NetBSD/sys/dev/pci/if_lmc.c
uebayasi 8184d5dc03 Don't pull in the whole uvm(9) API to access only PAGE_SIZE and
some other constants.  These are provided by sys/param.h now.
2010-11-13 13:51:57 +00:00

5523 lines
161 KiB
C

/* $NetBSD: if_lmc.c,v 1.50 2010/11/13 13:52:06 uebayasi Exp $ */
/*-
* Copyright (c) 2002-2006 David Boggs. <boggs@boggs.palo-alto.ca.us>
* All rights reserved.
*
* BSD LICENSE:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* GNU GENERAL PUBLIC LICENSE:
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* DESCRIPTION:
*
* This is an open-source Unix device driver for PCI-bus WAN interface cards.
* It sends and receives packets in HDLC frames over synchronous links.
* A generic PC plus Unix plus some LMC cards makes an OPEN router.
* This driver works with FreeBSD, NetBSD, OpenBSD, BSD/OS and Linux.
* It has been tested on i386 (32-bit little-end), PowerPC (32-bit
* big-end), Sparc (64-bit big-end), and Alpha (64-bit little-end)
* architectures.
*
* HISTORY AND AUTHORS:
*
* Ron Crane had the neat idea to use a Fast Ethernet chip as a PCI
* interface and add an Ethernet-to-HDLC gate array to make a WAN card.
* David Boggs designed the Ethernet-to-HDLC gate arrays and PC cards.
* We did this at our company, LAN Media Corporation (LMC).
* SBE Corp aquired LMC and continues to make the cards.
*
* Since the cards use Tulip Ethernet chips, we started with Matt Thomas'
* ubiquitous "de" driver. Michael Graff stripped out the Ethernet stuff
* and added HSSI stuff. Basil Gunn ported it to Solaris (lost) and
* Rob Braun ported it to Linux. Andrew Stanley-Jones added support
* for three more cards and wrote the first version of lmcconfig.
* During 2002-5 David Boggs rewrote it and now feels responsible for it.
*
* RESPONSIBLE INDIVIDUAL:
*
* Send bug reports and improvements to <boggs@boggs.palo-alto.ca.us>.
*/
# include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_lmc.c,v 1.50 2010/11/13 13:52:06 uebayasi Exp $");
# include <sys/param.h> /* OS version */
# include "opt_inet.h" /* INET6, INET */
# include "opt_altq_enabled.h" /* ALTQ */
# define IOREF_CSR 1 /* 1=IO refs; 0=MEM refs */
# define IFNET 1
# define NETDEV 0
# define NAPI 0
# define SPPP 1
# define P2P 0
# define GEN_HDLC 0
# define SYNC_PPP 0
# define NETGRAPH 0
# define DEVICE_POLLING 0
#
# include <sys/systm.h>
# include <sys/kernel.h>
# include <sys/module.h>
# include <sys/mbuf.h>
# include <sys/socket.h>
# include <sys/sockio.h>
# include <sys/device.h>
# include <sys/reboot.h>
# include <sys/kauth.h>
# include <sys/proc.h>
# include <net/if.h>
# include <net/if_types.h>
# include <net/if_media.h>
# include <net/netisr.h>
# include <sys/bus.h>
# include <sys/intr.h>
# include <machine/lock.h>
# include <machine/types.h>
# include <dev/pci/pcivar.h>
# if INET || INET6
# include <netinet/in.h>
# include <netinet/in_var.h>
# endif
# if SPPP
# include <net/if_spppvar.h>
# endif
# include <net/bpf.h>
# if !defined(ALTQ)
# define ALTQ 0
# endif
/* and finally... */
# include "if_lmc.h"
/* The SROM is a generic 93C46 serial EEPROM (64 words by 16 bits). */
/* Data is set up before the RISING edge of CLK; CLK is parked low. */
static void /* context: process */
srom_shift_bits(softc_t *sc, u_int32_t data, u_int32_t len)
{
u_int32_t csr = READ_CSR(sc, TLP_SROM_MII);
for (; len>0; len--)
{ /* MSB first */
if (data & (1<<(len-1)))
csr |= TLP_SROM_DIN; /* DIN setup */
else
csr &= ~TLP_SROM_DIN; /* DIN setup */
WRITE_CSR(sc, TLP_SROM_MII, csr);
csr |= TLP_SROM_CLK; /* CLK rising edge */
WRITE_CSR(sc, TLP_SROM_MII, csr);
csr &= ~TLP_SROM_CLK; /* CLK falling edge */
WRITE_CSR(sc, TLP_SROM_MII, csr);
}
}
/* Data is sampled on the RISING edge of CLK; CLK is parked low. */
static u_int16_t /* context: process */
srom_read(softc_t *sc, u_int8_t addr)
{
int i;
u_int32_t csr;
u_int16_t data;
/* Enable SROM access. */
csr = (TLP_SROM_SEL | TLP_SROM_RD | TLP_MII_MDOE);
WRITE_CSR(sc, TLP_SROM_MII, csr);
/* CS rising edge prepares SROM for a new cycle. */
csr |= TLP_SROM_CS;
WRITE_CSR(sc, TLP_SROM_MII, csr); /* assert CS */
srom_shift_bits(sc, 6, 4); /* issue read cmd */
srom_shift_bits(sc, addr, 6); /* issue address */
for (data=0, i=16; i>=0; i--) /* read ->17<- bits of data */
{ /* MSB first */
csr = READ_CSR(sc, TLP_SROM_MII); /* DOUT sampled */
data = (data<<1) | ((csr & TLP_SROM_DOUT) ? 1:0);
csr |= TLP_SROM_CLK; /* CLK rising edge */
WRITE_CSR(sc, TLP_SROM_MII, csr);
csr &= ~TLP_SROM_CLK; /* CLK falling edge */
WRITE_CSR(sc, TLP_SROM_MII, csr);
}
/* Disable SROM access. */
WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOE);
return data;
}
/* The SROM is formatted by the mfgr and should NOT be written! */
/* But lmcconfig can rewrite it in case it gets overwritten somehow. */
static void /* context: process */
srom_write(softc_t *sc, u_int8_t addr, u_int16_t data)
{
u_int32_t csr;
int i;
/* Enable SROM access. */
csr = (TLP_SROM_SEL | TLP_SROM_RD | TLP_MII_MDOE);
WRITE_CSR(sc, TLP_SROM_MII, csr);
/* Issue write-enable command. */
csr |= TLP_SROM_CS;
WRITE_CSR(sc, TLP_SROM_MII, csr); /* assert CS */
srom_shift_bits(sc, 4, 4); /* issue write enable cmd */
srom_shift_bits(sc, 63, 6); /* issue address */
csr &= ~TLP_SROM_CS;
WRITE_CSR(sc, TLP_SROM_MII, csr); /* deassert CS */
/* Issue erase command. */
csr |= TLP_SROM_CS;
WRITE_CSR(sc, TLP_SROM_MII, csr); /* assert CS */
srom_shift_bits(sc, 7, 4); /* issue erase cmd */
srom_shift_bits(sc, addr, 6); /* issue address */
csr &= ~TLP_SROM_CS;
WRITE_CSR(sc, TLP_SROM_MII, csr); /* deassert CS */
/* Issue write command. */
csr |= TLP_SROM_CS;
WRITE_CSR(sc, TLP_SROM_MII, csr); /* assert CS */
for (i=0; i<10; i++) /* 100 ms max wait */
if ((READ_CSR(sc, TLP_SROM_MII) & TLP_SROM_DOUT)==0) SLEEP(10000);
srom_shift_bits(sc, 5, 4); /* issue write cmd */
srom_shift_bits(sc, addr, 6); /* issue address */
srom_shift_bits(sc, data, 16); /* issue data */
csr &= ~TLP_SROM_CS;
WRITE_CSR(sc, TLP_SROM_MII, csr); /* deassert CS */
/* Issue write-disable command. */
csr |= TLP_SROM_CS;
WRITE_CSR(sc, TLP_SROM_MII, csr); /* assert CS */
for (i=0; i<10; i++) /* 100 ms max wait */
if ((READ_CSR(sc, TLP_SROM_MII) & TLP_SROM_DOUT)==0) SLEEP(10000);
srom_shift_bits(sc, 4, 4); /* issue write disable cmd */
srom_shift_bits(sc, 0, 6); /* issue address */
csr &= ~TLP_SROM_CS;
WRITE_CSR(sc, TLP_SROM_MII, csr); /* deassert CS */
/* Disable SROM access. */
WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOE);
}
/* Not all cards have BIOS roms. */
/* The BIOS ROM is an AMD 29F010 1Mbit (128K by 8) EEPROM. */
static u_int8_t /* context: process */
bios_read(softc_t *sc, u_int32_t addr)
{
u_int32_t srom_mii;
/* Load the BIOS rom address register. */
WRITE_CSR(sc, TLP_BIOS_ROM, addr);
/* Enable the BIOS rom. */
srom_mii = TLP_BIOS_SEL | TLP_BIOS_RD | TLP_MII_MDOE;
WRITE_CSR(sc, TLP_SROM_MII, srom_mii);
/* Wait at least 20 PCI cycles. */
DELAY(20);
/* Read the BIOS rom data. */
srom_mii = READ_CSR(sc, TLP_SROM_MII);
/* Disable the BIOS rom. */
WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOE);
return (u_int8_t)srom_mii & 0xFF;
}
static void /* context: process */
bios_write_phys(softc_t *sc, u_int32_t addr, u_int8_t data)
{
u_int32_t srom_mii;
/* Load the BIOS rom address register. */
WRITE_CSR(sc, TLP_BIOS_ROM, addr);
/* Enable the BIOS rom. */
srom_mii = TLP_BIOS_SEL | TLP_BIOS_WR | TLP_MII_MDOE;
/* Load the data into the data register. */
srom_mii = (srom_mii & 0xFFFFFF00) | (data & 0xFF);
WRITE_CSR(sc, TLP_SROM_MII, srom_mii);
/* Wait at least 20 PCI cycles. */
DELAY(20);
/* Disable the BIOS rom. */
WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOE);
}
static void /* context: process */
bios_write(softc_t *sc, u_int32_t addr, u_int8_t data)
{
u_int8_t read_data;
/* this sequence enables writing */
bios_write_phys(sc, 0x5555, 0xAA);
bios_write_phys(sc, 0x2AAA, 0x55);
bios_write_phys(sc, 0x5555, 0xA0);
bios_write_phys(sc, addr, data);
/* Wait for the write operation to complete. */
for (;;) /* interruptible syscall */
{
for (;;)
{
read_data = bios_read(sc, addr);
if ((read_data & 0x80) == (data & 0x80)) break;
if (read_data & 0x20)
{ /* Data sheet says read it again. */
read_data = bios_read(sc, addr);
if ((read_data & 0x80) == (data & 0x80)) break;
if (sc->config.debug)
printf("%s: bios_write() failed; rom addr=0x%x\n",
NAME_UNIT, addr);
return;
}
}
read_data = bios_read(sc, addr);
if (read_data == data) break;
}
}
static void /* context: process */
bios_erase(softc_t *sc)
{
unsigned char read_data;
/* This sequence enables erasing: */
bios_write_phys(sc, 0x5555, 0xAA);
bios_write_phys(sc, 0x2AAA, 0x55);
bios_write_phys(sc, 0x5555, 0x80);
bios_write_phys(sc, 0x5555, 0xAA);
bios_write_phys(sc, 0x2AAA, 0x55);
bios_write_phys(sc, 0x5555, 0x10);
/* Wait for the erase operation to complete. */
for (;;) /* interruptible syscall */
{
for (;;)
{
read_data = bios_read(sc, 0);
if (read_data & 0x80) break;
if (read_data & 0x20)
{ /* Data sheet says read it again. */
read_data = bios_read(sc, 0);
if (read_data & 0x80) break;
if (sc->config.debug)
printf("%s: bios_erase() failed\n", NAME_UNIT);
return;
}
}
read_data = bios_read(sc, 0);
if (read_data == 0xFF) break;
}
}
/* MDIO is 3-stated between tranactions. */
/* MDIO is set up before the RISING edge of MDC; MDC is parked low. */
static void /* context: process */
mii_shift_bits(softc_t *sc, u_int32_t data, u_int32_t len)
{
u_int32_t csr = READ_CSR(sc, TLP_SROM_MII);
for (; len>0; len--)
{ /* MSB first */
if (data & (1<<(len-1)))
csr |= TLP_MII_MDOUT; /* MDOUT setup */
else
csr &= ~TLP_MII_MDOUT; /* MDOUT setup */
WRITE_CSR(sc, TLP_SROM_MII, csr);
csr |= TLP_MII_MDC; /* MDC rising edge */
WRITE_CSR(sc, TLP_SROM_MII, csr);
csr &= ~TLP_MII_MDC; /* MDC falling edge */
WRITE_CSR(sc, TLP_SROM_MII, csr);
}
}
/* The specification for the MII is IEEE Std 802.3 clause 22. */
/* MDIO is sampled on the RISING edge of MDC; MDC is parked low. */
static u_int16_t /* context: process */
mii_read(softc_t *sc, u_int8_t regad)
{
int i;
u_int32_t csr;
u_int16_t data = 0;
WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOUT);
mii_shift_bits(sc, 0xFFFFF, 20); /* preamble */
mii_shift_bits(sc, 0xFFFFF, 20); /* preamble */
mii_shift_bits(sc, 1, 2); /* start symbol */
mii_shift_bits(sc, 2, 2); /* read op */
mii_shift_bits(sc, 0, 5); /* phyad=0 */
mii_shift_bits(sc, regad, 5); /* regad */
csr = READ_CSR(sc, TLP_SROM_MII);
csr |= TLP_MII_MDOE;
WRITE_CSR(sc, TLP_SROM_MII, csr);
mii_shift_bits(sc, 0, 2); /* turn-around */
for (i=15; i>=0; i--) /* data */
{ /* MSB first */
csr = READ_CSR(sc, TLP_SROM_MII); /* MDIN sampled */
data = (data<<1) | ((csr & TLP_MII_MDIN) ? 1:0);
csr |= TLP_MII_MDC; /* MDC rising edge */
WRITE_CSR(sc, TLP_SROM_MII, csr);
csr &= ~TLP_MII_MDC; /* MDC falling edge */
WRITE_CSR(sc, TLP_SROM_MII, csr);
}
return data;
}
static void /* context: process */
mii_write(softc_t *sc, u_int8_t regad, u_int16_t data)
{
WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOUT);
mii_shift_bits(sc, 0xFFFFF, 20); /* preamble */
mii_shift_bits(sc, 0xFFFFF, 20); /* preamble */
mii_shift_bits(sc, 1, 2); /* start symbol */
mii_shift_bits(sc, 1, 2); /* write op */
mii_shift_bits(sc, 0, 5); /* phyad=0 */
mii_shift_bits(sc, regad, 5); /* regad */
mii_shift_bits(sc, 2, 2); /* turn-around */
mii_shift_bits(sc, data, 16); /* data */
WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOE);
if (regad == 16) sc->led_state = data; /* a small optimization */
}
static void
mii16_set_bits(softc_t *sc, u_int16_t bits)
{
u_int16_t mii16 = mii_read(sc, 16);
mii16 |= bits;
mii_write(sc, 16, mii16);
}
static void
mii16_clr_bits(softc_t *sc, u_int16_t bits)
{
u_int16_t mii16 = mii_read(sc, 16);
mii16 &= ~bits;
mii_write(sc, 16, mii16);
}
static void
mii17_set_bits(softc_t *sc, u_int16_t bits)
{
u_int16_t mii17 = mii_read(sc, 17);
mii17 |= bits;
mii_write(sc, 17, mii17);
}
static void
mii17_clr_bits(softc_t *sc, u_int16_t bits)
{
u_int16_t mii17 = mii_read(sc, 17);
mii17 &= ~bits;
mii_write(sc, 17, mii17);
}
/*
* Watchdog code is more readable if it refreshes LEDs
* once a second whether they need it or not.
* But MII refs take 150 uSecs each, so remember the last value
* written to MII16 and avoid LED writes that do nothing.
*/
static void
led_off(softc_t *sc, u_int16_t led)
{
if ((led & sc->led_state) == led) return;
mii16_set_bits(sc, led);
}
static void
led_on(softc_t *sc, u_int16_t led)
{
if ((led & sc->led_state) == 0) return;
mii16_clr_bits(sc, led);
}
static void
led_inv(softc_t *sc, u_int16_t led)
{
u_int16_t mii16 = mii_read(sc, 16);
mii16 ^= led;
mii_write(sc, 16, mii16);
}
/*
* T1 & T3 framer registers are accessed through MII regs 17 & 18.
* Write the address to MII reg 17 then R/W data through MII reg 18.
* The hardware interface is an Intel-style 8-bit muxed A/D bus.
*/
static void
framer_write(softc_t *sc, u_int16_t addr, u_int8_t data)
{
mii_write(sc, 17, addr);
mii_write(sc, 18, data);
}
static u_int8_t
framer_read(softc_t *sc, u_int16_t addr)
{
mii_write(sc, 17, addr);
return (u_int8_t)mii_read(sc, 18);
}
/* Tulip's hardware implementation of General Purpose IO
* (GPIO) pins makes life difficult for software.
* Bits 7-0 in the Tulip GPIO CSR are used for two purposes
* depending on the state of bit 8.
* If bit 8 is 0 then bits 7-0 are "data" bits.
* If bit 8 is 1 then bits 7-0 are "direction" bits.
* If a direction bit is one, the data bit is an output.
* The problem is that the direction bits are WRITE-ONLY.
* Software must remember the direction bits in a shadow copy.
* (sc->gpio_dir) in order to change some but not all of the bits.
* All accesses to the Tulip GPIO register use these five procedures.
*/
static void
gpio_make_input(softc_t *sc, u_int32_t bits)
{
sc->gpio_dir &= ~bits;
WRITE_CSR(sc, TLP_GPIO, TLP_GPIO_DIR | (sc->gpio_dir));
}
static void
gpio_make_output(softc_t *sc, u_int32_t bits)
{
sc->gpio_dir |= bits;
WRITE_CSR(sc, TLP_GPIO, TLP_GPIO_DIR | (sc->gpio_dir));
}
static u_int32_t
gpio_read(softc_t *sc)
{
return READ_CSR(sc, TLP_GPIO);
}
static void
gpio_set_bits(softc_t *sc, u_int32_t bits)
{
WRITE_CSR(sc, TLP_GPIO, (gpio_read(sc) | bits) & 0xFF);
}
static void
gpio_clr_bits(softc_t *sc, u_int32_t bits)
{
WRITE_CSR(sc, TLP_GPIO, (gpio_read(sc) & ~bits) & 0xFF);
}
/* Reset ALL of the flip-flops in the gate array to zero. */
/* This does NOT change the gate array programming. */
/* Called during initialization so it must not sleep. */
static void /* context: kernel (boot) or process (syscall) */
xilinx_reset(softc_t *sc)
{
/* Drive RESET low to force initialization. */
gpio_clr_bits(sc, GPIO_RESET);
gpio_make_output(sc, GPIO_RESET);
/* Hold RESET low for more than 10 uSec. */
DELAY(50);
/* Done with RESET; make it an input. */
gpio_make_input(sc, GPIO_RESET);
}
/* Load Xilinx gate array program from on-board rom. */
/* This changes the gate array programming. */
static void /* context: process */
xilinx_load_from_rom(softc_t *sc)
{
int i;
/* Drive MODE low to load from ROM rather than GPIO. */
gpio_clr_bits(sc, GPIO_MODE);
gpio_make_output(sc, GPIO_MODE);
/* Drive DP & RESET low to force configuration. */
gpio_clr_bits(sc, GPIO_RESET | GPIO_DP);
gpio_make_output(sc, GPIO_RESET | GPIO_DP);
/* Hold RESET & DP low for more than 10 uSec. */
DELAY(50);
/* Done with RESET & DP; make them inputs. */
gpio_make_input(sc, GPIO_DP | GPIO_RESET);
/* BUSY-WAIT for Xilinx chip to configure itself from ROM bits. */
for (i=0; i<100; i++) /* 1 sec max delay */
if ((gpio_read(sc) & GPIO_DP)==0) SLEEP(10000);
/* Done with MODE; make it an input. */
gpio_make_input(sc, GPIO_MODE);
}
/* Load the Xilinx gate array program from userland bits. */
/* This changes the gate array programming. */
static int /* context: process */
xilinx_load_from_file(softc_t *sc, char *addr, u_int32_t len)
{
char *data;
int i, j, error;
/* Get some pages to hold the Xilinx bits; biggest file is < 6 KB. */
if (len > 8192) return EFBIG; /* too big */
data = malloc(len, M_TEMP, M_WAITOK);
if (data == NULL) return ENOMEM;
/* Copy the Xilinx bits from userland. */
if ((error = copyin(addr, data, len)))
{
free(data, M_TEMP);
return error;
}
/* Drive MODE high to load from GPIO rather than ROM. */
gpio_set_bits(sc, GPIO_MODE);
gpio_make_output(sc, GPIO_MODE);
/* Drive DP & RESET low to force configuration. */
gpio_clr_bits(sc, GPIO_RESET | GPIO_DP);
gpio_make_output(sc, GPIO_RESET | GPIO_DP);
/* Hold RESET & DP low for more than 10 uSec. */
DELAY(50);
/* Done with RESET & DP; make them inputs. */
gpio_make_input(sc, GPIO_RESET | GPIO_DP);
/* BUSY-WAIT for Xilinx chip to clear its config memory. */
gpio_make_input(sc, GPIO_INIT);
for (i=0; i<10000; i++) /* 1 sec max delay */
if ((gpio_read(sc) & GPIO_INIT)==0) SLEEP(10000);
/* Configure CLK and DATA as outputs. */
gpio_set_bits(sc, GPIO_CLK); /* park CLK high */
gpio_make_output(sc, GPIO_CLK | GPIO_DATA);
/* Write bits to Xilinx; CLK is parked HIGH. */
/* DATA is set up before the RISING edge of CLK. */
for (i=0; i<len; i++)
for (j=0; j<8; j++)
{ /* LSB first */
if (data[i] & (1<<j))
gpio_set_bits(sc, GPIO_DATA); /* DATA setup */
else
gpio_clr_bits(sc, GPIO_DATA); /* DATA setup */
gpio_clr_bits(sc, GPIO_CLK); /* CLK falling edge */
gpio_set_bits(sc, GPIO_CLK); /* CLK rising edge */
}
/* Stop driving all Xilinx-related signals. */
/* Pullup and pulldown resistors take over. */
gpio_make_input(sc, GPIO_CLK | GPIO_DATA | GPIO_MODE);
free(data, M_TEMP);
return 0;
}
/* Write fragments of a command into the synthesized oscillator. */
/* DATA is set up before the RISING edge of CLK. CLK is parked low. */
static void
synth_shift_bits(softc_t *sc, u_int32_t data, u_int32_t len)
{
int i;
for (i=0; i<len; i++)
{ /* LSB first */
if (data & (1<<i))
gpio_set_bits(sc, GPIO_DATA); /* DATA setup */
else
gpio_clr_bits(sc, GPIO_DATA); /* DATA setup */
gpio_set_bits(sc, GPIO_CLK); /* CLK rising edge */
gpio_clr_bits(sc, GPIO_CLK); /* CLK falling edge */
}
}
/* Write a command to the synthesized oscillator on SSI and HSSIc. */
static void /* context: process */
synth_write(softc_t *sc, struct synth *synth)
{
/* SSI cards have a programmable prescaler */
if (sc->status.card_type == CSID_LMC_SSI)
{
if (synth->prescale == 9) /* divide by 512 */
mii17_set_bits(sc, MII17_SSI_PRESCALE);
else /* divide by 32 */
mii17_clr_bits(sc, MII17_SSI_PRESCALE);
}
gpio_clr_bits(sc, GPIO_DATA | GPIO_CLK);
gpio_make_output(sc, GPIO_DATA | GPIO_CLK);
/* SYNTH is a low-true chip enable for the AV9110 chip. */
gpio_set_bits(sc, GPIO_SSI_SYNTH);
gpio_make_output(sc, GPIO_SSI_SYNTH);
gpio_clr_bits(sc, GPIO_SSI_SYNTH);
/* Serially shift the command into the AV9110 chip. */
synth_shift_bits(sc, synth->n, 7);
synth_shift_bits(sc, synth->m, 7);
synth_shift_bits(sc, synth->v, 1);
synth_shift_bits(sc, synth->x, 2);
synth_shift_bits(sc, synth->r, 2);
synth_shift_bits(sc, 0x16, 5); /* enable clk/x output */
/* SYNTH (chip enable) going high ends the command. */
gpio_set_bits(sc, GPIO_SSI_SYNTH);
gpio_make_input(sc, GPIO_SSI_SYNTH);
/* Stop driving serial-related signals; pullups/pulldowns take over. */
gpio_make_input(sc, GPIO_DATA | GPIO_CLK);
/* remember the new synthesizer parameters */
if (&sc->config.synth != synth) sc->config.synth = *synth;
}
/* Write a command to the DAC controlling the VCXO on some T3 adapters. */
/* The DAC is a TI-TLV5636: 12-bit resolution and a serial interface. */
/* DATA is set up before the FALLING edge of CLK. CLK is parked HIGH. */
static void /* context: process */
dac_write(softc_t *sc, u_int16_t data)
{
int i;
/* Prepare to use DATA and CLK. */
gpio_set_bits(sc, GPIO_DATA | GPIO_CLK);
gpio_make_output(sc, GPIO_DATA | GPIO_CLK);
/* High-to-low transition prepares DAC for new value. */
gpio_set_bits(sc, GPIO_T3_DAC);
gpio_make_output(sc, GPIO_T3_DAC);
gpio_clr_bits(sc, GPIO_T3_DAC);
/* Serially shift command bits into DAC. */
for (i=0; i<16; i++)
{ /* MSB first */
if (data & (1<<(15-i)))
gpio_set_bits(sc, GPIO_DATA); /* DATA setup */
else
gpio_clr_bits(sc, GPIO_DATA); /* DATA setup */
gpio_clr_bits(sc, GPIO_CLK); /* CLK falling edge */
gpio_set_bits(sc, GPIO_CLK); /* CLK rising edge */
}
/* Done with DAC; make it an input; loads new value into DAC. */
gpio_set_bits(sc, GPIO_T3_DAC);
gpio_make_input(sc, GPIO_T3_DAC);
/* Stop driving serial-related signals; pullups/pulldowns take over. */
gpio_make_input(sc, GPIO_DATA | GPIO_CLK);
}
/* Begin HSSI card code */
static struct card hssi_card =
{
.ident = hssi_ident,
.watchdog = hssi_watchdog,
.ioctl = hssi_ioctl,
.attach = hssi_attach,
.detach = hssi_detach,
};
static void
hssi_ident(softc_t *sc)
{
printf(", EIA-613");
}
static void /* context: softirq */
hssi_watchdog(softc_t *sc)
{
u_int16_t mii16 = mii_read(sc, 16) & MII16_HSSI_MODEM;
sc->status.link_state = STATE_UP;
led_inv(sc, MII16_HSSI_LED_UL); /* Software is alive. */
led_on(sc, MII16_HSSI_LED_LL); /* always on (SSI cable) */
/* Check the transmit clock. */
if (sc->status.tx_speed == 0)
{
led_on(sc, MII16_HSSI_LED_UR);
sc->status.link_state = STATE_DOWN;
}
else
led_off(sc, MII16_HSSI_LED_UR);
/* Is the modem ready? */
if ((mii16 & MII16_HSSI_CA)==0)
{
led_off(sc, MII16_HSSI_LED_LR);
sc->status.link_state = STATE_DOWN;
}
else
led_on(sc, MII16_HSSI_LED_LR);
/* Print the modem control signals if they changed. */
if ((sc->config.debug) && (mii16 != sc->last_mii16))
{
const char *on = "ON ", *off = "OFF";
printf("%s: TA=%s CA=%s LA=%s LB=%s LC=%s TM=%s\n", NAME_UNIT,
(mii16 & MII16_HSSI_TA) ? on : off,
(mii16 & MII16_HSSI_CA) ? on : off,
(mii16 & MII16_HSSI_LA) ? on : off,
(mii16 & MII16_HSSI_LB) ? on : off,
(mii16 & MII16_HSSI_LC) ? on : off,
(mii16 & MII16_HSSI_TM) ? on : off);
}
/* SNMP one-second-report */
sc->status.snmp.hssi.sigs = mii16 & MII16_HSSI_MODEM;
/* Remember this state until next time. */
sc->last_mii16 = mii16;
/* If a loop back is in effect, link status is UP */
if (sc->config.loop_back != CFG_LOOP_NONE)
sc->status.link_state = STATE_UP;
}
static int /* context: process */
hssi_ioctl(softc_t *sc, struct ioctl *ioctl)
{
int error = 0;
if (ioctl->cmd == IOCTL_SNMP_SIGS)
{
u_int16_t mii16 = mii_read(sc, 16);
mii16 &= ~MII16_HSSI_MODEM;
mii16 |= (MII16_HSSI_MODEM & ioctl->data);
mii_write(sc, 16, mii16);
}
else if (ioctl->cmd == IOCTL_SET_STATUS)
{
if (ioctl->data)
mii16_set_bits(sc, MII16_HSSI_TA);
else
mii16_clr_bits(sc, MII16_HSSI_TA);
}
else
error = EINVAL;
return error;
}
/* Must not sleep. */
static void
hssi_attach(softc_t *sc, struct config *config)
{
if (config == NULL) /* startup config */
{
sc->status.card_type = READ_PCI_CFG(sc, TLP_CSID);
sc->config.crc_len = CFG_CRC_16;
sc->config.loop_back = CFG_LOOP_NONE;
sc->config.tx_clk_src = CFG_CLKMUX_ST;
sc->config.dte_dce = CFG_DTE;
sc->config.synth.n = 52; /* 52.000 Mbs */
sc->config.synth.m = 5;
sc->config.synth.v = 0;
sc->config.synth.x = 0;
sc->config.synth.r = 0;
sc->config.synth.prescale = 2;
}
else if (config != &sc->config) /* change config */
{
u_int32_t *old_synth = (u_int32_t *)&sc->config.synth;
u_int32_t *new_synth = (u_int32_t *)&config->synth;
if ((sc->config.crc_len == config->crc_len) &&
(sc->config.loop_back == config->loop_back) &&
(sc->config.tx_clk_src == config->tx_clk_src) &&
(sc->config.dte_dce == config->dte_dce) &&
(*old_synth == *new_synth))
return; /* nothing changed */
sc->config.crc_len = config->crc_len;
sc->config.loop_back = config->loop_back;
sc->config.tx_clk_src = config->tx_clk_src;
sc->config.dte_dce = config->dte_dce;
*old_synth = *new_synth;
}
/* If (config == &sc->config) then the FPGA microcode
* was just initialized and the current config should
* be reloaded into the card.
*/
/* set CRC length */
if (sc->config.crc_len == CFG_CRC_32)
mii16_set_bits(sc, MII16_HSSI_CRC32);
else
mii16_clr_bits(sc, MII16_HSSI_CRC32);
/* Assert pin LA in HSSI conn: ask modem for local loop. */
if (sc->config.loop_back == CFG_LOOP_LL)
mii16_set_bits(sc, MII16_HSSI_LA);
else
mii16_clr_bits(sc, MII16_HSSI_LA);
/* Assert pin LB in HSSI conn: ask modem for remote loop. */
if (sc->config.loop_back == CFG_LOOP_RL)
mii16_set_bits(sc, MII16_HSSI_LB);
else
mii16_clr_bits(sc, MII16_HSSI_LB);
if (sc->status.card_type == CSID_LMC_HSSI)
{
/* set TXCLK src */
if (sc->config.tx_clk_src == CFG_CLKMUX_ST)
gpio_set_bits(sc, GPIO_HSSI_TXCLK);
else
gpio_clr_bits(sc, GPIO_HSSI_TXCLK);
gpio_make_output(sc, GPIO_HSSI_TXCLK);
}
else if (sc->status.card_type == CSID_LMC_HSSIc)
{ /* cPCI HSSI rev C has extra features */
/* Set TXCLK source. */
u_int16_t mii16 = mii_read(sc, 16);
mii16 &= ~MII16_HSSI_CLKMUX;
mii16 |= (sc->config.tx_clk_src&3)<<13;
mii_write(sc, 16, mii16);
/* cPCI HSSI implements loopback towards the net. */
if (sc->config.loop_back == CFG_LOOP_LINE)
mii16_set_bits(sc, MII16_HSSI_LOOP);
else
mii16_clr_bits(sc, MII16_HSSI_LOOP);
/* Set DTE/DCE mode. */
if (sc->config.dte_dce == CFG_DCE)
gpio_set_bits(sc, GPIO_HSSI_DCE);
else
gpio_clr_bits(sc, GPIO_HSSI_DCE);
gpio_make_output(sc, GPIO_HSSI_DCE);
/* Program the synthesized oscillator. */
synth_write(sc, &sc->config.synth);
}
}
static void
hssi_detach(softc_t *sc)
{
mii16_clr_bits(sc, MII16_HSSI_TA);
led_on(sc, MII16_LED_ALL);
}
/* End HSSI card code */
/* Begin DS3 card code */
static struct card t3_card =
{
.ident = t3_ident,
.watchdog = t3_watchdog,
.ioctl = t3_ioctl,
.attach = t3_attach,
.detach = t3_detach,
};
static void
t3_ident(softc_t *sc)
{
printf(", TXC03401 rev B");
}
static void /* context: softirq */
t3_watchdog(softc_t *sc)
{
u_int16_t CV;
u_int8_t CERR, PERR, MERR, FERR, FEBE;
u_int8_t ctl1, stat16, feac;
u_int16_t mii16;
sc->status.link_state = STATE_UP;
/* Read the alarm registers. */
ctl1 = framer_read(sc, T3CSR_CTL1);
stat16 = framer_read(sc, T3CSR_STAT16);
mii16 = mii_read(sc, 16);
/* Always ignore the RTLOC alarm bit. */
stat16 &= ~STAT16_RTLOC;
/* Software is alive. */
led_inv(sc, MII16_DS3_LED_GRN);
/* Receiving Alarm Indication Signal (AIS). */
if (stat16 & STAT16_RAIS) /* receiving ais */
led_on(sc, MII16_DS3_LED_BLU);
else if (ctl1 & CTL1_TXAIS) /* sending ais */
led_inv(sc, MII16_DS3_LED_BLU);
else
led_off(sc, MII16_DS3_LED_BLU);
/* Receiving Remote Alarm Indication (RAI). */
if (stat16 & STAT16_XERR) /* receiving rai */
led_on(sc, MII16_DS3_LED_YEL);
else if ((ctl1 & CTL1_XTX) == 0) /* sending rai */
led_inv(sc, MII16_DS3_LED_YEL);
else
led_off(sc, MII16_DS3_LED_YEL);
/* If certain status bits are set then the link is 'down'. */
/* The bad bits are: rxlos rxoof rxais rxidl xerr. */
if (stat16 & ~(STAT16_FEAC | STAT16_SEF))
sc->status.link_state = STATE_DOWN;
/* Declare local Red Alarm if the link is down. */
if (sc->status.link_state == STATE_DOWN)
led_on(sc, MII16_DS3_LED_RED);
else if (sc->loop_timer) /* loopback is active */
led_inv(sc, MII16_DS3_LED_RED);
else
led_off(sc, MII16_DS3_LED_RED);
/* Print latched error bits if they changed. */
if ((sc->config.debug) && ((stat16 & ~STAT16_FEAC) != sc->last_stat16))
{
const char *on = "ON ", *off = "OFF";
printf("%s: RLOS=%s ROOF=%s RAIS=%s RIDL=%s SEF=%s XERR=%s\n",
NAME_UNIT,
(stat16 & STAT16_RLOS) ? on : off,
(stat16 & STAT16_ROOF) ? on : off,
(stat16 & STAT16_RAIS) ? on : off,
(stat16 & STAT16_RIDL) ? on : off,
(stat16 & STAT16_SEF) ? on : off,
(stat16 & STAT16_XERR) ? on : off);
}
/* Check and print error counters if non-zero. */
CV = framer_read(sc, T3CSR_CVHI)<<8;
CV += framer_read(sc, T3CSR_CVLO);
PERR = framer_read(sc, T3CSR_PERR);
CERR = framer_read(sc, T3CSR_CERR);
FERR = framer_read(sc, T3CSR_FERR);
MERR = framer_read(sc, T3CSR_MERR);
FEBE = framer_read(sc, T3CSR_FEBE);
/* CV is invalid during LOS. */
if (stat16 & STAT16_RLOS) CV = 0;
/* CERR & FEBE are invalid in M13 mode */
if (sc->config.format == CFG_FORMAT_T3M13) CERR = FEBE = 0;
/* FEBE is invalid during AIS. */
if (stat16 & STAT16_RAIS) FEBE = 0;
if (sc->config.debug && (CV || PERR || CERR || FERR || MERR || FEBE))
printf("%s: CV=%u PERR=%u CERR=%u FERR=%u MERR=%u FEBE=%u\n",
NAME_UNIT, CV, PERR, CERR, FERR, MERR, FEBE);
/* Driver keeps crude link-level error counters (SNMP is better). */
sc->status.cntrs.lcv_errs += CV;
sc->status.cntrs.par_errs += PERR;
sc->status.cntrs.cpar_errs += CERR;
sc->status.cntrs.frm_errs += FERR;
sc->status.cntrs.mfrm_errs += MERR;
sc->status.cntrs.febe_errs += FEBE;
/* Check for FEAC messages (FEAC not defined in M13 mode). */
if (FORMAT_T3CPAR && (stat16 & STAT16_FEAC)) do
{
feac = framer_read(sc, T3CSR_FEAC_STK);
if ((feac & FEAC_STK_VALID)==0) break;
/* Ignore RxFEACs while a far end loopback has been requested. */
if (sc->status.snmp.t3.line & TLOOP_FAR_LINE) continue;
switch (feac & FEAC_STK_FEAC)
{
case T3BOP_LINE_UP: break;
case T3BOP_LINE_DOWN: break;
case T3BOP_LOOP_DS3:
{
if (sc->last_FEAC == T3BOP_LINE_DOWN)
{
if (sc->config.debug)
printf("%s: Received a 'line loopback deactivate' FEAC msg\n", NAME_UNIT);
mii16_clr_bits(sc, MII16_DS3_LNLBK);
sc->loop_timer = 0;
}
if (sc->last_FEAC == T3BOP_LINE_UP)
{
if (sc->config.debug)
printf("%s: Received a 'line loopback activate' FEAC msg\n", NAME_UNIT);
mii16_set_bits(sc, MII16_DS3_LNLBK);
sc->loop_timer = 300;
}
break;
}
case T3BOP_OOF:
{
if (sc->config.debug)
printf("%s: Received a 'far end LOF' FEAC msg\n", NAME_UNIT);
break;
}
case T3BOP_IDLE:
{
if (sc->config.debug)
printf("%s: Received a 'far end IDL' FEAC msg\n", NAME_UNIT);
break;
}
case T3BOP_AIS:
{
if (sc->config.debug)
printf("%s: Received a 'far end AIS' FEAC msg\n", NAME_UNIT);
break;
}
case T3BOP_LOS:
{
if (sc->config.debug)
printf("%s: Received a 'far end LOS' FEAC msg\n", NAME_UNIT);
break;
}
default:
{
if (sc->config.debug)
printf("%s: Received a 'type 0x%02X' FEAC msg\n", NAME_UNIT, feac & FEAC_STK_FEAC);
break;
}
}
sc->last_FEAC = feac & FEAC_STK_FEAC;
} while (feac & FEAC_STK_MORE);
stat16 &= ~STAT16_FEAC;
/* Send Service-Affecting priority FEAC messages */
if (((sc->last_stat16 ^ stat16) & 0xF0) && (FORMAT_T3CPAR))
{
/* Transmit continuous FEACs */
framer_write(sc, T3CSR_CTL14,
framer_read(sc, T3CSR_CTL14) & ~CTL14_FEAC10);
if (stat16 & STAT16_RLOS)
framer_write(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_LOS);
else if (stat16 & STAT16_ROOF)
framer_write(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_OOF);
else if (stat16 & STAT16_RAIS)
framer_write(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_AIS);
else if (stat16 & STAT16_RIDL)
framer_write(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_IDLE);
else
framer_write(sc, T3CSR_TX_FEAC, CTL5_EMODE);
}
/* Start sending RAI, Remote Alarm Indication. */
if ((stat16 & STAT16_ROOF) && !(stat16 & STAT16_RLOS) &&
!(sc->last_stat16 & STAT16_ROOF))
framer_write(sc, T3CSR_CTL1, ctl1 &= ~CTL1_XTX);
/* Stop sending RAI, Remote Alarm Indication. */
else if (!(stat16 & STAT16_ROOF) && (sc->last_stat16 & STAT16_ROOF))
framer_write(sc, T3CSR_CTL1, ctl1 |= CTL1_XTX);
/* Start sending AIS, Alarm Indication Signal */
if ((stat16 & STAT16_RLOS) && !(sc->last_stat16 & STAT16_RLOS))
{
mii16_set_bits(sc, MII16_DS3_FRAME);
framer_write(sc, T3CSR_CTL1, ctl1 | CTL1_TXAIS);
}
/* Stop sending AIS, Alarm Indication Signal */
else if (!(stat16 & STAT16_RLOS) && (sc->last_stat16 & STAT16_RLOS))
{
mii16_clr_bits(sc, MII16_DS3_FRAME);
framer_write(sc, T3CSR_CTL1, ctl1 & ~CTL1_TXAIS);
}
/* Time out loopback requests. */
if (sc->loop_timer)
if (--sc->loop_timer == 0)
if (mii16 & MII16_DS3_LNLBK)
{
if (sc->config.debug)
printf("%s: Timeout: Loop Down after 300 seconds\n", NAME_UNIT);
mii16_clr_bits(sc, MII16_DS3_LNLBK); /* line loopback off */
}
/* SNMP error counters */
sc->status.snmp.t3.lcv = CV;
sc->status.snmp.t3.pcv = PERR;
sc->status.snmp.t3.ccv = CERR;
sc->status.snmp.t3.febe = FEBE;
/* SNMP Line Status */
sc->status.snmp.t3.line = 0;
if (!(ctl1 & CTL1_XTX)) sc->status.snmp.t3.line |= TLINE_TX_RAI;
if (stat16 & STAT16_XERR) sc->status.snmp.t3.line |= TLINE_RX_RAI;
if (ctl1 & CTL1_TXAIS) sc->status.snmp.t3.line |= TLINE_TX_AIS;
if (stat16 & STAT16_RAIS) sc->status.snmp.t3.line |= TLINE_RX_AIS;
if (stat16 & STAT16_ROOF) sc->status.snmp.t3.line |= TLINE_LOF;
if (stat16 & STAT16_RLOS) sc->status.snmp.t3.line |= TLINE_LOS;
if (stat16 & STAT16_SEF) sc->status.snmp.t3.line |= T3LINE_SEF;
/* SNMP Loopback Status */
sc->status.snmp.t3.loop &= ~TLOOP_FAR_LINE;
if (sc->config.loop_back == CFG_LOOP_TULIP)
sc->status.snmp.t3.loop |= TLOOP_NEAR_OTHER;
if (ctl1 & CTL1_3LOOP) sc->status.snmp.t3.loop |= TLOOP_NEAR_INWARD;
if (mii16 & MII16_DS3_TRLBK) sc->status.snmp.t3.loop |= TLOOP_NEAR_OTHER;
if (mii16 & MII16_DS3_LNLBK) sc->status.snmp.t3.loop |= TLOOP_NEAR_LINE;
/*if (ctl12 & CTL12_RTPLOOP) sc->status.snmp.t3.loop |= TLOOP_NEAR_PAYLOAD; */
/* Remember this state until next time. */
sc->last_stat16 = stat16;
/* If an INWARD loopback is in effect, link status is UP */
if (sc->config.loop_back != CFG_LOOP_NONE) /* XXX INWARD ONLY */
sc->status.link_state = STATE_UP;
}
static void /* context: process */
t3_send_dbl_feac(softc_t *sc, int feac1, int feac2)
{
u_int8_t tx_feac;
int i;
/* The FEAC transmitter could be sending a continuous */
/* FEAC msg when told to send a double FEAC message. */
/* So save the current state of the FEAC transmitter. */
tx_feac = framer_read(sc, T3CSR_TX_FEAC);
/* Load second FEAC code and stop FEAC transmitter. */
framer_write(sc, T3CSR_TX_FEAC, CTL5_EMODE + feac2);
/* FEAC transmitter sends 10 more FEACs and then stops. */
SLEEP(20000); /* sending one FEAC takes 1700 uSecs */
/* Load first FEAC code and start FEAC transmitter. */
framer_write(sc, T3CSR_DBL_FEAC, CTL13_DFEXEC + feac1);
/* Wait for double FEAC sequence to complete -- about 70 ms. */
for (i=0; i<10; i++) /* max delay 100 ms */
if (framer_read(sc, T3CSR_DBL_FEAC) & CTL13_DFEXEC) SLEEP(10000);
/* Flush received FEACS; do not respond to our own loop cmd! */
while (framer_read(sc, T3CSR_FEAC_STK) & FEAC_STK_VALID) DELAY(1);
/* Restore previous state of the FEAC transmitter. */
/* If it was sending a continous FEAC, it will resume. */
framer_write(sc, T3CSR_TX_FEAC, tx_feac);
}
static int /* context: process */
t3_ioctl(softc_t *sc, struct ioctl *ioctl)
{
int error = 0;
switch (ioctl->cmd)
{
case IOCTL_SNMP_SEND: /* set opstatus? */
{
if (sc->config.format != CFG_FORMAT_T3CPAR)
error = EINVAL;
else if (ioctl->data == TSEND_LINE)
{
sc->status.snmp.t3.loop |= TLOOP_FAR_LINE;
t3_send_dbl_feac(sc, T3BOP_LINE_UP, T3BOP_LOOP_DS3);
}
else if (ioctl->data == TSEND_RESET)
{
t3_send_dbl_feac(sc, T3BOP_LINE_DOWN, T3BOP_LOOP_DS3);
sc->status.snmp.t3.loop &= ~TLOOP_FAR_LINE;
}
else
error = EINVAL;
break;
}
case IOCTL_SNMP_LOOP: /* set opstatus = test? */
{
if (ioctl->data == CFG_LOOP_NONE)
{
mii16_clr_bits(sc, MII16_DS3_FRAME);
mii16_clr_bits(sc, MII16_DS3_TRLBK);
mii16_clr_bits(sc, MII16_DS3_LNLBK);
framer_write(sc, T3CSR_CTL1,
framer_read(sc, T3CSR_CTL1) & ~CTL1_3LOOP);
framer_write(sc, T3CSR_CTL12,
framer_read(sc, T3CSR_CTL12) & ~(CTL12_RTPLOOP | CTL12_RTPLLEN));
}
else if (ioctl->data == CFG_LOOP_LINE)
mii16_set_bits(sc, MII16_DS3_LNLBK);
else if (ioctl->data == CFG_LOOP_OTHER)
mii16_set_bits(sc, MII16_DS3_TRLBK);
else if (ioctl->data == CFG_LOOP_INWARD)
framer_write(sc, T3CSR_CTL1,
framer_read(sc, T3CSR_CTL1) | CTL1_3LOOP);
else if (ioctl->data == CFG_LOOP_DUAL)
{
mii16_set_bits(sc, MII16_DS3_LNLBK);
framer_write(sc, T3CSR_CTL1,
framer_read(sc, T3CSR_CTL1) | CTL1_3LOOP);
}
else if (ioctl->data == CFG_LOOP_PAYLOAD)
{
mii16_set_bits(sc, MII16_DS3_FRAME);
framer_write(sc, T3CSR_CTL12,
framer_read(sc, T3CSR_CTL12) | CTL12_RTPLOOP);
framer_write(sc, T3CSR_CTL12,
framer_read(sc, T3CSR_CTL12) | CTL12_RTPLLEN);
DELAY(25); /* at least two frames (22 uS) */
framer_write(sc, T3CSR_CTL12,
framer_read(sc, T3CSR_CTL12) & ~CTL12_RTPLLEN);
}
else
error = EINVAL;
break;
}
case IOCTL_SET_STATUS:
{
#if 0
if (ioctl->data)
framer_write(sc, T3CSR_CTL1,
framer_read(sc, T3CSR_CTL1) & ~CTL1_TXIDL);
else /* off */
framer_write(sc, T3CSR_CTL1,
framer_read(sc, T3CSR_CTL1) | CTL1_TXIDL);
#endif
break;
}
default:
error = EINVAL;
break;
}
return error;
}
/* Must not sleep. */
static void
t3_attach(softc_t *sc, struct config *config)
{
int i;
u_int8_t ctl1;
if (config == NULL) /* startup config */
{
sc->status.card_type = CSID_LMC_T3;
sc->config.crc_len = CFG_CRC_16;
sc->config.loop_back = CFG_LOOP_NONE;
sc->config.format = CFG_FORMAT_T3CPAR;
sc->config.cable_len = 10; /* meters */
sc->config.scrambler = CFG_SCRAM_DL_KEN;
sc->config.tx_clk_src = CFG_CLKMUX_INT;
/* Center the VCXO -- get within 20 PPM of 44736000. */
dac_write(sc, 0x9002); /* set Vref = 2.048 volts */
dac_write(sc, 2048); /* range is 0..4095 */
}
else if (config != &sc->config) /* change config */
{
if ((sc->config.crc_len == config->crc_len) &&
(sc->config.loop_back == config->loop_back) &&
(sc->config.format == config->format) &&
(sc->config.cable_len == config->cable_len) &&
(sc->config.scrambler == config->scrambler) &&
(sc->config.tx_clk_src == config->tx_clk_src))
return; /* nothing changed */
sc->config.crc_len = config->crc_len;
sc->config.loop_back = config->loop_back;
sc->config.format = config->format;
sc->config.cable_len = config->cable_len;
sc->config.scrambler = config->scrambler;
sc->config.tx_clk_src = config->tx_clk_src;
}
/* Set cable length. */
if (sc->config.cable_len > 30)
mii16_clr_bits(sc, MII16_DS3_ZERO);
else
mii16_set_bits(sc, MII16_DS3_ZERO);
/* Set payload scrambler polynomial. */
if (sc->config.scrambler == CFG_SCRAM_LARS)
mii16_set_bits(sc, MII16_DS3_POLY);
else
mii16_clr_bits(sc, MII16_DS3_POLY);
/* Set payload scrambler on/off. */
if (sc->config.scrambler == CFG_SCRAM_OFF)
mii16_clr_bits(sc, MII16_DS3_SCRAM);
else
mii16_set_bits(sc, MII16_DS3_SCRAM);
/* Set CRC length. */
if (sc->config.crc_len == CFG_CRC_32)
mii16_set_bits(sc, MII16_DS3_CRC32);
else
mii16_clr_bits(sc, MII16_DS3_CRC32);
/* Loopback towards host thru the line interface. */
if (sc->config.loop_back == CFG_LOOP_OTHER)
mii16_set_bits(sc, MII16_DS3_TRLBK);
else
mii16_clr_bits(sc, MII16_DS3_TRLBK);
/* Loopback towards network thru the line interface. */
if (sc->config.loop_back == CFG_LOOP_LINE)
mii16_set_bits(sc, MII16_DS3_LNLBK);
else if (sc->config.loop_back == CFG_LOOP_DUAL)
mii16_set_bits(sc, MII16_DS3_LNLBK);
else
mii16_clr_bits(sc, MII16_DS3_LNLBK);
/* Configure T3 framer chip; write EVERY writeable register. */
ctl1 = CTL1_SER | CTL1_XTX;
if (sc->config.format == CFG_FORMAT_T3M13) ctl1 |= CTL1_M13MODE;
if (sc->config.loop_back == CFG_LOOP_INWARD) ctl1 |= CTL1_3LOOP;
if (sc->config.loop_back == CFG_LOOP_DUAL) ctl1 |= CTL1_3LOOP;
framer_write(sc, T3CSR_CTL1, ctl1);
framer_write(sc, T3CSR_TX_FEAC, CTL5_EMODE);
framer_write(sc, T3CSR_CTL8, CTL8_FBEC);
framer_write(sc, T3CSR_CTL12, CTL12_DLCB1 | CTL12_C21 | CTL12_MCB1);
framer_write(sc, T3CSR_DBL_FEAC, 0);
framer_write(sc, T3CSR_CTL14, CTL14_RGCEN | CTL14_TGCEN);
framer_write(sc, T3CSR_INTEN, 0);
framer_write(sc, T3CSR_CTL20, CTL20_CVEN);
/* Clear error counters and latched error bits */
/* that may have happened while initializing. */
for (i=0; i<21; i++) framer_read(sc, i);
}
static void
t3_detach(softc_t *sc)
{
framer_write(sc, T3CSR_CTL1,
framer_read(sc, T3CSR_CTL1) | CTL1_TXIDL);
led_on(sc, MII16_LED_ALL);
}
/* End DS3 card code */
/* Begin SSI card code */
static struct card ssi_card =
{
.ident = ssi_ident,
.watchdog = ssi_watchdog,
.ioctl = ssi_ioctl,
.attach = ssi_attach,
.detach = ssi_detach,
};
static void
ssi_ident(softc_t *sc)
{
printf(", LTC1343/44");
}
static void /* context: softirq */
ssi_watchdog(softc_t *sc)
{
u_int16_t cable;
u_int16_t mii16 = mii_read(sc, 16) & MII16_SSI_MODEM;
sc->status.link_state = STATE_UP;
/* Software is alive. */
led_inv(sc, MII16_SSI_LED_UL);
/* Check the transmit clock. */
if (sc->status.tx_speed == 0)
{
led_on(sc, MII16_SSI_LED_UR);
sc->status.link_state = STATE_DOWN;
}
else
led_off(sc, MII16_SSI_LED_UR);
/* Check the external cable. */
cable = mii_read(sc, 17);
cable = cable & MII17_SSI_CABLE_MASK;
cable = cable >> MII17_SSI_CABLE_SHIFT;
if (cable == 7)
{
led_off(sc, MII16_SSI_LED_LL); /* no cable */
sc->status.link_state = STATE_DOWN;
}
else
led_on(sc, MII16_SSI_LED_LL);
/* The unit at the other end of the cable is ready if: */
/* DTE mode and DCD pin is asserted */
/* DCE mode and DSR pin is asserted */
if (((sc->config.dte_dce == CFG_DTE) && !(mii16 & MII16_SSI_DCD)) ||
((sc->config.dte_dce == CFG_DCE) && !(mii16 & MII16_SSI_DSR)))
{
led_off(sc, MII16_SSI_LED_LR);
sc->status.link_state = STATE_DOWN;
}
else
led_on(sc, MII16_SSI_LED_LR);
if (sc->config.debug && (cable != sc->status.cable_type))
printf("%s: SSI cable type changed to '%s'\n",
NAME_UNIT, ssi_cables[cable]);
sc->status.cable_type = cable;
/* Print the modem control signals if they changed. */
if ((sc->config.debug) && (mii16 != sc->last_mii16))
{
const char *on = "ON ", *off = "OFF";
printf("%s: DTR=%s DSR=%s RTS=%s CTS=%s DCD=%s RI=%s LL=%s RL=%s TM=%s\n",
NAME_UNIT,
(mii16 & MII16_SSI_DTR) ? on : off,
(mii16 & MII16_SSI_DSR) ? on : off,
(mii16 & MII16_SSI_RTS) ? on : off,
(mii16 & MII16_SSI_CTS) ? on : off,
(mii16 & MII16_SSI_DCD) ? on : off,
(mii16 & MII16_SSI_RI) ? on : off,
(mii16 & MII16_SSI_LL) ? on : off,
(mii16 & MII16_SSI_RL) ? on : off,
(mii16 & MII16_SSI_TM) ? on : off);
}
/* SNMP one-second report */
sc->status.snmp.ssi.sigs = mii16 & MII16_SSI_MODEM;
/* Remember this state until next time. */
sc->last_mii16 = mii16;
/* If a loop back is in effect, link status is UP */
if (sc->config.loop_back != CFG_LOOP_NONE)
sc->status.link_state = STATE_UP;
}
static int /* context: process */
ssi_ioctl(softc_t *sc, struct ioctl *ioctl)
{
int error = 0;
if (ioctl->cmd == IOCTL_SNMP_SIGS)
{
u_int16_t mii16 = mii_read(sc, 16);
mii16 &= ~MII16_SSI_MODEM;
mii16 |= (MII16_SSI_MODEM & ioctl->data);
mii_write(sc, 16, mii16);
}
else if (ioctl->cmd == IOCTL_SET_STATUS)
{
if (ioctl->data)
mii16_set_bits(sc, (MII16_SSI_DTR | MII16_SSI_RTS | MII16_SSI_DCD));
else
mii16_clr_bits(sc, (MII16_SSI_DTR | MII16_SSI_RTS | MII16_SSI_DCD));
}
else
error = EINVAL;
return error;
}
/* Must not sleep. */
static void
ssi_attach(softc_t *sc, struct config *config)
{
if (config == NULL) /* startup config */
{
sc->status.card_type = CSID_LMC_SSI;
sc->config.crc_len = CFG_CRC_16;
sc->config.loop_back = CFG_LOOP_NONE;
sc->config.tx_clk_src = CFG_CLKMUX_ST;
sc->config.dte_dce = CFG_DTE;
sc->config.synth.n = 51; /* 1.536 MHz */
sc->config.synth.m = 83;
sc->config.synth.v = 1;
sc->config.synth.x = 1;
sc->config.synth.r = 1;
sc->config.synth.prescale = 4;
}
else if (config != &sc->config) /* change config */
{
u_int32_t *old_synth = (u_int32_t *)&sc->config.synth;
u_int32_t *new_synth = (u_int32_t *)&config->synth;
if ((sc->config.crc_len == config->crc_len) &&
(sc->config.loop_back == config->loop_back) &&
(sc->config.tx_clk_src == config->tx_clk_src) &&
(sc->config.dte_dce == config->dte_dce) &&
(*old_synth == *new_synth))
return; /* nothing changed */
sc->config.crc_len = config->crc_len;
sc->config.loop_back = config->loop_back;
sc->config.tx_clk_src = config->tx_clk_src;
sc->config.dte_dce = config->dte_dce;
*old_synth = *new_synth;
}
/* Disable the TX clock driver while programming the oscillator. */
gpio_clr_bits(sc, GPIO_SSI_DCE);
gpio_make_output(sc, GPIO_SSI_DCE);
/* Program the synthesized oscillator. */
synth_write(sc, &sc->config.synth);
/* Set DTE/DCE mode. */
/* If DTE mode then DCD & TXC are received. */
/* If DCE mode then DCD & TXC are driven. */
/* Boards with MII rev=4.0 do not drive DCD. */
if (sc->config.dte_dce == CFG_DCE)
gpio_set_bits(sc, GPIO_SSI_DCE);
else
gpio_clr_bits(sc, GPIO_SSI_DCE);
gpio_make_output(sc, GPIO_SSI_DCE);
/* Set CRC length. */
if (sc->config.crc_len == CFG_CRC_32)
mii16_set_bits(sc, MII16_SSI_CRC32);
else
mii16_clr_bits(sc, MII16_SSI_CRC32);
/* Loop towards host thru cable drivers and receivers. */
/* Asserts DCD at the far end of a null modem cable. */
if (sc->config.loop_back == CFG_LOOP_PINS)
mii16_set_bits(sc, MII16_SSI_LOOP);
else
mii16_clr_bits(sc, MII16_SSI_LOOP);
/* Assert pin LL in modem conn: ask modem for local loop. */
/* Asserts TM at the far end of a null modem cable. */
if (sc->config.loop_back == CFG_LOOP_LL)
mii16_set_bits(sc, MII16_SSI_LL);
else
mii16_clr_bits(sc, MII16_SSI_LL);
/* Assert pin RL in modem conn: ask modem for remote loop. */
if (sc->config.loop_back == CFG_LOOP_RL)
mii16_set_bits(sc, MII16_SSI_RL);
else
mii16_clr_bits(sc, MII16_SSI_RL);
}
static void
ssi_detach(softc_t *sc)
{
mii16_clr_bits(sc, (MII16_SSI_DTR | MII16_SSI_RTS | MII16_SSI_DCD));
led_on(sc, MII16_LED_ALL);
}
/* End SSI card code */
/* Begin T1E1 card code */
static struct card t1_card =
{
.ident = t1_ident,
.watchdog = t1_watchdog,
.ioctl = t1_ioctl,
.attach = t1_attach,
.detach = t1_detach,
};
static void
t1_ident(softc_t *sc)
{
printf(", Bt837%x rev %x",
framer_read(sc, Bt8370_DID)>>4,
framer_read(sc, Bt8370_DID)&0x0F);
}
static void /* context: softirq */
t1_watchdog(softc_t *sc)
{
u_int16_t LCV = 0, FERR = 0, CRC = 0, FEBE = 0;
u_int8_t alm1, alm3, loop, isr0;
int i;
sc->status.link_state = STATE_UP;
/* Read the alarm registers */
alm1 = framer_read(sc, Bt8370_ALM1);
alm3 = framer_read(sc, Bt8370_ALM3);
loop = framer_read(sc, Bt8370_LOOP);
isr0 = framer_read(sc, Bt8370_ISR0);
/* Always ignore the SIGFRZ alarm bit, */
alm1 &= ~ALM1_SIGFRZ;
if (FORMAT_T1ANY) /* ignore RYEL in T1 modes */
alm1 &= ~ALM1_RYEL;
else if (FORMAT_E1NONE) /* ignore all alarms except LOS */
alm1 &= ALM1_RLOS;
/* Software is alive. */
led_inv(sc, MII16_T1_LED_GRN);
/* Receiving Alarm Indication Signal (AIS). */
if (alm1 & ALM1_RAIS) /* receiving ais */
led_on(sc, MII16_T1_LED_BLU);
else if (alm1 & ALM1_RLOS) /* sending ais */
led_inv(sc, MII16_T1_LED_BLU);
else
led_off(sc, MII16_T1_LED_BLU);
/* Receiving Remote Alarm Indication (RAI). */
if (alm1 & (ALM1_RMYEL | ALM1_RYEL)) /* receiving rai */
led_on(sc, MII16_T1_LED_YEL);
else if (alm1 & ALM1_RLOF) /* sending rai */
led_inv(sc, MII16_T1_LED_YEL);
else
led_off(sc, MII16_T1_LED_YEL);
/* If any alarm bits are set then the link is 'down'. */
/* The bad bits are: rmyel ryel rais ralos rlos rlof. */
/* Some alarm bits have been masked by this point. */
if (alm1) sc->status.link_state = STATE_DOWN;
/* Declare local Red Alarm if the link is down. */
if (sc->status.link_state == STATE_DOWN)
led_on(sc, MII16_T1_LED_RED);
else if (sc->loop_timer) /* loopback is active */
led_inv(sc, MII16_T1_LED_RED);
else
led_off(sc, MII16_T1_LED_RED);
/* Print latched error bits if they changed. */
if ((sc->config.debug) && (alm1 != sc->last_alm1))
{
const char *on = "ON ", *off = "OFF";
printf("%s: RLOF=%s RLOS=%s RALOS=%s RAIS=%s RYEL=%s RMYEL=%s\n",
NAME_UNIT,
(alm1 & ALM1_RLOF) ? on : off,
(alm1 & ALM1_RLOS) ? on : off,
(alm1 & ALM1_RALOS) ? on : off,
(alm1 & ALM1_RAIS) ? on : off,
(alm1 & ALM1_RYEL) ? on : off,
(alm1 & ALM1_RMYEL) ? on : off);
}
/* Check and print error counters if non-zero. */
LCV = framer_read(sc, Bt8370_LCV_LO) +
(framer_read(sc, Bt8370_LCV_HI)<<8);
if (!FORMAT_E1NONE)
FERR = framer_read(sc, Bt8370_FERR_LO) +
(framer_read(sc, Bt8370_FERR_HI)<<8);
if (FORMAT_E1CRC || FORMAT_T1ESF)
CRC = framer_read(sc, Bt8370_CRC_LO) +
(framer_read(sc, Bt8370_CRC_HI)<<8);
if (FORMAT_E1CRC)
FEBE = framer_read(sc, Bt8370_FEBE_LO) +
(framer_read(sc, Bt8370_FEBE_HI)<<8);
/* Only LCV is valid if Out-Of-Frame */
if (FORMAT_E1NONE) FERR = CRC = FEBE = 0;
if ((sc->config.debug) && (LCV || FERR || CRC || FEBE))
printf("%s: LCV=%u FERR=%u CRC=%u FEBE=%u\n",
NAME_UNIT, LCV, FERR, CRC, FEBE);
/* Driver keeps crude link-level error counters (SNMP is better). */
sc->status.cntrs.lcv_errs += LCV;
sc->status.cntrs.frm_errs += FERR;
sc->status.cntrs.crc_errs += CRC;
sc->status.cntrs.febe_errs += FEBE;
/* Check for BOP messages in the ESF Facility Data Link. */
if ((FORMAT_T1ESF) && (framer_read(sc, Bt8370_ISR1) & 0x80))
{
u_int8_t bop_code = framer_read(sc, Bt8370_RBOP) & 0x3F;
switch (bop_code)
{
case T1BOP_OOF:
{
if ((sc->config.debug) && !(sc->last_alm1 & ALM1_RMYEL))
printf("%s: Receiving a 'yellow alarm' BOP msg\n", NAME_UNIT);
break;
}
case T1BOP_LINE_UP:
{
if (sc->config.debug)
printf("%s: Received a 'line loopback activate' BOP msg\n", NAME_UNIT);
framer_write(sc, Bt8370_LOOP, LOOP_LINE);
sc->loop_timer = 305;
break;
}
case T1BOP_LINE_DOWN:
{
if (sc->config.debug)
printf("%s: Received a 'line loopback deactivate' BOP msg\n", NAME_UNIT);
framer_write(sc, Bt8370_LOOP,
framer_read(sc, Bt8370_LOOP) & ~LOOP_LINE);
sc->loop_timer = 0;
break;
}
case T1BOP_PAY_UP:
{
if (sc->config.debug)
printf("%s: Received a 'payload loopback activate' BOP msg\n", NAME_UNIT);
framer_write(sc, Bt8370_LOOP, LOOP_PAYLOAD);
sc->loop_timer = 305;
break;
}
case T1BOP_PAY_DOWN:
{
if (sc->config.debug)
printf("%s: Received a 'payload loopback deactivate' BOP msg\n", NAME_UNIT);
framer_write(sc, Bt8370_LOOP,
framer_read(sc, Bt8370_LOOP) & ~LOOP_PAYLOAD);
sc->loop_timer = 0;
break;
}
default:
{
if (sc->config.debug)
printf("%s: Received a type 0x%02X BOP msg\n", NAME_UNIT, bop_code);
break;
}
}
}
/* Check for HDLC pkts in the ESF Facility Data Link. */
if ((FORMAT_T1ESF) && (framer_read(sc, Bt8370_ISR2) & 0x70))
{
/* while (not fifo-empty && not start-of-msg) flush fifo */
while ((framer_read(sc, Bt8370_RDL1_STAT) & 0x0C)==0)
framer_read(sc, Bt8370_RDL1);
/* If (not fifo-empty), then begin processing fifo contents. */
if ((framer_read(sc, Bt8370_RDL1_STAT) & 0x0C) == 0x08)
{
u_int8_t msg[64];
u_int8_t stat = framer_read(sc, Bt8370_RDL1);
sc->status.cntrs.fdl_pkts++;
for (i=0; i<(stat & 0x3F); i++)
msg[i] = framer_read(sc, Bt8370_RDL1);
/* Is this FDL message a T1.403 performance report? */
if (((stat & 0x3F)==11) &&
((msg[0]==0x38) || (msg[0]==0x3A)) &&
(msg[1]==1) && (msg[2]==3))
/* Copy 4 PRs from FDL pkt to SNMP struct. */
memcpy(sc->status.snmp.t1.prm, msg+3, 8);
}
}
/* Check for inband loop up/down commands. */
if (FORMAT_T1ANY)
{
u_int8_t isr6 = framer_read(sc, Bt8370_ISR6);
u_int8_t alarm2 = framer_read(sc, Bt8370_ALM2);
u_int8_t tlb = framer_read(sc, Bt8370_TLB);
/* Inband Code == Loop Up && On Transition && Inband Tx Inactive */
if ((isr6 & 0x40) && (alarm2 & 0x40) && !(tlb & 1))
{ /* CSU loop up is 10000 10000 ... */
if (sc->config.debug)
printf("%s: Received a 'CSU Loop Up' inband msg\n", NAME_UNIT);
framer_write(sc, Bt8370_LOOP, LOOP_LINE); /* Loop up */
sc->loop_timer = 305;
}
/* Inband Code == Loop Down && On Transition && Inband Tx Inactive */
if ((isr6 & 0x80) && (alarm2 & 0x80) && !(tlb & 1))
{ /* CSU loop down is 100 100 100 ... */
if (sc->config.debug)
printf("%s: Received a 'CSU Loop Down' inband msg\n", NAME_UNIT);
framer_write(sc, Bt8370_LOOP,
framer_read(sc, Bt8370_LOOP) & ~LOOP_LINE); /* loop down */
sc->loop_timer = 0;
}
}
/* Manually send Yellow Alarm BOP msgs. */
if (FORMAT_T1ESF)
{
u_int8_t isr7 = framer_read(sc, Bt8370_ISR7);
if ((isr7 & 0x02) && (alm1 & 0x02)) /* RLOF on-transition */
{ /* Start sending continuous Yellow Alarm BOP messages. */
framer_write(sc, Bt8370_BOP, RBOP_25 | TBOP_CONT);
framer_write(sc, Bt8370_TBOP, 0x00); /* send BOP; order matters */
}
else if ((isr7 & 0x02) && !(alm1 & 0x02)) /* RLOF off-transition */
{ /* Stop sending continuous Yellow Alarm BOP messages. */
framer_write(sc, Bt8370_BOP, RBOP_25 | TBOP_OFF);
}
}
/* Time out loopback requests. */
if (sc->loop_timer)
if (--sc->loop_timer == 0)
if (loop)
{
if (sc->config.debug)
printf("%s: Timeout: Loop Down after 300 seconds\n", NAME_UNIT);
framer_write(sc, Bt8370_LOOP, loop & ~(LOOP_PAYLOAD | LOOP_LINE));
}
/* RX Test Pattern status */
if ((sc->config.debug) && (isr0 & 0x10))
printf("%s: RX Test Pattern Sync\n", NAME_UNIT);
/* SNMP Error Counters */
sc->status.snmp.t1.lcv = LCV;
sc->status.snmp.t1.fe = FERR;
sc->status.snmp.t1.crc = CRC;
sc->status.snmp.t1.febe = FEBE;
/* SNMP Line Status */
sc->status.snmp.t1.line = 0;
if (alm1 & ALM1_RMYEL) sc->status.snmp.t1.line |= TLINE_RX_RAI;
if (alm1 & ALM1_RYEL) sc->status.snmp.t1.line |= TLINE_RX_RAI;
if (alm1 & ALM1_RLOF) sc->status.snmp.t1.line |= TLINE_TX_RAI;
if (alm1 & ALM1_RAIS) sc->status.snmp.t1.line |= TLINE_RX_AIS;
if (alm1 & ALM1_RLOS) sc->status.snmp.t1.line |= TLINE_TX_AIS;
if (alm1 & ALM1_RLOF) sc->status.snmp.t1.line |= TLINE_LOF;
if (alm1 & ALM1_RLOS) sc->status.snmp.t1.line |= TLINE_LOS;
if (alm3 & ALM3_RMAIS) sc->status.snmp.t1.line |= T1LINE_RX_TS16_AIS;
if (alm3 & ALM3_SRED) sc->status.snmp.t1.line |= T1LINE_TX_TS16_LOMF;
if (alm3 & ALM3_SEF) sc->status.snmp.t1.line |= T1LINE_SEF;
if (isr0 & 0x10) sc->status.snmp.t1.line |= T1LINE_RX_TEST;
if ((alm1 & ALM1_RMYEL) && (FORMAT_E1CAS))
sc->status.snmp.t1.line |= T1LINE_RX_TS16_LOMF;
/* SNMP Loopback Status */
sc->status.snmp.t1.loop &= ~(TLOOP_FAR_LINE | TLOOP_FAR_PAYLOAD);
if (sc->config.loop_back == CFG_LOOP_TULIP)
sc->status.snmp.t1.loop |= TLOOP_NEAR_OTHER;
if (loop & LOOP_PAYLOAD) sc->status.snmp.t1.loop |= TLOOP_NEAR_PAYLOAD;
if (loop & LOOP_LINE) sc->status.snmp.t1.loop |= TLOOP_NEAR_LINE;
if (loop & LOOP_ANALOG) sc->status.snmp.t1.loop |= TLOOP_NEAR_OTHER;
if (loop & LOOP_FRAMER) sc->status.snmp.t1.loop |= TLOOP_NEAR_INWARD;
/* Remember this state until next time. */
sc->last_alm1 = alm1;
/* If an INWARD loopback is in effect, link status is UP */
if (sc->config.loop_back != CFG_LOOP_NONE) /* XXX INWARD ONLY */
sc->status.link_state = STATE_UP;
}
static void /* context: process */
t1_send_bop(softc_t *sc, int bop_code)
{
u_int8_t bop;
int i;
/* The BOP transmitter could be sending a continuous */
/* BOP msg when told to send this BOP_25 message. */
/* So save and restore the state of the BOP machine. */
bop = framer_read(sc, Bt8370_BOP);
framer_write(sc, Bt8370_BOP, RBOP_OFF | TBOP_OFF);
for (i=0; i<40; i++) /* max delay 400 ms. */
if (framer_read(sc, Bt8370_BOP_STAT) & 0x80) SLEEP(10000);
/* send 25 repetitions of bop_code */
framer_write(sc, Bt8370_BOP, RBOP_OFF | TBOP_25);
framer_write(sc, Bt8370_TBOP, bop_code); /* order matters */
/* wait for tx to stop */
for (i=0; i<40; i++) /* max delay 400 ms. */
if (framer_read(sc, Bt8370_BOP_STAT) & 0x80) SLEEP(10000);
/* Restore previous state of the BOP machine. */
framer_write(sc, Bt8370_BOP, bop);
}
static int /* context: process */
t1_ioctl(softc_t *sc, struct ioctl *ioctl)
{
int error = 0;
switch (ioctl->cmd)
{
case IOCTL_SNMP_SEND: /* set opstatus? */
{
switch (ioctl->data)
{
case TSEND_NORMAL:
{
framer_write(sc, Bt8370_TPATT, 0x00); /* tx pattern generator off */
framer_write(sc, Bt8370_RPATT, 0x00); /* rx pattern detector off */
framer_write(sc, Bt8370_TLB, 0x00); /* tx inband generator off */
break;
}
case TSEND_LINE:
{
if (FORMAT_T1ESF)
t1_send_bop(sc, T1BOP_LINE_UP);
else if (FORMAT_T1SF)
{
framer_write(sc, Bt8370_LBP, 0x08); /* 10000 10000 ... */
framer_write(sc, Bt8370_TLB, 0x05); /* 5 bits, framed, start */
}
sc->status.snmp.t1.loop |= TLOOP_FAR_LINE;
break;
}
case TSEND_PAYLOAD:
{
t1_send_bop(sc, T1BOP_PAY_UP);
sc->status.snmp.t1.loop |= TLOOP_FAR_PAYLOAD;
break;
}
case TSEND_RESET:
{
if (sc->status.snmp.t1.loop == TLOOP_FAR_LINE)
{
if (FORMAT_T1ESF)
t1_send_bop(sc, T1BOP_LINE_DOWN);
else if (FORMAT_T1SF)
{
framer_write(sc, Bt8370_LBP, 0x24); /* 100100 100100 ... */
framer_write(sc, Bt8370_TLB, 0x09); /* 6 bits, framed, start */
}
sc->status.snmp.t1.loop &= ~TLOOP_FAR_LINE;
}
if (sc->status.snmp.t1.loop == TLOOP_FAR_PAYLOAD)
{
t1_send_bop(sc, T1BOP_PAY_DOWN);
sc->status.snmp.t1.loop &= ~TLOOP_FAR_PAYLOAD;
}
break;
}
case TSEND_QRS:
{
framer_write(sc, Bt8370_TPATT, 0x1E); /* framed QRSS */
break;
}
default:
{
error = EINVAL;
break;
}
}
break;
}
case IOCTL_SNMP_LOOP: /* set opstatus = test? */
{
u_int8_t new_loop = 0;
if (ioctl->data == CFG_LOOP_NONE)
new_loop = 0;
else if (ioctl->data == CFG_LOOP_PAYLOAD)
new_loop = LOOP_PAYLOAD;
else if (ioctl->data == CFG_LOOP_LINE)
new_loop = LOOP_LINE;
else if (ioctl->data == CFG_LOOP_OTHER)
new_loop = LOOP_ANALOG;
else if (ioctl->data == CFG_LOOP_INWARD)
new_loop = LOOP_FRAMER;
else if (ioctl->data == CFG_LOOP_DUAL)
new_loop = LOOP_DUAL;
else
error = EINVAL;
if (!error)
{
framer_write(sc, Bt8370_LOOP, new_loop);
sc->config.loop_back = ioctl->data;
}
break;
}
case IOCTL_SET_STATUS:
{
#if 0
if (ioctl->data)
mii16_set_bits(sc, MII16_T1_XOE);
else
mii16_clr_bits(sc, MII16_T1_XOE);
#endif
break;
}
default:
error = EINVAL;
break;
}
return error;
}
/* Must not sleep. */
static void
t1_attach(softc_t *sc, struct config *config)
{
int i;
u_int8_t pulse, lbo, gain;
if (config == NULL) /* startup config */
{
/* Disable transmitter output drivers. */
mii16_clr_bits(sc, MII16_T1_XOE);
/* Bt8370 occasionally powers up in a loopback mode. */
/* Data sheet says zero LOOP reg and do a sw-reset. */
framer_write(sc, Bt8370_LOOP, 0x00); /* no loopback */
framer_write(sc, Bt8370_CR0, 0x80); /* sw-reset */
for (i=0; i<10; i++) /* wait for sw-reset to clear; max 10 ms */
if (framer_read(sc, Bt8370_CR0) & 0x80) DELAY(1000);
sc->status.card_type = CSID_LMC_T1E1;
sc->config.crc_len = CFG_CRC_16;
sc->config.loop_back = CFG_LOOP_NONE;
sc->config.tx_clk_src = CFG_CLKMUX_RT; /* loop timed */
#if 1 /* USA */ /* decide using time zone? */
sc->config.format = CFG_FORMAT_T1ESF;
#else /* REST OF PLANET */
sc->config.format = CFG_FORMAT_E1FASCRC;
#endif
sc->config.time_slots = 0xFFFFFFFF;
sc->config.cable_len = 10;
sc->config.tx_pulse = CFG_PULSE_AUTO;
sc->config.rx_gain_max = CFG_GAIN_AUTO;
sc->config.tx_lbo = CFG_LBO_AUTO;
}
else if (config != &sc->config) /* change config */
{
if ((sc->config.crc_len == config->crc_len) &&
(sc->config.loop_back == config->loop_back) &&
(sc->config.tx_clk_src == config->tx_clk_src) &&
(sc->config.format == config->format) &&
(sc->config.time_slots == config->time_slots) &&
(sc->config.cable_len == config->cable_len) &&
(sc->config.tx_pulse == config->tx_pulse) &&
(sc->config.rx_gain_max == config->rx_gain_max) &&
(sc->config.tx_lbo == config->tx_lbo))
return; /* nothing changed */
sc->config.crc_len = config->crc_len;
sc->config.loop_back = config->loop_back;
sc->config.tx_clk_src = config->tx_clk_src;
sc->config.format = config->format;
sc->config.cable_len = config->cable_len;
sc->config.time_slots = config->time_slots;
sc->config.tx_pulse = config->tx_pulse;
sc->config.rx_gain_max = config->rx_gain_max;
sc->config.tx_lbo = config->tx_lbo;
}
/* Set CRC length. */
if (sc->config.crc_len == CFG_CRC_32)
mii16_set_bits(sc, MII16_T1_CRC32);
else
mii16_clr_bits(sc, MII16_T1_CRC32);
/* Invert HDLC payload data in SF/AMI mode. */
/* HDLC stuff bits satisfy T1 pulse density. */
if (FORMAT_T1SF)
mii16_set_bits(sc, MII16_T1_INVERT);
else
mii16_clr_bits(sc, MII16_T1_INVERT);
/* Set the transmitter output impedance. */
if (FORMAT_E1ANY) mii16_set_bits(sc, MII16_T1_Z);
/* 001:CR0 -- Control Register 0 - T1/E1 and frame format */
framer_write(sc, Bt8370_CR0, sc->config.format);
/* 002:JAT_CR -- Jitter Attenuator Control Register */
if (sc->config.tx_clk_src == CFG_CLKMUX_RT) /* loop timing */
framer_write(sc, Bt8370_JAT_CR, 0xA3); /* JAT in RX path */
else
{ /* 64-bit elastic store; free-running JCLK and CLADO */
framer_write(sc, Bt8370_JAT_CR, 0x4B); /* assert jcenter */
framer_write(sc, Bt8370_JAT_CR, 0x43); /* release jcenter */
}
/* 00C-013:IERn -- Interrupt Enable Registers */
for (i=Bt8370_IER7; i<=Bt8370_IER0; i++)
framer_write(sc, i, 0); /* no interrupts; polled */
/* 014:LOOP -- loopbacks */
if (sc->config.loop_back == CFG_LOOP_PAYLOAD)
framer_write(sc, Bt8370_LOOP, LOOP_PAYLOAD);
else if (sc->config.loop_back == CFG_LOOP_LINE)
framer_write(sc, Bt8370_LOOP, LOOP_LINE);
else if (sc->config.loop_back == CFG_LOOP_OTHER)
framer_write(sc, Bt8370_LOOP, LOOP_ANALOG);
else if (sc->config.loop_back == CFG_LOOP_INWARD)
framer_write(sc, Bt8370_LOOP, LOOP_FRAMER);
else if (sc->config.loop_back == CFG_LOOP_DUAL)
framer_write(sc, Bt8370_LOOP, LOOP_DUAL);
else
framer_write(sc, Bt8370_LOOP, 0x00); /* no loopback */
/* 015:DL3_TS -- Data Link 3 */
framer_write(sc, Bt8370_DL3_TS, 0x00); /* disabled */
/* 018:PIO -- Programmable I/O */
framer_write(sc, Bt8370_PIO, 0xFF); /* all pins are outputs */
/* 019:POE -- Programmable Output Enable */
framer_write(sc, Bt8370_POE, 0x00); /* all outputs are enabled */
/* 01A;CMUX -- Clock Input Mux */
if (sc->config.tx_clk_src == CFG_CLKMUX_EXT)
framer_write(sc, Bt8370_CMUX, 0x0C); /* external timing */
else
framer_write(sc, Bt8370_CMUX, 0x0F); /* internal timing */
/* 020:LIU_CR -- Line Interface Unit Config Register */
framer_write(sc, Bt8370_LIU_CR, 0xC1); /* reset LIU, squelch */
/* 022:RLIU_CR -- RX Line Interface Unit Config Reg */
/* Errata sheet says do not use freeze-short, but we do anyway! */
framer_write(sc, Bt8370_RLIU_CR, 0xB1); /* AGC=2048, Long Eye */
/* Select Rx sensitivity based on cable length. */
if ((gain = sc->config.rx_gain_max) == CFG_GAIN_AUTO)
{
if (sc->config.cable_len > 2000)
gain = CFG_GAIN_EXTEND;
else if (sc->config.cable_len > 1000)
gain = CFG_GAIN_LONG;
else if (sc->config.cable_len > 100)
gain = CFG_GAIN_MEDIUM;
else
gain = CFG_GAIN_SHORT;
}
/* 024:VGA_MAX -- Variable Gain Amplifier Max gain */
framer_write(sc, Bt8370_VGA_MAX, gain);
/* 028:PRE_EQ -- Pre Equalizer */
if (gain == CFG_GAIN_EXTEND)
framer_write(sc, Bt8370_PRE_EQ, 0xE6); /* ON; thresh 6 */
else
framer_write(sc, Bt8370_PRE_EQ, 0xA6); /* OFF; thresh 6 */
/* 038-03C:GAINn -- RX Equalizer gain thresholds */
framer_write(sc, Bt8370_GAIN0, 0x24);
framer_write(sc, Bt8370_GAIN1, 0x28);
framer_write(sc, Bt8370_GAIN2, 0x2C);
framer_write(sc, Bt8370_GAIN3, 0x30);
framer_write(sc, Bt8370_GAIN4, 0x34);
/* 040:RCR0 -- Receiver Control Register 0 */
if (FORMAT_T1ESF)
framer_write(sc, Bt8370_RCR0, 0x05); /* B8ZS, 2/5 FErrs */
else if (FORMAT_T1SF)
framer_write(sc, Bt8370_RCR0, 0x84); /* AMI, 2/5 FErrs */
else if (FORMAT_E1NONE)
framer_write(sc, Bt8370_RCR0, 0x41); /* HDB3, rabort */
else if (FORMAT_E1CRC)
framer_write(sc, Bt8370_RCR0, 0x09); /* HDB3, 3 FErrs or 915 CErrs */
else /* E1 no CRC */
framer_write(sc, Bt8370_RCR0, 0x19); /* HDB3, 3 FErrs */
/* 041:RPATT -- Receive Test Pattern configuration */
framer_write(sc, Bt8370_RPATT, 0x3E); /* looking for framed QRSS */
/* 042:RLB -- Receive Loop Back code detector config */
framer_write(sc, Bt8370_RLB, 0x09); /* 6 bits down; 5 bits up */
/* 043:LBA -- Loop Back Activate code */
framer_write(sc, Bt8370_LBA, 0x08); /* 10000 10000 10000 ... */
/* 044:LBD -- Loop Back Deactivate code */
framer_write(sc, Bt8370_LBD, 0x24); /* 100100 100100 100100 ... */
/* 045:RALM -- Receive Alarm signal configuration */
framer_write(sc, Bt8370_RALM, 0x0C); /* yel_intg rlof_intg */
/* 046:LATCH -- Alarm/Error/Counter Latch register */
framer_write(sc, Bt8370_LATCH, 0x1F); /* stop_cnt latch_{cnt,err,alm} */
/* Select Pulse Shape based on cable length (T1 only). */
if ((pulse = sc->config.tx_pulse) == CFG_PULSE_AUTO)
{
if (FORMAT_T1ANY)
{
if (sc->config.cable_len > 200)
pulse = CFG_PULSE_T1CSU;
else if (sc->config.cable_len > 160)
pulse = CFG_PULSE_T1DSX4;
else if (sc->config.cable_len > 120)
pulse = CFG_PULSE_T1DSX3;
else if (sc->config.cable_len > 80)
pulse = CFG_PULSE_T1DSX2;
else if (sc->config.cable_len > 40)
pulse = CFG_PULSE_T1DSX1;
else
pulse = CFG_PULSE_T1DSX0;
}
else
pulse = CFG_PULSE_E1TWIST;
}
/* Select Line Build Out based on cable length (T1CSU only). */
if ((lbo = sc->config.tx_lbo) == CFG_LBO_AUTO)
{
if (pulse == CFG_PULSE_T1CSU)
{
if (sc->config.cable_len > 1500)
lbo = CFG_LBO_0DB;
else if (sc->config.cable_len > 1000)
lbo = CFG_LBO_7DB;
else if (sc->config.cable_len > 500)
lbo = CFG_LBO_15DB;
else
lbo = CFG_LBO_22DB;
}
else
lbo = 0;
}
/* 068:TLIU_CR -- Transmit LIU Control Register */
framer_write(sc, Bt8370_TLIU_CR, (0x40 | (lbo & 0x30) | (pulse & 0x0E)));
/* 070:TCR0 -- Transmit Framer Configuration */
framer_write(sc, Bt8370_TCR0, sc->config.format>>1);
/* 071:TCR1 -- Transmitter Configuration */
if (FORMAT_T1SF)
framer_write(sc, Bt8370_TCR1, 0x43); /* tabort, AMI PDV enforced */
else
framer_write(sc, Bt8370_TCR1, 0x41); /* tabort, B8ZS or HDB3 */
/* 072:TFRM -- Transmit Frame format MYEL YEL MF FE CRC FBIT */
if (sc->config.format == CFG_FORMAT_T1ESF)
framer_write(sc, Bt8370_TFRM, 0x0B); /* - YEL MF - CRC FBIT */
else if (sc->config.format == CFG_FORMAT_T1SF)
framer_write(sc, Bt8370_TFRM, 0x19); /* - YEL MF - - FBIT */
else if (sc->config.format == CFG_FORMAT_E1FAS)
framer_write(sc, Bt8370_TFRM, 0x11); /* - YEL - - - FBIT */
else if (sc->config.format == CFG_FORMAT_E1FASCRC)
framer_write(sc, Bt8370_TFRM, 0x1F); /* - YEL MF FE CRC FBIT */
else if (sc->config.format == CFG_FORMAT_E1FASCAS)
framer_write(sc, Bt8370_TFRM, 0x31); /* MYEL YEL - - - FBIT */
else if (sc->config.format == CFG_FORMAT_E1FASCRCCAS)
framer_write(sc, Bt8370_TFRM, 0x3F); /* MYEL YEL MF FE CRC FBIT */
else if (sc->config.format == CFG_FORMAT_E1NONE)
framer_write(sc, Bt8370_TFRM, 0x00); /* NO FRAMING BITS AT ALL! */
/* 073:TERROR -- Transmit Error Insert */
framer_write(sc, Bt8370_TERROR, 0x00); /* no errors, please! */
/* 074:TMAN -- Transmit Manual Sa-byte/FEBE configuration */
framer_write(sc, Bt8370_TMAN, 0x00); /* none */
/* 075:TALM -- Transmit Alarm Signal Configuration */
if (FORMAT_E1ANY)
framer_write(sc, Bt8370_TALM, 0x38); /* auto_myel auto_yel auto_ais */
else if (FORMAT_T1ANY)
framer_write(sc, Bt8370_TALM, 0x18); /* auto_yel auto_ais */
/* 076:TPATT -- Transmit Test Pattern Configuration */
framer_write(sc, Bt8370_TPATT, 0x00); /* disabled */
/* 077:TLB -- Transmit Inband Loopback Code Configuration */
framer_write(sc, Bt8370_TLB, 0x00); /* disabled */
/* 090:CLAD_CR -- Clack Rate Adapter Configuration */
if (FORMAT_T1ANY)
framer_write(sc, Bt8370_CLAD_CR, 0x06); /* loop filter gain 1/2^6 */
else
framer_write(sc, Bt8370_CLAD_CR, 0x08); /* loop filter gain 1/2^8 */
/* 091:CSEL -- CLAD frequency Select */
if (FORMAT_T1ANY)
framer_write(sc, Bt8370_CSEL, 0x55); /* 1544 kHz */
else
framer_write(sc, Bt8370_CSEL, 0x11); /* 2048 kHz */
/* 092:CPHASE -- CLAD Phase detector */
if (FORMAT_T1ANY)
framer_write(sc, Bt8370_CPHASE, 0x22); /* phase compare @ 386 kHz */
else
framer_write(sc, Bt8370_CPHASE, 0x00); /* phase compare @ 2048 kHz */
if (FORMAT_T1ESF) /* BOP & PRM are enabled in T1ESF mode only. */
{
/* 0A0:BOP -- Bit Oriented Protocol messages */
framer_write(sc, Bt8370_BOP, RBOP_25 | TBOP_OFF);
/* 0A4:DL1_TS -- Data Link 1 Time Slot Enable */
framer_write(sc, Bt8370_DL1_TS, 0x40); /* FDL bits in odd frames */
/* 0A6:DL1_CTL -- Data Link 1 Control */
framer_write(sc, Bt8370_DL1_CTL, 0x03); /* FCS mode, TX on, RX on */
/* 0A7:RDL1_FFC -- Rx Data Link 1 Fifo Fill Control */
framer_write(sc, Bt8370_RDL1_FFC, 0x30); /* assert "near full" at 48 */
/* 0AA:PRM -- Performance Report Messages */
framer_write(sc, Bt8370_PRM, 0x80);
}
/* 0D0:SBI_CR -- System Bus Interface Configuration Register */
if (FORMAT_T1ANY)
framer_write(sc, Bt8370_SBI_CR, 0x47); /* 1.544 with 24 TS +Fbits */
else
framer_write(sc, Bt8370_SBI_CR, 0x46); /* 2.048 with 32 TS */
/* 0D1:RSB_CR -- Receive System Bus Configuration Register */
/* Change RINDO & RFSYNC on falling edge of RSBCLKI. */
framer_write(sc, Bt8370_RSB_CR, 0x70);
/* 0D2,0D3:RSYNC_{TS,BIT} -- Receive frame Sync offset */
framer_write(sc, Bt8370_RSYNC_BIT, 0x00);
framer_write(sc, Bt8370_RSYNC_TS, 0x00);
/* 0D4:TSB_CR -- Transmit System Bus Configuration Register */
/* Change TINDO & TFSYNC on falling edge of TSBCLKI. */
framer_write(sc, Bt8370_TSB_CR, 0x30);
/* 0D5,0D6:TSYNC_{TS,BIT} -- Transmit frame Sync offset */
framer_write(sc, Bt8370_TSYNC_BIT, 0x00);
framer_write(sc, Bt8370_TSYNC_TS, 0x00);
/* 0D7:RSIG_CR -- Receive SIGnalling Configuration Register */
framer_write(sc, Bt8370_RSIG_CR, 0x00);
/* Assign and configure 64Kb TIME SLOTS. */
/* TS24..TS1 must be assigned for T1, TS31..TS0 for E1. */
/* Timeslots with no user data have RINDO and TINDO off. */
for (sc->status.time_slots = 0, i=0; i<32; i++)
{
/* 0E0-0FF:SBCn -- System Bus Per-Channel Control */
if (FORMAT_T1ANY && (i==0 || i>24))
framer_write(sc, Bt8370_SBCn +i, 0x00); /* not assigned in T1 mode */
else if (FORMAT_E1ANY && (i==0) && !FORMAT_E1NONE)
framer_write(sc, Bt8370_SBCn +i, 0x01); /* assigned, TS0 o/h bits */
else if (FORMAT_E1CAS && (i==16) && !FORMAT_E1NONE)
framer_write(sc, Bt8370_SBCn +i, 0x01); /* assigned, TS16 o/h bits */
else if ((sc->status.time_slots |= (sc->config.time_slots & (1<<i))))
framer_write(sc, Bt8370_SBCn +i, 0x0D); /* assigned, RINDO, TINDO */
else
framer_write(sc, Bt8370_SBCn +i, 0x01); /* assigned, idle */
/* 100-11F:TPCn -- Transmit Per-Channel Control */
if (FORMAT_E1CAS && (i==0))
framer_write(sc, Bt8370_TPCn +i, 0x30); /* tidle, sig=0000 (MAS) */
else if (FORMAT_E1CAS && (i==16))
framer_write(sc, Bt8370_TPCn +i, 0x3B); /* tidle, sig=1011 (XYXX) */
else if ((sc->config.time_slots & (1<<i)) == 0)
framer_write(sc, Bt8370_TPCn +i, 0x20); /* tidle: use TSLIP_LOn */
else
framer_write(sc, Bt8370_TPCn +i, 0x00); /* nothing special */
/* 140-15F:TSLIP_LOn -- Transmit PCM Slip Buffer */
framer_write(sc, Bt8370_TSLIP_LOn +i, 0x7F); /* idle chan data */
/* 180-19F:RPCn -- Receive Per-Channel Control */
framer_write(sc, Bt8370_RPCn +i, 0x00); /* nothing special */
}
/* Enable transmitter output drivers. */
mii16_set_bits(sc, MII16_T1_XOE);
}
static void
t1_detach(softc_t *sc)
{
led_on(sc, MII16_LED_ALL);
}
/* End T1E1 card code */
#if SYNC_PPP /* Linux */
static struct stack sync_ppp_stack =
{
.ioctl = sync_ppp_ioctl,
.type = sync_ppp_type,
.mtu = sync_ppp_mtu,
.watchdog = sync_ppp_watchdog,
.open = sync_ppp_open,
.attach = sync_ppp_attach,
.detach = sync_ppp_detach,
};
static int /* context: process */
sync_ppp_ioctl(softc_t *sc, struct ifreq *ifr, int cmd)
{
return sppp_do_ioctl(sc->netdev, ifr, cmd);
}
static int /* context: interrupt */
sync_ppp_type(softc_t *sc, struct sk_buff *skb)
{
return htons(ETH_P_WAN_PPP);
}
static int /* context: process */
sync_ppp_mtu(softc_t *sc, int mtu)
{
return ((mtu < 128) || (mtu > PPP_MTU)) ? -EINVAL : 0;
}
static void /* context: softirq */
sync_ppp_watchdog(softc_t *sc)
{
/* Notice when the link comes up. */
if ((sc->last_link_state != STATE_UP) &&
(sc->status.link_state == STATE_UP))
sppp_reopen(sc->netdev);
/* Notice when the link goes down. */
if ((sc->last_link_state == STATE_UP) &&
(sc->status.link_state != STATE_UP))
sppp_close(sc->netdev);
/* Report current line protocol. */
sc->status.stack = STACK_SYNC_PPP;
if (sc->sppp->pp_flags & PP_CISCO)
sc->status.proto = PROTO_C_HDLC;
else
sc->status.proto = PROTO_PPP;
/* Report keep-alive status. */
sc->status.keep_alive = sc->sppp->pp_flags & PP_KEEPALIVE;
}
static int /* never fails */
sync_ppp_open(softc_t *sc, struct config *config)
{
/* Refresh the keep_alive flag. */
if (config->keep_alive)
sc->sppp->pp_flags |= PP_KEEPALIVE;
else
sc->sppp->pp_flags &= ~PP_KEEPALIVE;
sc->config.keep_alive = config->keep_alive;
/* Done if proto is not changing. */
if (config->proto == sc->config.proto)
return 0;
/* Close */
sppp_close(sc->netdev);
/* Change line protocol. */
switch (config->proto)
{
case PROTO_PPP:
sc->sppp->pp_flags &= ~PP_CISCO;
sc->netdev->type = ARPHRD_PPP;
sc->config.proto = PROTO_PPP;
break;
default:
case PROTO_C_HDLC:
sc->sppp->pp_flags |= PP_CISCO;
sc->netdev->type = ARPHRD_CISCO;
sc->config.proto = PROTO_C_HDLC;
break;
}
/* Open */
sppp_open(sc->netdev);
return 0;
}
static int /* never fails */
sync_ppp_attach(softc_t *sc, struct config *config)
{
sc->ppd = &sc->ppp_dev; /* struct ppp_device* */
sc->netdev->priv = &sc->ppd; /* struct ppp_device** */
sc->ppp_dev.dev = sc->netdev;
sc->sppp = &sc->ppp_dev.sppp;
sppp_attach(&sc->ppp_dev);
sc->netdev->do_ioctl = netdev_ioctl;
config->keep_alive = 1;
sc->config.stack = STACK_SYNC_PPP;
sc->stack = &sync_ppp_stack;
return 0;
}
static int /* never fails */
sync_ppp_detach(softc_t *sc)
{
sppp_close(sc->netdev);
sppp_detach(sc->netdev);
netdev_setup(sc->netdev);
sc->config.stack = STACK_NONE;
sc->config.proto = PROTO_NONE;
sc->stack = NULL;
return 0;
}
#endif /* SYNC_PPP */
#if GEN_HDLC /* Linux only */
static struct stack gen_hdlc_stack =
{
.ioctl = gen_hdlc_ioctl,
.type = gen_hdlc_type,
.mtu = gen_hdlc_mtu,
.watchdog = gen_hdlc_watchdog,
.open = gen_hdlc_open,
.attach = gen_hdlc_attach,
.detach = gen_hdlc_detach,
};
static int /* context: process */
gen_hdlc_ioctl(softc_t *sc, struct ifreq *ifr, int cmd)
{
te1_settings settings;
int error = 0;
if (cmd == SIOCWANDEV)
switch (ifr->ifr_settings.type)
{
case IF_GET_IFACE: /* get interface config */
{
unsigned int size;
/* NOTE: This assumes struct sync_serial_settings has the */
/* same layout as the first part of struct te1_settings. */
if (sc->status.card_type == CSID_LMC_T1E1)
{
if (FORMAT_T1ANY) ifr->ifr_settings.type = IF_IFACE_T1;
if (FORMAT_E1ANY) ifr->ifr_settings.type = IF_IFACE_E1;
size = sizeof(te1_settings);
}
else
{
ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
size = sizeof(sync_serial_settings);
}
if (ifr->ifr_settings.size < size)
{
ifr->ifr_settings.size = size;
return -ENOBUFS;
}
ifr->ifr_settings.size = size;
if (sc->config.tx_clk_src == CFG_CLKMUX_ST)
settings.clock_type = CLOCK_EXT;
if (sc->config.tx_clk_src == CFG_CLKMUX_INT)
settings.clock_type = CLOCK_TXINT;
if (sc->config.tx_clk_src == CFG_CLKMUX_RT)
settings.clock_type = CLOCK_TXFROMRX;
settings.loopback = (sc->config.loop_back != CFG_LOOP_NONE) ? 1:0;
settings.clock_rate = sc->status.tx_speed;
if (sc->status.card_type == CSID_LMC_T1E1)
settings.slot_map = sc->status.time_slots;
error = copy_to_user(ifr->ifr_settings.ifs_ifsu.te1,
&settings, size);
break;
}
case IF_IFACE_SYNC_SERIAL: /* set interface config */
case IF_IFACE_T1:
case IF_IFACE_E1:
{
struct config config = sc->config;
if (!capable(CAP_NET_ADMIN)) return -EPERM;
if (ifr->ifr_settings.size > sizeof(te1_settings))
return -ENOBUFS;
error = copy_from_user(&settings,
ifr->ifr_settings.ifs_ifsu.te1, sizeof(te1_settings));
if (settings.clock_type == CLOCK_EXT)
config.tx_clk_src = CFG_CLKMUX_ST;
else if (settings.clock_type == CLOCK_TXINT)
config.tx_clk_src = CFG_CLKMUX_INT;
else if (settings.clock_type == CLOCK_TXFROMRX)
config.tx_clk_src = CFG_CLKMUX_RT;
if (settings.loopback)
config.loop_back = CFG_LOOP_TULIP;
else
config.loop_back = CFG_LOOP_NONE;
tulip_loop(sc, &config);
sc->card->attach(sc, &config);
break;
}
default: /* Pass the rest to the line pkg. */
{
error = hdlc_ioctl(sc->netdev, ifr, cmd);
break;
}
}
else
error = -EINVAL;
return error;
}
static int /* context: interrupt */
gen_hdlc_type(softc_t *sc, struct sk_buff *skb)
{
return hdlc_type_trans(skb, sc->netdev);
}
static int /* context: process */
gen_hdlc_mtu(softc_t *sc, int mtu)
{
return ((mtu < 68) || (mtu > HDLC_MAX_MTU)) ? -EINVAL : 0;
}
static void /* context: softirq */
gen_hdlc_watchdog(softc_t *sc)
{
/* Notice when the link comes up. */
if ((sc->last_link_state != STATE_UP) &&
(sc->status.link_state == STATE_UP))
hdlc_set_carrier(1, sc->netdev);
/* Notice when the link goes down. */
if ((sc->last_link_state == STATE_UP) &&
(sc->status.link_state != STATE_UP))
hdlc_set_carrier(0, sc->netdev);
/* Report current line protocol. */
sc->status.stack = STACK_GEN_HDLC;
switch (sc->hdlcdev->proto.id)
{
case IF_PROTO_PPP:
{
struct sppp* sppp = &sc->hdlcdev->state.ppp.pppdev.sppp;
sc->status.keep_alive = sppp->pp_flags & PP_KEEPALIVE;
sc->status.proto = PROTO_PPP;
break;
}
case IF_PROTO_CISCO:
sc->status.proto = PROTO_C_HDLC;
break;
case IF_PROTO_FR:
sc->status.proto = PROTO_FRM_RLY;
break;
case IF_PROTO_HDLC:
sc->status.proto = PROTO_IP_HDLC;
break;
case IF_PROTO_X25:
sc->status.proto = PROTO_X25;
break;
case IF_PROTO_HDLC_ETH:
sc->status.proto = PROTO_ETH_HDLC;
break;
default:
sc->status.proto = PROTO_NONE;
break;
}
}
static int
gen_hdlc_open(softc_t *sc, struct config *config)
{
int error = 0;
/* Refresh the keep_alive flag. */
if (sc->hdlcdev->proto.id == IF_PROTO_PPP)
{
struct sppp* sppp = &sc->hdlcdev->state.ppp.pppdev.sppp;
if (config->keep_alive)
sppp->pp_flags |= PP_KEEPALIVE;
else
sppp->pp_flags &= ~PP_KEEPALIVE;
sc->config.keep_alive = config->keep_alive;
}
/* Done if proto is not changing. */
if (config->proto == sc->config.proto)
return 0;
/* Close */
hdlc_close(sc->netdev);
/* Generic-HDLC gets protocol params using copy_from_user().
* This is a problem for a kernel-resident device driver.
* Luckily, PPP does not need any params so no copy_from_user().
*/
/* Change line protocol. */
if (config->proto == PROTO_PPP)
{
struct ifreq ifr;
ifr.ifr_settings.size = 0;
ifr.ifr_settings.type = IF_PROTO_PPP;
hdlc_ioctl(sc->netdev, &ifr, SIOCWANDEV);
}
/* Changing to any protocol other than PPP */
/* requires using the 'sethdlc' program. */
/* Open */
if ((error = hdlc_open(sc->netdev)))
{
if (sc->config.debug)
printk("%s: hdlc_open(): error %d\n", NAME_UNIT, error);
if (error == -ENOSYS)
printk("%s: Try 'sethdlc %s hdlc|ppp|cisco|fr'\n",
NAME_UNIT, NAME_UNIT);
sc->config.proto = PROTO_NONE;
}
else
sc->config.proto = config->proto;
return error;
}
static int /* never fails */
gen_hdlc_attach(softc_t *sc, struct config *config)
{
sc->netdev->priv = sc->hdlcdev;
/* hdlc_attach(sc->netdev); */
sc->netdev->mtu = HDLC_MAX_MTU;
sc->hdlcdev->attach = gen_hdlc_card_params;
sc->hdlcdev->xmit = netdev_start;
config->keep_alive = 1;
sc->config.stack = STACK_GEN_HDLC;
sc->stack = &gen_hdlc_stack;
return 0;
}
static int /* never fails */
gen_hdlc_detach(softc_t *sc)
{
hdlc_close(sc->netdev);
/* hdlc_detach(sc->netdev); */
hdlc_proto_detach(sc->hdlcdev);
memset(&sc->hdlcdev->proto, 0, sizeof sc->hdlcdev->proto);
netdev_setup(sc->netdev);
sc->config.stack = STACK_NONE;
sc->config.proto = PROTO_NONE;
sc->stack = NULL;
return 0;
}
static int
gen_hdlc_card_params(struct net_device *netdev,
unsigned short encoding, unsigned short parity)
{
softc_t *sc = NETDEV2SC(netdev);
struct config config = sc->config;
/* Encoding does not seem to apply to synchronous interfaces, */
/* but Parity seems to be generic-HDLC's name for CRC. */
if (parity == PARITY_CRC32_PR1_CCITT)
config.crc_len = CFG_CRC_32;
if (parity == PARITY_CRC16_PR1_CCITT)
config.crc_len = CFG_CRC_16;
sc->card->attach(sc, &config);
return 0;
}
#endif /* GEN_HDLC */
#if P2P /* BSD/OS */
static struct stack p2p_stack =
{
.ioctl = p2p_stack_ioctl,
.input = p2p_stack_input,
.output = p2p_stack_output,
.watchdog = p2p_stack_watchdog,
.open = p2p_stack_open,
.attach = p2p_stack_attach,
.detach = p2p_stack_detach,
};
static int /* context: process */
p2p_stack_ioctl(softc_t *sc, u_long cmd, void *data)
{
return p2p_ioctl(sc->ifp, cmd, data);
}
static void /* context: interrupt */
p2p_stack_input(softc_t *sc, struct mbuf *mbuf)
{
struct mbuf *new_mbuf = mbuf;
while (new_mbuf)
{
sc->p2p->p2p_hdrinput(sc->p2p, new_mbuf->m_data, new_mbuf->m_len);
new_mbuf = new_mbuf->m_next;
}
sc->p2p->p2p_input(sc->p2p, NULL);
m_freem(mbuf);
}
static void /* context: interrupt */
p2p_stack_output(softc_t *sc)
{
if (!IFQ_IS_EMPTY(&sc->p2p->p2p_isnd))
IFQ_DEQUEUE(&sc->p2p->p2p_isnd, sc->tx_mbuf);
else
IFQ_DEQUEUE(&sc->ifp->if_snd, sc->tx_mbuf);
}
static void /* context: softirq */
p2p_stack_watchdog(softc_t *sc)
{
/* Notice change in link status. */
if ((sc->last_link_state != sc->status.link_state) &&
/* if_slowtimo() can run before raw_init() has inited rawcb. */
(sc->p2p->p2p_modem != NULL) && (rawcb.rcb_next != NULL))
(*sc->p2p->p2p_modem)(sc->p2p, sc->status.link_state==STATE_UP);
/* Report current line protocol. */
sc->status.stack = STACK_P2P;
switch (sc->ifp->if_type)
{
case IFT_PPP:
sc->status.proto = PROTO_PPP;
break;
case IFT_PTPSERIAL:
sc->status.proto = PROTO_C_HDLC;
break;
case IFT_FRELAY:
sc->status.proto = PROTO_FRM_RLY;
break;
default:
sc->status.proto = PROTO_NONE;
break;
}
}
static int
p2p_stack_open(softc_t *sc, struct config *config)
{
int error = 0;
/* Done if proto is not changing. */
if (config->proto == sc->config.proto)
return 0;
if (error = p2p_stack_detach(sc))
return error;
/* Change line protocol. */
switch (config->proto)
{
case PROTO_PPP:
sc->ifp->if_type = IFT_PPP;
sc->config.proto = PROTO_PPP;
break;
case PROTO_C_HDLC:
sc->ifp->if_type = IFT_PTPSERIAL;
sc->config.proto = PROTO_C_HDLC;
break;
case PROTO_FRM_RLY:
sc->ifp->if_type = IFT_FRELAY;
sc->config.proto = PROTO_FRM_RLY;
break;
default:
case PROTO_NONE:
sc->ifp->if_type = IFT_NONE;
sc->config.proto = PROTO_NONE;
return 0;
}
error = p2p_stack_attach(sc, config);
return error;
}
static int
p2p_stack_attach(softc_t *sc, struct config *config)
{
int error;
sc->p2p = &sc->p2pcom;
sc->p2p->p2p_proto = 0; /* force p2p_attach to re-init */
if ((error = p2p_attach(sc->p2p))) /* calls bpfattach() */
{
if (sc->config.debug)
printf("%s: p2p_attach(): error %d\n", NAME_UNIT, error);
if (error == EPFNOSUPPORT)
printf("%s: Try 'ifconfig %s linktype ppp|frelay|chdlc'\n",
NAME_UNIT, NAME_UNIT);
sc->config.stack = STACK_NONE; /* not attached to P2P */
return error;
}
sc->p2p->p2p_mdmctl = p2p_mdmctl;
sc->p2p->p2p_getmdm = p2p_getmdm;
sc->config.stack = STACK_P2P;
sc->stack = &p2p_stack;
return 0;
}
static int
p2p_stack_detach(softc_t *sc)
{
int error = 0;
if ((error = p2p_detach(sc->p2p))) /* calls bfpdetach() */
{
if (sc->config.debug)
printf("%s: p2p_detach(): error %d\n", NAME_UNIT, error);
if (error == EBUSY)
printf("%s: Try 'ifconfig %s down -remove'\n",
NAME_UNIT, NAME_UNIT);
sc->config.stack = STACK_P2P; /* still attached to P2P */
return error;
}
ifnet_setup(sc->ifp);
sc->config.stack = STACK_NONE;
sc->config.proto = PROTO_NONE;
sc->stack = NULL;
return error;
}
/* Callout from P2P: */
/* Get the state of DCD (Data Carrier Detect). */
static int /* never fails */
p2p_getmdm(struct p2pcom *p2p, void *result)
{
softc_t *sc = IFP2SC(&p2p->p2p_if);
/* Non-zero is not good enough; TIOCM_CAR is 0x40. */
*(int *)result = (sc->status.link_state==STATE_UP) ? TIOCM_CAR : 0;
return 0;
}
/* Callout from P2P: */
/* Set the state of DTR (Data Terminal Ready). */
static int /* never fails */
p2p_mdmctl(struct p2pcom *p2p, int flag)
{
softc_t *sc = IFP2SC(&p2p->p2p_if);
set_ready(sc, flag);
return 0;
}
#endif /* P2P */
#if SPPP /* FreeBSD, NetBSD, OpenBSD */
static struct stack sppp_stack =
{
.ioctl = sppp_stack_ioctl,
.input = sppp_stack_input,
.output = sppp_stack_output,
.watchdog = sppp_stack_watchdog,
.open = sppp_stack_open,
.attach = sppp_stack_attach,
.detach = sppp_stack_detach,
};
# if !defined(PP_FR)
# define PP_FR 0
# endif
# if !defined(DLT_C_HDLC)
# define DLT_C_HDLC DLT_PPP
# endif
# if !defined(DLT_FRELAY)
# define DLT_FRELAY DLT_PPP
# endif
static int /* context: process */
sppp_stack_ioctl(softc_t *sc, u_long cmd, void *data)
{
return sppp_ioctl(sc->ifp, cmd, data);
}
static void /* context: interrupt */
sppp_stack_input(softc_t *sc, struct mbuf *mbuf)
{
sppp_input(sc->ifp, mbuf);
}
static void /* context: interrupt */
sppp_stack_output(softc_t *sc)
{
sc->tx_mbuf = sppp_dequeue(sc->ifp);
}
static void /* context: softirq */
sppp_stack_watchdog(softc_t *sc)
{
/* Notice when the link comes up. */
if ((sc->last_link_state != STATE_UP) &&
(sc->status.link_state == STATE_UP))
sppp_tls(sc->sppp);
/* Notice when the link goes down. */
if ((sc->last_link_state == STATE_UP) &&
(sc->status.link_state != STATE_UP))
sppp_tlf(sc->sppp);
/* Report current line protocol. */
sc->status.stack = STACK_SPPP;
if (sc->sppp->pp_flags & PP_CISCO)
sc->status.proto = PROTO_C_HDLC;
else
sc->status.proto = PROTO_PPP;
/* Report keep-alive status. */
sc->status.keep_alive = sc->sppp->pp_flags & PP_KEEPALIVE;
}
static int /* never fails */
sppp_stack_open(softc_t *sc, struct config *config)
{
/* Refresh the keep_alive flag. */
if (config->keep_alive)
sc->sppp->pp_flags |= PP_KEEPALIVE;
else
sc->sppp->pp_flags &= ~PP_KEEPALIVE;
sc->config.keep_alive = config->keep_alive;
/* Done if proto is not changing. */
if (config->proto == sc->config.proto)
return 0;
/* Close */
sc->ifp->if_flags &= ~IFF_UP; /* down */
sppp_ioctl(sc->ifp, SIOCSIFFLAGS, NULL);
/* Change line protocol. */
LMC_BPF_DETACH(sc);
switch (config->proto)
{
case PROTO_PPP:
{
sc->sppp->pp_flags &= ~PP_CISCO;
LMC_BPF_ATTACH(sc, DLT_PPP, 4);
sc->config.proto = PROTO_PPP;
break;
}
default:
case PROTO_C_HDLC:
{
sc->sppp->pp_flags |= PP_CISCO;
LMC_BPF_ATTACH(sc, DLT_C_HDLC, 4);
sc->config.proto = PROTO_C_HDLC;
break;
}
} /* switch(config->proto) */
/* Open */
sc->ifp->if_flags |= IFF_UP; /* up and not running */
sppp_ioctl(sc->ifp, SIOCSIFFLAGS, NULL);
return 0;
}
static int /* never fails */
sppp_stack_attach(softc_t *sc, struct config *config)
{
sc->sppp = &sc->spppcom;
LMC_BPF_ATTACH(sc, DLT_RAW, 0);
sppp_attach(sc->ifp);
sc->sppp->pp_tls = sppp_tls;
sc->sppp->pp_tlf = sppp_tlf;
config->keep_alive = 1;
sc->config.stack = STACK_SPPP;
sc->stack = &sppp_stack;
return 0;
}
static int /* never fails */
sppp_stack_detach(softc_t *sc)
{
sc->ifp->if_flags &= ~IFF_UP; /* down */
sppp_ioctl(sc->ifp, SIOCSIFFLAGS, NULL); /* close() */
sppp_detach(sc->ifp);
LMC_BPF_DETACH(sc);
ifnet_setup(sc->ifp);
sc->config.stack = STACK_NONE;
sc->config.proto = PROTO_NONE;
sc->stack = NULL;
return 0;
}
/* Callout from SPPP: */
static void
sppp_tls(struct sppp *sppp)
{
/* Calling pp_up/down() required by PPP mode in OpenBSD. */
/* Calling pp_up/down() panics PPP mode in NetBSD. */
/* Calling pp_up/down() breaks Cisco mode in FreeBSD. */
if (!(sppp->pp_flags & PP_CISCO)) /* not Cisco */
sppp->pp_up(sppp);
}
/* Callout from SPPP: */
static void
sppp_tlf(struct sppp *sppp)
{
/* Calling pp_up/down() required by PPP mode in OpenBSD. */
/* Calling pp_up/down() panics PPP mode in NetBSD. */
/* Calling pp_up/down() breaks Cisco mode in FreeBSD. */
if (!(sppp->pp_flags & PP_CISCO)) /* not Cisco */
sppp->pp_down(sppp);
}
#endif /* SPPP */
/* RawIP is built into the driver. */
static struct stack rawip_stack =
{
#if IFNET
.ioctl = rawip_ioctl,
.input = rawip_input,
.output = rawip_output,
#elif NETDEV
.ioctl = rawip_ioctl,
.type = rawip_type,
.mtu = rawip_mtu,
#endif
.watchdog = rawip_watchdog,
.open = rawip_open,
.attach = rawip_attach,
.detach = rawip_detach,
};
#if IFNET
static int /* context: process */
rawip_ioctl(softc_t *sc, u_long cmd, void *data)
{
struct ifreq *ifr = (struct ifreq *) data;
int error = 0;
switch (cmd)
{
case SIOCADDMULTI:
case SIOCDELMULTI:
if (sc->config.debug)
printf("%s: rawip_ioctl: SIOCADD/DELMULTI\n", NAME_UNIT);
case SIOCSIFFLAGS:
error = ifioctl_common(sc->ifp, cmd, data);
break;
case SIOCAIFADDR:
case SIOCSIFDSTADDR:
break;
case SIOCINITIFADDR:
sc->ifp->if_flags |= IFF_UP; /* a Unix tradition */
break;
case SIOCSIFMTU:
if ((ifr->ifr_mtu < 72) || (ifr->ifr_mtu > 65535))
error = EINVAL;
else if ((error = ifioctl_common(sc->ifp, cmd, data)) == ENETRESET)
error = 0;
break;
default:
error = EINVAL;
break;
}
return error;
}
static void /* context: interrupt */
rawip_input(softc_t *sc, struct mbuf *mbuf)
{
ifnet_input(sc->ifp, mbuf);
}
static void /* context: interrupt */
rawip_output(softc_t *sc)
{
IFQ_DEQUEUE(&sc->ifp->if_snd, sc->tx_mbuf);
}
#elif NETDEV
static int /* context: process */
rawip_ioctl(softc_t *sc, struct ifreq *ifr, int cmd)
{
if (sc->config.debug)
printk("%s: rawip_ioctl; cmd=0x%08x\n", NAME_UNIT, cmd);
return -EINVAL;
}
static int /* context: interrupt */
rawip_type(softc_t *sc, struct sk_buff *skb)
{
if (skb->data[0]>>4 == 4)
return htons(ETH_P_IP);
else if (skb->data[0]>>4 == 6)
return htons(ETH_P_IPV6);
else
return htons(ETH_P_HDLC);
}
static int /* Process Context */
rawip_mtu(softc_t *sc, int mtu)
{
return ((mtu < 72) || (mtu > 65535)) ? -EINVAL : 0;
}
#endif /* IFNET */
static void /* context: softirq */
rawip_watchdog(softc_t *sc)
{
#if IFNET
if ((sc->status.link_state == STATE_UP) &&
(sc->ifp->if_flags & IFF_UP))
sc->ifp->if_flags |= IFF_RUNNING;
if ((sc->status.link_state != STATE_UP) ||
!(sc->ifp->if_flags & IFF_UP))
sc->ifp->if_flags &= ~IFF_RUNNING;
#endif /* IFNET */
/* Report current line protocol. */
sc->status.stack = STACK_RAWIP;
sc->status.proto = PROTO_IP_HDLC;
}
static int
rawip_open(softc_t *sc, struct config *config)
{
sc->config.proto = PROTO_IP_HDLC;
return 0;
}
static int
rawip_attach(softc_t *sc, struct config *config)
{
#if IFNET
LMC_BPF_ATTACH(sc, DLT_RAW, 0);
#endif
sc->config.stack = STACK_RAWIP;
sc->stack = &rawip_stack;
return 0;
}
static int
rawip_detach(softc_t *sc)
{
#if IFNET
LMC_BPF_DETACH(sc);
ifnet_setup(sc->ifp);
#elif NETDEV
netdev_setup(sc->netdev);
#endif
sc->config.stack = STACK_NONE;
sc->config.proto = PROTO_NONE;
sc->stack = NULL;
return 0;
}
#if IFNET
/* Called to give a newly arrived pkt to higher levels. */
/* Called from rxintr_cleanup() with bottom_lock held. */
/* This is only used with rawip_stack on a BSD. */
static void
ifnet_input(struct ifnet *ifp, struct mbuf *mbuf)
{
softc_t *sc = IFP2SC(ifp);
struct ifqueue *intrq;
int isr = 0;
intrq = NULL; /* surpress compiler warning */
# if INET
if (mbuf->m_data[0]>>4 == 4)
{
isr = NETISR_IP;
intrq = &ipintrq;
}
# endif /* INET */
# if INET6
if (mbuf->m_data[0]>>4 == 6)
{
isr = NETISR_IPV6;
intrq = &ip6intrq;
}
# endif /* INET6 */
if (isr)
{
if (!IF_QFULL(intrq))
{
/* ifnet_input() ENQUEUES in a hard interrupt. */
/* ip_input() DEQUEUES in a soft interrupt. */
/* Some BSD QUEUE routines are not interrupt-safe. */
DISABLE_INTR; /* noop in FreeBSD */
IF_ENQUEUE(intrq, mbuf);
ENABLE_INTR; /* noop in FreeBSD */
schednetisr(isr); /* wake up the network code */
}
else /* intrq is full */
{
m_freem(mbuf);
sc->status.cntrs.idrops++;
if (sc->config.debug)
printf("%s: ifnet_input: rx pkt dropped: intrq full\n", NAME_UNIT);
}
}
else /* isr is zero */
{
m_freem(mbuf);
sc->status.cntrs.idrops++;
if (sc->config.debug)
printf("%s: ifnet_input: rx pkt dropped: not IPv4 or IPv6\n", NAME_UNIT);
}
}
/* sppp and p2p replace this with their own proc.
* This is only used with rawip_stack on a BSD.
* This procedure is very similar to ng_rcvdata().
*/
static int /* context: process */
ifnet_output(struct ifnet *ifp, struct mbuf *m,
const struct sockaddr *dst, struct rtentry *rt)
{
softc_t *sc = IFP2SC(ifp);
int error = 0;
/* Fail if the link is down. */
if (sc->status.link_state != STATE_UP)
{
m_freem(m);
sc->status.cntrs.odrops++;
if (sc->config.debug)
printf("%s: ifnet_output: tx pkt dropped: link down\n", NAME_UNIT);
return ENETDOWN;
}
/* ifnet_output() ENQUEUEs in a syscall or softirq. */
/* txintr_setup() DEQUEUEs in a hard interrupt. */
/* Some BSD QUEUE routines are not interrupt-safe. */
{
DISABLE_INTR; /* noop in FreeBSD */
IFQ_ENQUEUE(&ifp->if_snd, m, NULL, error);
ENABLE_INTR; /* noop in FreeBSD */
}
if (error)
{
sc->status.cntrs.odrops++;
if (sc->config.debug)
printf("%s: ifnet_output: tx pkt dropped: IFQ_ENQUEUE(): error %d\n",
NAME_UNIT, error);
}
else
/* Process tx pkts; do not process rx pkts. */
lmc_interrupt(sc, 0, 0);
return error;
}
static int /* context: process */
ifnet_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
softc_t *sc = IFP2SC(ifp);
struct ifreq *ifr = (struct ifreq *) data;
int error = 0;
/* Aquire ioctl/watchdog interlock. */
if ((error = TOP_LOCK(sc))) return error;
switch (cmd)
{
/* Catch the IOCTLs used by lmcconfig. */
case LMCIOCGSTAT:
case LMCIOCGCFG:
case LMCIOCSCFG:
case LMCIOCREAD:
case LMCIOCWRITE:
case LMCIOCTL:
error = lmc_ioctl(sc, cmd, data);
break;
case SIOCSIFCAP:
# if DEVICE_POLLING
if ((ifr->ifr_reqcap & IFCAP_POLLING) &&
!(ifp->if_capenable & IFCAP_POLLING) &&
!(error = ether_poll_register(bsd_poll, ifp)))
{ /* enable polling */
WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_DISABLE);
ifp->if_capenable |= IFCAP_POLLING;
}
else if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
(ifp->if_capenable & IFCAP_POLLING) &&
!(error = ether_poll_deregister(ifp)))
{ /* disable polling */
ifp->if_capenable &= ~IFCAP_POLLING;
WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_TXRX);
}
else
error = EINVAL;
# endif /* DEVICE_POLLING */
break;
case SIOCSIFMEDIA: /* calls lmc_ifmedia_change() */
case SIOCGIFMEDIA: /* calls ifmedia_status() */
error = ifmedia_ioctl(ifp, ifr, &sc->ifm, cmd);
break;
/* Pass the rest to the line protocol. */
default:
if (sc->stack)
error = sc->stack->ioctl(sc, cmd, data);
else
error = ENOSYS;
break;
}
/* release ioctl/watchdog interlock */
TOP_UNLOCK(sc);
if (error && sc->config.debug)
printf("%s: ifnet_ioctl: op=IO%s%s len=%3lu grp='%c' num=%3lu err=%d\n",
NAME_UNIT, cmd&IOC_IN ? "W":"", cmd&IOC_OUT ? "R":"",
IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xFF, error);
return error;
}
static void /* context: process */
ifnet_start(struct ifnet *ifp)
{
softc_t *sc = IFP2SC(ifp);
/* Process tx pkts; do not process rx pkts. */
lmc_interrupt(sc, 0, 0);
}
static void /* context: softirq */
ifnet_watchdog(struct ifnet *ifp)
{
softc_t *sc = IFP2SC(ifp);
struct cntrs *cntrs = &sc->status.cntrs;
lmc_watchdog(sc); /* updates link_state */
if (sc->status.link_state == STATE_UP)
ifp->if_link_state = LINK_STATE_UP;
else
ifp->if_link_state = LINK_STATE_DOWN;
/* Copy statistics from sc to ifp. */
ifp->if_baudrate = sc->status.tx_speed;
ifp->if_ibytes = cntrs->ibytes;
ifp->if_obytes = cntrs->obytes;
ifp->if_ipackets = cntrs->ipackets;
ifp->if_opackets = cntrs->opackets;
ifp->if_ierrors = cntrs->ierrors;
ifp->if_oerrors = cntrs->oerrors;
ifp->if_iqdrops = cntrs->idrops;
/* If the interface debug flag is set, set the driver debug flag. */
if (sc->ifp->if_flags & IFF_DEBUG)
sc->config.debug = 1;
/* Call this procedure again after one second. */
ifp->if_timer = 1;
}
/* This setup is for RawIP; SPPP and P2P change many items. */
/* Note the similarity to linux's netdev_setup(). */
static void
ifnet_setup(struct ifnet *ifp)
{
ifp->if_flags = IFF_POINTOPOINT;
ifp->if_flags |= IFF_SIMPLEX;
ifp->if_flags |= IFF_NOARP;
ifp->if_input = ifnet_input;
ifp->if_output = ifnet_output;
ifp->if_start = ifnet_start;
ifp->if_ioctl = ifnet_ioctl;
ifp->if_watchdog = ifnet_watchdog;
ifp->if_timer = 1;
ifp->if_type = IFT_PTPSERIAL;
ifp->if_addrlen = 0;
ifp->if_hdrlen = 0;
ifp->if_mtu = MAX_DESC_LEN;
}
/* Attach the ifnet kernel interface. */
/* context: kernel (boot) or process (syscall) */
static int
ifnet_attach(softc_t *sc)
{
# if SPPP
sc->ifp = &sc->spppcom.pp_if;
# elif P2P
sc->ifp = &sc->p2pcom.p2p_if;
# else
sc->ifp = &sc->ifnet;
# endif
sc->ifp->if_softc = sc;
ifnet_setup(sc->ifp);
# if DEVICE_POLLING
sc->ifp->if_capabilities |= IFCAP_POLLING;
# endif
/* Every OS does it differently! */
strlcpy(sc->ifp->if_xname, device_xname(&sc->dev), IFNAMSIZ);
IFQ_SET_MAXLEN(&sc->ifp->if_snd, SNDQ_MAXLEN);
IFQ_SET_READY(&sc->ifp->if_snd);
if_attach(sc->ifp);
if_alloc_sadl(sc->ifp);
ifmedia_setup(sc);
return 0;
}
/* Detach the ifnet kernel interface. */
/* context: kernel (boot) or process (syscall). */
static void
ifnet_detach(softc_t *sc)
{
ifmedia_delete_instance(&sc->ifm, IFM_INST_ANY);
# if DEVICE_POLLING
if (sc->ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(sc->ifp);
# endif
IFQ_PURGE(&sc->ifp->if_snd);
if_free_sadl(sc->ifp);
if_detach(sc->ifp);
}
static void
ifmedia_setup(softc_t *sc)
{
/* Initialize ifmedia mechanism. */
ifmedia_init(&sc->ifm, IFM_OMASK | IFM_GMASK | IFM_IMASK,
lmc_ifmedia_change, ifmedia_status);
ifmedia_add(&sc->ifm, IFM_ETHER | IFM_NONE, 0, NULL);
ifmedia_set(&sc->ifm, IFM_ETHER | IFM_NONE);
}
/* SIOCSIFMEDIA: context: process. */
static int
lmc_ifmedia_change(struct ifnet *ifp)
{
softc_t *sc = IFP2SC(ifp);
struct config config = sc->config;
int media = sc->ifm.ifm_media;
int error;
/* ifconfig lmc0 mediaopt loopback */
if (media & IFM_LOOP)
config.loop_back = CFG_LOOP_TULIP;
else
config.loop_back = CFG_LOOP_NONE;
error = open_proto(sc, &config);
tulip_loop(sc, &config);
sc->card->attach(sc, &config);
return error;
}
/* SIOCGIFMEDIA: context: process. */
static void
ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
softc_t *sc = IFP2SC(ifp);
ifmr->ifm_status = IFM_AVALID;
if (sc->status.link_state == STATE_UP)
ifmr->ifm_status |= IFM_ACTIVE;
if (sc->config.loop_back != CFG_LOOP_NONE)
ifmr->ifm_active |= IFM_LOOP;
}
#endif /* IFNET */
#if NETDEV
/* This net_device method is called when IFF_UP goes true. */
static int /* context: process */
netdev_open(struct net_device *netdev)
{
softc_t *sc = NETDEV2SC(netdev);
WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_TXRX);
netif_start_queue(sc->netdev);
set_ready(sc, 1);
return 0;
}
/* This net_device method is called when IFF_UP goes false. */
static int /* context: process */
netdev_stop(struct net_device *netdev)
{
softc_t *sc = NETDEV2SC(netdev);
set_ready(sc, 0);
netif_stop_queue(sc->netdev);
WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_DISABLE);
return 0;
}
/* This net_device method hands outgoing packets to the transmitter. */
/* With txintr_setup(), it implements output flow control. */
static int /* context: netdev->xmit_lock held; BHs disabled */
netdev_start(struct sk_buff *skb, struct net_device *netdev)
{
softc_t *sc = NETDEV2SC(netdev);
if (sc->tx_skb == NULL)
{
/* Put this skb where the transmitter will see it. */
sc->tx_skb = skb;
/* Process tx pkts; do not process rx pkts. */
lmc_interrupt(sc, 0, 0);
return NETDEV_TX_OK;
}
else
{
/* txintr_setup() calls netif_wake_queue(). */
netif_stop_queue(netdev);
return NETDEV_TX_BUSY;
}
}
# if NAPI
/* This net_device method services the card without interrupts. */
/* With rxintr_cleanup(), it implements input flow control. */
static int /* context: softirq */
netdev_poll(struct net_device *netdev, int *budget)
{
softc_t *sc = NETDEV2SC(netdev);
int received;
/* Handle the card interrupt with kernel ints enabled. */
/* Allow processing up to netdev->quota incoming packets. */
/* This is the ONLY time lmc_interrupt() may process rx pkts. */
/* Otherwise (sc->quota == 0) and rxintr_cleanup() is a NOOP. */
lmc_interrupt(sc, min(netdev->quota, *budget), 0);
/* Report number of rx packets processed. */
received = netdev->quota - sc->quota;
netdev->quota -= received;
*budget -= received;
/* If quota prevented processing all rx pkts, leave rx ints disabled. */
if (sc->quota == 0) /* this is off by one...but harmless */
{
WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_TX);
return 1; /* more pkts to handle -- reschedule */
}
/* Remove self from poll list. */
netif_rx_complete(netdev);
/* Enable card interrupts. */
WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_TXRX);
return 0; /* all pkts handled -- success */
}
# endif /* NAPI */
/* This net_device method handles IOCTL syscalls. */
static int /* context: process */
netdev_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
softc_t *sc = NETDEV2SC(netdev);
int error = 0;
/* Aquire ioctl/watchdog interlock. */
if ((error = TOP_LOCK(sc))) return error;
if ((cmd >= SIOCDEVPRIVATE) && (cmd <= SIOCDEVPRIVATE+15))
{
struct iohdr *iohdr = (struct iohdr *)ifr;
u_int16_t direction = iohdr->direction;
u_int16_t length = iohdr->length;
char *user_addr = (char *)iohdr->iohdr;
char *kern_addr = NULL;
if (iohdr->cookie != NGM_LMC_COOKIE)
error = -EINVAL;
/* Emulate a BSD-style IOCTL syscall. */
if (!error)
error = (kern_addr = kmalloc(length, GFP_KERNEL)) ? 0: -ENOMEM;
if (!error && (direction & DIR_IOW))
error = copy_from_user(kern_addr, user_addr, length);
if (!error)
error = -lmc_ioctl(sc, (unsigned long)cmd, kern_addr);
if (!error && (direction & DIR_IOR))
error = copy_to_user(user_addr, kern_addr, length);
kfree(kern_addr);
}
else if (sc->stack)
error = sc->stack->ioctl(sc, ifr, cmd);
else
error = -ENOSYS;
# if GEN_HDLC
/* If generic-HDLC is present but not the currently-attached
* stack, call hdlc_ioctl() anyway because proto must
* be set using SIOCWANDEV or hdlc_open() will fail.
*/
if (sc->stack != &gen_hdlc_stack)
hdlc_ioctl(sc->netdev, ifr, cmd); /* ignore error result */
# endif
/* Release ioctl/watchdog interlock. */
TOP_UNLOCK(sc);
if (error && sc->config.debug)
printk("%s: netdev_ioctl; cmd=0x%08x error=%d\n",
NAME_UNIT, cmd, error);
return error;
}
/* This net_device method sets the Maximum Tranmit Unit. */
/* This driver does not limit MTU; stacks and protos do. */
static int
netdev_mtu(struct net_device *netdev, int mtu)
{
softc_t *sc = NETDEV2SC(netdev);
int error = 0;
if (sc->stack)
error = sc->stack->mtu(sc, mtu);
else
error = -ENOSYS;
if (!error)
netdev->mtu = mtu;
return error;
}
/* This net_device method restarts the transmitter if it hangs. */
static void /* BHs disabled */
netdev_timeout(struct net_device *netdev)
{
softc_t *sc = NETDEV2SC(netdev);
/* Process tx pkts; do not process rx pkts. */
lmc_interrupt(sc, 0, 0);
}
/* This net_device method returns a pointer to device statistics. */
static struct net_device_stats * /* context: process */
netdev_stats(struct net_device *netdev)
{
softc_t *sc = NETDEV2SC(netdev);
# if GEN_HDLC
return &sc->hdlcdev->stats;
# else
return &sc->netdev_stats;
# endif
}
static void /* context: softirq */
netdev_watchdog(unsigned long softc)
{
softc_t *sc = (softc_t *)softc;
struct cntrs *cntrs = &sc->status.cntrs;
struct net_device_stats *stats = netdev_stats(sc->netdev);
lmc_watchdog(sc); /* updates link_state */
/* Notice when the link comes up. */
if ((sc->last_link_state != STATE_UP) &&
(sc->status.link_state == STATE_UP))
{
netif_wake_queue(sc->netdev);
netif_carrier_on(sc->netdev);
}
/* Notice when the link goes down. */
if ((sc->last_link_state == STATE_UP) &&
(sc->status.link_state != STATE_UP))
{
netif_tx_disable(sc->netdev);
netif_carrier_off(sc->netdev);
}
/* Copy statistics from sc to netdev. */
stats->rx_bytes = cntrs->ibytes;
stats->tx_bytes = cntrs->obytes;
stats->rx_packets = cntrs->ipackets;
stats->tx_packets = cntrs->opackets;
stats->rx_errors = cntrs->ierrors;
stats->tx_errors = cntrs->oerrors;
stats->rx_dropped = cntrs->idrops;
stats->rx_missed_errors = cntrs->missed;
stats->tx_dropped = cntrs->odrops;
stats->rx_fifo_errors = cntrs->fifo_over;
stats->rx_over_errors = cntrs->overruns;
stats->tx_fifo_errors = cntrs->fifo_under;
/*stats->tx_under_errors = cntrs=>underruns; */
/* If the interface debug flag is set, set the driver debug flag. */
if (sc->netdev->flags & IFF_DEBUG)
sc->config.debug = 1;
/* Call this procedure again after one second. */
sc->wd_timer.expires = jiffies + HZ -8; /* -8 is a FUDGE factor */
add_timer(&sc->wd_timer);
}
/* This setup is for RawIP; Generic-HDLC changes many items. */
/* Note the similarity to BSD's ifnet_setup(). */
static void
netdev_setup(struct net_device *netdev)
{
netdev->flags = IFF_POINTOPOINT;
netdev->flags |= IFF_NOARP;
netdev->open = netdev_open;
netdev->stop = netdev_stop;
netdev->hard_start_xmit = netdev_start;
# if NAPI
netdev->poll = netdev_poll;
netdev->weight = 32; /* sc->rxring.num_descs; */
# endif
netdev->rebuild_header = NULL; /* no arp */
netdev->hard_header = NULL; /* no arp */
netdev->do_ioctl = netdev_ioctl;
netdev->change_mtu = netdev_mtu;
netdev->tx_timeout = netdev_timeout;
netdev->get_stats = netdev_stats;
netdev->watchdog_timeo = 1 * HZ;
netdev->mtu = MAX_DESC_LEN;
netdev->type = ARPHRD_HDLC;
netdev->hard_header_len = 16;
netdev->addr_len = 0;
netdev->tx_queue_len = SNDQ_MAXLEN;
/* The receiver generates frag-lists for packets >4032 bytes. */
/* The transmitter accepts scatter/gather lists and frag-lists. */
/* However Linux linearizes outgoing packets since our hardware */
/* does not compute soft checksums. All that work for nothing! */
/*netdev->features |= NETIF_F_SG; */
/*netdev->features |= NETIF_F_FRAGLIST; */
}
/* Attach the netdevice kernel interface. */
/* context: kernel (boot) or process (syscall). */
static int
netdev_attach(softc_t *sc)
{
int error;
# if GEN_HDLC /* generic-hdlc line protocol pkg configured */
/* Allocate space for the HDLC network device struct. */
/* Allocating a netdev and attaching to generic-HDLC should be separate. */
if ((sc->netdev = alloc_hdlcdev(sc)) == NULL)
{
printk("%s: netdev_attach: alloc_hdlcdev() failed\n", DEVICE_NAME);
return -ENOMEM;
}
/* Initialize the basic network device struct. */
/* This clobbers some netdev stuff set by alloc_hdlcdev(). */
/* Our get_stats() and change_mtu() do the right thing. */
netdev_setup(sc->netdev);
/* HACK: make the private eco-net pointer -> struct softc. */
sc->netdev->ec_ptr = sc;
/* Cross-link pcidev and netdev. */
SET_NETDEV_DEV(sc->netdev, &sc->pcidev->dev);
sc->netdev->mem_end = pci_resource_end(sc->pcidev, 1);
sc->netdev->mem_start = pci_resource_start(sc->pcidev, 1);
sc->netdev->base_addr = pci_resource_start(sc->pcidev, 0);
sc->netdev->irq = sc->pcidev->irq;
/* Initialize the HDLC extension to the network device. */
sc->hdlcdev = sc->netdev->priv;
sc->hdlcdev->attach = gen_hdlc_card_params;
sc->hdlcdev->xmit = netdev_start; /* the REAL hard_start_xmit() */
if ((error = register_hdlc_device(sc->netdev)))
{
printk("%s: register_hdlc_device(): error %d\n", DEVICE_NAME, error);
free_netdev(sc->netdev);
return error;
}
# else
/* Allocate and initialize the basic network device struct. */
if ((sc->netdev = alloc_netdev(0, DEVICE_NAME"%d", netdev_setup)) == NULL)
{
printk("%s: netdev_attach: alloc_netdev() failed\n", DEVICE_NAME);
return -ENOMEM;
}
/* HACK: make the private eco-net pointer -> struct softc. */
sc->netdev->ec_ptr = sc;
/* Cross-link pcidev and netdev. */
SET_NETDEV_DEV(sc->netdev, &sc->pcidev->dev);
sc->netdev->mem_end = pci_resource_end(sc->pcidev, 1);
sc->netdev->mem_start = pci_resource_start(sc->pcidev, 1);
sc->netdev->base_addr = pci_resource_start(sc->pcidev, 0);
sc->netdev->irq = sc->pcidev->irq;
if ((error = register_netdev(sc->netdev)))
{
printk("%s: register_netdev(): error %d\n", DEVICE_NAME, error);
free_netdev(sc->netdev);
return error;
}
# endif /* GEN_HDLC */
/* Arrange to call netdev_watchdog() once a second. */
init_timer(&sc->wd_timer);
sc->wd_timer.expires = jiffies + HZ; /* now plus one second */
sc->wd_timer.function = &netdev_watchdog;
sc->wd_timer.data = (unsigned long) sc;
add_timer(&sc->wd_timer);
return 0; /* success */
}
/* Detach the netdevice kernel interface. */
/* context: kernel (boot) or process (syscall). */
static void
netdev_detach(softc_t *sc)
{
if (sc->pcidev == NULL) return;
if (sc->netdev == NULL) return;
netdev_stop(sc->netdev); /* check for not inited */
del_timer(&sc->wd_timer);
# if GEN_HDLC
unregister_hdlc_device(sc->netdev);
# else
unregister_netdev(sc->netdev);
# endif
free_netdev(sc->netdev);
}
#endif /* NETDEV */
#if BSD
/* There are TWO VERSIONS of interrupt/DMA code: Linux & BSD.
* Handling Linux and the BSDs with CPP directives would
* make the code unreadable, so there are two versions.
* Conceptually, the two versions do the same thing and
* lmc_interrupt() does not know they are different.
*
* We are "standing on the head of a pin" in these routines.
* Tulip CSRs can be accessed, but nothing else is interrupt-safe!
* Do NOT access: MII, GPIO, SROM, BIOSROM, XILINX, SYNTH, or DAC.
*/
/* Initialize a DMA descriptor ring. */
/* context: kernel (boot) or process (syscall) */
static int /* BSD version */
create_ring(softc_t *sc, struct desc_ring *ring, int num_descs)
{
struct dma_desc *descs;
int size_descs = sizeof(struct dma_desc)*num_descs;
int i, error = 0;
/* The DMA descriptor array must not cross a page boundary. */
if (size_descs > PAGE_SIZE)
{
printf("%s: DMA descriptor array > PAGE_SIZE (%d)\n", NAME_UNIT,
(u_int)PAGE_SIZE);
return EINVAL;
}
/* Use the DMA tag passed to attach() for descriptors and buffers. */
ring->tag = sc->pa_dmat;
/* Allocate wired physical memory for DMA descriptor array. */
if ((error = bus_dmamem_alloc(ring->tag, size_descs, PAGE_SIZE, 0,
ring->segs, 1, &ring->nsegs, BUS_DMA_NOWAIT)))
{
printf("%s: bus_dmamem_alloc(): error %d\n", NAME_UNIT, error);
return error;
}
/* Map physical address to kernel virtual address. */
if ((error = bus_dmamem_map(ring->tag, ring->segs, ring->nsegs,
size_descs, (void **)&ring->first, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)))
{
printf("%s: bus_dmamem_map(): error %d\n", NAME_UNIT, error);
return error;
}
descs = ring->first; /* suppress compiler warning about aliasing */
memset(descs, 0, size_descs);
/* Allocate dmamap for PCI access to DMA descriptor array. */
if ((error = bus_dmamap_create(ring->tag, size_descs, 1,
size_descs, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ring->map)))
{
printf("%s: bus_dmamap_create(): error %d\n", NAME_UNIT, error);
return error;
}
/* Map kernel virt addr to PCI bus addr for DMA descriptor array. */
if ((error = bus_dmamap_load(ring->tag, ring->map, descs, size_descs,
0, BUS_DMA_NOWAIT)))
{
printf("%s: bus_dmamap_load(): error %d\n", NAME_UNIT, error);
return error;
}
ring->dma_addr = ring->map->dm_segs[0].ds_addr;
/* Allocate dmamaps for each DMA descriptor. */
for (i=0; i<num_descs; i++)
if ((error = bus_dmamap_create(ring->tag, MAX_DESC_LEN, 2,
MAX_CHUNK_LEN, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &descs[i].map)))
{
printf("%s: bus_dmamap_create(): error %d\n", NAME_UNIT, error);
return error;
}
ring->read = descs;
ring->write = descs;
ring->first = descs;
ring->last = descs + num_descs -1;
ring->last->control = TLP_DCTL_END_RING;
ring->num_descs = num_descs;
ring->size_descs = size_descs;
ring->head = NULL;
ring->tail = NULL;
return 0;
}
/* Destroy a DMA descriptor ring */
/* context: kernel (boot) or process (syscall) */
static void /* BSD version */
destroy_ring(softc_t *sc, struct desc_ring *ring)
{
struct dma_desc *desc;
struct mbuf *m;
/* Free queued mbufs. */
while ((m = mbuf_dequeue(ring)))
m_freem(m);
/* TX may have one pkt that is not on any queue. */
if (sc->tx_mbuf)
{
m_freem(sc->tx_mbuf);
sc->tx_mbuf = NULL;
}
/* Unmap active DMA descriptors. */
while (ring->read != ring->write)
{
bus_dmamap_unload(ring->tag, ring->read->map);
if (ring->read++ == ring->last) ring->read = ring->first;
}
/* Free the dmamaps of all DMA descriptors. */
for (desc=ring->first; desc!=ring->last+1; desc++)
if (desc->map)
bus_dmamap_destroy(ring->tag, desc->map);
/* Unmap PCI address for DMA descriptor array. */
if (ring->dma_addr)
bus_dmamap_unload(ring->tag, ring->map);
/* Free dmamap for DMA descriptor array. */
if (ring->map)
bus_dmamap_destroy(ring->tag, ring->map);
/* Unmap kernel address for DMA descriptor array. */
if (ring->first)
bus_dmamem_unmap(ring->tag, (void *)ring->first, ring->size_descs);
/* Free kernel memory for DMA descriptor array. */
if (ring->segs[0].ds_addr)
bus_dmamem_free(ring->tag, ring->segs, ring->nsegs);
}
/* Singly-linked tail-queues hold mbufs with active DMA.
* For RX, single mbuf clusters; for TX, mbuf chains are queued.
* NB: mbufs are linked through their m_nextpkt field.
* Callers must hold sc->bottom_lock; not otherwise locked.
*/
/* Put an mbuf (chain) on the tail of the descriptor ring queue. */
static void /* BSD version */
mbuf_enqueue(struct desc_ring *ring, struct mbuf *m)
{
m->m_nextpkt = NULL;
if (ring->tail == NULL)
ring->head = m;
else
ring->tail->m_nextpkt = m;
ring->tail = m;
}
/* Get an mbuf (chain) from the head of the descriptor ring queue. */
static struct mbuf* /* BSD version */
mbuf_dequeue(struct desc_ring *ring)
{
struct mbuf *m = ring->head;
if (m)
if ((ring->head = m->m_nextpkt) == NULL)
ring->tail = NULL;
return m;
}
/* Clean up after a packet has been received. */
static int /* BSD version */
rxintr_cleanup(softc_t *sc)
{
struct desc_ring *ring = &sc->rxring;
struct dma_desc *first_desc, *last_desc;
struct mbuf *first_mbuf=NULL, *last_mbuf=NULL;
struct mbuf *new_mbuf;
int pkt_len, desc_len;
/* Input packet flow control (livelock prevention): */
/* Give pkts to higher levels only if quota is > 0. */
if (sc->quota <= 0) return 0;
/* This looks complicated, but remember: typically packets up */
/* to 2048 bytes long fit in one mbuf and use one descriptor. */
first_desc = last_desc = ring->read;
/* ASSERTION: If there is a descriptor in the ring and the hardware has */
/* finished with it, then that descriptor will have RX_FIRST_DESC set. */
if ((ring->read != ring->write) && /* descriptor ring not empty */
!(ring->read->status & TLP_DSTS_OWNER) && /* hardware done */
!(ring->read->status & TLP_DSTS_RX_FIRST_DESC)) /* should be set */
panic("%s: rxintr_cleanup: rx-first-descriptor not set.\n", NAME_UNIT);
/* First decide if a complete packet has arrived. */
/* Run down DMA descriptors looking for one marked "last". */
/* Bail out if an active descriptor is encountered. */
/* Accumulate most significant bits of packet length. */
pkt_len = 0;
for (;;)
{
if (last_desc == ring->write) return 0; /* no more descs */
if (last_desc->status & TLP_DSTS_OWNER) return 0; /* still active */
if (last_desc->status & TLP_DSTS_RX_LAST_DESC) break; /* end of packet */
pkt_len += last_desc->length1 + last_desc->length2; /* entire desc filled */
if (last_desc++->control & TLP_DCTL_END_RING) last_desc = ring->first; /* ring wrap */
}
/* A complete packet has arrived; how long is it? */
/* H/w ref man shows RX pkt length as a 14-bit field. */
/* An experiment found that only the 12 LSBs work. */
if (((last_desc->status>>16)&0xFFF) == 0) pkt_len += 4096; /* carry-bit */
pkt_len = (pkt_len & 0xF000) + ((last_desc->status>>16) & 0x0FFF);
/* Subtract the CRC length unless doing so would underflow. */
if (pkt_len >= sc->config.crc_len) pkt_len -= sc->config.crc_len;
/* Run down DMA descriptors again doing the following:
* 1) put pkt info in pkthdr of first mbuf,
* 2) link mbufs,
* 3) set mbuf lengths.
*/
first_desc = ring->read;
do
{
/* Read a DMA descriptor from the ring. */
last_desc = ring->read;
/* Advance the ring read pointer. */
if (ring->read++ == ring->last) ring->read = ring->first;
/* Dequeue the corresponding cluster mbuf. */
new_mbuf = mbuf_dequeue(ring);
if (new_mbuf == NULL)
panic("%s: rxintr_cleanup: expected an mbuf\n", NAME_UNIT);
desc_len = last_desc->length1 + last_desc->length2;
/* If bouncing, copy bounce buf to mbuf. */
DMA_SYNC(last_desc->map, desc_len, BUS_DMASYNC_POSTREAD);
/* Unmap kernel virtual address to PCI bus address. */
bus_dmamap_unload(ring->tag, last_desc->map);
/* 1) Put pkt info in pkthdr of first mbuf. */
if (last_desc == first_desc)
{
first_mbuf = new_mbuf;
first_mbuf->m_pkthdr.len = pkt_len; /* total pkt length */
# if IFNET
first_mbuf->m_pkthdr.rcvif = sc->ifp; /* how it got here */
# else
first_mbuf->m_pkthdr.rcvif = NULL;
# endif
}
else /* 2) link mbufs. */
{
KASSERT(last_mbuf != NULL);
last_mbuf->m_next = new_mbuf;
/* M_PKTHDR should be set in the first mbuf only. */
new_mbuf->m_flags &= ~M_PKTHDR;
}
last_mbuf = new_mbuf;
/* 3) Set mbuf lengths. */
new_mbuf->m_len = (pkt_len >= desc_len) ? desc_len : pkt_len;
pkt_len -= new_mbuf->m_len;
} while ((last_desc->status & TLP_DSTS_RX_LAST_DESC)==0);
/* Decide whether to accept or to drop this packet. */
/* RxHDLC sets MIIERR for bad CRC, abort and partial byte at pkt end. */
if (!(last_desc->status & TLP_DSTS_RX_BAD) &&
(sc->status.link_state == STATE_UP) &&
(first_mbuf->m_pkthdr.len > 0))
{
/* Optimization: copy a small pkt into a small mbuf. */
if (first_mbuf->m_pkthdr.len <= COPY_BREAK)
{
MGETHDR(new_mbuf, M_DONTWAIT, MT_DATA);
if (new_mbuf)
{
new_mbuf->m_pkthdr.rcvif = first_mbuf->m_pkthdr.rcvif;
new_mbuf->m_pkthdr.len = first_mbuf->m_pkthdr.len;
new_mbuf->m_len = first_mbuf->m_len;
memcpy(new_mbuf->m_data, first_mbuf->m_data,
first_mbuf->m_pkthdr.len);
m_freem(first_mbuf);
first_mbuf = new_mbuf;
}
}
/* Include CRC and one flag byte in input byte count. */
sc->status.cntrs.ibytes += first_mbuf->m_pkthdr.len + sc->config.crc_len +1;
sc->status.cntrs.ipackets++;
/* Berkeley Packet Filter */
LMC_BPF_MTAP(sc, first_mbuf);
/* Give this good packet to the network stacks. */
sc->quota--;
if (sc->stack)
sc->stack->input(sc, first_mbuf);
else
{
m_freem(first_mbuf);
sc->status.cntrs.idrops++;
}
}
else if (sc->status.link_state != STATE_UP)
{
/* If the link is down, this packet is probably noise. */
m_freem(first_mbuf);
sc->status.cntrs.idrops++;
if (sc->config.debug)
printf("%s: rxintr_cleanup: rx pkt dropped: link down\n", NAME_UNIT);
}
else /* Log and drop this bad packet. */
{
if (sc->config.debug)
printf("%s: RX bad pkt; len=%d %s%s%s%s\n",
NAME_UNIT, first_mbuf->m_pkthdr.len,
(last_desc->status & TLP_DSTS_RX_MII_ERR) ? " miierr" : "",
(last_desc->status & TLP_DSTS_RX_DRIBBLE) ? " dribble" : "",
(last_desc->status & TLP_DSTS_RX_DESC_ERR) ? " descerr" : "",
(last_desc->status & TLP_DSTS_RX_OVERRUN) ? " overrun" : "");
if (last_desc->status & TLP_DSTS_RX_OVERRUN)
sc->status.cntrs.fifo_over++;
else
sc->status.cntrs.ierrors++;
m_freem(first_mbuf);
}
return 1; /* did something */
}
/* Setup (prepare) to receive a packet. */
/* Try to keep the RX descriptor ring full of empty buffers. */
static int /* BSD version */
rxintr_setup(softc_t *sc)
{
struct desc_ring *ring = &sc->rxring;
struct dma_desc *desc;
struct mbuf *m;
int desc_len;
int error;
/* Ring is full if (wrap(write+1)==read) */
if (((ring->write == ring->last) ? ring->first : ring->write+1) == ring->read)
return 0; /* ring is full; nothing to do */
/* Allocate a small mbuf and attach an mbuf cluster. */
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
{
sc->status.cntrs.rxbuf++;
if (sc->config.debug)
printf("%s: rxintr_setup: MGETHDR() failed\n", NAME_UNIT);
return 0;
}
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT)==0)
{
m_freem(m);
sc->status.cntrs.rxbuf++;
if (sc->config.debug)
printf("%s: rxintr_setup: MCLGET() failed\n", NAME_UNIT);
return 0;
}
/* Queue the mbuf for later processing by rxintr_cleanup. */
mbuf_enqueue(ring, m);
/* Write a DMA descriptor into the ring. */
/* Hardware will not see it until the OWNER bit is set. */
desc = ring->write;
/* Advance the ring write pointer. */
if (ring->write++ == ring->last) ring->write = ring->first;
desc_len = (MCLBYTES < MAX_DESC_LEN) ? MCLBYTES : MAX_DESC_LEN;
/* Map kernel virt addr to PCI bus addr. */
if ((error = DMA_LOAD(desc->map, m->m_data, desc_len)))
printf("%s: bus_dmamap_load(rx): error %d\n", NAME_UNIT, error);
/* Invalidate the cache for this mbuf. */
DMA_SYNC(desc->map, desc_len, BUS_DMASYNC_PREREAD);
/* Set up the DMA descriptor. */
desc->address1 = desc->map->dm_segs[0].ds_addr;
desc->length1 = desc_len>>1;
desc->address2 = desc->address1 + desc->length1;
desc->length2 = desc_len>>1;
/* Before setting the OWNER bit, flush cache backing DMA descriptors. */
DMA_SYNC(ring->map, ring->size_descs, BUS_DMASYNC_PREWRITE);
/* Commit the DMA descriptor to the hardware. */
desc->status = TLP_DSTS_OWNER;
/* Notify the receiver that there is another buffer available. */
WRITE_CSR(sc, TLP_RX_POLL, 1);
return 1; /* did something */
}
/* Clean up after a packet has been transmitted. */
/* Free the mbuf chain and update the DMA descriptor ring. */
static int /* BSD version */
txintr_cleanup(softc_t *sc)
{
struct desc_ring *ring = &sc->txring;
struct dma_desc *desc;
while ((ring->read != ring->write) && /* while ring is not empty */
!(ring->read->status & TLP_DSTS_OWNER))
{
/* Read a DMA descriptor from the ring. */
desc = ring->read;
/* Advance the ring read pointer. */
if (ring->read++ == ring->last) ring->read = ring->first;
/* This is a no-op on most architectures. */
DMA_SYNC(desc->map, desc->length1 + desc->length2, BUS_DMASYNC_POSTWRITE);
/* Unmap kernel virtual address to PCI bus address. */
bus_dmamap_unload(ring->tag, desc->map);
/* If this descriptor is the last segment of a packet, */
/* then dequeue and free the corresponding mbuf chain. */
if (desc->control & TLP_DCTL_TX_LAST_SEG)
{
struct mbuf *m;
if ((m = mbuf_dequeue(ring)) == NULL)
panic("%s: txintr_cleanup: expected an mbuf\n", NAME_UNIT);
/* The only bad TX status is fifo underrun. */
if (desc->status & TLP_DSTS_TX_UNDERRUN)
{
if (sc->config.debug)
printf("%s: txintr_cleanup: tx fifo underrun\n", NAME_UNIT);
sc->status.cntrs.fifo_under++;
sc->status.cntrs.oerrors++;
}
else
{
/* Include CRC and one flag byte in output byte count. */
sc->status.cntrs.obytes += m->m_pkthdr.len + sc->config.crc_len +1;
sc->status.cntrs.opackets++;
/* Berkeley Packet Filter */
LMC_BPF_MTAP(sc, m);
}
m_freem(m);
return 1; /* did something */
}
}
return 0;
}
/* Build DMA descriptors for a transmit packet mbuf chain. */
static int /* 0=success; 1=error */ /* BSD version */
txintr_setup_mbuf(softc_t *sc, struct mbuf *m)
{
struct desc_ring *ring = &sc->txring;
struct dma_desc *desc;
unsigned int desc_len;
/* build DMA descriptors for a chain of mbufs. */
while (m)
{
char *data = m->m_data;
int length = m->m_len; /* zero length mbufs happen! */
/* Build DMA descriptors for one mbuf. */
while (length > 0)
{
int error;
/* Ring is full if (wrap(write+1)==read) */
if (((ring->temp==ring->last) ? ring->first : ring->temp+1) == ring->read)
{ /* Not enough DMA descriptors; try later. */
for (; ring->temp!=ring->write;
ring->temp = (ring->temp==ring->first)? ring->last : ring->temp-1)
bus_dmamap_unload(ring->tag, ring->temp->map);
sc->status.cntrs.txdma++; /* IFF_OACTIVE? */
return 1;
}
/* Provisionally, write a descriptor into the ring. */
/* But do not change the REAL ring write pointer. */
/* Hardware will not see it until the OWNER bit is set. */
desc = ring->temp;
/* Advance the temporary ring write pointer. */
if (ring->temp++ == ring->last) ring->temp = ring->first;
/* Clear all control bits except the END_RING bit. */
desc->control &= TLP_DCTL_END_RING;
/* Do not pad short packets up to 64 bytes. */
desc->control |= TLP_DCTL_TX_NO_PAD;
/* Use Tulip's CRC-32 generator, if appropriate. */
if (sc->config.crc_len != CFG_CRC_32)
desc->control |= TLP_DCTL_TX_NO_CRC;
/* Set the OWNER bit, except in the first descriptor. */
if (desc != ring->write)
desc->status = TLP_DSTS_OWNER;
desc_len = (length > MAX_CHUNK_LEN) ? MAX_CHUNK_LEN : length;
/* Map kernel virt addr to PCI bus addr. */
if ((error = DMA_LOAD(desc->map, data, desc_len)))
printf("%s: bus_dmamap_load(tx): error %d\n", NAME_UNIT, error);
/* Flush the cache and if bouncing, copy mbuf to bounce buf. */
DMA_SYNC(desc->map, desc_len, BUS_DMASYNC_PREWRITE);
/* Prevent wild fetches if mapping fails (nsegs==0). */
desc->length1 = desc->length2 = 0;
desc->address1 = desc->address2 = 0;
{
bus_dma_segment_t *segs = desc->map->dm_segs;
int nsegs = desc->map->dm_nsegs;
if (nsegs >= 1)
{
desc->address1 = segs[0].ds_addr;
desc->length1 = segs[0].ds_len;
}
if (nsegs == 2)
{
desc->address2 = segs[1].ds_addr;
desc->length2 = segs[1].ds_len;
}
}
data += desc_len;
length -= desc_len;
} /* while (length > 0) */
m = m->m_next;
} /* while (m) */
return 0; /* success */
}
/* Setup (prepare) to transmit a packet. */
/* Select a packet, build DMA descriptors and give packet to hardware. */
/* If DMA descriptors run out, abandon the attempt and return 0. */
static int /* BSD version */
txintr_setup(softc_t *sc)
{
struct desc_ring *ring = &sc->txring;
struct dma_desc *first_desc, *last_desc;
/* Protect against half-up links: Do not transmit */
/* if the receiver can not hear the far end. */
if (sc->status.link_state != STATE_UP) return 0;
/* Pick a packet to transmit. */
if ((sc->tx_mbuf == NULL) && sc->stack)
sc->stack->output(sc);
if (sc->tx_mbuf == NULL) return 0; /* no pkt to transmit */
/* Build DMA descriptors for an outgoing mbuf chain. */
ring->temp = ring->write; /* temporary ring write pointer */
if (txintr_setup_mbuf(sc, sc->tx_mbuf)) return 0;
/* Enqueue the mbuf; txintr_cleanup will free it. */
mbuf_enqueue(ring, sc->tx_mbuf);
/* The transmitter has room for another packet. */
sc->tx_mbuf = NULL;
/* Set first & last segment bits. */
/* last_desc is the desc BEFORE the one pointed to by ring->temp. */
first_desc = ring->write;
first_desc->control |= TLP_DCTL_TX_FIRST_SEG;
last_desc = (ring->temp==ring->first)? ring->last : ring->temp-1;
last_desc->control |= TLP_DCTL_TX_LAST_SEG;
/* Interrupt at end-of-transmission? Why bother the poor computer! */
/* last_desc->control |= TLP_DCTL_TX_INTERRUPT; */
/* Make sure the OWNER bit is not set in the next descriptor. */
/* The OWNER bit may have been set if a previous call aborted. */
ring->temp->status = 0;
/* Commit the DMA descriptors to the software. */
ring->write = ring->temp;
/* Before setting the OWNER bit, flush cache backing DMA descriptors. */
DMA_SYNC(ring->map, ring->size_descs, BUS_DMASYNC_PREWRITE);
/* Commit the DMA descriptors to the hardware. */
first_desc->status = TLP_DSTS_OWNER;
/* Notify the transmitter that there is another packet to send. */
WRITE_CSR(sc, TLP_TX_POLL, 1);
return 1; /* did something */
}
/* BSD kernels call this when a hardware interrupt happens. */
static intr_return_t /* context: interrupt */
bsd_interrupt(void *arg)
{
softc_t *sc = arg;
# if DEVICE_POLLING
if (sc->ifp->if_capenable & IFCAP_POLLING)
return IRQ_NONE;
# endif
/* Cut losses early if this is not our interrupt. */
if ((READ_CSR(sc, TLP_STATUS) & TLP_INT_TXRX)==0)
return IRQ_NONE;
/* Process tx and rx pkts. */
lmc_interrupt(sc, sc->rxring.num_descs, 0);
return IRQ_HANDLED;
}
#endif /* BSD */
# if DEVICE_POLLING
/* This procedure services the card without interrupts. */
/* With rxintr_cleanup(), it implements input flow control. */
static void /* context: softirq */
bsd_poll(struct ifnet *ifp, enum poll_cmd cmd, int quota)
{
softc_t *sc = IFP2SC(ifp);
/* Cut losses early if this is not our interrupt. */
if ((READ_CSR(sc, TLP_STATUS) & TLP_INT_TXRX)==0)
return;
/* Process all tx pkts and up to quota rx pkts. */
lmc_interrupt(sc, quota, (cmd==POLL_AND_CHECK_STATUS));
}
# endif /* DEVICE_POLLING */
/* Open a line protocol. */
/* context: kernel (boot) or process (syscall) */
static int
open_proto(softc_t *sc, struct config *config)
{
int error = 0;
if (sc->stack)
error = sc->stack->open(sc, config);
else
error = BSD ? ENOSYS : -ENOSYS;
return error;
}
/* Attach a line protocol stack. */
/* context: kernel (boot) or process (syscall) */
static int
attach_stack(softc_t *sc, struct config *config)
{
int error = 0;
struct stack *stack = NULL;
/* Done if stack is not changing. */
if (sc->config.stack == config->stack)
return 0;
/* Detach the current stack. */
if (sc->stack && ((error = sc->stack->detach(sc))))
return error;
switch (config->stack)
{
case STACK_RAWIP: /* built-in */
stack = &rawip_stack;
break;
#if SPPP
case STACK_SPPP:
stack = &sppp_stack;
break;
#endif
#if P2P
case STACK_P2P:
stack = &p2p_stack;
break;
#endif
#if GEN_HDLC
case STACK_GEN_HDLC:
stack = &gen_hdlc_stack;
break;
#endif
#if SYNC_PPP
case STACK_SYNC_PPP:
stack = &sync_ppp_stack;
break;
#endif
default:
stack = NULL;
break;
}
if (stack)
error = stack->attach(sc, config);
else
error = BSD ? ENOSYS : -ENOSYS;
return error;
}
/*
* This handles IOCTLs from lmcconfig(8).
* Must not run when card watchdogs run.
* Always called with top_lock held.
*/
static int /* context: process */
lmc_ioctl(softc_t *sc, u_long cmd, void *data)
{
struct iohdr *iohdr = (struct iohdr *) data;
struct ioctl *ioctl = (struct ioctl *) data;
struct status *status = (struct status *) data;
struct config *config = (struct config *) data;
int error = 0;
/* All structs start with a string and a cookie. */
if (iohdr->cookie != NGM_LMC_COOKIE)
return EINVAL;
switch (cmd)
{
case LMCIOCGSTAT:
{
*status = sc->status;
iohdr->cookie = NGM_LMC_COOKIE;
break;
}
case LMCIOCGCFG:
{
*config = sc->config;
iohdr->cookie = NGM_LMC_COOKIE;
break;
}
case LMCIOCSCFG:
{
if ((error = CHECK_CAP)) break;
if ((error = attach_stack(sc, config)));
else error = open_proto(sc, config);
tulip_loop(sc, config);
sc->card->attach(sc, config);
sc->config.debug = config->debug;
break;
}
case LMCIOCREAD:
{
if (ioctl->cmd == IOCTL_RW_PCI)
{
if (ioctl->address > 252) { error = EFAULT; break; }
ioctl->data = READ_PCI_CFG(sc, ioctl->address);
}
else if (ioctl->cmd == IOCTL_RW_CSR)
{
if (ioctl->address > 15) { error = EFAULT; break; }
ioctl->data = READ_CSR(sc, ioctl->address*TLP_CSR_STRIDE);
}
else if (ioctl->cmd == IOCTL_RW_SROM)
{
if (ioctl->address > 63) { error = EFAULT; break; }
ioctl->data = srom_read(sc, ioctl->address);
}
else if (ioctl->cmd == IOCTL_RW_BIOS)
ioctl->data = bios_read(sc, ioctl->address);
else if (ioctl->cmd == IOCTL_RW_MII)
ioctl->data = mii_read(sc, ioctl->address);
else if (ioctl->cmd == IOCTL_RW_FRAME)
ioctl->data = framer_read(sc, ioctl->address);
else
error = EINVAL;
break;
}
case LMCIOCWRITE:
{
if ((error = CHECK_CAP)) break;
if (ioctl->cmd == IOCTL_RW_PCI)
{
if (ioctl->address > 252) { error = EFAULT; break; }
WRITE_PCI_CFG(sc, ioctl->address, ioctl->data);
}
else if (ioctl->cmd == IOCTL_RW_CSR)
{
if (ioctl->address > 15) { error = EFAULT; break; }
WRITE_CSR(sc, ioctl->address*TLP_CSR_STRIDE, ioctl->data);
}
else if (ioctl->cmd == IOCTL_RW_SROM)
{
if (ioctl->address > 63) { error = EFAULT; break; }
srom_write(sc, ioctl->address, ioctl->data); /* can sleep */
}
else if (ioctl->cmd == IOCTL_RW_BIOS)
{
if (ioctl->address == 0) bios_erase(sc);
bios_write(sc, ioctl->address, ioctl->data); /* can sleep */
}
else if (ioctl->cmd == IOCTL_RW_MII)
mii_write(sc, ioctl->address, ioctl->data);
else if (ioctl->cmd == IOCTL_RW_FRAME)
framer_write(sc, ioctl->address, ioctl->data);
else if (ioctl->cmd == IOCTL_WO_SYNTH)
synth_write(sc, (struct synth *)&ioctl->data);
else if (ioctl->cmd == IOCTL_WO_DAC)
{
dac_write(sc, 0x9002); /* set Vref = 2.048 volts */
dac_write(sc, ioctl->data & 0xFFF);
}
else
error = EINVAL;
break;
}
case LMCIOCTL:
{
if ((error = CHECK_CAP)) break;
if (ioctl->cmd == IOCTL_XILINX_RESET)
{
xilinx_reset(sc);
sc->card->attach(sc, &sc->config);
}
else if (ioctl->cmd == IOCTL_XILINX_ROM)
{
xilinx_load_from_rom(sc);
sc->card->attach(sc, &sc->config);
}
else if (ioctl->cmd == IOCTL_XILINX_FILE)
{
error = xilinx_load_from_file(sc, ioctl->ucode, ioctl->data);
if (error) xilinx_load_from_rom(sc); /* try the rom */
sc->card->attach(sc, &sc->config);
}
else if (ioctl->cmd == IOCTL_RESET_CNTRS)
reset_cntrs(sc);
else
error = sc->card->ioctl(sc, ioctl);
break;
}
default:
error = EINVAL;
break;
}
return error;
}
/* This is the core watchdog procedure.
* ioctl syscalls and card watchdog routines must be interlocked.
* Called by ng_watchdog(), ifnet_watchdog() and netdev_watchdog().
*/
static void /* context: softirq */
lmc_watchdog(softc_t *sc)
{
/* Read and restart the Tulip timer. */
u_int32_t tx_speed = READ_CSR(sc, TLP_TIMER);
WRITE_CSR(sc, TLP_TIMER, 0xFFFF);
/* Measure MII clock using a timer in the Tulip chip.
* This timer counts transmitter bits divided by 4096.
* Since this is called once a second the math is easy.
* This is only correct when the link is NOT sending pkts.
* On a fully-loaded link, answer will be HALF actual rate.
* Clock rate during pkt is HALF clk rate between pkts.
* Measuring clock rate really measures link utilization!
*/
sc->status.tx_speed = (0xFFFF - (tx_speed & 0xFFFF)) << 12;
/* Call the card-specific watchdog routine. */
if (TOP_TRYLOCK(sc))
{
/* Remember link_state before updating it. */
sc->last_link_state = sc->status.link_state;
/* Update status.link_state. */
sc->card->watchdog(sc);
/* Increment a counter which tells user-land */
/* observers that SNMP state has been updated. */
sc->status.ticks++;
TOP_UNLOCK(sc);
}
else
sc->status.cntrs.lck_watch++;
/* Kernel date/time can take up to 5 seconds to start running. */
if ((sc->status.ticks > 3) && /* h/w should be stable by now */
(sc->status.cntrs.reset_time.tv_sec < 1000))
{
microtime(&sc->status.cntrs.reset_time);
if (sc->status.cntrs.reset_time.tv_sec > 1000)
reset_cntrs(sc);
}
/* Call the stack-specific watchdog routine. */
if (sc->stack)
sc->stack->watchdog(sc);
/* In case an interrupt gets lost, process tx and rx pkts */
lmc_interrupt(sc, sc->rxring.num_descs, 1);
}
/* Administrative status of the driver (UP or DOWN) has changed.
* A card-specific action is taken:
* HSSI: drop TA.
* (T3: send T3 idle ckt signal. )
* SSI: drop RTS, DTR and DCD
* (T1: disable line interface tx; )
*/
static void
set_ready(softc_t *sc, int status)
{
struct ioctl ioctl;
ioctl.cmd = IOCTL_SET_STATUS;
ioctl.data = status;
sc->card->ioctl(sc, &ioctl);
}
static void
reset_cntrs(softc_t *sc)
{
memset(&sc->status.cntrs, 0, sizeof(struct cntrs));
microtime(&sc->status.cntrs.reset_time);
}
static void /* context: process, softirq, interrupt! */
lmc_interrupt(void *arg, int quota, int check_status)
{
softc_t *sc = arg;
int activity;
/* Do this FIRST! Otherwise UPs deadlock and MPs spin. */
WRITE_CSR(sc, TLP_STATUS, READ_CSR(sc, TLP_STATUS));
/* If any CPU is inside this critical section, then */
/* other CPUs should go away without doing anything. */
if (BOTTOM_TRYLOCK(sc) == 0)
{
sc->status.cntrs.lck_intr++;
return;
}
/* In Linux, pci_alloc_consistent() means DMA */
/* descriptors do not need explicit syncing? */
#if BSD
{
struct desc_ring *ring = &sc->txring;
DMA_SYNC(sc->txring.map, sc->txring.size_descs,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
ring = &sc->rxring;
DMA_SYNC(sc->rxring.map, sc->rxring.size_descs,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
}
#endif
/* This is the main loop for interrupt processing. */
sc->quota = quota;
do
{
activity = txintr_cleanup(sc);
activity += txintr_setup(sc);
activity += rxintr_cleanup(sc);
activity += rxintr_setup(sc);
} while (activity);
#if BSD
{
struct desc_ring *ring = &sc->txring;
DMA_SYNC(sc->txring.map, sc->txring.size_descs,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
ring = &sc->rxring;
DMA_SYNC(sc->rxring.map, sc->rxring.size_descs,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
#endif
/* As the interrupt is dismissed, check for four unusual events. */
if (check_status) check_intr_status(sc);
BOTTOM_UNLOCK(sc);
}
/* Check for four unusual events:
* 1) fatal PCI bus errors - some are recoverable
* 2) transmitter FIFO underruns - increase fifo threshold
* 3) receiver FIFO overruns - clear potential hangup
* 4) no receive descs or bufs - count missed packets
*/
static void
check_intr_status(softc_t *sc)
{
u_int32_t status, cfcs, op_mode;
u_int32_t missed, overruns;
/* 1) A fatal bus error causes a Tulip to stop initiating bus cycles.
* Module unload/load or boot are the only fixes for Parity Errors.
* Master and Target Aborts can be cleared and life may continue.
*/
status = READ_CSR(sc, TLP_STATUS);
if (status & TLP_STAT_FATAL_ERROR)
{
u_int32_t fatal = (status & TLP_STAT_FATAL_BITS)>>TLP_STAT_FATAL_SHIFT;
printf("%s: FATAL PCI BUS ERROR: %s%s%s%s\n", NAME_UNIT,
(fatal == 0) ? "PARITY ERROR" : "",
(fatal == 1) ? "MASTER ABORT" : "",
(fatal == 2) ? "TARGET ABORT" : "",
(fatal >= 3) ? "RESERVED (?)" : "");
cfcs = READ_PCI_CFG(sc, TLP_CFCS); /* try to clear it */
cfcs &= ~(TLP_CFCS_MSTR_ABORT | TLP_CFCS_TARG_ABORT);
WRITE_PCI_CFG(sc, TLP_CFCS, cfcs);
}
/* 2) If the transmitter fifo underruns, increase the transmit fifo
* threshold: the number of bytes required to be in the fifo
* before starting the transmitter (cost: increased tx delay).
* The TX_FSM must be stopped to change this parameter.
*/
if (status & TLP_STAT_TX_UNDERRUN)
{
op_mode = READ_CSR(sc, TLP_OP_MODE);
/* enable store-and-forward mode if tx_threshold tops out? */
if ((op_mode & TLP_OP_TX_THRESH) < TLP_OP_TX_THRESH)
{
op_mode += 0x4000; /* increment TX_THRESH field; can not overflow */
WRITE_CSR(sc, TLP_OP_MODE, op_mode & ~TLP_OP_TX_RUN);
/* Wait for the TX FSM to stop; it might be processing a pkt. */
while (READ_CSR(sc, TLP_STATUS) & TLP_STAT_TX_FSM); /* XXX HANG */
WRITE_CSR(sc, TLP_OP_MODE, op_mode); /* restart tx */
if (sc->config.debug)
printf("%s: tx fifo underrun; threshold now %d bytes\n",
NAME_UNIT, 128<<((op_mode>>TLP_OP_TR_SHIFT)&3));
sc->status.cntrs.underruns++;
}
}
/* 3) Errata memo from Digital Equipment Corp warns that 21140A
* receivers through rev 2.2 can hang if the fifo overruns.
* Recommended fix: stop and start the RX FSM after an overrun.
*/
missed = READ_CSR(sc, TLP_MISSED);
if ((overruns = ((missed & TLP_MISS_OVERRUN)>>TLP_OVERRUN_SHIFT)))
{
if ((READ_PCI_CFG(sc, TLP_CFRV) & 0xFF) <= 0x22)
{
op_mode = READ_CSR(sc, TLP_OP_MODE);
WRITE_CSR(sc, TLP_OP_MODE, op_mode & ~TLP_OP_RX_RUN);
/* Wait for the RX FSM to stop; it might be processing a pkt. */
while (READ_CSR(sc, TLP_STATUS) & TLP_STAT_RX_FSM); /* XXX HANG */
WRITE_CSR(sc, TLP_OP_MODE, op_mode); /* restart rx */
}
if (sc->config.debug)
printf("%s: rx fifo overruns=%d\n", NAME_UNIT, overruns);
sc->status.cntrs.overruns += overruns;
}
/* 4) When the receiver is enabled and a packet arrives, but no DMA
* descriptor is available, the packet is counted as 'missed'.
* The receiver should never miss packets; warn if it happens.
*/
if ((missed = (missed & TLP_MISS_MISSED)))
{
if (sc->config.debug)
printf("%s: rx missed %d pkts\n", NAME_UNIT, missed);
sc->status.cntrs.missed += missed;
}
}
/* Initialize the driver. */
/* context: kernel (boot) or process (syscall) */
static int
lmc_attach(softc_t *sc)
{
int error = 0;
struct config config;
/* Attach the Tulip PCI bus interface. */
if ((error = tulip_attach(sc))) return error;
/* Reset the Xilinx Field Programmable Gate Array. */
xilinx_reset(sc); /* side effect: turns on all four LEDs */
/* Attach card-specific stuff. */
sc->card->attach(sc, NULL); /* changes sc->config */
/* Reset the FIFOs between Gate array and Tulip chip. */
mii16_set_bits(sc, MII16_FIFO);
mii16_clr_bits(sc, MII16_FIFO);
#if IFNET
/* Attach the ifnet kernel interface. */
if ((error = ifnet_attach(sc))) return error;
#endif
#if NETDEV
/* Attach the netdevice kernel interface. */
if ((error = netdev_attach(sc))) return error;
#endif
/* Attach a protocol stack and open a line protocol. */
config = sc->config;
config.stack = STACK_RAWIP;
attach_stack(sc, &config);
config.proto = PROTO_IP_HDLC;
open_proto(sc, &config);
/* Print obscure card information. */
if (BOOT_VERBOSE)
{
u_int32_t cfrv = READ_PCI_CFG(sc, TLP_CFRV);
u_int16_t mii3 = mii_read(sc, 3);
u_int16_t srom[3];
u_int8_t *ieee = (u_int8_t *)srom;
int i;
printf("%s", NAME_UNIT);
printf(": PCI rev %d.%d", (cfrv>>4) & 0xF, cfrv & 0xF);
printf(", MII rev %d.%d", (mii3>>4) & 0xF, mii3 & 0xF);
for (i=0; i<3; i++) srom[i] = srom_read(sc, 10+i);
printf(", IEEE addr %02x:%02x:%02x:%02x:%02x:%02x",
ieee[0], ieee[1], ieee[2], ieee[3], ieee[4], ieee[5]);
sc->card->ident(sc);
}
/* BSDs enable card interrupts and appear "ready" here. */
/* Linux does this in netdev_open(). */
#if BSD
set_ready(sc, 1);
WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_TXRX);
#endif
return 0;
}
/* context: kernel (boot) or process (syscall) */
static void
lmc_detach(softc_t *sc)
{
/* Disable card interrupts and appear "not ready". */
set_ready(sc, 0);
WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_DISABLE);
/* Detach the line protocol package. */
if (sc->stack)
sc->stack->detach(sc);
#if IFNET
/* Detach the ifnet kernel interface. */
ifnet_detach(sc);
#endif
#if NETDEV
/* Detach the netdevice kernel interface. */
netdev_detach(sc);
#endif
/* Detach framers, line interfaces, etc. on the card. */
sc->card->detach(sc);
/* Detach the Tulip PCI bus interface. */
tulip_detach(sc);
}
/* Loop back through the TULIP Ethernet chip; (no CRC).
* Data sheet says stop DMA before changing OPMODE register.
* But that's not as simple as it sounds; works anyway.
*/
static void
tulip_loop(softc_t *sc, struct config *config)
{
/* Check for enabling loopback thru Tulip chip. */
if ((sc->config.loop_back != CFG_LOOP_TULIP) &&
(config->loop_back == CFG_LOOP_TULIP))
{
u_int32_t op_mode = READ_CSR(sc, TLP_OP_MODE);
op_mode |= TLP_OP_INT_LOOP;
WRITE_CSR(sc, TLP_OP_MODE, op_mode);
config->crc_len = CFG_CRC_0;
}
/* Check for disabling loopback thru Tulip chip. */
if ((sc->config.loop_back == CFG_LOOP_TULIP) &&
(config->loop_back != CFG_LOOP_TULIP))
{
u_int32_t op_mode = READ_CSR(sc, TLP_OP_MODE);
op_mode &= ~TLP_OP_LOOP_MODE;
WRITE_CSR(sc, TLP_OP_MODE, op_mode);
config->crc_len = CFG_CRC_16;
}
sc->config.loop_back = config->loop_back;
}
/* Attach the Tulip PCI bus interface.
* Allocate DMA descriptors and enable DMA.
* Returns 0 on success; error code on failure.
* context: kernel (boot) or process (syscall)
*/
static int
tulip_attach(softc_t *sc)
{
int num_rx_descs, error = 0;
u_int32_t bus_pbl, bus_cal, op_tr;
u_int32_t cfdd, cfcs, cflt, csid, cfit;
/* Make sure the COMMAND bits are reasonable. */
cfcs = READ_PCI_CFG(sc, TLP_CFCS);
cfcs &= ~TLP_CFCS_MWI_ENABLE;
cfcs |= TLP_CFCS_BUS_MASTER;
cfcs |= TLP_CFCS_MEM_ENABLE;
cfcs |= TLP_CFCS_IO_ENABLE;
cfcs |= TLP_CFCS_PAR_ERROR;
cfcs |= TLP_CFCS_SYS_ERROR;
WRITE_PCI_CFG(sc, TLP_CFCS, cfcs);
/* Set the LATENCY TIMER to the recommended value, */
/* and make sure the CACHE LINE SIZE is reasonable. */
cfit = READ_PCI_CFG(sc, TLP_CFIT);
cflt = READ_PCI_CFG(sc, TLP_CFLT);
cflt &= ~TLP_CFLT_LATENCY;
cflt |= (cfit & TLP_CFIT_MAX_LAT)>>16;
/* "prgmbl burst length" and "cache alignment" used below. */
switch(cflt & TLP_CFLT_CACHE)
{
case 8: /* 8 bytes per cache line */
{ bus_pbl = 32; bus_cal = 1; break; }
case 16:
{ bus_pbl = 32; bus_cal = 2; break; }
case 32:
{ bus_pbl = 32; bus_cal = 3; break; }
default:
{
bus_pbl = 32; bus_cal = 1;
cflt &= ~TLP_CFLT_CACHE;
cflt |= 8;
break;
}
}
WRITE_PCI_CFG(sc, TLP_CFLT, cflt);
/* Make sure SNOOZE and SLEEP modes are disabled. */
cfdd = READ_PCI_CFG(sc, TLP_CFDD);
cfdd &= ~TLP_CFDD_SLEEP;
cfdd &= ~TLP_CFDD_SNOOZE;
WRITE_PCI_CFG(sc, TLP_CFDD, cfdd);
DELAY(11*1000); /* Tulip wakes up in 10 ms max */
/* Software Reset the Tulip chip; stops DMA and Interrupts. */
/* This does not change the PCI config regs just set above. */
WRITE_CSR(sc, TLP_BUS_MODE, TLP_BUS_RESET); /* self-clearing */
DELAY(5); /* Tulip is dead for 50 PCI cycles after reset. */
/* Initialize the PCI busmode register. */
/* The PCI bus cycle type "Memory Write and Invalidate" does NOT */
/* work cleanly in any version of the 21140A, so do not enable it! */
WRITE_CSR(sc, TLP_BUS_MODE,
(bus_cal ? TLP_BUS_READ_LINE : 0) |
(bus_cal ? TLP_BUS_READ_MULT : 0) |
(bus_pbl<<TLP_BUS_PBL_SHIFT) |
(bus_cal<<TLP_BUS_CAL_SHIFT) |
((BYTE_ORDER == BIG_ENDIAN) ? TLP_BUS_DESC_BIGEND : 0) |
((BYTE_ORDER == BIG_ENDIAN) ? TLP_BUS_DATA_BIGEND : 0) |
TLP_BUS_DSL_VAL |
TLP_BUS_ARB);
/* Pick number of RX descriptors and TX fifo threshold. */
/* tx_threshold in bytes: 0=128, 1=256, 2=512, 3=1024 */
csid = READ_PCI_CFG(sc, TLP_CSID);
switch(csid)
{
case CSID_LMC_HSSI: /* 52 Mb/s */
case CSID_LMC_HSSIc: /* 52 Mb/s */
case CSID_LMC_T3: /* 45 Mb/s */
{ num_rx_descs = 48; op_tr = 2; break; }
case CSID_LMC_SSI: /* 10 Mb/s */
{ num_rx_descs = 32; op_tr = 1; break; }
case CSID_LMC_T1E1: /* 2 Mb/s */
{ num_rx_descs = 16; op_tr = 0; break; }
default:
{ num_rx_descs = 16; op_tr = 0; break; }
}
/* Create DMA descriptors and initialize list head registers. */
if ((error = create_ring(sc, &sc->txring, NUM_TX_DESCS))) return error;
WRITE_CSR(sc, TLP_TX_LIST, sc->txring.dma_addr);
if ((error = create_ring(sc, &sc->rxring, num_rx_descs))) return error;
WRITE_CSR(sc, TLP_RX_LIST, sc->rxring.dma_addr);
/* Initialize the operating mode register. */
WRITE_CSR(sc, TLP_OP_MODE, TLP_OP_INIT | (op_tr<<TLP_OP_TR_SHIFT));
/* Read the missed frame register (result ignored) to zero it. */
error = READ_CSR(sc, TLP_MISSED); /* error is used as a bit-dump */
/* Disable rx watchdog and tx jabber features. */
WRITE_CSR(sc, TLP_WDOG, TLP_WDOG_INIT);
return 0;
}
/* Detach the Tulip PCI bus interface. */
/* Disable DMA and free DMA descriptors. */
/* context: kernel (boot) or process (syscall) */
static void
tulip_detach(void *arg)
{
softc_t *sc = arg;
/* Software reset the Tulip chip; stops DMA and Interrupts. */
WRITE_CSR(sc, TLP_BUS_MODE, TLP_BUS_RESET); /* self-clearing */
DELAY(5); /* Tulip is dead for 50 PCI cycles after reset. */
/* Disconnect from the PCI bus except for config cycles. */
/* Hmmm; Linux syslogs a warning that IO and MEM are disabled. */
WRITE_PCI_CFG(sc, TLP_CFCS, TLP_CFCS_MEM_ENABLE | TLP_CFCS_IO_ENABLE);
/* Free the DMA descriptor rings. */
destroy_ring(sc, &sc->txring);
destroy_ring(sc, &sc->rxring);
}
/* Called during config probing -- softc does not yet exist. */
static void
print_driver_info(void)
{
/* Print driver information once only. */
if (driver_announced++ == 0)
{
printf("LMC driver version %d/%d/%d; options",
VER_YEAR, VER_MONTH, VER_DAY);
if (ALTQ) printf(" ALTQ");
printf(" BPF"); /* always defined */
if (NAPI) printf(" NAPI");
if (DEVICE_POLLING) printf(" POLL");
if (P2P) printf(" P2P");
if (SPPP) printf(" SPPP");
if (GEN_HDLC) printf(" GEN_HDLC");
if (SYNC_PPP) printf(" SYNC_PPP");
if (NETGRAPH) printf(" NETGRAPH");
printf(".\n");
}
}
/* This is the I/O configuration interface for NetBSD. */
/* Looking for a DEC 21140A chip on any Lan Media Corp card. */
/* context: kernel (boot) or process (syscall) */
static int
nbsd_match(struct device *parent, cfdata_t match,
void *aux)
{
struct pci_attach_args *pa = aux;
u_int32_t cfid = pci_conf_read(pa->pa_pc, pa->pa_tag, TLP_CFID);
u_int32_t csid = pci_conf_read(pa->pa_pc, pa->pa_tag, TLP_CSID);
if (cfid != TLP_CFID_TULIP) return 0;
switch (csid)
{
case CSID_LMC_HSSI:
case CSID_LMC_HSSIc:
case CSID_LMC_T3:
case CSID_LMC_SSI:
case CSID_LMC_T1E1:
print_driver_info();
return 100;
default:
return 0;
}
}
/* NetBSD bottom-half initialization. */
/* context: kernel (boot) or process (syscall) */
static void
nbsd_attach(struct device *parent, struct device *self, void *aux)
{
softc_t *sc = (softc_t *)self; /* device is first in softc */
struct pci_attach_args *pa = aux;
const char *intrstr;
bus_addr_t csr_addr;
int error;
/* for READ/WRITE_PCI_CFG() */
sc->pa_pc = pa->pa_pc;
sc->pa_tag = pa->pa_tag;
sc->pa_dmat = pa->pa_dmat;
/* What kind of card are we driving? */
switch (READ_PCI_CFG(sc, TLP_CSID))
{
case CSID_LMC_HSSI:
case CSID_LMC_HSSIc:
sc->dev_desc = HSSI_DESC;
sc->card = &hssi_card;
break;
case CSID_LMC_T3:
sc->dev_desc = T3_DESC;
sc->card = &t3_card;
break;
case CSID_LMC_SSI:
sc->dev_desc = SSI_DESC;
sc->card = &ssi_card;
break;
case CSID_LMC_T1E1:
sc->dev_desc = T1E1_DESC;
sc->card = &t1_card;
break;
default:
return;
}
/* Allocate PCI resources to access the Tulip chip CSRs. */
# if IOREF_CSR
csr_addr = (bus_addr_t)READ_PCI_CFG(sc, TLP_CBIO) & -2;
sc->csr_tag = pa->pa_iot; /* bus_space tag for IO refs */
# else
csr_addr = (bus_addr_t)READ_PCI_CFG(sc, TLP_CBMA);
sc->csr_tag = pa->pa_memt; /* bus_space tag for MEM refs */
# endif
if ((error = bus_space_map(sc->csr_tag, csr_addr,
TLP_CSR_SIZE, 0, &sc->csr_handle)))
{
aprint_error("%s: bus_space_map(): error %d\n", NAME_UNIT, error);
return;
}
/* Allocate PCI interrupt resources. */
if (pci_intr_map(pa, &sc->intr_handle))
{
aprint_error("%s: pci_intr_map() failed\n", NAME_UNIT);
nbsd_detach(self, 0);
return;
}
if ((sc->irq_cookie = pci_intr_establish(pa->pa_pc, sc->intr_handle,
IPL_NET, bsd_interrupt, sc)) == NULL)
{
aprint_error("%s: pci_intr_establish() failed\n", NAME_UNIT);
nbsd_detach(self, 0);
return;
}
intrstr = pci_intr_string(pa->pa_pc, sc->intr_handle);
aprint_normal(" %s: %s\n", intrstr, sc->dev_desc);
aprint_naive(": %s\n", sc->dev_desc);
/* Install a shutdown hook. */
if ((sc->sdh_cookie = shutdownhook_establish(tulip_detach, sc)) == NULL)
{
aprint_error("%s: shutdown_hook_establish() failed\n", NAME_UNIT);
nbsd_detach(self, 0);
return;
}
/* Initialize the top-half and bottom-half locks. */
mutex_init(&sc->top_lock, MUTEX_DEFAULT, IPL_VM);
__cpu_simple_lock_init(&sc->bottom_lock);
/* Initialize the driver. */
if ((error = lmc_attach(sc))) nbsd_detach(self, 0);
}
/* context: kernel (boot) or process (syscall) */
static int
nbsd_detach(struct device *self, int flags)
{
softc_t *sc = (softc_t *)self; /* device is first in softc */
/* Detach from the bus and the kernel. */
lmc_detach(sc);
/* Release resources. */
if (sc->sdh_cookie)
shutdownhook_disestablish(sc->sdh_cookie);
if (sc->irq_cookie)
pci_intr_disestablish(sc->pa_pc, sc->irq_cookie);
if (sc->csr_handle)
bus_space_unmap(sc->csr_tag, sc->csr_handle, TLP_CSR_SIZE);
/* Destroy locks. */
mutex_destroy(&sc->top_lock);
return 0;
}
CFATTACH_DECL(lmc, sizeof(softc_t), /* lmc_ca */
nbsd_match, nbsd_attach, nbsd_detach, NULL);