
|
|
} else {
|
|
dstlen = 0;
|
|
sp->typecnt = 1; /* only standard time */
|
|
sp->timecnt = 0;
|
|
sp->ttis[0].tt_gmtoff = -stdoffset;
|
|
sp->ttis[0].tt_isdst = 0;
|
|
sp->ttis[0].tt_abbrind = 0;
|
|
}
|
|
sp->charcnt = stdlen + 1;
|
|
if (dstlen != 0)
|
|
sp->charcnt += dstlen + 1;
|
|
if ((size_t) sp->charcnt > sizeof sp->chars)
|
|
return -1;
|
|
cp = sp->chars;
|
|
(void) strncpy(cp, stdname, stdlen);
|
|
cp += stdlen;
|
|
*cp++ = '\0';
|
|
if (dstlen != 0) {
|
|
(void) strncpy(cp, dstname, dstlen);
|
|
*(cp + dstlen) = '\0';
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
gmtload(sp)
|
|
struct state * const sp;
|
|
{
|
|
if (tzload(gmt, sp, TRUE) != 0)
|
|
(void) tzparse(gmt, sp, TRUE);
|
|
}
|
|
|
|
static void
|
|
tzsetwall_unlocked(void)
|
|
{
|
|
if (lcl_is_set < 0)
|
|
return;
|
|
lcl_is_set = -1;
|
|
|
|
#ifdef ALL_STATE
|
|
if (lclptr == NULL) {
|
|
int saveerrno = errno;
|
|
lclptr = (struct state *) malloc(sizeof *lclptr);
|
|
errno = saveerrno;
|
|
if (lclptr == NULL) {
|
|
settzname(); /* all we can do */
|
|
return;
|
|
}
|
|
}
|
|
#endif /* defined ALL_STATE */
|
|
if (tzload((char *) NULL, lclptr, TRUE) != 0)
|
|
gmtload(lclptr);
|
|
settzname();
|
|
}
|
|
|
|
#ifndef STD_INSPIRED
|
|
/*
|
|
** A non-static declaration of tzsetwall in a system header file
|
|
** may cause a warning about this upcoming static declaration...
|
|
*/
|
|
static
|
|
#endif /* !defined STD_INSPIRED */
|
|
void
|
|
tzsetwall(void)
|
|
{
|
|
rwlock_wrlock(&lcl_lock);
|
|
tzsetwall_unlocked();
|
|
rwlock_unlock(&lcl_lock);
|
|
}
|
|
|
|
#ifndef STD_INSPIRED
|
|
/*
|
|
** A non-static declaration of tzsetwall in a system header file
|
|
** may cause a warning about this upcoming static declaration...
|
|
*/
|
|
static
|
|
#endif /* !defined STD_INSPIRED */
|
|
void
|
|
tzset_unlocked(void)
|
|
{
|
|
register const char * name;
|
|
int saveerrno;
|
|
|
|
saveerrno = errno;
|
|
name = getenv("TZ");
|
|
errno = saveerrno;
|
|
if (name == NULL) {
|
|
tzsetwall_unlocked();
|
|
return;
|
|
}
|
|
|
|
if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
|
|
return;
|
|
lcl_is_set = strlen(name) < sizeof lcl_TZname;
|
|
if (lcl_is_set)
|
|
(void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
|
|
|
|
#ifdef ALL_STATE
|
|
if (lclptr == NULL) {
|
|
saveerrno = errno;
|
|
lclptr = (struct state *) malloc(sizeof *lclptr);
|
|
errno = saveerrno;
|
|
if (lclptr == NULL) {
|
|
settzname(); /* all we can do */
|
|
return;
|
|
}
|
|
}
|
|
#endif /* defined ALL_STATE */
|
|
if (*name == '\0') {
|
|
/*
|
|
** User wants it fast rather than right.
|
|
*/
|
|
lclptr->leapcnt = 0; /* so, we're off a little */
|
|
lclptr->timecnt = 0;
|
|
lclptr->typecnt = 0;
|
|
lclptr->ttis[0].tt_isdst = 0;
|
|
lclptr->ttis[0].tt_gmtoff = 0;
|
|
lclptr->ttis[0].tt_abbrind = 0;
|
|
(void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
|
|
} else if (tzload(name, lclptr, TRUE) != 0)
|
|
if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
|
|
(void) gmtload(lclptr);
|
|
settzname();
|
|
}
|
|
|
|
void
|
|
tzset(void)
|
|
{
|
|
rwlock_wrlock(&lcl_lock);
|
|
tzset_unlocked();
|
|
rwlock_unlock(&lcl_lock);
|
|
}
|
|
|
|
/*
|
|
** The easy way to behave "as if no library function calls" localtime
|
|
** is to not call it--so we drop its guts into "localsub", which can be
|
|
** freely called. (And no, the PANS doesn't require the above behavior--
|
|
** but it *is* desirable.)
|
|
**
|
|
** The unused offset argument is for the benefit of mktime variants.
|
|
*/
|
|
|
|
/*ARGSUSED*/
|
|
static struct tm *
|
|
localsub(timep, offset, tmp)
|
|
const time_t * const timep;
|
|
const long offset;
|
|
struct tm * const tmp;
|
|
{
|
|
register struct state * sp;
|
|
register const struct ttinfo * ttisp;
|
|
register int i;
|
|
register struct tm * result;
|
|
const time_t t = *timep;
|
|
|
|
sp = lclptr;
|
|
#ifdef ALL_STATE
|
|
if (sp == NULL)
|
|
return gmtsub(timep, offset, tmp);
|
|
#endif /* defined ALL_STATE */
|
|
if ((sp->goback && t < sp->ats[0]) ||
|
|
(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
|
|
time_t newt = t;
|
|
register time_t seconds;
|
|
register time_t tcycles;
|
|
register int_fast64_t icycles;
|
|
|
|
if (t < sp->ats[0])
|
|
seconds = sp->ats[0] - t;
|
|
else seconds = t - sp->ats[sp->timecnt - 1];
|
|
--seconds;
|
|
tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
|
|
++tcycles;
|
|
icycles = tcycles;
|
|
if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
|
|
return NULL;
|
|
seconds = (time_t) icycles;
|
|
seconds *= YEARSPERREPEAT;
|
|
seconds *= AVGSECSPERYEAR;
|
|
if (t < sp->ats[0])
|
|
newt += seconds;
|
|
else newt -= seconds;
|
|
if (newt < sp->ats[0] ||
|
|
newt > sp->ats[sp->timecnt - 1])
|
|
return NULL; /* "cannot happen" */
|
|
result = localsub(&newt, offset, tmp);
|
|
if (result == tmp) {
|
|
register time_t newy;
|
|
|
|
newy = tmp->tm_year;
|
|
if (t < sp->ats[0])
|
|
newy -= (time_t)icycles * YEARSPERREPEAT;
|
|
else newy += (time_t)icycles * YEARSPERREPEAT;
|
|
tmp->tm_year = (int)newy;
|
|
if (tmp->tm_year != newy)
|
|
return NULL;
|
|
}
|
|
return result;
|
|
}
|
|
if (sp->timecnt == 0 || t < sp->ats[0]) {
|
|
i = 0;
|
|
while (sp->ttis[i].tt_isdst)
|
|
if (++i >= sp->typecnt) {
|
|
i = 0;
|
|
break;
|
|
}
|
|
} else {
|
|
register int lo = 1;
|
|
register int hi = sp->timecnt;
|
|
|
|
while (lo < hi) {
|
|
register int mid = (lo + hi) / 2;
|
|
|
|
if (t < sp->ats[mid])
|
|
hi = mid;
|
|
else lo = mid + 1;
|
|
}
|
|
i = (int) sp->types[lo - 1];
|
|
}
|
|
ttisp = &sp->ttis[i];
|
|
/*
|
|
** To get (wrong) behavior that's compatible with System V Release 2.0
|
|
** you'd replace the statement below with
|
|
** t += ttisp->tt_gmtoff;
|
|
** timesub(&t, 0L, sp, tmp);
|
|
*/
|
|
result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
|
|
tmp->tm_isdst = ttisp->tt_isdst;
|
|
tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
|
|
#ifdef TM_ZONE
|
|
tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
|
|
#endif /* defined TM_ZONE */
|
|
return result;
|
|
}
|
|
|
|
struct tm *
|
|
localtime(timep)
|
|
const time_t * const timep;
|
|
{
|
|
struct tm *result;
|
|
|
|
rwlock_wrlock(&lcl_lock);
|
|
tzset_unlocked();
|
|
result = localsub(timep, 0L, &tm);
|
|
rwlock_unlock(&lcl_lock);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
** Re-entrant version of localtime.
|
|
*/
|
|
|
|
struct tm *
|
|
localtime_r(timep, tmp)
|
|
const time_t * const timep;
|
|
struct tm * tmp;
|
|
{
|
|
struct tm *result;
|
|
|
|
rwlock_rdlock(&lcl_lock);
|
|
tzset_unlocked();
|
|
result = localsub(timep, 0L, tmp);
|
|
rwlock_unlock(&lcl_lock);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
** gmtsub is to gmtime as localsub is to localtime.
|
|
*/
|
|
|
|
static struct tm *
|
|
gmtsub(timep, offset, tmp)
|
|
const time_t * const timep;
|
|
const long offset;
|
|
struct tm * const tmp;
|
|
{
|
|
register struct tm * result;
|
|
#ifdef _REENTRANT
|
|
static mutex_t gmt_mutex = MUTEX_INITIALIZER;
|
|
#endif
|
|
|
|
mutex_lock(&gmt_mutex);
|
|
if (!gmt_is_set) {
|
|
#ifdef ALL_STATE
|
|
int saveerrno;
|
|
#endif
|
|
gmt_is_set = TRUE;
|
|
#ifdef ALL_STATE
|
|
saveerrno = errno;
|
|
gmtptr = (struct state *) malloc(sizeof *gmtptr);
|
|
errno = saveerrno;
|
|
if (gmtptr != NULL)
|
|
#endif /* defined ALL_STATE */
|
|
gmtload(gmtptr);
|
|
}
|
|
mutex_unlock(&gmt_mutex);
|
|
result = timesub(timep, offset, gmtptr, tmp);
|
|
#ifdef TM_ZONE
|
|
/*
|
|
** Could get fancy here and deliver something such as
|
|
** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
|
|
** but this is no time for a treasure hunt.
|
|
*/
|
|
if (offset != 0)
|
|
tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
|
|
else {
|
|
#ifdef ALL_STATE
|
|
if (gmtptr == NULL)
|
|
tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
|
|
else tmp->TM_ZONE = gmtptr->chars;
|
|
#endif /* defined ALL_STATE */
|
|
#ifndef ALL_STATE
|
|
tmp->TM_ZONE = gmtptr->chars;
|
|
#endif /* State Farm */
|
|
}
|
|
#endif /* defined TM_ZONE */
|
|
return result;
|
|
}
|
|
|
|
struct tm *
|
|
gmtime(timep)
|
|
const time_t * const timep;
|
|
{
|
|
return gmtsub(timep, 0L, &tm);
|
|
}
|
|
|
|
/*
|
|
** Re-entrant version of gmtime.
|
|
*/
|
|
|
|
struct tm *
|
|
gmtime_r(timep, tmp)
|
|
const time_t * const timep;
|
|
struct tm * tmp;
|
|
{
|
|
return gmtsub(timep, 0L, tmp);
|
|
}
|
|
|
|
#ifdef STD_INSPIRED
|
|
|
|
struct tm *
|
|
offtime(timep, offset)
|
|
const time_t * const timep;
|
|
const long offset;
|
|
{
|
|
return gmtsub(timep, offset, &tm);
|
|
}
|
|
|
|
#endif /* defined STD_INSPIRED */
|
|
|
|
/*
|
|
** Return the number of leap years through the end of the given year
|
|
** where, to make the math easy, the answer for year zero is defined as zero.
|
|
*/
|
|
|
|
static int
|
|
leaps_thru_end_of(y)
|
|
register const int y;
|
|
{
|
|
return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
|
|
-(leaps_thru_end_of(-(y + 1)) + 1);
|
|
}
|
|
|
|
static struct tm *
|
|
timesub(timep, offset, sp, tmp)
|
|
const time_t * const timep;
|
|
const long offset;
|
|
register const struct state * const sp;
|
|
register struct tm * const tmp;
|
|
{
|
|
register const struct lsinfo * lp;
|
|
register time_t tdays;
|
|
register int idays; /* unsigned would be so 2003 */
|
|
register long rem;
|
|
int y;
|
|
register const int * ip;
|
|
register long corr;
|
|
register int hit;
|
|
register int i;
|
|
|
|
corr = 0;
|
|
hit = 0;
|
|
#ifdef ALL_STATE
|
|
i = (sp == NULL) ? 0 : sp->leapcnt;
|
|
#endif /* defined ALL_STATE */
|
|
#ifndef ALL_STATE
|
|
i = sp->leapcnt;
|
|
#endif /* State Farm */
|
|
while (--i >= 0) {
|
|
lp = &sp->lsis[i];
|
|
if (*timep >= lp->ls_trans) {
|
|
if (*timep == lp->ls_trans) {
|
|
hit = ((i == 0 && lp->ls_corr > 0) ||
|
|
lp->ls_corr > sp->lsis[i - 1].ls_corr);
|
|
if (hit)
|
|
while (i > 0 &&
|
|
sp->lsis[i].ls_trans ==
|
|
sp->lsis[i - 1].ls_trans + 1 &&
|
|
sp->lsis[i].ls_corr ==
|
|
sp->lsis[i - 1].ls_corr + 1) {
|
|
++hit;
|
|
--i;
|
|
}
|
|
}
|
|
corr = lp->ls_corr;
|
|
break;
|
|
}
|
|
}
|
|
y = EPOCH_YEAR;
|
|
tdays = *timep / SECSPERDAY;
|
|
rem = (long) (*timep - tdays * SECSPERDAY);
|
|
while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
|
|
int newy;
|
|
register time_t tdelta;
|
|
register int idelta;
|
|
register int leapdays;
|
|
|
|
tdelta = tdays / DAYSPERLYEAR;
|
|
idelta = (int) tdelta;
|
|
if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
|
|
return NULL;
|
|
if (idelta == 0)
|
|
idelta = (tdays < 0) ? -1 : 1;
|
|
newy = y;
|
|
if (increment_overflow(&newy, idelta))
|
|
return NULL;
|
|
leapdays = leaps_thru_end_of(newy - 1) -
|
|
leaps_thru_end_of(y - 1);
|
|
tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
|
|
tdays -= leapdays;
|
|
y = newy;
|
|
}
|
|
{
|
|
register long seconds;
|
|
|
|
seconds = tdays * SECSPERDAY + 0.5;
|
|
tdays = seconds / SECSPERDAY;
|
|
rem += (long) (seconds - tdays * SECSPERDAY);
|
|
}
|
|
/*
|
|
** Given the range, we can now fearlessly cast...
|
|
*/
|
|
idays = (int) tdays;
|
|
rem += offset - corr;
|
|
while (rem < 0) {
|
|
rem += SECSPERDAY;
|
|
--idays;
|
|
}
|
|
while (rem >= SECSPERDAY) {
|
|
rem -= SECSPERDAY;
|
|
++idays;
|
|
}
|
|
while (idays < 0) {
|
|
if (increment_overflow(&y, -1))
|
|
return NULL;
|
|
idays += year_lengths[isleap(y)];
|
|
}
|
|
while (idays >= year_lengths[isleap(y)]) {
|
|
idays -= year_lengths[isleap(y)];
|
|
if (increment_overflow(&y, 1))
|
|
return NULL;
|
|
}
|
|
tmp->tm_year = y;
|
|
if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
|
|
return NULL;
|
|
tmp->tm_yday = idays;
|
|
/*
|
|
** The "extra" mods below avoid overflow problems.
|
|
*/
|
|
tmp->tm_wday = EPOCH_WDAY +
|
|
((y - EPOCH_YEAR) % DAYSPERWEEK) *
|
|
(DAYSPERNYEAR % DAYSPERWEEK) +
|
|
leaps_thru_end_of(y - 1) -
|
|
leaps_thru_end_of(EPOCH_YEAR - 1) +
|
|
idays;
|
|
tmp->tm_wday %= DAYSPERWEEK;
|
|
if (tmp->tm_wday < 0)
|
|
tmp->tm_wday += DAYSPERWEEK;
|
|
tmp->tm_hour = (int) (rem / SECSPERHOUR);
|
|
rem %= SECSPERHOUR;
|
|
tmp->tm_min = (int) (rem / SECSPERMIN);
|
|
/*
|
|
** A positive leap second requires a special
|
|
** representation. This uses "... ??:59:60" et seq.
|
|
*/
|
|
tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
|
|
ip = mon_lengths[isleap(y)];
|
|
for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
|
|
idays -= ip[tmp->tm_mon];
|
|
tmp->tm_mday = (int) (idays + 1);
|
|
tmp->tm_isdst = 0;
|
|
#ifdef TM_GMTOFF
|
|
tmp->TM_GMTOFF = offset;
|
|
#endif /* defined TM_GMTOFF */
|
|
return tmp;
|
|
}
|
|
|
|
char *
|
|
ctime(timep)
|
|
const time_t * const timep;
|
|
{
|
|
/*
|
|
** Section 4.12.3.2 of X3.159-1989 requires that
|
|
** The ctime function converts the calendar time pointed to by timer
|
|
** to local time in the form of a string. It is equivalent to
|
|
** asctime(localtime(timer))
|
|
*/
|
|
return asctime(localtime(timep));
|
|
}
|
|
|
|
char *
|
|
ctime_r(timep, buf)
|
|
const time_t * const timep;
|
|
char * buf;
|
|
{
|
|
struct tm mytm;
|
|
|
|
return asctime_r(localtime_r(timep, &mytm), buf);
|
|
}
|
|
|
|
/*
|
|
** Adapted from code provided by Robert Elz, who writes:
|
|
** The "best" way to do mktime I think is based on an idea of Bob
|
|
** Kridle's (so its said...) from a long time ago.
|
|
** It does a binary search of the time_t space. Since time_t's are
|
|
** just 32 bits, its a max of 32 iterations (even at 64 bits it
|
|
** would still be very reasonable).
|
|
*/
|
|
|
|
#ifndef WRONG
|
|
#define WRONG (-1)
|
|
#endif /* !defined WRONG */
|
|
|
|
/*
|
|
** Simplified normalize logic courtesy Paul Eggert.
|
|
*/
|
|
|
|
static int
|
|
increment_overflow(number, delta)
|
|
int * number;
|
|
int delta;
|
|
{
|
|
int number0;
|
|
|
|
number0 = *number;
|
|
*number += delta;
|
|
return (*number < number0) != (delta < 0);
|
|
}
|
|
|
|
static int
|
|
long_increment_overflow(number, delta)
|
|
long * number;
|
|
int delta;
|
|
{
|
|
long number0;
|
|
|
|
number0 = *number;
|
|
*number += delta;
|
|
return (*number < number0) != (delta < 0);
|
|
}
|
|
|
|
static int
|
|
normalize_overflow(tensptr, unitsptr, base)
|
|
int * const tensptr;
|
|
int * const unitsptr;
|
|
const int base;
|
|
{
|
|
register int tensdelta;
|
|
|
|
tensdelta = (*unitsptr >= 0) ?
|
|
(*unitsptr / base) :
|
|
(-1 - (-1 - *unitsptr) / base);
|
|
*unitsptr -= tensdelta * base;
|
|
return increment_overflow(tensptr, tensdelta);
|
|
}
|
|
|
|
static int
|
|
long_normalize_overflow(tensptr, unitsptr, base)
|
|
long * const tensptr;
|
|
int * const unitsptr;
|
|
const int base;
|
|
{
|
|
register int tensdelta;
|
|
|
|
tensdelta = (*unitsptr >= 0) ?
|
|
(*unitsptr / base) :
|
|
(-1 - (-1 - *unitsptr) / base);
|
|
*unitsptr -= tensdelta * base;
|
|
return long_increment_overflow(tensptr, tensdelta);
|
|
}
|
|
|
|
static int
|
|
tmcomp(atmp, btmp)
|
|
register const struct tm * const atmp;
|
|
register const struct tm * const btmp;
|
|
{
|
|
register int result;
|
|
|
|
if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
|
|
(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
|
|
(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
|
|
(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
|
|
(result = (atmp->tm_min - btmp->tm_min)) == 0)
|
|
result = atmp->tm_sec - btmp->tm_sec;
|
|
return result;
|
|
}
|
|
|
|
static time_t
|
|
time2sub(tmp, funcp, offset, okayp, do_norm_secs)
|
|
struct tm * const tmp;
|
|
struct tm * (* const funcp)(const time_t*, long, struct tm*);
|
|
const long offset;
|
|
int * const okayp;
|
|
const int do_norm_secs;
|
|
{
|
|
register const struct state * sp;
|
|
register int dir;
|
|
register int i, j;
|
|
register int saved_seconds;
|
|
register long li;
|
|
register time_t lo;
|
|
register time_t hi;
|
|
long y;
|
|
time_t newt;
|
|
time_t t;
|
|
struct tm yourtm, mytm;
|
|
|
|
*okayp = FALSE;
|
|
yourtm = *tmp;
|
|
if (do_norm_secs) {
|
|
if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
|
|
SECSPERMIN))
|
|
return WRONG;
|
|
}
|
|
if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
|
|
return WRONG;
|
|
if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
|
|
return WRONG;
|
|
y = yourtm.tm_year;
|
|
if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
|
|
return WRONG;
|
|
/*
|
|
** Turn y into an actual year number for now.
|
|
** It is converted back to an offset from TM_YEAR_BASE later.
|
|
*/
|
|
if (long_increment_overflow(&y, TM_YEAR_BASE))
|
|
return WRONG;
|
|
while (yourtm.tm_mday <= 0) {
|
|
if (long_increment_overflow(&y, -1))
|
|
return WRONG;
|
|
li = y + (1 < yourtm.tm_mon);
|
|
yourtm.tm_mday += year_lengths[isleap(li)];
|
|
}
|
|
while (yourtm.tm_mday > DAYSPERLYEAR) {
|
|
li = y + (1 < yourtm.tm_mon);
|
|
yourtm.tm_mday -= year_lengths[isleap(li)];
|
|
if (long_increment_overflow(&y, 1))
|
|
return WRONG;
|
|
}
|
|
for ( ; ; ) {
|
|
i = mon_lengths[isleap(y)][yourtm.tm_mon];
|
|
if (yourtm.tm_mday <= i)
|
|
break;
|
|
yourtm.tm_mday -= i;
|
|
if (++yourtm.tm_mon >= MONSPERYEAR) {
|
|
yourtm.tm_mon = 0;
|
|
if (long_increment_overflow(&y, 1))
|
|
return WRONG;
|
|
}
|
|
}
|
|
if (long_increment_overflow(&y, -TM_YEAR_BASE))
|
|
return WRONG;
|
|
yourtm.tm_year = y;
|
|
if (yourtm.tm_year != y)
|
|
return WRONG;
|
|
if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
|
|
saved_seconds = 0;
|
|
else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
|
|
/*
|
|
** We can't set tm_sec to 0, because that might push the
|
|
** time below the minimum representable time.
|
|
** Set tm_sec to 59 instead.
|
|
** This assumes that the minimum representable time is
|
|
** not in the same minute that a leap second was deleted from,
|
|
** which is a safer assumption than using 58 would be.
|
|
*/
|
|
if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
|
|
return WRONG;
|
|
saved_seconds = yourtm.tm_sec;
|
|
yourtm.tm_sec = SECSPERMIN - 1;
|
|
} else {
|
|
saved_seconds = yourtm.tm_sec;
|
|
yourtm.tm_sec = 0;
|
|
}
|
|
/*
|
|
** Do a binary search (this works whatever time_t's type is).
|
|
*/
|
|
/* LINTED constant */
|
|
if (!TYPE_SIGNED(time_t)) {
|
|
lo = 0;
|
|
hi = lo - 1;
|
|
/* LINTED constant */
|
|
} else if (!TYPE_INTEGRAL(time_t)) {
|
|
/* CONSTCOND */
|
|
if (sizeof(time_t) > sizeof(float))
|
|
/* LINTED assumed double */
|
|
hi = (time_t) DBL_MAX;
|
|
/* LINTED assumed float */
|
|
else hi = (time_t) FLT_MAX;
|
|
lo = -hi;
|
|
} else {
|
|
lo = 1;
|
|
for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
|
|
lo *= 2;
|
|
hi = -(lo + 1);
|
|
}
|
|
for ( ; ; ) {
|
|
t = lo / 2 + hi / 2;
|
|
if (t < lo)
|
|
t = lo;
|
|
else if (t > hi)
|
|
t = hi;
|
|
if ((*funcp)(&t, offset, &mytm) == NULL) {
|
|
/*
|
|
** Assume that t is too extreme to be represented in
|
|
** a struct tm; arrange things so that it is less
|
|
** extreme on the next pass.
|
|
*/
|
|
dir = (t > 0) ? 1 : -1;
|
|
} else dir = tmcomp(&mytm, &yourtm);
|
|
if (dir != 0) {
|
|
if (t == lo) {
|
|
++t;
|
|
if (t <= lo)
|
|
return WRONG;
|
|
++lo;
|
|
} else if (t == hi) {
|
|
--t;
|
|
if (t >= hi)
|
|
return WRONG;
|
|
--hi;
|
|
}
|
|
if (lo > hi)
|
|
return WRONG;
|
|
if (dir > 0)
|
|
hi = t;
|
|
else lo = t;
|
|
continue;
|
|
}
|
|
if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
|
|
break;
|
|
/*
|
|
** Right time, wrong type.
|
|
** Hunt for right time, right type.
|
|
** It's okay to guess wrong since the guess
|
|
** gets checked.
|
|
*/
|
|
sp = (const struct state *)
|
|
((funcp == localsub) ? lclptr : gmtptr);
|
|
#ifdef ALL_STATE
|
|
if (sp == NULL)
|
|
return WRONG;
|
|
#endif /* defined ALL_STATE */
|
|
for (i = sp->typecnt - 1; i >= 0; --i) {
|
|
if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
|
|
continue;
|
|
for (j = sp->typecnt - 1; j >= 0; --j) {
|
|
if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
|
|
continue;
|
|
newt = t + sp->ttis[j].tt_gmtoff -
|
|
sp->ttis[i].tt_gmtoff;
|
|
if ((*funcp)(&newt, offset, &mytm) == NULL)
|
|
continue;
|
|
if (tmcomp(&mytm, &yourtm) != 0)
|
|
continue;
|
|
if (mytm.tm_isdst != yourtm.tm_isdst)
|
|
continue;
|
|
/*
|
|
** We have a match.
|
|
*/
|
|
t = newt;
|
|
goto label;
|
|
}
|
|
}
|
|
return WRONG;
|
|
}
|
|
label:
|
|
newt = t + saved_seconds;
|
|
if ((newt < t) != (saved_seconds < 0))
|
|
return WRONG;
|
|
t = newt;
|
|
if ((*funcp)(&t, offset, tmp))
|
|
*okayp = TRUE;
|
|
return t;
|
|
}
|
|
|
|
static time_t
|
|
time2(tmp, funcp, offset, okayp)
|
|
struct tm * const tmp;
|
|
struct tm * (* const funcp)(const time_t*, long, struct tm*);
|
|
const long offset;
|
|
int * const okayp;
|
|
{
|
|
time_t t;
|
|
|
|
/*
|
|
** First try without normalization of seconds
|
|
** (in case tm_sec contains a value associated with a leap second).
|
|
** If that fails, try with normalization of seconds.
|
|
*/
|
|
t = time2sub(tmp, funcp, offset, okayp, FALSE);
|
|
return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
|
|
}
|
|
|
|
static time_t
|
|
time1(tmp, funcp, offset)
|
|
struct tm * const tmp;
|
|
struct tm * (* const funcp)(const time_t *, long, struct tm *);
|
|
const long offset;
|
|
{
|
|
register time_t t;
|
|
register const struct state * sp;
|
|
register int samei, otheri;
|
|
register int sameind, otherind;
|
|
register int i;
|
|
register int nseen;
|
|
int seen[TZ_MAX_TYPES];
|
|
int types[TZ_MAX_TYPES];
|
|
int okay;
|
|
|
|
if (tmp->tm_isdst > 1)
|
|
tmp->tm_isdst = 1;
|
|
t = time2(tmp, funcp, offset, &okay);
|
|
#ifdef PCTS
|
|
/*
|
|
** PCTS code courtesy Grant Sullivan.
|
|
*/
|
|
if (okay)
|
|
return t;
|
|
if (tmp->tm_isdst < 0)
|
|
tmp->tm_isdst = 0; /* reset to std and try again */
|
|
#endif /* defined PCTS */
|
|
#ifndef PCTS
|
|
if (okay || tmp->tm_isdst < 0)
|
|
return t;
|
|
#endif /* !defined PCTS */
|
|
/*
|
|
** We're supposed to assume that somebody took a time of one type
|
|
** and did some math on it that yielded a "struct tm" that's bad.
|
|
** We try to divine the type they started from and adjust to the
|
|
** type they need.
|
|
*/
|
|
sp = (const struct state *) ((funcp == localsub) ? lclptr : gmtptr);
|
|
#ifdef ALL_STATE
|
|
if (sp == NULL)
|
|
return WRONG;
|
|
#endif /* defined ALL_STATE */
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
seen[i] = FALSE;
|
|
nseen = 0;
|
|
for (i = sp->timecnt - 1; i >= 0; --i)
|
|
if (!seen[sp->types[i]]) {
|
|
seen[sp->types[i]] = TRUE;
|
|
types[nseen++] = sp->types[i];
|
|
}
|
|
for (sameind = 0; sameind < nseen; ++sameind) {
|
|
samei = types[sameind];
|
|
if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
|
|
continue;
|
|
for (otherind = 0; otherind < nseen; ++otherind) {
|
|
otheri = types[otherind];
|
|
if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
|
|
continue;
|
|
tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
|
|
sp->ttis[samei].tt_gmtoff);
|
|
tmp->tm_isdst = !tmp->tm_isdst;
|
|
t = time2(tmp, funcp, offset, &okay);
|
|
if (okay)
|
|
return t;
|
|
tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
|
|
sp->ttis[samei].tt_gmtoff);
|
|
tmp->tm_isdst = !tmp->tm_isdst;
|
|
}
|
|
}
|
|
return WRONG;
|
|
}
|
|
|
|
time_t
|
|
mktime(tmp)
|
|
struct tm * const tmp;
|
|
{
|
|
time_t result;
|
|
|
|
rwlock_wrlock(&lcl_lock);
|
|
tzset_unlocked();
|
|
result = time1(tmp, localsub, 0L);
|
|
rwlock_unlock(&lcl_lock);
|
|
return (result);
|
|
}
|
|
|
|
#ifdef STD_INSPIRED
|
|
|
|
time_t
|
|
timelocal(tmp)
|
|
struct tm * const tmp;
|
|
{
|
|
tmp->tm_isdst = -1; /* in case it wasn't initialized */
|
|
return mktime(tmp);
|
|
}
|
|
|
|
time_t
|
|
timegm(tmp)
|
|
struct tm * const tmp;
|
|
{
|
|
tmp->tm_isdst = 0;
|
|
return time1(tmp, gmtsub, 0L);
|
|
}
|
|
|
|
time_t
|
|
timeoff(tmp, offset)
|
|
struct tm * const tmp;
|
|
const long offset;
|
|
{
|
|
tmp->tm_isdst = 0;
|
|
return time1(tmp, gmtsub, offset);
|
|
}
|
|
|
|
#endif /* defined STD_INSPIRED */
|
|
|
|
#ifdef CMUCS
|
|
|
|
/*
|
|
** The following is supplied for compatibility with
|
|
** previous versions of the CMUCS runtime library.
|
|
*/
|
|
|
|
long
|
|
gtime(tmp)
|
|
struct tm * const tmp;
|
|
{
|
|
const time_t t = mktime(tmp);
|
|
|
|
if (t == WRONG)
|
|
return -1;
|
|
return t;
|
|
}
|
|
|
|
#endif /* defined CMUCS */
|
|
|
|
/*
|
|
** XXX--is the below the right way to conditionalize??
|
|
*/
|
|
|
|
#ifdef STD_INSPIRED
|
|
|
|
/*
|
|
** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
|
|
** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
|
|
** is not the case if we are accounting for leap seconds.
|
|
** So, we provide the following conversion routines for use
|
|
** when exchanging timestamps with POSIX conforming systems.
|
|
*/
|
|
|
|
static long
|
|
leapcorr(timep)
|
|
time_t * timep;
|
|
{
|
|
register struct state * sp;
|
|
register struct lsinfo * lp;
|
|
register int i;
|
|
|
|
sp = lclptr;
|
|
i = sp->leapcnt;
|
|
while (--i >= 0) {
|
|
lp = &sp->lsis[i];
|
|
if (*timep >= lp->ls_trans)
|
|
return lp->ls_corr;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
time_t
|
|
time2posix(t)
|
|
time_t t;
|
|
{
|
|
time_t result;
|
|
|
|
rwlock_wrlock(&lcl_lock);
|
|
tzset_unlocked();
|
|
result = t - leapcorr(&t);
|
|
rwlock_unlock(&lcl_lock);
|
|
return (result);
|
|
}
|
|
|
|
time_t
|
|
posix2time(t)
|
|
time_t t;
|
|
{
|
|
time_t x;
|
|
time_t y;
|
|
|
|
rwlock_wrlock(&lcl_lock);
|
|
tzset_unlocked();
|
|
/*
|
|
** For a positive leap second hit, the result
|
|
** is not unique. For a negative leap second
|
|
** hit, the corresponding time doesn't exist,
|
|
** so we return an adjacent second.
|
|
*/
|
|
x = t + leapcorr(&t);
|
|
y = x - leapcorr(&x);
|
|
if (y < t) {
|
|
do {
|
|
x++;
|
|
y = x - leapcorr(&x);
|
|
} while (y < t);
|
|
if (t != y) {
|
|
rwlock_unlock(&lcl_lock);
|
|
return x - 1;
|
|
}
|
|
} else if (y > t) {
|
|
do {
|
|
--x;
|
|
y = x - leapcorr(&x);
|
|
} while (y > t);
|
|
if (t != y) {
|
|
rwlock_unlock(&lcl_lock);
|
|
return x + 1;
|
|
}
|
|
}
|
|
rwlock_unlock(&lcl_lock);
|
|
return x;
|
|
}
|
|
|
|
#endif /* defined STD_INSPIRED */
|