7b0b7dedd9
1) Move core entropy-pool code and source/sink/sample management code to sys/kern from sys/dev. 2) Remove use of NRND as test for presence of entropy-pool code throughout source tree. 3) Remove use of RND_ENABLED in device drivers as microoptimization to avoid expensive operations on disabled entropy sources; make the rnd_add calls do this directly so all callers benefit. 4) Fix bug in recent rnd_add_data()/rnd_add_uint32() changes that might have lead to slight entropy overestimation for some sources. 5) Add new source types for environmental sensors, power sensors, VM system events, and skew between clocks, with a sample implementation for each. ok releng to go in before the branch due to the difficulty of later pullup (widespread #ifdef removal and moved files). Tested with release builds on amd64 and evbarm and live testing on amd64.
2186 lines
57 KiB
C
2186 lines
57 KiB
C
/* $NetBSD: cs89x0.c,v 1.33 2012/02/02 19:43:03 tls Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2004 Christopher Gilbert
|
|
* All rights reserved.
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the company nor the name of the author may be used to
|
|
* endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright 1997
|
|
* Digital Equipment Corporation. All rights reserved.
|
|
*
|
|
* This software is furnished under license and may be used and
|
|
* copied only in accordance with the following terms and conditions.
|
|
* Subject to these conditions, you may download, copy, install,
|
|
* use, modify and distribute this software in source and/or binary
|
|
* form. No title or ownership is transferred hereby.
|
|
*
|
|
* 1) Any source code used, modified or distributed must reproduce
|
|
* and retain this copyright notice and list of conditions as
|
|
* they appear in the source file.
|
|
*
|
|
* 2) No right is granted to use any trade name, trademark, or logo of
|
|
* Digital Equipment Corporation. Neither the "Digital Equipment
|
|
* Corporation" name nor any trademark or logo of Digital Equipment
|
|
* Corporation may be used to endorse or promote products derived
|
|
* from this software without the prior written permission of
|
|
* Digital Equipment Corporation.
|
|
*
|
|
* 3) This software is provided "AS-IS" and any express or implied
|
|
* warranties, including but not limited to, any implied warranties
|
|
* of merchantability, fitness for a particular purpose, or
|
|
* non-infringement are disclaimed. In no event shall DIGITAL be
|
|
* liable for any damages whatsoever, and in particular, DIGITAL
|
|
* shall not be liable for special, indirect, consequential, or
|
|
* incidental damages or damages for lost profits, loss of
|
|
* revenue or loss of use, whether such damages arise in contract,
|
|
* negligence, tort, under statute, in equity, at law or otherwise,
|
|
* even if advised of the possibility of such damage.
|
|
*/
|
|
|
|
/*
|
|
**++
|
|
** FACILITY
|
|
**
|
|
** Device Driver for the Crystal CS8900 ISA Ethernet Controller.
|
|
**
|
|
** ABSTRACT
|
|
**
|
|
** This module provides standard ethernet access for INET protocols
|
|
** only.
|
|
**
|
|
** AUTHORS
|
|
**
|
|
** Peter Dettori SEA - Software Engineering.
|
|
**
|
|
** CREATION DATE:
|
|
**
|
|
** 13-Feb-1997.
|
|
**
|
|
** MODIFICATION HISTORY (Digital):
|
|
**
|
|
** Revision 1.27 1998/01/20 17:59:40 cgd
|
|
** update for moved headers
|
|
**
|
|
** Revision 1.26 1998/01/12 19:29:36 cgd
|
|
** use arm32/isa versions of isadma code.
|
|
**
|
|
** Revision 1.25 1997/12/12 01:35:27 cgd
|
|
** convert to use new arp code (from Brini)
|
|
**
|
|
** Revision 1.24 1997/12/10 22:31:56 cgd
|
|
** trim some fat (get rid of ability to explicitly supply enet addr, since
|
|
** it was never used and added a bunch of code which really doesn't belong in
|
|
** an enet driver), and clean up slightly.
|
|
**
|
|
** Revision 1.23 1997/10/06 16:42:12 cgd
|
|
** copyright notices
|
|
**
|
|
** Revision 1.22 1997/06/20 19:38:01 chaiken
|
|
** fixes some smartcard problems
|
|
**
|
|
** Revision 1.21 1997/06/10 02:56:20 grohn
|
|
** Added call to ledNetActive
|
|
**
|
|
** Revision 1.20 1997/06/05 00:47:06 dettori
|
|
** Changed cs_process_rx_dma to reset and re-initialise the
|
|
** ethernet chip when DMA gets out of sync, or mbufs
|
|
** can't be allocated.
|
|
**
|
|
** Revision 1.19 1997/06/03 03:09:58 dettori
|
|
** Turn off sc_txbusy flag when a transmit underrun
|
|
** occurs.
|
|
**
|
|
** Revision 1.18 1997/06/02 00:04:35 dettori
|
|
** redefined the transmit table to get around the nfs_timer bug while we are
|
|
** looking into it further.
|
|
**
|
|
** Also changed interrupts from EDGE to LEVEL.
|
|
**
|
|
** Revision 1.17 1997/05/27 23:31:01 dettori
|
|
** Pulled out changes to DMAMODE defines.
|
|
**
|
|
** Revision 1.16 1997/05/23 04:25:16 cgd
|
|
** reformat log so it fits in 80cols
|
|
**
|
|
** Revision 1.15 1997/05/23 04:22:18 cgd
|
|
** remove the existing copyright notice (which Peter Dettori indicated
|
|
** was incorrect, copied from an existing NetBSD file only so that the
|
|
** file would have a copyright notice on it, and which he'd intended to
|
|
** replace). Replace it with a Digital copyright notice, cloned from
|
|
** ess.c. It's not really correct either (it indicates that the source
|
|
** is Digital confidential!), but is better than nothing and more
|
|
** correct than what was there before.
|
|
**
|
|
** Revision 1.14 1997/05/23 04:12:50 cgd
|
|
** use an adaptive transmit start algorithm: start by telling the chip
|
|
** to start transmitting after 381 bytes have been fed to it. if that
|
|
** gets transmit underruns, ramp down to 1021 bytes then "whole
|
|
** packet." If successful at a given level for a while, try the next
|
|
** more agressive level. This code doesn't ever try to start
|
|
** transmitting after 5 bytes have been sent to the NIC, because
|
|
** that underruns rather regularly. The back-off and ramp-up mechanism
|
|
** could probably be tuned a little bit, but this works well enough to
|
|
** support > 1MB/s transmit rates on a clear ethernet (which is about
|
|
** 20-25% better than the driver had previously been getting).
|
|
**
|
|
** Revision 1.13 1997/05/22 21:06:54 cgd
|
|
** redo cs_copy_tx_frame() from scratch. It had a fatal flaw: it was blindly
|
|
** casting from u_int8_t * to u_int16_t * without worrying about alignment
|
|
** issues. This would cause bogus data to be spit out for mbufs with
|
|
** misaligned data. For instance, it caused the following bits to appear
|
|
** on the wire:
|
|
** ... etBND 1S2C .SHA(K) R ...
|
|
** 11112222333344445555
|
|
** which should have appeared as:
|
|
** ... NetBSD 1.2C (SHARK) ...
|
|
** 11112222333344445555
|
|
** Note the apparent 'rotate' of the bytes in the word, which was due to
|
|
** incorrect unaligned accesses. This data corruption was the cause of
|
|
** incoming telnet/rlogin hangs.
|
|
**
|
|
** Revision 1.12 1997/05/22 01:55:32 cgd
|
|
** reformat log so it fits in 80cols
|
|
**
|
|
** Revision 1.11 1997/05/22 01:50:27 cgd
|
|
** * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
|
|
** so packets aimed at other hosts don't get sent to ether_input().
|
|
** * Add a static const char *rcsid initialized with an RCS Id tag, so that
|
|
** you can easily tell (`strings`) what version of the driver is in your
|
|
** kernel binary.
|
|
** * get rid of ether_cmp(). It was inconsistently used, not necessarily
|
|
** safe, and not really a performance win anyway. (It was only used when
|
|
** setting up the multicast logical address filter, which is an
|
|
** infrequent event. It could have been used in the IFF_PROMISCUOUS
|
|
** address check above, but the benefit of it vs. memcmp would be
|
|
** inconsequential, there.) Use memcmp() instead.
|
|
** * restructure csStartOuput to avoid the following bugs in the case where
|
|
** txWait was being set:
|
|
** * it would accidentally drop the outgoing packet if told to wait
|
|
** but the outgoing packet queue was empty.
|
|
** * it would bpf_mtap() the outgoing packet multiple times (once for
|
|
** each time it was told to wait), and would also recalculate
|
|
** the length of the outgoing packet each time it was told to
|
|
** wait.
|
|
** While there, rename txWait to txLoop, since with the new structure of
|
|
** the code, the latter name makes more sense.
|
|
**
|
|
** Revision 1.10 1997/05/19 02:03:20 cgd
|
|
** Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip(). cs_initChip()
|
|
** is the only caller of cs_set_ladr_filt(), and always calls it, so this
|
|
** ends up being logically the same. In cs_set_ladr_filt(), if IFF_PROMISC
|
|
** is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
|
|
** as before.
|
|
**
|
|
** Revision 1.9 1997/05/19 01:45:37 cgd
|
|
** create a new function, cs_ether_input(), which does received-packet
|
|
** BPF and ether_input processing. This code used to be in three places,
|
|
** and centralizing it will make adding IFF_PROMISC support much easier.
|
|
** Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
|
|
** do copies with bus_space_write_region_2(). It's more correct, and
|
|
** potentially more efficient. That function needs to be gutted (to
|
|
** deal properly with alignment issues, which it currently does wrong),
|
|
** however, and the change doesn't gain much, so there's no point in
|
|
** enabling it now.
|
|
**
|
|
** Revision 1.8 1997/05/19 01:17:10 cgd
|
|
** fix a comment re: the setting of the TxConfig register. Clean up
|
|
** interface counter maintenance (make it use standard idiom).
|
|
**
|
|
**--
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.33 2012/02/02 19:43:03 tls Exp $");
|
|
|
|
#include "opt_inet.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/device.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
|
|
#include <sys/rnd.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_ether.h>
|
|
#include <net/if_media.h>
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_inarp.h>
|
|
#endif
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/bpfdesc.h>
|
|
|
|
#include <sys/bus.h>
|
|
#include <sys/intr.h>
|
|
|
|
#include <dev/ic/cs89x0reg.h>
|
|
#include <dev/ic/cs89x0var.h>
|
|
|
|
#ifdef SHARK
|
|
#include <shark/shark/sequoia.h>
|
|
#endif
|
|
|
|
/*
|
|
* MACRO DEFINITIONS
|
|
*/
|
|
#define CS_OUTPUT_LOOP_MAX 100 /* max times round notorious tx loop */
|
|
|
|
/*
|
|
* FUNCTION PROTOTYPES
|
|
*/
|
|
static void cs_get_default_media(struct cs_softc *);
|
|
static int cs_get_params(struct cs_softc *);
|
|
static int cs_get_enaddr(struct cs_softc *);
|
|
static int cs_reset_chip(struct cs_softc *);
|
|
static void cs_reset(struct cs_softc *);
|
|
static int cs_ioctl(struct ifnet *, u_long, void *);
|
|
static void cs_initChip(struct cs_softc *);
|
|
static void cs_buffer_event(struct cs_softc *, u_int16_t);
|
|
static void cs_transmit_event(struct cs_softc *, u_int16_t);
|
|
static void cs_receive_event(struct cs_softc *, u_int16_t);
|
|
static void cs_process_receive(struct cs_softc *);
|
|
static void cs_process_rx_early(struct cs_softc *);
|
|
static void cs_start_output(struct ifnet *);
|
|
static void cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
|
|
static void cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
|
|
static u_int16_t cs_hash_index(char *);
|
|
static void cs_counter_event(struct cs_softc *, u_int16_t);
|
|
|
|
static int cs_mediachange(struct ifnet *);
|
|
static void cs_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
|
|
static bool cs_shutdown(device_t, int);
|
|
static int cs_enable(struct cs_softc *);
|
|
static void cs_disable(struct cs_softc *);
|
|
static void cs_stop(struct ifnet *, int);
|
|
static int cs_scan_eeprom(struct cs_softc *);
|
|
static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
|
|
|
|
|
|
/*
|
|
* GLOBAL DECLARATIONS
|
|
*/
|
|
|
|
/*
|
|
* Xmit-early table.
|
|
*
|
|
* To get better performance, we tell the chip to start packet
|
|
* transmission before the whole packet is copied to the chip.
|
|
* However, this can fail under load. When it fails, we back off
|
|
* to a safer setting for a little while.
|
|
*
|
|
* txcmd is the value of txcmd used to indicate when to start transmission.
|
|
* better is the next 'better' state in the table.
|
|
* better_count is the number of output packets before transition to the
|
|
* better state.
|
|
* worse is the next 'worse' state in the table.
|
|
*
|
|
* Transition to the next worse state happens automatically when a
|
|
* transmittion underrun occurs.
|
|
*/
|
|
struct cs_xmit_early {
|
|
u_int16_t txcmd;
|
|
int better;
|
|
int better_count;
|
|
int worse;
|
|
} cs_xmit_early_table[3] = {
|
|
{ TX_CMD_START_381, 0, INT_MAX, 1, },
|
|
{ TX_CMD_START_1021, 0, 50000, 2, },
|
|
{ TX_CMD_START_ALL, 1, 5000, 2, },
|
|
};
|
|
|
|
int cs_default_media[] = {
|
|
IFM_ETHER|IFM_10_2,
|
|
IFM_ETHER|IFM_10_5,
|
|
IFM_ETHER|IFM_10_T,
|
|
IFM_ETHER|IFM_10_T|IFM_FDX,
|
|
};
|
|
int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
|
|
|
|
int
|
|
cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
|
|
int nmedia, int defmedia)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
const char *chipname, *medname;
|
|
u_int16_t reg;
|
|
int i;
|
|
|
|
/* Start out in IO mode */
|
|
sc->sc_memorymode = FALSE;
|
|
|
|
/* make sure we're right */
|
|
for (i = 0; i < 10000; i++) {
|
|
reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
|
|
if (reg == EISA_NUM_CRYSTAL) {
|
|
break;
|
|
}
|
|
}
|
|
if (i == 10000) {
|
|
aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
|
|
return 1; /* XXX should panic? */
|
|
}
|
|
|
|
reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
|
|
sc->sc_prodid = reg & PROD_ID_MASK;
|
|
sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
|
|
|
|
switch (sc->sc_prodid) {
|
|
case PROD_ID_CS8900:
|
|
chipname = "CS8900";
|
|
break;
|
|
case PROD_ID_CS8920:
|
|
chipname = "CS8920";
|
|
break;
|
|
case PROD_ID_CS8920M:
|
|
chipname = "CS8920M";
|
|
break;
|
|
default:
|
|
panic("cs_attach: impossible");
|
|
}
|
|
|
|
/*
|
|
* the first thing to do is check that the mbuf cluster size is
|
|
* greater than the MTU for an ethernet frame. The code depends on
|
|
* this and to port this to a OS where this was not the case would
|
|
* not be straightforward.
|
|
*
|
|
* we need 1 byte spare because our
|
|
* packet read loop can overrun.
|
|
* and we may need pad bytes to align ip header.
|
|
*/
|
|
if (MCLBYTES < ETHER_MAX_LEN + 1 +
|
|
ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
|
|
printf("%s: MCLBYTES too small for Ethernet frame\n",
|
|
device_xname(sc->sc_dev));
|
|
return 1;
|
|
}
|
|
|
|
/* Start out not transmitting */
|
|
sc->sc_txbusy = FALSE;
|
|
|
|
/* Set up early transmit threshhold */
|
|
sc->sc_xe_ent = 0;
|
|
sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
|
|
|
|
/* Initialize ifnet structure. */
|
|
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
|
|
ifp->if_softc = sc;
|
|
ifp->if_start = cs_start_output;
|
|
ifp->if_init = cs_init;
|
|
ifp->if_ioctl = cs_ioctl;
|
|
ifp->if_stop = cs_stop;
|
|
ifp->if_watchdog = NULL; /* no watchdog at this stage */
|
|
ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
|
|
IFF_BROADCAST | IFF_MULTICAST;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/* Initialize ifmedia structures. */
|
|
ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
|
|
|
|
if (media != NULL) {
|
|
for (i = 0; i < nmedia; i++)
|
|
ifmedia_add(&sc->sc_media, media[i], 0, NULL);
|
|
ifmedia_set(&sc->sc_media, defmedia);
|
|
} else {
|
|
for (i = 0; i < cs_default_nmedia; i++)
|
|
ifmedia_add(&sc->sc_media, cs_default_media[i],
|
|
0, NULL);
|
|
cs_get_default_media(sc);
|
|
}
|
|
|
|
if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
|
|
if (cs_scan_eeprom(sc) == CS_ERROR) {
|
|
/* failed to scan the eeprom, pretend there isn't an eeprom */
|
|
aprint_error_dev(sc->sc_dev, "unable to scan EEPROM\n");
|
|
sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
|
|
}
|
|
}
|
|
|
|
if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
|
|
/* Get parameters from the EEPROM */
|
|
if (cs_get_params(sc) == CS_ERROR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to get settings from EEPROM\n");
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (enaddr != NULL)
|
|
memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
|
|
else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
|
|
/* Get and store the Ethernet address */
|
|
if (cs_get_enaddr(sc) == CS_ERROR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to read Ethernet address\n");
|
|
return 1;
|
|
}
|
|
} else {
|
|
#if 1
|
|
int j;
|
|
uint v;
|
|
|
|
for (j = 0; j < 6; j += 2) {
|
|
v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
|
|
sc->sc_enaddr[j + 0] = v;
|
|
sc->sc_enaddr[j + 1] = v >> 8;
|
|
}
|
|
#else
|
|
printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
|
|
case IFM_10_2:
|
|
medname = "BNC";
|
|
break;
|
|
case IFM_10_5:
|
|
medname = "AUI";
|
|
break;
|
|
case IFM_10_T:
|
|
if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
|
|
medname = "UTP <full-duplex>";
|
|
else
|
|
medname = "UTP";
|
|
break;
|
|
default:
|
|
panic("cs_attach: impossible");
|
|
}
|
|
printf("%s: %s rev. %c, address %s, media %s\n",
|
|
device_xname(sc->sc_dev),
|
|
chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
|
|
medname);
|
|
|
|
if (sc->sc_dma_attach)
|
|
(*sc->sc_dma_attach)(sc);
|
|
|
|
/* Attach the interface. */
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, sc->sc_enaddr);
|
|
|
|
rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
|
|
RND_TYPE_NET, 0);
|
|
sc->sc_cfgflags |= CFGFLG_ATTACHED;
|
|
|
|
if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
|
|
pmf_class_network_register(sc->sc_dev, ifp);
|
|
else
|
|
aprint_error_dev(sc->sc_dev,
|
|
"couldn't establish power handler\n");
|
|
|
|
/* Reset the chip */
|
|
if (cs_reset_chip(sc) == CS_ERROR) {
|
|
aprint_error_dev(sc->sc_dev, "reset failed\n");
|
|
cs_detach(sc);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
cs_detach(struct cs_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
|
|
rnd_detach_source(&sc->rnd_source);
|
|
ether_ifdetach(ifp);
|
|
if_detach(ifp);
|
|
sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* XXX not necessary
|
|
*/
|
|
if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
|
|
isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
|
|
isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
|
|
isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
|
|
sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
|
|
}
|
|
#endif
|
|
|
|
pmf_device_deregister(sc->sc_dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool
|
|
cs_shutdown(device_t self, int howto)
|
|
{
|
|
struct cs_softc *sc;
|
|
|
|
sc = device_private(self);
|
|
cs_reset(sc);
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
cs_get_default_media(struct cs_softc *sc)
|
|
{
|
|
u_int16_t adp_cfg, xmit_ctl;
|
|
|
|
if (cs_verify_eeprom(sc) == CS_ERROR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_get_default_media: EEPROM missing or bad\n");
|
|
goto fakeit;
|
|
}
|
|
|
|
if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to read adapter config from EEPROM\n");
|
|
goto fakeit;
|
|
}
|
|
|
|
if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to read transmit control from EEPROM\n");
|
|
goto fakeit;
|
|
}
|
|
|
|
switch (adp_cfg & ADPTR_CFG_MEDIA) {
|
|
case ADPTR_CFG_AUI:
|
|
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
|
|
break;
|
|
case ADPTR_CFG_10BASE2:
|
|
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
|
|
break;
|
|
case ADPTR_CFG_10BASET:
|
|
default:
|
|
if (xmit_ctl & XMIT_CTL_FDX)
|
|
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
|
|
else
|
|
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
|
|
break;
|
|
}
|
|
return;
|
|
|
|
fakeit:
|
|
aprint_error_dev(sc->sc_dev,
|
|
"WARNING: default media setting may be inaccurate\n");
|
|
/* XXX Arbitrary... */
|
|
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
|
|
}
|
|
|
|
/*
|
|
* cs_scan_eeprom
|
|
*
|
|
* Attempt to take a complete copy of the eeprom into main memory.
|
|
* this will allow faster parsing of the eeprom data.
|
|
*
|
|
* Only tested against a 8920M's eeprom, but the data sheet for the
|
|
* 8920A indicates that is uses the same layout.
|
|
*/
|
|
int
|
|
cs_scan_eeprom(struct cs_softc *sc)
|
|
{
|
|
u_int16_t result;
|
|
int i;
|
|
int eeprom_size;
|
|
u_int8_t checksum = 0;
|
|
|
|
if (cs_verify_eeprom(sc) == CS_ERROR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_scan_params: EEPROM missing or bad\n");
|
|
return (CS_ERROR);
|
|
}
|
|
|
|
/*
|
|
* read the 0th word from the eeprom, it will tell us the length
|
|
* and if the eeprom is valid
|
|
*/
|
|
cs_read_eeprom(sc, 0, &result);
|
|
|
|
/* check the eeprom signature */
|
|
if ((result & 0xE000) != 0xA000) {
|
|
/* empty eeprom */
|
|
return (CS_ERROR);
|
|
}
|
|
|
|
/*
|
|
* take the eeprom size (note the read value doesn't include the header
|
|
* word)
|
|
*/
|
|
eeprom_size = (result & 0xff) + 2;
|
|
|
|
sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
|
|
if (sc->eeprom_data == NULL) {
|
|
/* no memory, treat this as if there's no eeprom */
|
|
return (CS_ERROR);
|
|
}
|
|
|
|
sc->eeprom_size = eeprom_size;
|
|
|
|
/* read the eeprom into the buffer, also calculate the checksum */
|
|
for (i = 0; i < (eeprom_size >> 1); i++) {
|
|
cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
|
|
checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
|
|
checksum += (sc->eeprom_data[i] & 0x00ff);
|
|
}
|
|
|
|
/*
|
|
* validate checksum calculation, the sum of all the bytes should be 0,
|
|
* as the high byte of the last word is the 2's complement of the
|
|
* sum to that point.
|
|
*/
|
|
if (checksum != 0) {
|
|
aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
|
|
return (CS_ERROR);
|
|
}
|
|
|
|
return (CS_OK);
|
|
}
|
|
|
|
static int
|
|
cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
|
|
{
|
|
int x, maxword;
|
|
|
|
/* Check that we have eeprom data */
|
|
if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
|
|
return (CS_ERROR);
|
|
|
|
/*
|
|
* We only want to read the data words, the last word contains the
|
|
* checksum
|
|
*/
|
|
maxword = (sc->eeprom_size - 2) >> 1;
|
|
|
|
/* start 1 word in, as the first word is the length and signature */
|
|
x = 1;
|
|
|
|
while ( x < (maxword)) {
|
|
u_int16_t header;
|
|
int group_size;
|
|
int offset;
|
|
int offset_max;
|
|
|
|
/* read in the group header word */
|
|
header = sc->eeprom_data[x];
|
|
x++; /* skip group header */
|
|
|
|
/*
|
|
* size of group in words is in the top 4 bits, note that it
|
|
* is one less than the number of words
|
|
*/
|
|
group_size = header & 0xF000;
|
|
|
|
/*
|
|
* CS8900 Data sheet says this should be 0x01ff,
|
|
* but my cs8920 eeprom has higher offsets,
|
|
* perhaps the 8920 allows higher offsets, otherwise
|
|
* it's writing to places that it shouldn't
|
|
*/
|
|
/* work out the offsets this group covers */
|
|
offset = header & 0x0FFF;
|
|
offset_max = offset + (group_size << 1);
|
|
|
|
/* check if the pkgpg we're after is in this group */
|
|
if ((offset <= pktpg) && (pktpg <= offset_max)) {
|
|
/* the pkgpg value we want is in here */
|
|
int eeprom_location;
|
|
|
|
eeprom_location = ((pktpg - offset) >> 1) ;
|
|
|
|
*pValue = sc->eeprom_data[x + eeprom_location];
|
|
return (CS_OK);
|
|
} else {
|
|
/* skip this group (+ 1 for first entry) */
|
|
x += group_size + 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* if we've fallen out here then we don't have a value in the EEPROM
|
|
* for this pktpg so return an error
|
|
*/
|
|
return (CS_ERROR);
|
|
}
|
|
|
|
int
|
|
cs_get_params(struct cs_softc *sc)
|
|
{
|
|
u_int16_t isaConfig;
|
|
u_int16_t adapterConfig;
|
|
|
|
if (cs_verify_eeprom(sc) == CS_ERROR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_get_params: EEPROM missing or bad\n");
|
|
return (CS_ERROR);
|
|
}
|
|
|
|
if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
|
|
/* Get ISA configuration from the EEPROM */
|
|
if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
|
|
== CS_ERROR) {
|
|
/* eeprom doesn't have this value, use data sheet default */
|
|
isaConfig = 0x0017;
|
|
}
|
|
|
|
/* Get adapter configuration from the EEPROM */
|
|
if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
|
|
== CS_ERROR) {
|
|
/* eeprom doesn't have this value, use data sheet default */
|
|
adapterConfig = 0x0015;
|
|
}
|
|
|
|
/* Copy the USE_SA flag */
|
|
if (isaConfig & BUS_CTL_USE_SA)
|
|
sc->sc_cfgflags |= CFGFLG_USE_SA;
|
|
|
|
/* Copy the IO Channel Ready flag */
|
|
if (isaConfig & BUS_CTL_IOCHRDY)
|
|
sc->sc_cfgflags |= CFGFLG_IOCHRDY;
|
|
|
|
/* Copy the DC/DC Polarity flag */
|
|
if (adapterConfig & SELF_CTL_HCB1)
|
|
sc->sc_cfgflags |= CFGFLG_DCDC_POL;
|
|
} else {
|
|
/* Get ISA configuration from the EEPROM */
|
|
if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
|
|
goto eeprom_bad;
|
|
|
|
/* Get adapter configuration from the EEPROM */
|
|
if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
|
|
goto eeprom_bad;
|
|
|
|
/* Copy the USE_SA flag */
|
|
if (isaConfig & ISA_CFG_USE_SA)
|
|
sc->sc_cfgflags |= CFGFLG_USE_SA;
|
|
|
|
/* Copy the IO Channel Ready flag */
|
|
if (isaConfig & ISA_CFG_IOCHRDY)
|
|
sc->sc_cfgflags |= CFGFLG_IOCHRDY;
|
|
|
|
/* Copy the DC/DC Polarity flag */
|
|
if (adapterConfig & ADPTR_CFG_DCDC_POL)
|
|
sc->sc_cfgflags |= CFGFLG_DCDC_POL;
|
|
}
|
|
|
|
return (CS_OK);
|
|
eeprom_bad:
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_get_params: unable to read from EEPROM\n");
|
|
return (CS_ERROR);
|
|
}
|
|
|
|
int
|
|
cs_get_enaddr(struct cs_softc *sc)
|
|
{
|
|
uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
|
|
int i;
|
|
|
|
if (cs_verify_eeprom(sc) == CS_ERROR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_get_enaddr: EEPROM missing or bad\n");
|
|
return (CS_ERROR);
|
|
}
|
|
|
|
/* Get Ethernet address from the EEPROM */
|
|
if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
|
|
if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
|
|
== CS_ERROR)
|
|
goto eeprom_bad;
|
|
if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
|
|
== CS_ERROR)
|
|
goto eeprom_bad;
|
|
if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
|
|
== CS_ERROR)
|
|
goto eeprom_bad;
|
|
} else {
|
|
if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
|
|
goto eeprom_bad;
|
|
if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
|
|
goto eeprom_bad;
|
|
if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
|
|
goto eeprom_bad;
|
|
}
|
|
|
|
for (i = 0; i < __arraycount(myea); i++) {
|
|
sc->sc_enaddr[i * 2 + 0] = myea[i];
|
|
sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
|
|
}
|
|
|
|
return (CS_OK);
|
|
|
|
eeprom_bad:
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_get_enaddr: unable to read from EEPROM\n");
|
|
return (CS_ERROR);
|
|
}
|
|
|
|
int
|
|
cs_reset_chip(struct cs_softc *sc)
|
|
{
|
|
int intState;
|
|
int x;
|
|
|
|
/* Disable interrupts at the CPU so reset command is atomic */
|
|
intState = splnet();
|
|
|
|
/*
|
|
* We are now resetting the chip
|
|
*
|
|
* A spurious interrupt is generated by the chip when it is reset. This
|
|
* variable informs the interrupt handler to ignore this interrupt.
|
|
*/
|
|
sc->sc_resetting = TRUE;
|
|
|
|
/* Issue a reset command to the chip */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
|
|
|
|
/* Re-enable interrupts at the CPU */
|
|
splx(intState);
|
|
|
|
/* The chip is always in IO mode after a reset */
|
|
sc->sc_memorymode = FALSE;
|
|
|
|
/* If transmission was in progress, it is not now */
|
|
sc->sc_txbusy = FALSE;
|
|
|
|
/*
|
|
* there was a delay(125); here, but it seems uneccesary 125 usec is
|
|
* 1/8000 of a second, not 1/8 of a second. the data sheet advises
|
|
* 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
|
|
* should be sufficient.
|
|
*/
|
|
|
|
/* Transition SBHE to switch chip from 8-bit to 16-bit */
|
|
IO_READ_1(sc, PORT_PKTPG_PTR + 0);
|
|
IO_READ_1(sc, PORT_PKTPG_PTR + 1);
|
|
IO_READ_1(sc, PORT_PKTPG_PTR + 0);
|
|
IO_READ_1(sc, PORT_PKTPG_PTR + 1);
|
|
|
|
/* Wait until the EEPROM is not busy */
|
|
for (x = 0; x < MAXLOOP; x++) {
|
|
if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
|
|
break;
|
|
}
|
|
|
|
if (x == MAXLOOP)
|
|
return CS_ERROR;
|
|
|
|
/* Wait until initialization is done */
|
|
for (x = 0; x < MAXLOOP; x++) {
|
|
if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
|
|
break;
|
|
}
|
|
|
|
if (x == MAXLOOP)
|
|
return CS_ERROR;
|
|
|
|
/* Reset is no longer in progress */
|
|
sc->sc_resetting = FALSE;
|
|
|
|
return CS_OK;
|
|
}
|
|
|
|
int
|
|
cs_verify_eeprom(struct cs_softc *sc)
|
|
{
|
|
u_int16_t self_status;
|
|
|
|
/* Verify that the EEPROM is present and OK */
|
|
self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
|
|
if (((self_status & SELF_ST_EEP_PRES) &&
|
|
(self_status & SELF_ST_EEP_OK)) == 0)
|
|
return (CS_ERROR);
|
|
|
|
return (CS_OK);
|
|
}
|
|
|
|
int
|
|
cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
|
|
{
|
|
int x;
|
|
|
|
/* Ensure that the EEPROM is not busy */
|
|
for (x = 0; x < MAXLOOP; x++) {
|
|
if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
|
|
SELF_ST_SI_BUSY))
|
|
break;
|
|
}
|
|
|
|
if (x == MAXLOOP)
|
|
return (CS_ERROR);
|
|
|
|
/* Issue the command to read the offset within the EEPROM */
|
|
CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
|
|
offset | EEPROM_CMD_READ);
|
|
|
|
/* Wait until the command is completed */
|
|
for (x = 0; x < MAXLOOP; x++) {
|
|
if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
|
|
SELF_ST_SI_BUSY))
|
|
break;
|
|
}
|
|
|
|
if (x == MAXLOOP)
|
|
return (CS_ERROR);
|
|
|
|
/* Get the EEPROM data from the EEPROM Data register */
|
|
*pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
|
|
|
|
return (CS_OK);
|
|
}
|
|
|
|
void
|
|
cs_initChip(struct cs_softc *sc)
|
|
{
|
|
u_int16_t busCtl;
|
|
u_int16_t selfCtl;
|
|
u_int16_t v;
|
|
u_int16_t isaId;
|
|
int i;
|
|
int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
|
|
|
|
/* Disable reception and transmission of frames */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
|
|
~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
|
|
|
|
/* Disable interrupt at the chip */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
|
|
|
|
/* If IOCHRDY is enabled then clear the bit in the busCtl register */
|
|
busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
|
|
if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
|
|
busCtl & ~BUS_CTL_IOCHRDY);
|
|
} else {
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
|
|
busCtl | BUS_CTL_IOCHRDY);
|
|
}
|
|
|
|
/* Set the Line Control register to match the media type */
|
|
if (media == IFM_10_T)
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
|
|
else
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
|
|
|
|
/*
|
|
* Set the BSTATUS/HC1 pin to be used as HC1. HC1 is used to
|
|
* enable the DC/DC converter
|
|
*/
|
|
selfCtl = SELF_CTL_HC1E;
|
|
|
|
/* If the media type is 10Base2 */
|
|
if (media == IFM_10_2) {
|
|
/*
|
|
* Enable the DC/DC converter if it has a low enable.
|
|
*/
|
|
if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
|
|
/*
|
|
* Set the HCB1 bit, which causes the HC1 pin to go
|
|
* low.
|
|
*/
|
|
selfCtl |= SELF_CTL_HCB1;
|
|
} else { /* Media type is 10BaseT or AUI */
|
|
/*
|
|
* Disable the DC/DC converter if it has a high enable.
|
|
*/
|
|
if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
|
|
/*
|
|
* Set the HCB1 bit, which causes the HC1 pin to go
|
|
* low.
|
|
*/
|
|
selfCtl |= SELF_CTL_HCB1;
|
|
}
|
|
}
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
|
|
|
|
/* enable normal link pulse */
|
|
if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
|
|
|
|
/* Enable full-duplex, if appropriate */
|
|
if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
|
|
|
|
/* RX_CTL set in cs_set_ladr_filt(), below */
|
|
|
|
/* enable all transmission interrupts */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
|
|
|
|
/* Accept all receive interrupts */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
|
|
|
|
/*
|
|
* Configure Operational Modes
|
|
*
|
|
* I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
|
|
* a better way to do it because the card has a counter which can be
|
|
* read to update the RX_MISS counter. This saves many interrupts.
|
|
*
|
|
* I have turned on the tx and rx overflow interrupts to counter using
|
|
* the receive miss interrupt. This is a better estimate of errors
|
|
* and requires lower system overhead.
|
|
*/
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
|
|
BUF_CFG_RX_DMA_IE);
|
|
|
|
if (sc->sc_dma_chipinit)
|
|
(*sc->sc_dma_chipinit)(sc);
|
|
|
|
/* If memory mode is enabled */
|
|
if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
|
|
/* If external logic is present for address decoding */
|
|
if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
|
|
/*
|
|
* Program the external logic to decode address bits
|
|
* SA20-SA23
|
|
*/
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
|
|
((sc->sc_pktpgaddr & 0xffffff) >> 20) |
|
|
EEPROM_CMD_ELSEL);
|
|
}
|
|
|
|
/*
|
|
* Write the packet page base physical address to the memory
|
|
* base register.
|
|
*/
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
|
|
sc->sc_pktpgaddr & 0xFFFF);
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
|
|
sc->sc_pktpgaddr >> 16);
|
|
busCtl = BUS_CTL_MEM_MODE;
|
|
|
|
/* tell the chip to read the addresses off the SA pins */
|
|
if (sc->sc_cfgflags & CFGFLG_USE_SA) {
|
|
busCtl |= BUS_CTL_USE_SA;
|
|
}
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
|
|
|
|
/* We are in memory mode now! */
|
|
sc->sc_memorymode = TRUE;
|
|
|
|
/*
|
|
* wait here (10ms) for the chip to swap over. this is the
|
|
* maximum time that this could take.
|
|
*/
|
|
delay(10000);
|
|
|
|
/* Verify that we can read from the chip */
|
|
isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
|
|
|
|
/*
|
|
* As a last minute sanity check before actually using mapped
|
|
* memory we verify that we can read the isa number from the
|
|
* chip in memory mode.
|
|
*/
|
|
if (isaId != EISA_NUM_CRYSTAL) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"failed to enable memory mode\n");
|
|
sc->sc_memorymode = FALSE;
|
|
} else {
|
|
/*
|
|
* we are in memory mode so if we aren't using DMA,
|
|
* then program the chip to interrupt early.
|
|
*/
|
|
if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
|
|
BUF_CFG_RX_DEST_IE |
|
|
BUF_CFG_RX_MISS_OVER_IE |
|
|
BUF_CFG_TX_COL_OVER_IE);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/* Put Ethernet address into the Individual Address register */
|
|
for (i = 0; i < 6; i += 2) {
|
|
v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
|
|
}
|
|
|
|
if (sc->sc_irq != -1) {
|
|
/* Set the interrupt level in the chip */
|
|
if (sc->sc_prodid == PROD_ID_CS8900) {
|
|
if (sc->sc_irq == 5) {
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
|
|
} else {
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
|
|
}
|
|
}
|
|
else { /* CS8920 */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
|
|
}
|
|
}
|
|
|
|
/* write the multicast mask to the address filter register */
|
|
cs_set_ladr_filt(sc, &sc->sc_ethercom);
|
|
|
|
/* Enable reception and transmission of frames */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
|
|
LINE_CTL_RX_ON | LINE_CTL_TX_ON);
|
|
|
|
/* Enable interrupt at the chip */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
|
|
}
|
|
|
|
int
|
|
cs_init(struct ifnet *ifp)
|
|
{
|
|
int intState;
|
|
int error = CS_OK;
|
|
struct cs_softc *sc = ifp->if_softc;
|
|
|
|
if (cs_enable(sc))
|
|
goto out;
|
|
|
|
cs_stop(ifp, 0);
|
|
|
|
intState = splnet();
|
|
|
|
#if 0
|
|
/* Mark the interface as down */
|
|
sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
|
|
#endif
|
|
|
|
#ifdef CS_DEBUG
|
|
/* Enable debugging */
|
|
sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
|
|
#endif
|
|
|
|
/* Reset the chip */
|
|
if ((error = cs_reset_chip(sc)) == CS_OK) {
|
|
/* Initialize the chip */
|
|
cs_initChip(sc);
|
|
|
|
/* Mark the interface as running */
|
|
sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
|
|
sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
|
|
sc->sc_ethercom.ec_if.if_timer = 0;
|
|
|
|
/* Assume we have carrier until we are told otherwise. */
|
|
sc->sc_carrier = 1;
|
|
} else {
|
|
aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
|
|
}
|
|
|
|
splx(intState);
|
|
out:
|
|
if (error == CS_OK)
|
|
return 0;
|
|
return EIO;
|
|
}
|
|
|
|
void
|
|
cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
|
|
{
|
|
struct ifnet *ifp = &ec->ec_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
u_int16_t af[4];
|
|
u_int16_t port, mask, index;
|
|
|
|
/*
|
|
* Set up multicast address filter by passing all multicast addresses
|
|
* through a crc generator, and then using the high order 6 bits as an
|
|
* index into the 64 bit logical address filter. The high order bit
|
|
* selects the word, while the rest of the bits select the bit within
|
|
* the word.
|
|
*/
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
/* accept all valid frames. */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
|
|
RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
|
|
RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* accept frames if a. crc valid, b. individual address match c.
|
|
* broadcast address,and d. multicast addresses matched in the hash
|
|
* filter
|
|
*/
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
|
|
RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
|
|
|
|
|
|
/*
|
|
* start off with all multicast flag clear, set it if we need to
|
|
* later, otherwise we will leave it.
|
|
*/
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
af[0] = af[1] = af[2] = af[3] = 0x0000;
|
|
|
|
/*
|
|
* Loop through all the multicast addresses unless we get a range of
|
|
* addresses, in which case we will just accept all packets.
|
|
* Justification for this is given in the next comment.
|
|
*/
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
while (enm != NULL) {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
|
|
sizeof enm->enm_addrlo)) {
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
*/
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
af[0] = af[1] = af[2] = af[3] = 0xffff;
|
|
break;
|
|
} else {
|
|
/*
|
|
* we have got an individual address so just set that
|
|
* bit.
|
|
*/
|
|
index = cs_hash_index(enm->enm_addrlo);
|
|
|
|
/* Set the bit the Logical address filter. */
|
|
port = (u_int16_t) (index >> 4);
|
|
mask = (u_int16_t) (1 << (index & 0xf));
|
|
af[port] |= mask;
|
|
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
}
|
|
|
|
/* now program the chip with the addresses */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
|
|
return;
|
|
}
|
|
|
|
u_int16_t
|
|
cs_hash_index(char *addr)
|
|
{
|
|
uint32_t crc;
|
|
uint16_t hash_code;
|
|
|
|
crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
|
|
|
|
hash_code = crc >> 26;
|
|
return (hash_code);
|
|
}
|
|
|
|
void
|
|
cs_reset(struct cs_softc *sc)
|
|
{
|
|
|
|
/* Mark the interface as down */
|
|
sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
|
|
|
|
/* Reset the chip */
|
|
cs_reset_chip(sc);
|
|
}
|
|
|
|
int
|
|
cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct cs_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = data;
|
|
int state;
|
|
int result;
|
|
|
|
state = splnet();
|
|
|
|
result = 0; /* only set if something goes wrong */
|
|
|
|
switch (cmd) {
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
|
|
break;
|
|
|
|
default:
|
|
result = ether_ioctl(ifp, cmd, data);
|
|
if (result == ENETRESET) {
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
/*
|
|
* Multicast list has changed. Set the
|
|
* hardware filter accordingly.
|
|
*/
|
|
cs_set_ladr_filt(sc, &sc->sc_ethercom);
|
|
}
|
|
result = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
splx(state);
|
|
|
|
return result;
|
|
}
|
|
|
|
int
|
|
cs_mediachange(struct ifnet *ifp)
|
|
{
|
|
|
|
/*
|
|
* Current media is already set up. Just reset the interface
|
|
* to let the new value take hold.
|
|
*/
|
|
cs_init(ifp);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct cs_softc *sc = ifp->if_softc;
|
|
|
|
/*
|
|
* The currently selected media is always the active media.
|
|
*/
|
|
ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
|
|
|
|
if (ifp->if_flags & IFF_UP) {
|
|
/* Interface up, status is valid. */
|
|
ifmr->ifm_status = IFM_AVALID |
|
|
(sc->sc_carrier ? IFM_ACTIVE : 0);
|
|
}
|
|
else ifmr->ifm_status = 0;
|
|
}
|
|
|
|
int
|
|
cs_intr(void *arg)
|
|
{
|
|
struct cs_softc *sc = arg;
|
|
u_int16_t Event;
|
|
u_int16_t rndEvent;
|
|
|
|
/*printf("cs_intr %p\n", sc);*/
|
|
/* Ignore any interrupts that happen while the chip is being reset */
|
|
if (sc->sc_resetting) {
|
|
printf("%s: cs_intr: reset in progress\n",
|
|
device_xname(sc->sc_dev));
|
|
return 1;
|
|
}
|
|
|
|
/* Read an event from the Interrupt Status Queue */
|
|
if (sc->sc_memorymode)
|
|
Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
|
|
else
|
|
Event = CS_READ_PORT(sc, PORT_ISQ);
|
|
|
|
if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
|
|
return 0; /* not ours */
|
|
|
|
rndEvent = Event;
|
|
|
|
/* Process all the events in the Interrupt Status Queue */
|
|
while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
|
|
/* Dispatch to an event handler based on the register number */
|
|
switch (Event & REG_NUM_MASK) {
|
|
case REG_NUM_RX_EVENT:
|
|
cs_receive_event(sc, Event);
|
|
break;
|
|
case REG_NUM_TX_EVENT:
|
|
cs_transmit_event(sc, Event);
|
|
break;
|
|
case REG_NUM_BUF_EVENT:
|
|
cs_buffer_event(sc, Event);
|
|
break;
|
|
case REG_NUM_TX_COL:
|
|
case REG_NUM_RX_MISS:
|
|
cs_counter_event(sc, Event);
|
|
break;
|
|
default:
|
|
printf("%s: unknown interrupt event 0x%x\n",
|
|
device_xname(sc->sc_dev), Event);
|
|
break;
|
|
}
|
|
|
|
/* Read another event from the Interrupt Status Queue */
|
|
if (sc->sc_memorymode)
|
|
Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
|
|
else
|
|
Event = CS_READ_PORT(sc, PORT_ISQ);
|
|
}
|
|
|
|
/* have handled the interrupt */
|
|
rnd_add_uint32(&sc->rnd_source, rndEvent);
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
|
|
{
|
|
struct ifnet *ifp;
|
|
u_int16_t errorCount;
|
|
|
|
ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
switch (cntEvent & REG_NUM_MASK) {
|
|
case REG_NUM_TX_COL:
|
|
/*
|
|
* the count should be read before an overflow occurs.
|
|
*/
|
|
errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
|
|
/*
|
|
* the tramsit event routine always checks the number of
|
|
* collisions for any packet so we don't increment any
|
|
* counters here, as they should already have been
|
|
* considered.
|
|
*/
|
|
break;
|
|
case REG_NUM_RX_MISS:
|
|
/*
|
|
* the count should be read before an overflow occurs.
|
|
*/
|
|
errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
|
|
/*
|
|
* Increment the input error count, the first 6bits are the
|
|
* register id.
|
|
*/
|
|
ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
|
|
break;
|
|
default:
|
|
/* do nothing */
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
|
|
{
|
|
|
|
/*
|
|
* multiple events can be in the buffer event register at one time so
|
|
* a standard switch statement will not suffice, here every event
|
|
* must be checked.
|
|
*/
|
|
|
|
/*
|
|
* if 128 bits have been rxed by the time we get here, the dest event
|
|
* will be cleared and 128 event will be set.
|
|
*/
|
|
if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
|
|
cs_process_rx_early(sc);
|
|
}
|
|
|
|
if (bufEvent & BUF_EVENT_RX_DMA) {
|
|
/* process the receive data */
|
|
if (sc->sc_dma_process_rx)
|
|
(*sc->sc_dma_process_rx)(sc);
|
|
else
|
|
/* should panic? */
|
|
aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
|
|
}
|
|
|
|
if (bufEvent & BUF_EVENT_TX_UNDR) {
|
|
#if 0
|
|
/*
|
|
* This can happen occasionally, and it's not worth worrying
|
|
* about.
|
|
*/
|
|
printf("%s: transmit underrun (%d -> %d)\n",
|
|
device_xname(sc->sc_dev), sc->sc_xe_ent,
|
|
cs_xmit_early_table[sc->sc_xe_ent].worse);
|
|
#endif
|
|
sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
|
|
sc->sc_xe_togo =
|
|
cs_xmit_early_table[sc->sc_xe_ent].better_count;
|
|
|
|
/* had an underrun, transmit is finished */
|
|
sc->sc_txbusy = FALSE;
|
|
}
|
|
|
|
if (bufEvent & BUF_EVENT_SW_INT) {
|
|
printf("%s: software initiated interrupt\n",
|
|
device_xname(sc->sc_dev));
|
|
}
|
|
}
|
|
|
|
void
|
|
cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
/* If there were any errors transmitting this frame */
|
|
if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
|
|
TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
|
|
/* Increment the output error count */
|
|
ifp->if_oerrors++;
|
|
|
|
/* Note carrier loss. */
|
|
if (txEvent & TX_EVENT_LOSS_CRS)
|
|
sc->sc_carrier = 0;
|
|
|
|
/* If debugging is enabled then log error messages */
|
|
if (ifp->if_flags & IFF_DEBUG) {
|
|
if (txEvent & TX_EVENT_LOSS_CRS) {
|
|
aprint_error_dev(sc->sc_dev, "lost carrier\n");
|
|
}
|
|
if (txEvent & TX_EVENT_SQE_ERR) {
|
|
aprint_error_dev(sc->sc_dev, "SQE error\n");
|
|
}
|
|
if (txEvent & TX_EVENT_OUT_WIN) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"out-of-window collision\n");
|
|
}
|
|
if (txEvent & TX_EVENT_JABBER) {
|
|
aprint_error_dev(sc->sc_dev, "jabber\n");
|
|
}
|
|
if (txEvent & TX_EVENT_16_COLL) {
|
|
aprint_error_dev(sc->sc_dev, "16 collisions\n");
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* Transmission successful, carrier is up. */
|
|
sc->sc_carrier = 1;
|
|
#ifdef SHARK
|
|
ledNetActive();
|
|
#endif
|
|
}
|
|
|
|
/* Add the number of collisions for this frame */
|
|
if (txEvent & TX_EVENT_16_COLL) {
|
|
ifp->if_collisions += 16;
|
|
} else {
|
|
ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
|
|
}
|
|
|
|
ifp->if_opackets++;
|
|
|
|
/* Transmission is no longer in progress */
|
|
sc->sc_txbusy = FALSE;
|
|
|
|
/* If there is more to transmit */
|
|
if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
|
|
/* Start the next transmission */
|
|
cs_start_output(ifp);
|
|
}
|
|
}
|
|
|
|
void
|
|
cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
|
|
{
|
|
|
|
if (rxEvent & RX_EVENT_RUNT)
|
|
aprint_error_dev(sc->sc_dev, "runt\n");
|
|
|
|
if (rxEvent & RX_EVENT_X_DATA)
|
|
aprint_error_dev(sc->sc_dev, "extra data\n");
|
|
|
|
if (rxEvent & RX_EVENT_CRC_ERR) {
|
|
if (rxEvent & RX_EVENT_DRIBBLE)
|
|
aprint_error_dev(sc->sc_dev, "alignment error\n");
|
|
else
|
|
aprint_error_dev(sc->sc_dev, "CRC error\n");
|
|
} else {
|
|
if (rxEvent & RX_EVENT_DRIBBLE)
|
|
aprint_error_dev(sc->sc_dev, "dribble bits\n");
|
|
}
|
|
}
|
|
|
|
void
|
|
cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
/* If the frame was not received OK */
|
|
if (!(rxEvent & RX_EVENT_RX_OK)) {
|
|
/* Increment the input error count */
|
|
ifp->if_ierrors++;
|
|
|
|
/*
|
|
* If debugging is enabled then log error messages.
|
|
*/
|
|
if (ifp->if_flags & IFF_DEBUG) {
|
|
if (rxEvent != REG_NUM_RX_EVENT) {
|
|
cs_print_rx_errors(sc, rxEvent);
|
|
|
|
/*
|
|
* Must read the length of all received
|
|
* frames
|
|
*/
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
|
|
|
|
/* Skip the received frame */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
|
|
RX_CFG_SKIP);
|
|
} else {
|
|
aprint_error_dev(sc->sc_dev, "implied skip\n");
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* process the received frame and pass it up to the upper
|
|
* layers.
|
|
*/
|
|
cs_process_receive(sc);
|
|
}
|
|
}
|
|
|
|
void
|
|
cs_ether_input(struct cs_softc *sc, struct mbuf *m)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
ifp->if_ipackets++;
|
|
|
|
/*
|
|
* Check if there's a BPF listener on this interface.
|
|
* If so, hand off the raw packet to BPF.
|
|
*/
|
|
bpf_mtap(ifp, m);
|
|
|
|
/* Pass the packet up. */
|
|
(*ifp->if_input)(ifp, m);
|
|
}
|
|
|
|
void
|
|
cs_process_receive(struct cs_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct mbuf *m;
|
|
int totlen;
|
|
u_int16_t *pBuff, *pBuffLimit;
|
|
int pad;
|
|
unsigned int frameOffset = 0; /* XXX: gcc */
|
|
|
|
#ifdef SHARK
|
|
ledNetActive();
|
|
#endif
|
|
|
|
ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
/* Received a packet; carrier is up. */
|
|
sc->sc_carrier = 1;
|
|
|
|
if (sc->sc_memorymode) {
|
|
/* Initialize the frame offset */
|
|
frameOffset = PKTPG_RX_LENGTH;
|
|
|
|
/* Get the length of the received frame */
|
|
totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
|
|
frameOffset += 2;
|
|
}
|
|
else {
|
|
/* drop status */
|
|
CS_READ_PORT(sc, PORT_RXTX_DATA);
|
|
|
|
/* Get the length of the received frame */
|
|
totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
|
|
}
|
|
|
|
if (totlen > ETHER_MAX_LEN) {
|
|
aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
|
|
totlen);
|
|
|
|
/* skip the received frame */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
|
|
return;
|
|
}
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_process_receive: unable to allocate mbuf\n");
|
|
ifp->if_ierrors++;
|
|
/*
|
|
* couldn't allocate an mbuf so things are not good, may as
|
|
* well drop the packet I think.
|
|
*
|
|
* have already read the length so we should be right to skip
|
|
* the packet.
|
|
*/
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
|
|
return;
|
|
}
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = totlen;
|
|
|
|
/* number of bytes to align ip header on word boundary for ipintr */
|
|
pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
|
|
|
|
/*
|
|
* alloc mbuf cluster if we need.
|
|
* we need 1 byte spare because following
|
|
* packet read loop can overrun.
|
|
*/
|
|
if (totlen + pad + 1 > MHLEN) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
/* couldn't allocate an mbuf cluster */
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_process_receive: "
|
|
"unable to allocate a cluster\n");
|
|
m_freem(m);
|
|
|
|
/* skip the received frame */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* align ip header on word boundary for ipintr */
|
|
m->m_data += pad;
|
|
|
|
m->m_len = totlen;
|
|
pBuff = mtod(m, u_int16_t *);
|
|
|
|
/* now read the data from the chip */
|
|
if (sc->sc_memorymode) {
|
|
pBuffLimit = pBuff + (totlen + 1) / 2; /* don't want to go over */
|
|
while (pBuff < pBuffLimit) {
|
|
*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
|
|
frameOffset += 2;
|
|
}
|
|
}
|
|
else {
|
|
IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
|
|
}
|
|
|
|
cs_ether_input(sc, m);
|
|
}
|
|
|
|
void
|
|
cs_process_rx_early(struct cs_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct mbuf *m;
|
|
u_int16_t frameCount, oldFrameCount;
|
|
u_int16_t rxEvent;
|
|
u_int16_t *pBuff;
|
|
int pad;
|
|
unsigned int frameOffset;
|
|
|
|
|
|
ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
/* Initialize the frame offset */
|
|
frameOffset = PKTPG_RX_FRAME;
|
|
frameCount = 0;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_process_rx_early: unable to allocate mbuf\n");
|
|
ifp->if_ierrors++;
|
|
/*
|
|
* couldn't allocate an mbuf so things are not good, may as
|
|
* well drop the packet I think.
|
|
*
|
|
* have already read the length so we should be right to skip
|
|
* the packet.
|
|
*/
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
|
|
return;
|
|
}
|
|
m->m_pkthdr.rcvif = ifp;
|
|
/*
|
|
* save processing by always using a mbuf cluster, guaranteed to fit
|
|
* packet
|
|
*/
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
/* couldn't allocate an mbuf cluster */
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cs_process_rx_early: unable to allocate a cluster\n");
|
|
m_freem(m);
|
|
/* skip the frame */
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
|
|
CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
|
|
return;
|
|
}
|
|
|
|
/* align ip header on word boundary for ipintr */
|
|
pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
|
|
m->m_data += pad;
|
|
|
|
/* set up the buffer pointer to point to the data area */
|
|
pBuff = mtod(m, u_int16_t *);
|
|
|
|
/*
|
|
* now read the frame byte counter until we have finished reading the
|
|
* frame
|
|
*/
|
|
oldFrameCount = 0;
|
|
frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
|
|
while ((frameCount != 0) && (frameCount < MCLBYTES)) {
|
|
for (; oldFrameCount < frameCount; oldFrameCount += 2) {
|
|
*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
|
|
frameOffset += 2;
|
|
}
|
|
|
|
/* read the new count from the chip */
|
|
frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
|
|
}
|
|
|
|
/* update the mbuf counts */
|
|
m->m_len = oldFrameCount;
|
|
m->m_pkthdr.len = oldFrameCount;
|
|
|
|
/* now check the Rx Event register */
|
|
rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
|
|
|
|
if ((rxEvent & RX_EVENT_RX_OK) != 0) {
|
|
/*
|
|
* do an implied skip, it seems to be more reliable than a
|
|
* forced skip.
|
|
*/
|
|
rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
|
|
rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
|
|
|
|
/*
|
|
* now read the RX_EVENT register to perform an implied skip.
|
|
*/
|
|
rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
|
|
|
|
cs_ether_input(sc, m);
|
|
} else {
|
|
m_freem(m);
|
|
ifp->if_ierrors++;
|
|
}
|
|
}
|
|
|
|
void
|
|
cs_start_output(struct ifnet *ifp)
|
|
{
|
|
struct cs_softc *sc;
|
|
struct mbuf *pMbuf;
|
|
struct mbuf *pMbufChain;
|
|
u_int16_t BusStatus;
|
|
u_int16_t Length;
|
|
int txLoop = 0;
|
|
int dropout = 0;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
/* check that the interface is up and running */
|
|
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
|
|
return;
|
|
}
|
|
|
|
/* Don't interrupt a transmission in progress */
|
|
if (sc->sc_txbusy) {
|
|
return;
|
|
}
|
|
|
|
/* this loop will only run through once if transmission is successful */
|
|
/*
|
|
* While there are packets to transmit and a transmit is not in
|
|
* progress
|
|
*/
|
|
while (sc->sc_txbusy == 0 && dropout == 0) {
|
|
IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
|
|
if (pMbufChain == NULL)
|
|
break;
|
|
|
|
/*
|
|
* If BPF is listening on this interface, let it see the packet
|
|
* before we commit it to the wire.
|
|
*/
|
|
bpf_mtap(ifp, pMbufChain);
|
|
|
|
/* Find the total length of the data to transmit */
|
|
Length = 0;
|
|
for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
|
|
Length += pMbuf->m_len;
|
|
|
|
do {
|
|
/*
|
|
* Request that the transmit be started after all
|
|
* data has been copied
|
|
*
|
|
* In IO mode must write to the IO port not the packet
|
|
* page address
|
|
*
|
|
* If this is changed to start transmission after a
|
|
* small amount of data has been copied you tend to
|
|
* get packet missed errors i think because the ISA
|
|
* bus is too slow. Or possibly the copy routine is
|
|
* not streamlined enough.
|
|
*/
|
|
if (sc->sc_memorymode) {
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
|
|
cs_xmit_early_table[sc->sc_xe_ent].txcmd);
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
|
|
}
|
|
else {
|
|
CS_WRITE_PORT(sc, PORT_TX_CMD,
|
|
cs_xmit_early_table[sc->sc_xe_ent].txcmd);
|
|
CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
|
|
}
|
|
|
|
/*
|
|
* Adjust early-transmit machinery.
|
|
*/
|
|
if (--sc->sc_xe_togo == 0) {
|
|
sc->sc_xe_ent =
|
|
cs_xmit_early_table[sc->sc_xe_ent].better;
|
|
sc->sc_xe_togo =
|
|
cs_xmit_early_table[sc->sc_xe_ent].better_count;
|
|
}
|
|
/*
|
|
* Read the BusStatus register which indicates
|
|
* success of the request
|
|
*/
|
|
BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
|
|
|
|
/*
|
|
* If there was an error in the transmit bid free the
|
|
* mbuf and go on. This is presuming that mbuf is
|
|
* corrupt.
|
|
*/
|
|
if (BusStatus & BUS_ST_TX_BID_ERR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"transmit bid error (too big)");
|
|
|
|
/* Discard the bad mbuf chain */
|
|
m_freem(pMbufChain);
|
|
sc->sc_ethercom.ec_if.if_oerrors++;
|
|
|
|
/* Loop up to transmit the next chain */
|
|
txLoop = 0;
|
|
} else {
|
|
if (BusStatus & BUS_ST_RDY4TXNOW) {
|
|
/*
|
|
* The chip is ready for transmission
|
|
* now
|
|
*/
|
|
/*
|
|
* Copy the frame to the chip to
|
|
* start transmission
|
|
*/
|
|
cs_copy_tx_frame(sc, pMbufChain);
|
|
|
|
/* Free the mbuf chain */
|
|
m_freem(pMbufChain);
|
|
|
|
/* Transmission is now in progress */
|
|
sc->sc_txbusy = TRUE;
|
|
txLoop = 0;
|
|
} else {
|
|
/*
|
|
* if we get here we want to try
|
|
* again with the same mbuf, until
|
|
* the chip lets us transmit.
|
|
*/
|
|
txLoop++;
|
|
if (txLoop > CS_OUTPUT_LOOP_MAX) {
|
|
/* Free the mbuf chain */
|
|
m_freem(pMbufChain);
|
|
/*
|
|
* Transmission is not in
|
|
* progress
|
|
*/
|
|
sc->sc_txbusy = FALSE;
|
|
/*
|
|
* Increment the output error
|
|
* count
|
|
*/
|
|
ifp->if_oerrors++;
|
|
/*
|
|
* exit the routine and drop
|
|
* the packet.
|
|
*/
|
|
txLoop = 0;
|
|
dropout = 1;
|
|
}
|
|
}
|
|
}
|
|
} while (txLoop);
|
|
}
|
|
}
|
|
|
|
void
|
|
cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
|
|
{
|
|
struct mbuf *m;
|
|
int len, leftover, frameoff;
|
|
u_int16_t dbuf;
|
|
u_int8_t *p;
|
|
#ifdef DIAGNOSTIC
|
|
u_int8_t *lim;
|
|
#endif
|
|
|
|
/* Initialize frame pointer and data port address */
|
|
frameoff = PKTPG_TX_FRAME;
|
|
|
|
/* start out with no leftover data */
|
|
leftover = 0;
|
|
dbuf = 0;
|
|
|
|
/* Process the chain of mbufs */
|
|
for (m = m0; m != NULL; m = m->m_next) {
|
|
/*
|
|
* Process all of the data in a single mbuf.
|
|
*/
|
|
p = mtod(m, u_int8_t *);
|
|
len = m->m_len;
|
|
#ifdef DIAGNOSTIC
|
|
lim = p + len;
|
|
#endif
|
|
|
|
while (len > 0) {
|
|
if (leftover) {
|
|
/*
|
|
* Data left over (from mbuf or realignment).
|
|
* Buffer the next byte, and write it and
|
|
* the leftover data out.
|
|
*/
|
|
dbuf |= *p++ << 8;
|
|
len--;
|
|
if (sc->sc_memorymode) {
|
|
CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
|
|
frameoff += 2;
|
|
}
|
|
else {
|
|
CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
|
|
}
|
|
leftover = 0;
|
|
} else if ((long) p & 1) {
|
|
/*
|
|
* Misaligned data. Buffer the next byte.
|
|
*/
|
|
dbuf = *p++;
|
|
len--;
|
|
leftover = 1;
|
|
} else {
|
|
/*
|
|
* Aligned data. This is the case we like.
|
|
*
|
|
* Write-region out as much as we can, then
|
|
* buffer the remaining byte (if any).
|
|
*/
|
|
leftover = len & 1;
|
|
len &= ~1;
|
|
if (sc->sc_memorymode) {
|
|
MEM_WRITE_REGION_2(sc, frameoff,
|
|
(u_int16_t *) p, len >> 1);
|
|
frameoff += len;
|
|
}
|
|
else {
|
|
IO_WRITE_MULTI_2(sc,
|
|
PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
|
|
}
|
|
p += len;
|
|
|
|
if (leftover)
|
|
dbuf = *p++;
|
|
len = 0;
|
|
}
|
|
}
|
|
if (len < 0)
|
|
panic("cs_copy_tx_frame: negative len");
|
|
#ifdef DIAGNOSTIC
|
|
if (p != lim)
|
|
panic("cs_copy_tx_frame: p != lim");
|
|
#endif
|
|
}
|
|
if (leftover) {
|
|
if (sc->sc_memorymode) {
|
|
CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
|
|
}
|
|
else {
|
|
CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
cs_enable(struct cs_softc *sc)
|
|
{
|
|
|
|
if (CS_IS_ENABLED(sc) == 0) {
|
|
if (sc->sc_enable != NULL) {
|
|
int error;
|
|
|
|
error = (*sc->sc_enable)(sc);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
sc->sc_cfgflags |= CFGFLG_ENABLED;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
cs_disable(struct cs_softc *sc)
|
|
{
|
|
|
|
if (CS_IS_ENABLED(sc)) {
|
|
if (sc->sc_disable != NULL)
|
|
(*sc->sc_disable)(sc);
|
|
|
|
sc->sc_cfgflags &= ~CFGFLG_ENABLED;
|
|
}
|
|
}
|
|
|
|
static void
|
|
cs_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct cs_softc *sc = ifp->if_softc;
|
|
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
|
|
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
|
|
|
|
if (disable) {
|
|
cs_disable(sc);
|
|
}
|
|
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
}
|
|
|
|
int
|
|
cs_activate(device_t self, enum devact act)
|
|
{
|
|
struct cs_softc *sc = device_private(self);
|
|
|
|
switch (act) {
|
|
case DVACT_DEACTIVATE:
|
|
if_deactivate(&sc->sc_ethercom.ec_if);
|
|
return 0;
|
|
default:
|
|
return EOPNOTSUPP;
|
|
}
|
|
}
|