NetBSD/sys/dev/ic/cs89x0.c
tls 7b0b7dedd9 Entropy-pool implementation move and cleanup.
1) Move core entropy-pool code and source/sink/sample management code
   to sys/kern from sys/dev.

2) Remove use of NRND as test for presence of entropy-pool code throughout
   source tree.

3) Remove use of RND_ENABLED in device drivers as microoptimization to
   avoid expensive operations on disabled entropy sources; make the
   rnd_add calls do this directly so all callers benefit.

4) Fix bug in recent rnd_add_data()/rnd_add_uint32() changes that might
   have lead to slight entropy overestimation for some sources.

5) Add new source types for environmental sensors, power sensors, VM
   system events, and skew between clocks, with a sample implementation
   for each.

ok releng to go in before the branch due to the difficulty of later
pullup (widespread #ifdef removal and moved files).  Tested with release
builds on amd64 and evbarm and live testing on amd64.
2012-02-02 19:42:57 +00:00

2186 lines
57 KiB
C

/* $NetBSD: cs89x0.c,v 1.33 2012/02/02 19:43:03 tls Exp $ */
/*
* Copyright (c) 2004 Christopher Gilbert
* All rights reserved.
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright 1997
* Digital Equipment Corporation. All rights reserved.
*
* This software is furnished under license and may be used and
* copied only in accordance with the following terms and conditions.
* Subject to these conditions, you may download, copy, install,
* use, modify and distribute this software in source and/or binary
* form. No title or ownership is transferred hereby.
*
* 1) Any source code used, modified or distributed must reproduce
* and retain this copyright notice and list of conditions as
* they appear in the source file.
*
* 2) No right is granted to use any trade name, trademark, or logo of
* Digital Equipment Corporation. Neither the "Digital Equipment
* Corporation" name nor any trademark or logo of Digital Equipment
* Corporation may be used to endorse or promote products derived
* from this software without the prior written permission of
* Digital Equipment Corporation.
*
* 3) This software is provided "AS-IS" and any express or implied
* warranties, including but not limited to, any implied warranties
* of merchantability, fitness for a particular purpose, or
* non-infringement are disclaimed. In no event shall DIGITAL be
* liable for any damages whatsoever, and in particular, DIGITAL
* shall not be liable for special, indirect, consequential, or
* incidental damages or damages for lost profits, loss of
* revenue or loss of use, whether such damages arise in contract,
* negligence, tort, under statute, in equity, at law or otherwise,
* even if advised of the possibility of such damage.
*/
/*
**++
** FACILITY
**
** Device Driver for the Crystal CS8900 ISA Ethernet Controller.
**
** ABSTRACT
**
** This module provides standard ethernet access for INET protocols
** only.
**
** AUTHORS
**
** Peter Dettori SEA - Software Engineering.
**
** CREATION DATE:
**
** 13-Feb-1997.
**
** MODIFICATION HISTORY (Digital):
**
** Revision 1.27 1998/01/20 17:59:40 cgd
** update for moved headers
**
** Revision 1.26 1998/01/12 19:29:36 cgd
** use arm32/isa versions of isadma code.
**
** Revision 1.25 1997/12/12 01:35:27 cgd
** convert to use new arp code (from Brini)
**
** Revision 1.24 1997/12/10 22:31:56 cgd
** trim some fat (get rid of ability to explicitly supply enet addr, since
** it was never used and added a bunch of code which really doesn't belong in
** an enet driver), and clean up slightly.
**
** Revision 1.23 1997/10/06 16:42:12 cgd
** copyright notices
**
** Revision 1.22 1997/06/20 19:38:01 chaiken
** fixes some smartcard problems
**
** Revision 1.21 1997/06/10 02:56:20 grohn
** Added call to ledNetActive
**
** Revision 1.20 1997/06/05 00:47:06 dettori
** Changed cs_process_rx_dma to reset and re-initialise the
** ethernet chip when DMA gets out of sync, or mbufs
** can't be allocated.
**
** Revision 1.19 1997/06/03 03:09:58 dettori
** Turn off sc_txbusy flag when a transmit underrun
** occurs.
**
** Revision 1.18 1997/06/02 00:04:35 dettori
** redefined the transmit table to get around the nfs_timer bug while we are
** looking into it further.
**
** Also changed interrupts from EDGE to LEVEL.
**
** Revision 1.17 1997/05/27 23:31:01 dettori
** Pulled out changes to DMAMODE defines.
**
** Revision 1.16 1997/05/23 04:25:16 cgd
** reformat log so it fits in 80cols
**
** Revision 1.15 1997/05/23 04:22:18 cgd
** remove the existing copyright notice (which Peter Dettori indicated
** was incorrect, copied from an existing NetBSD file only so that the
** file would have a copyright notice on it, and which he'd intended to
** replace). Replace it with a Digital copyright notice, cloned from
** ess.c. It's not really correct either (it indicates that the source
** is Digital confidential!), but is better than nothing and more
** correct than what was there before.
**
** Revision 1.14 1997/05/23 04:12:50 cgd
** use an adaptive transmit start algorithm: start by telling the chip
** to start transmitting after 381 bytes have been fed to it. if that
** gets transmit underruns, ramp down to 1021 bytes then "whole
** packet." If successful at a given level for a while, try the next
** more agressive level. This code doesn't ever try to start
** transmitting after 5 bytes have been sent to the NIC, because
** that underruns rather regularly. The back-off and ramp-up mechanism
** could probably be tuned a little bit, but this works well enough to
** support > 1MB/s transmit rates on a clear ethernet (which is about
** 20-25% better than the driver had previously been getting).
**
** Revision 1.13 1997/05/22 21:06:54 cgd
** redo cs_copy_tx_frame() from scratch. It had a fatal flaw: it was blindly
** casting from u_int8_t * to u_int16_t * without worrying about alignment
** issues. This would cause bogus data to be spit out for mbufs with
** misaligned data. For instance, it caused the following bits to appear
** on the wire:
** ... etBND 1S2C .SHA(K) R ...
** 11112222333344445555
** which should have appeared as:
** ... NetBSD 1.2C (SHARK) ...
** 11112222333344445555
** Note the apparent 'rotate' of the bytes in the word, which was due to
** incorrect unaligned accesses. This data corruption was the cause of
** incoming telnet/rlogin hangs.
**
** Revision 1.12 1997/05/22 01:55:32 cgd
** reformat log so it fits in 80cols
**
** Revision 1.11 1997/05/22 01:50:27 cgd
** * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
** so packets aimed at other hosts don't get sent to ether_input().
** * Add a static const char *rcsid initialized with an RCS Id tag, so that
** you can easily tell (`strings`) what version of the driver is in your
** kernel binary.
** * get rid of ether_cmp(). It was inconsistently used, not necessarily
** safe, and not really a performance win anyway. (It was only used when
** setting up the multicast logical address filter, which is an
** infrequent event. It could have been used in the IFF_PROMISCUOUS
** address check above, but the benefit of it vs. memcmp would be
** inconsequential, there.) Use memcmp() instead.
** * restructure csStartOuput to avoid the following bugs in the case where
** txWait was being set:
** * it would accidentally drop the outgoing packet if told to wait
** but the outgoing packet queue was empty.
** * it would bpf_mtap() the outgoing packet multiple times (once for
** each time it was told to wait), and would also recalculate
** the length of the outgoing packet each time it was told to
** wait.
** While there, rename txWait to txLoop, since with the new structure of
** the code, the latter name makes more sense.
**
** Revision 1.10 1997/05/19 02:03:20 cgd
** Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip(). cs_initChip()
** is the only caller of cs_set_ladr_filt(), and always calls it, so this
** ends up being logically the same. In cs_set_ladr_filt(), if IFF_PROMISC
** is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
** as before.
**
** Revision 1.9 1997/05/19 01:45:37 cgd
** create a new function, cs_ether_input(), which does received-packet
** BPF and ether_input processing. This code used to be in three places,
** and centralizing it will make adding IFF_PROMISC support much easier.
** Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
** do copies with bus_space_write_region_2(). It's more correct, and
** potentially more efficient. That function needs to be gutted (to
** deal properly with alignment issues, which it currently does wrong),
** however, and the change doesn't gain much, so there's no point in
** enabling it now.
**
** Revision 1.8 1997/05/19 01:17:10 cgd
** fix a comment re: the setting of the TxConfig register. Clean up
** interface counter maintenance (make it use standard idiom).
**
**--
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.33 2012/02/02 19:43:03 tls Exp $");
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/syslog.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/rnd.h>
#include <net/if.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif
#include <net/bpf.h>
#include <net/bpfdesc.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <dev/ic/cs89x0reg.h>
#include <dev/ic/cs89x0var.h>
#ifdef SHARK
#include <shark/shark/sequoia.h>
#endif
/*
* MACRO DEFINITIONS
*/
#define CS_OUTPUT_LOOP_MAX 100 /* max times round notorious tx loop */
/*
* FUNCTION PROTOTYPES
*/
static void cs_get_default_media(struct cs_softc *);
static int cs_get_params(struct cs_softc *);
static int cs_get_enaddr(struct cs_softc *);
static int cs_reset_chip(struct cs_softc *);
static void cs_reset(struct cs_softc *);
static int cs_ioctl(struct ifnet *, u_long, void *);
static void cs_initChip(struct cs_softc *);
static void cs_buffer_event(struct cs_softc *, u_int16_t);
static void cs_transmit_event(struct cs_softc *, u_int16_t);
static void cs_receive_event(struct cs_softc *, u_int16_t);
static void cs_process_receive(struct cs_softc *);
static void cs_process_rx_early(struct cs_softc *);
static void cs_start_output(struct ifnet *);
static void cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
static void cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
static u_int16_t cs_hash_index(char *);
static void cs_counter_event(struct cs_softc *, u_int16_t);
static int cs_mediachange(struct ifnet *);
static void cs_mediastatus(struct ifnet *, struct ifmediareq *);
static bool cs_shutdown(device_t, int);
static int cs_enable(struct cs_softc *);
static void cs_disable(struct cs_softc *);
static void cs_stop(struct ifnet *, int);
static int cs_scan_eeprom(struct cs_softc *);
static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
/*
* GLOBAL DECLARATIONS
*/
/*
* Xmit-early table.
*
* To get better performance, we tell the chip to start packet
* transmission before the whole packet is copied to the chip.
* However, this can fail under load. When it fails, we back off
* to a safer setting for a little while.
*
* txcmd is the value of txcmd used to indicate when to start transmission.
* better is the next 'better' state in the table.
* better_count is the number of output packets before transition to the
* better state.
* worse is the next 'worse' state in the table.
*
* Transition to the next worse state happens automatically when a
* transmittion underrun occurs.
*/
struct cs_xmit_early {
u_int16_t txcmd;
int better;
int better_count;
int worse;
} cs_xmit_early_table[3] = {
{ TX_CMD_START_381, 0, INT_MAX, 1, },
{ TX_CMD_START_1021, 0, 50000, 2, },
{ TX_CMD_START_ALL, 1, 5000, 2, },
};
int cs_default_media[] = {
IFM_ETHER|IFM_10_2,
IFM_ETHER|IFM_10_5,
IFM_ETHER|IFM_10_T,
IFM_ETHER|IFM_10_T|IFM_FDX,
};
int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
int
cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
int nmedia, int defmedia)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
const char *chipname, *medname;
u_int16_t reg;
int i;
/* Start out in IO mode */
sc->sc_memorymode = FALSE;
/* make sure we're right */
for (i = 0; i < 10000; i++) {
reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
if (reg == EISA_NUM_CRYSTAL) {
break;
}
}
if (i == 10000) {
aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
return 1; /* XXX should panic? */
}
reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
sc->sc_prodid = reg & PROD_ID_MASK;
sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
switch (sc->sc_prodid) {
case PROD_ID_CS8900:
chipname = "CS8900";
break;
case PROD_ID_CS8920:
chipname = "CS8920";
break;
case PROD_ID_CS8920M:
chipname = "CS8920M";
break;
default:
panic("cs_attach: impossible");
}
/*
* the first thing to do is check that the mbuf cluster size is
* greater than the MTU for an ethernet frame. The code depends on
* this and to port this to a OS where this was not the case would
* not be straightforward.
*
* we need 1 byte spare because our
* packet read loop can overrun.
* and we may need pad bytes to align ip header.
*/
if (MCLBYTES < ETHER_MAX_LEN + 1 +
ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
printf("%s: MCLBYTES too small for Ethernet frame\n",
device_xname(sc->sc_dev));
return 1;
}
/* Start out not transmitting */
sc->sc_txbusy = FALSE;
/* Set up early transmit threshhold */
sc->sc_xe_ent = 0;
sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
/* Initialize ifnet structure. */
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_start = cs_start_output;
ifp->if_init = cs_init;
ifp->if_ioctl = cs_ioctl;
ifp->if_stop = cs_stop;
ifp->if_watchdog = NULL; /* no watchdog at this stage */
ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
IFF_BROADCAST | IFF_MULTICAST;
IFQ_SET_READY(&ifp->if_snd);
/* Initialize ifmedia structures. */
ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
if (media != NULL) {
for (i = 0; i < nmedia; i++)
ifmedia_add(&sc->sc_media, media[i], 0, NULL);
ifmedia_set(&sc->sc_media, defmedia);
} else {
for (i = 0; i < cs_default_nmedia; i++)
ifmedia_add(&sc->sc_media, cs_default_media[i],
0, NULL);
cs_get_default_media(sc);
}
if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
if (cs_scan_eeprom(sc) == CS_ERROR) {
/* failed to scan the eeprom, pretend there isn't an eeprom */
aprint_error_dev(sc->sc_dev, "unable to scan EEPROM\n");
sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
}
}
if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
/* Get parameters from the EEPROM */
if (cs_get_params(sc) == CS_ERROR) {
aprint_error_dev(sc->sc_dev,
"unable to get settings from EEPROM\n");
return 1;
}
}
if (enaddr != NULL)
memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
/* Get and store the Ethernet address */
if (cs_get_enaddr(sc) == CS_ERROR) {
aprint_error_dev(sc->sc_dev,
"unable to read Ethernet address\n");
return 1;
}
} else {
#if 1
int j;
uint v;
for (j = 0; j < 6; j += 2) {
v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
sc->sc_enaddr[j + 0] = v;
sc->sc_enaddr[j + 1] = v >> 8;
}
#else
printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
return 1;
#endif
}
switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
case IFM_10_2:
medname = "BNC";
break;
case IFM_10_5:
medname = "AUI";
break;
case IFM_10_T:
if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
medname = "UTP <full-duplex>";
else
medname = "UTP";
break;
default:
panic("cs_attach: impossible");
}
printf("%s: %s rev. %c, address %s, media %s\n",
device_xname(sc->sc_dev),
chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
medname);
if (sc->sc_dma_attach)
(*sc->sc_dma_attach)(sc);
/* Attach the interface. */
if_attach(ifp);
ether_ifattach(ifp, sc->sc_enaddr);
rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
RND_TYPE_NET, 0);
sc->sc_cfgflags |= CFGFLG_ATTACHED;
if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
pmf_class_network_register(sc->sc_dev, ifp);
else
aprint_error_dev(sc->sc_dev,
"couldn't establish power handler\n");
/* Reset the chip */
if (cs_reset_chip(sc) == CS_ERROR) {
aprint_error_dev(sc->sc_dev, "reset failed\n");
cs_detach(sc);
return 1;
}
return 0;
}
int
cs_detach(struct cs_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
rnd_detach_source(&sc->rnd_source);
ether_ifdetach(ifp);
if_detach(ifp);
sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
}
#if 0
/*
* XXX not necessary
*/
if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
}
#endif
pmf_device_deregister(sc->sc_dev);
return 0;
}
bool
cs_shutdown(device_t self, int howto)
{
struct cs_softc *sc;
sc = device_private(self);
cs_reset(sc);
return true;
}
void
cs_get_default_media(struct cs_softc *sc)
{
u_int16_t adp_cfg, xmit_ctl;
if (cs_verify_eeprom(sc) == CS_ERROR) {
aprint_error_dev(sc->sc_dev,
"cs_get_default_media: EEPROM missing or bad\n");
goto fakeit;
}
if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
aprint_error_dev(sc->sc_dev,
"unable to read adapter config from EEPROM\n");
goto fakeit;
}
if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
aprint_error_dev(sc->sc_dev,
"unable to read transmit control from EEPROM\n");
goto fakeit;
}
switch (adp_cfg & ADPTR_CFG_MEDIA) {
case ADPTR_CFG_AUI:
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
break;
case ADPTR_CFG_10BASE2:
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
break;
case ADPTR_CFG_10BASET:
default:
if (xmit_ctl & XMIT_CTL_FDX)
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
else
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
break;
}
return;
fakeit:
aprint_error_dev(sc->sc_dev,
"WARNING: default media setting may be inaccurate\n");
/* XXX Arbitrary... */
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
}
/*
* cs_scan_eeprom
*
* Attempt to take a complete copy of the eeprom into main memory.
* this will allow faster parsing of the eeprom data.
*
* Only tested against a 8920M's eeprom, but the data sheet for the
* 8920A indicates that is uses the same layout.
*/
int
cs_scan_eeprom(struct cs_softc *sc)
{
u_int16_t result;
int i;
int eeprom_size;
u_int8_t checksum = 0;
if (cs_verify_eeprom(sc) == CS_ERROR) {
aprint_error_dev(sc->sc_dev,
"cs_scan_params: EEPROM missing or bad\n");
return (CS_ERROR);
}
/*
* read the 0th word from the eeprom, it will tell us the length
* and if the eeprom is valid
*/
cs_read_eeprom(sc, 0, &result);
/* check the eeprom signature */
if ((result & 0xE000) != 0xA000) {
/* empty eeprom */
return (CS_ERROR);
}
/*
* take the eeprom size (note the read value doesn't include the header
* word)
*/
eeprom_size = (result & 0xff) + 2;
sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
if (sc->eeprom_data == NULL) {
/* no memory, treat this as if there's no eeprom */
return (CS_ERROR);
}
sc->eeprom_size = eeprom_size;
/* read the eeprom into the buffer, also calculate the checksum */
for (i = 0; i < (eeprom_size >> 1); i++) {
cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
checksum += (sc->eeprom_data[i] & 0x00ff);
}
/*
* validate checksum calculation, the sum of all the bytes should be 0,
* as the high byte of the last word is the 2's complement of the
* sum to that point.
*/
if (checksum != 0) {
aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
return (CS_ERROR);
}
return (CS_OK);
}
static int
cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
{
int x, maxword;
/* Check that we have eeprom data */
if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
return (CS_ERROR);
/*
* We only want to read the data words, the last word contains the
* checksum
*/
maxword = (sc->eeprom_size - 2) >> 1;
/* start 1 word in, as the first word is the length and signature */
x = 1;
while ( x < (maxword)) {
u_int16_t header;
int group_size;
int offset;
int offset_max;
/* read in the group header word */
header = sc->eeprom_data[x];
x++; /* skip group header */
/*
* size of group in words is in the top 4 bits, note that it
* is one less than the number of words
*/
group_size = header & 0xF000;
/*
* CS8900 Data sheet says this should be 0x01ff,
* but my cs8920 eeprom has higher offsets,
* perhaps the 8920 allows higher offsets, otherwise
* it's writing to places that it shouldn't
*/
/* work out the offsets this group covers */
offset = header & 0x0FFF;
offset_max = offset + (group_size << 1);
/* check if the pkgpg we're after is in this group */
if ((offset <= pktpg) && (pktpg <= offset_max)) {
/* the pkgpg value we want is in here */
int eeprom_location;
eeprom_location = ((pktpg - offset) >> 1) ;
*pValue = sc->eeprom_data[x + eeprom_location];
return (CS_OK);
} else {
/* skip this group (+ 1 for first entry) */
x += group_size + 1;
}
}
/*
* if we've fallen out here then we don't have a value in the EEPROM
* for this pktpg so return an error
*/
return (CS_ERROR);
}
int
cs_get_params(struct cs_softc *sc)
{
u_int16_t isaConfig;
u_int16_t adapterConfig;
if (cs_verify_eeprom(sc) == CS_ERROR) {
aprint_error_dev(sc->sc_dev,
"cs_get_params: EEPROM missing or bad\n");
return (CS_ERROR);
}
if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
/* Get ISA configuration from the EEPROM */
if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
== CS_ERROR) {
/* eeprom doesn't have this value, use data sheet default */
isaConfig = 0x0017;
}
/* Get adapter configuration from the EEPROM */
if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
== CS_ERROR) {
/* eeprom doesn't have this value, use data sheet default */
adapterConfig = 0x0015;
}
/* Copy the USE_SA flag */
if (isaConfig & BUS_CTL_USE_SA)
sc->sc_cfgflags |= CFGFLG_USE_SA;
/* Copy the IO Channel Ready flag */
if (isaConfig & BUS_CTL_IOCHRDY)
sc->sc_cfgflags |= CFGFLG_IOCHRDY;
/* Copy the DC/DC Polarity flag */
if (adapterConfig & SELF_CTL_HCB1)
sc->sc_cfgflags |= CFGFLG_DCDC_POL;
} else {
/* Get ISA configuration from the EEPROM */
if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
goto eeprom_bad;
/* Get adapter configuration from the EEPROM */
if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
goto eeprom_bad;
/* Copy the USE_SA flag */
if (isaConfig & ISA_CFG_USE_SA)
sc->sc_cfgflags |= CFGFLG_USE_SA;
/* Copy the IO Channel Ready flag */
if (isaConfig & ISA_CFG_IOCHRDY)
sc->sc_cfgflags |= CFGFLG_IOCHRDY;
/* Copy the DC/DC Polarity flag */
if (adapterConfig & ADPTR_CFG_DCDC_POL)
sc->sc_cfgflags |= CFGFLG_DCDC_POL;
}
return (CS_OK);
eeprom_bad:
aprint_error_dev(sc->sc_dev,
"cs_get_params: unable to read from EEPROM\n");
return (CS_ERROR);
}
int
cs_get_enaddr(struct cs_softc *sc)
{
uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
int i;
if (cs_verify_eeprom(sc) == CS_ERROR) {
aprint_error_dev(sc->sc_dev,
"cs_get_enaddr: EEPROM missing or bad\n");
return (CS_ERROR);
}
/* Get Ethernet address from the EEPROM */
if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
== CS_ERROR)
goto eeprom_bad;
if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
== CS_ERROR)
goto eeprom_bad;
if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
== CS_ERROR)
goto eeprom_bad;
} else {
if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
goto eeprom_bad;
if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
goto eeprom_bad;
if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
goto eeprom_bad;
}
for (i = 0; i < __arraycount(myea); i++) {
sc->sc_enaddr[i * 2 + 0] = myea[i];
sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
}
return (CS_OK);
eeprom_bad:
aprint_error_dev(sc->sc_dev,
"cs_get_enaddr: unable to read from EEPROM\n");
return (CS_ERROR);
}
int
cs_reset_chip(struct cs_softc *sc)
{
int intState;
int x;
/* Disable interrupts at the CPU so reset command is atomic */
intState = splnet();
/*
* We are now resetting the chip
*
* A spurious interrupt is generated by the chip when it is reset. This
* variable informs the interrupt handler to ignore this interrupt.
*/
sc->sc_resetting = TRUE;
/* Issue a reset command to the chip */
CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
/* Re-enable interrupts at the CPU */
splx(intState);
/* The chip is always in IO mode after a reset */
sc->sc_memorymode = FALSE;
/* If transmission was in progress, it is not now */
sc->sc_txbusy = FALSE;
/*
* there was a delay(125); here, but it seems uneccesary 125 usec is
* 1/8000 of a second, not 1/8 of a second. the data sheet advises
* 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
* should be sufficient.
*/
/* Transition SBHE to switch chip from 8-bit to 16-bit */
IO_READ_1(sc, PORT_PKTPG_PTR + 0);
IO_READ_1(sc, PORT_PKTPG_PTR + 1);
IO_READ_1(sc, PORT_PKTPG_PTR + 0);
IO_READ_1(sc, PORT_PKTPG_PTR + 1);
/* Wait until the EEPROM is not busy */
for (x = 0; x < MAXLOOP; x++) {
if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
break;
}
if (x == MAXLOOP)
return CS_ERROR;
/* Wait until initialization is done */
for (x = 0; x < MAXLOOP; x++) {
if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
break;
}
if (x == MAXLOOP)
return CS_ERROR;
/* Reset is no longer in progress */
sc->sc_resetting = FALSE;
return CS_OK;
}
int
cs_verify_eeprom(struct cs_softc *sc)
{
u_int16_t self_status;
/* Verify that the EEPROM is present and OK */
self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
if (((self_status & SELF_ST_EEP_PRES) &&
(self_status & SELF_ST_EEP_OK)) == 0)
return (CS_ERROR);
return (CS_OK);
}
int
cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
{
int x;
/* Ensure that the EEPROM is not busy */
for (x = 0; x < MAXLOOP; x++) {
if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
SELF_ST_SI_BUSY))
break;
}
if (x == MAXLOOP)
return (CS_ERROR);
/* Issue the command to read the offset within the EEPROM */
CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
offset | EEPROM_CMD_READ);
/* Wait until the command is completed */
for (x = 0; x < MAXLOOP; x++) {
if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
SELF_ST_SI_BUSY))
break;
}
if (x == MAXLOOP)
return (CS_ERROR);
/* Get the EEPROM data from the EEPROM Data register */
*pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
return (CS_OK);
}
void
cs_initChip(struct cs_softc *sc)
{
u_int16_t busCtl;
u_int16_t selfCtl;
u_int16_t v;
u_int16_t isaId;
int i;
int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
/* Disable reception and transmission of frames */
CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
/* Disable interrupt at the chip */
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
/* If IOCHRDY is enabled then clear the bit in the busCtl register */
busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
busCtl & ~BUS_CTL_IOCHRDY);
} else {
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
busCtl | BUS_CTL_IOCHRDY);
}
/* Set the Line Control register to match the media type */
if (media == IFM_10_T)
CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
else
CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
/*
* Set the BSTATUS/HC1 pin to be used as HC1. HC1 is used to
* enable the DC/DC converter
*/
selfCtl = SELF_CTL_HC1E;
/* If the media type is 10Base2 */
if (media == IFM_10_2) {
/*
* Enable the DC/DC converter if it has a low enable.
*/
if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
/*
* Set the HCB1 bit, which causes the HC1 pin to go
* low.
*/
selfCtl |= SELF_CTL_HCB1;
} else { /* Media type is 10BaseT or AUI */
/*
* Disable the DC/DC converter if it has a high enable.
*/
if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
/*
* Set the HCB1 bit, which causes the HC1 pin to go
* low.
*/
selfCtl |= SELF_CTL_HCB1;
}
}
CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
/* enable normal link pulse */
if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
/* Enable full-duplex, if appropriate */
if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
/* RX_CTL set in cs_set_ladr_filt(), below */
/* enable all transmission interrupts */
CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
/* Accept all receive interrupts */
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
/*
* Configure Operational Modes
*
* I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
* a better way to do it because the card has a counter which can be
* read to update the RX_MISS counter. This saves many interrupts.
*
* I have turned on the tx and rx overflow interrupts to counter using
* the receive miss interrupt. This is a better estimate of errors
* and requires lower system overhead.
*/
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
BUF_CFG_RX_DMA_IE);
if (sc->sc_dma_chipinit)
(*sc->sc_dma_chipinit)(sc);
/* If memory mode is enabled */
if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
/* If external logic is present for address decoding */
if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
/*
* Program the external logic to decode address bits
* SA20-SA23
*/
CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
((sc->sc_pktpgaddr & 0xffffff) >> 20) |
EEPROM_CMD_ELSEL);
}
/*
* Write the packet page base physical address to the memory
* base register.
*/
CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
sc->sc_pktpgaddr & 0xFFFF);
CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
sc->sc_pktpgaddr >> 16);
busCtl = BUS_CTL_MEM_MODE;
/* tell the chip to read the addresses off the SA pins */
if (sc->sc_cfgflags & CFGFLG_USE_SA) {
busCtl |= BUS_CTL_USE_SA;
}
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
/* We are in memory mode now! */
sc->sc_memorymode = TRUE;
/*
* wait here (10ms) for the chip to swap over. this is the
* maximum time that this could take.
*/
delay(10000);
/* Verify that we can read from the chip */
isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
/*
* As a last minute sanity check before actually using mapped
* memory we verify that we can read the isa number from the
* chip in memory mode.
*/
if (isaId != EISA_NUM_CRYSTAL) {
aprint_error_dev(sc->sc_dev,
"failed to enable memory mode\n");
sc->sc_memorymode = FALSE;
} else {
/*
* we are in memory mode so if we aren't using DMA,
* then program the chip to interrupt early.
*/
if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
BUF_CFG_RX_DEST_IE |
BUF_CFG_RX_MISS_OVER_IE |
BUF_CFG_TX_COL_OVER_IE);
}
}
}
/* Put Ethernet address into the Individual Address register */
for (i = 0; i < 6; i += 2) {
v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
}
if (sc->sc_irq != -1) {
/* Set the interrupt level in the chip */
if (sc->sc_prodid == PROD_ID_CS8900) {
if (sc->sc_irq == 5) {
CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
} else {
CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
}
}
else { /* CS8920 */
CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
}
}
/* write the multicast mask to the address filter register */
cs_set_ladr_filt(sc, &sc->sc_ethercom);
/* Enable reception and transmission of frames */
CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
LINE_CTL_RX_ON | LINE_CTL_TX_ON);
/* Enable interrupt at the chip */
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
}
int
cs_init(struct ifnet *ifp)
{
int intState;
int error = CS_OK;
struct cs_softc *sc = ifp->if_softc;
if (cs_enable(sc))
goto out;
cs_stop(ifp, 0);
intState = splnet();
#if 0
/* Mark the interface as down */
sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
#endif
#ifdef CS_DEBUG
/* Enable debugging */
sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
#endif
/* Reset the chip */
if ((error = cs_reset_chip(sc)) == CS_OK) {
/* Initialize the chip */
cs_initChip(sc);
/* Mark the interface as running */
sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
sc->sc_ethercom.ec_if.if_timer = 0;
/* Assume we have carrier until we are told otherwise. */
sc->sc_carrier = 1;
} else {
aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
}
splx(intState);
out:
if (error == CS_OK)
return 0;
return EIO;
}
void
cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
{
struct ifnet *ifp = &ec->ec_if;
struct ether_multi *enm;
struct ether_multistep step;
u_int16_t af[4];
u_int16_t port, mask, index;
/*
* Set up multicast address filter by passing all multicast addresses
* through a crc generator, and then using the high order 6 bits as an
* index into the 64 bit logical address filter. The high order bit
* selects the word, while the rest of the bits select the bit within
* the word.
*/
if (ifp->if_flags & IFF_PROMISC) {
/* accept all valid frames. */
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
ifp->if_flags |= IFF_ALLMULTI;
return;
}
/*
* accept frames if a. crc valid, b. individual address match c.
* broadcast address,and d. multicast addresses matched in the hash
* filter
*/
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
/*
* start off with all multicast flag clear, set it if we need to
* later, otherwise we will leave it.
*/
ifp->if_flags &= ~IFF_ALLMULTI;
af[0] = af[1] = af[2] = af[3] = 0x0000;
/*
* Loop through all the multicast addresses unless we get a range of
* addresses, in which case we will just accept all packets.
* Justification for this is given in the next comment.
*/
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
sizeof enm->enm_addrlo)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
ifp->if_flags |= IFF_ALLMULTI;
af[0] = af[1] = af[2] = af[3] = 0xffff;
break;
} else {
/*
* we have got an individual address so just set that
* bit.
*/
index = cs_hash_index(enm->enm_addrlo);
/* Set the bit the Logical address filter. */
port = (u_int16_t) (index >> 4);
mask = (u_int16_t) (1 << (index & 0xf));
af[port] |= mask;
ETHER_NEXT_MULTI(step, enm);
}
}
/* now program the chip with the addresses */
CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
return;
}
u_int16_t
cs_hash_index(char *addr)
{
uint32_t crc;
uint16_t hash_code;
crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
hash_code = crc >> 26;
return (hash_code);
}
void
cs_reset(struct cs_softc *sc)
{
/* Mark the interface as down */
sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
/* Reset the chip */
cs_reset_chip(sc);
}
int
cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct cs_softc *sc = ifp->if_softc;
struct ifreq *ifr = data;
int state;
int result;
state = splnet();
result = 0; /* only set if something goes wrong */
switch (cmd) {
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
break;
default:
result = ether_ioctl(ifp, cmd, data);
if (result == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING) {
/*
* Multicast list has changed. Set the
* hardware filter accordingly.
*/
cs_set_ladr_filt(sc, &sc->sc_ethercom);
}
result = 0;
}
break;
}
splx(state);
return result;
}
int
cs_mediachange(struct ifnet *ifp)
{
/*
* Current media is already set up. Just reset the interface
* to let the new value take hold.
*/
cs_init(ifp);
return (0);
}
void
cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct cs_softc *sc = ifp->if_softc;
/*
* The currently selected media is always the active media.
*/
ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
if (ifp->if_flags & IFF_UP) {
/* Interface up, status is valid. */
ifmr->ifm_status = IFM_AVALID |
(sc->sc_carrier ? IFM_ACTIVE : 0);
}
else ifmr->ifm_status = 0;
}
int
cs_intr(void *arg)
{
struct cs_softc *sc = arg;
u_int16_t Event;
u_int16_t rndEvent;
/*printf("cs_intr %p\n", sc);*/
/* Ignore any interrupts that happen while the chip is being reset */
if (sc->sc_resetting) {
printf("%s: cs_intr: reset in progress\n",
device_xname(sc->sc_dev));
return 1;
}
/* Read an event from the Interrupt Status Queue */
if (sc->sc_memorymode)
Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
else
Event = CS_READ_PORT(sc, PORT_ISQ);
if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
return 0; /* not ours */
rndEvent = Event;
/* Process all the events in the Interrupt Status Queue */
while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
/* Dispatch to an event handler based on the register number */
switch (Event & REG_NUM_MASK) {
case REG_NUM_RX_EVENT:
cs_receive_event(sc, Event);
break;
case REG_NUM_TX_EVENT:
cs_transmit_event(sc, Event);
break;
case REG_NUM_BUF_EVENT:
cs_buffer_event(sc, Event);
break;
case REG_NUM_TX_COL:
case REG_NUM_RX_MISS:
cs_counter_event(sc, Event);
break;
default:
printf("%s: unknown interrupt event 0x%x\n",
device_xname(sc->sc_dev), Event);
break;
}
/* Read another event from the Interrupt Status Queue */
if (sc->sc_memorymode)
Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
else
Event = CS_READ_PORT(sc, PORT_ISQ);
}
/* have handled the interrupt */
rnd_add_uint32(&sc->rnd_source, rndEvent);
return 1;
}
void
cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
{
struct ifnet *ifp;
u_int16_t errorCount;
ifp = &sc->sc_ethercom.ec_if;
switch (cntEvent & REG_NUM_MASK) {
case REG_NUM_TX_COL:
/*
* the count should be read before an overflow occurs.
*/
errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
/*
* the tramsit event routine always checks the number of
* collisions for any packet so we don't increment any
* counters here, as they should already have been
* considered.
*/
break;
case REG_NUM_RX_MISS:
/*
* the count should be read before an overflow occurs.
*/
errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
/*
* Increment the input error count, the first 6bits are the
* register id.
*/
ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
break;
default:
/* do nothing */
break;
}
}
void
cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
{
/*
* multiple events can be in the buffer event register at one time so
* a standard switch statement will not suffice, here every event
* must be checked.
*/
/*
* if 128 bits have been rxed by the time we get here, the dest event
* will be cleared and 128 event will be set.
*/
if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
cs_process_rx_early(sc);
}
if (bufEvent & BUF_EVENT_RX_DMA) {
/* process the receive data */
if (sc->sc_dma_process_rx)
(*sc->sc_dma_process_rx)(sc);
else
/* should panic? */
aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
}
if (bufEvent & BUF_EVENT_TX_UNDR) {
#if 0
/*
* This can happen occasionally, and it's not worth worrying
* about.
*/
printf("%s: transmit underrun (%d -> %d)\n",
device_xname(sc->sc_dev), sc->sc_xe_ent,
cs_xmit_early_table[sc->sc_xe_ent].worse);
#endif
sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
sc->sc_xe_togo =
cs_xmit_early_table[sc->sc_xe_ent].better_count;
/* had an underrun, transmit is finished */
sc->sc_txbusy = FALSE;
}
if (bufEvent & BUF_EVENT_SW_INT) {
printf("%s: software initiated interrupt\n",
device_xname(sc->sc_dev));
}
}
void
cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
/* If there were any errors transmitting this frame */
if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
/* Increment the output error count */
ifp->if_oerrors++;
/* Note carrier loss. */
if (txEvent & TX_EVENT_LOSS_CRS)
sc->sc_carrier = 0;
/* If debugging is enabled then log error messages */
if (ifp->if_flags & IFF_DEBUG) {
if (txEvent & TX_EVENT_LOSS_CRS) {
aprint_error_dev(sc->sc_dev, "lost carrier\n");
}
if (txEvent & TX_EVENT_SQE_ERR) {
aprint_error_dev(sc->sc_dev, "SQE error\n");
}
if (txEvent & TX_EVENT_OUT_WIN) {
aprint_error_dev(sc->sc_dev,
"out-of-window collision\n");
}
if (txEvent & TX_EVENT_JABBER) {
aprint_error_dev(sc->sc_dev, "jabber\n");
}
if (txEvent & TX_EVENT_16_COLL) {
aprint_error_dev(sc->sc_dev, "16 collisions\n");
}
}
}
else {
/* Transmission successful, carrier is up. */
sc->sc_carrier = 1;
#ifdef SHARK
ledNetActive();
#endif
}
/* Add the number of collisions for this frame */
if (txEvent & TX_EVENT_16_COLL) {
ifp->if_collisions += 16;
} else {
ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
}
ifp->if_opackets++;
/* Transmission is no longer in progress */
sc->sc_txbusy = FALSE;
/* If there is more to transmit */
if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
/* Start the next transmission */
cs_start_output(ifp);
}
}
void
cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
{
if (rxEvent & RX_EVENT_RUNT)
aprint_error_dev(sc->sc_dev, "runt\n");
if (rxEvent & RX_EVENT_X_DATA)
aprint_error_dev(sc->sc_dev, "extra data\n");
if (rxEvent & RX_EVENT_CRC_ERR) {
if (rxEvent & RX_EVENT_DRIBBLE)
aprint_error_dev(sc->sc_dev, "alignment error\n");
else
aprint_error_dev(sc->sc_dev, "CRC error\n");
} else {
if (rxEvent & RX_EVENT_DRIBBLE)
aprint_error_dev(sc->sc_dev, "dribble bits\n");
}
}
void
cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
/* If the frame was not received OK */
if (!(rxEvent & RX_EVENT_RX_OK)) {
/* Increment the input error count */
ifp->if_ierrors++;
/*
* If debugging is enabled then log error messages.
*/
if (ifp->if_flags & IFF_DEBUG) {
if (rxEvent != REG_NUM_RX_EVENT) {
cs_print_rx_errors(sc, rxEvent);
/*
* Must read the length of all received
* frames
*/
CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
/* Skip the received frame */
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
RX_CFG_SKIP);
} else {
aprint_error_dev(sc->sc_dev, "implied skip\n");
}
}
} else {
/*
* process the received frame and pass it up to the upper
* layers.
*/
cs_process_receive(sc);
}
}
void
cs_ether_input(struct cs_softc *sc, struct mbuf *m)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
ifp->if_ipackets++;
/*
* Check if there's a BPF listener on this interface.
* If so, hand off the raw packet to BPF.
*/
bpf_mtap(ifp, m);
/* Pass the packet up. */
(*ifp->if_input)(ifp, m);
}
void
cs_process_receive(struct cs_softc *sc)
{
struct ifnet *ifp;
struct mbuf *m;
int totlen;
u_int16_t *pBuff, *pBuffLimit;
int pad;
unsigned int frameOffset = 0; /* XXX: gcc */
#ifdef SHARK
ledNetActive();
#endif
ifp = &sc->sc_ethercom.ec_if;
/* Received a packet; carrier is up. */
sc->sc_carrier = 1;
if (sc->sc_memorymode) {
/* Initialize the frame offset */
frameOffset = PKTPG_RX_LENGTH;
/* Get the length of the received frame */
totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
frameOffset += 2;
}
else {
/* drop status */
CS_READ_PORT(sc, PORT_RXTX_DATA);
/* Get the length of the received frame */
totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
}
if (totlen > ETHER_MAX_LEN) {
aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
totlen);
/* skip the received frame */
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
return;
}
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0) {
aprint_error_dev(sc->sc_dev,
"cs_process_receive: unable to allocate mbuf\n");
ifp->if_ierrors++;
/*
* couldn't allocate an mbuf so things are not good, may as
* well drop the packet I think.
*
* have already read the length so we should be right to skip
* the packet.
*/
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
return;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = totlen;
/* number of bytes to align ip header on word boundary for ipintr */
pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
/*
* alloc mbuf cluster if we need.
* we need 1 byte spare because following
* packet read loop can overrun.
*/
if (totlen + pad + 1 > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
/* couldn't allocate an mbuf cluster */
aprint_error_dev(sc->sc_dev,
"cs_process_receive: "
"unable to allocate a cluster\n");
m_freem(m);
/* skip the received frame */
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
return;
}
}
/* align ip header on word boundary for ipintr */
m->m_data += pad;
m->m_len = totlen;
pBuff = mtod(m, u_int16_t *);
/* now read the data from the chip */
if (sc->sc_memorymode) {
pBuffLimit = pBuff + (totlen + 1) / 2; /* don't want to go over */
while (pBuff < pBuffLimit) {
*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
frameOffset += 2;
}
}
else {
IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
}
cs_ether_input(sc, m);
}
void
cs_process_rx_early(struct cs_softc *sc)
{
struct ifnet *ifp;
struct mbuf *m;
u_int16_t frameCount, oldFrameCount;
u_int16_t rxEvent;
u_int16_t *pBuff;
int pad;
unsigned int frameOffset;
ifp = &sc->sc_ethercom.ec_if;
/* Initialize the frame offset */
frameOffset = PKTPG_RX_FRAME;
frameCount = 0;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0) {
aprint_error_dev(sc->sc_dev,
"cs_process_rx_early: unable to allocate mbuf\n");
ifp->if_ierrors++;
/*
* couldn't allocate an mbuf so things are not good, may as
* well drop the packet I think.
*
* have already read the length so we should be right to skip
* the packet.
*/
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
return;
}
m->m_pkthdr.rcvif = ifp;
/*
* save processing by always using a mbuf cluster, guaranteed to fit
* packet
*/
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
/* couldn't allocate an mbuf cluster */
aprint_error_dev(sc->sc_dev,
"cs_process_rx_early: unable to allocate a cluster\n");
m_freem(m);
/* skip the frame */
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
return;
}
/* align ip header on word boundary for ipintr */
pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
m->m_data += pad;
/* set up the buffer pointer to point to the data area */
pBuff = mtod(m, u_int16_t *);
/*
* now read the frame byte counter until we have finished reading the
* frame
*/
oldFrameCount = 0;
frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
while ((frameCount != 0) && (frameCount < MCLBYTES)) {
for (; oldFrameCount < frameCount; oldFrameCount += 2) {
*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
frameOffset += 2;
}
/* read the new count from the chip */
frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
}
/* update the mbuf counts */
m->m_len = oldFrameCount;
m->m_pkthdr.len = oldFrameCount;
/* now check the Rx Event register */
rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
if ((rxEvent & RX_EVENT_RX_OK) != 0) {
/*
* do an implied skip, it seems to be more reliable than a
* forced skip.
*/
rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
/*
* now read the RX_EVENT register to perform an implied skip.
*/
rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
cs_ether_input(sc, m);
} else {
m_freem(m);
ifp->if_ierrors++;
}
}
void
cs_start_output(struct ifnet *ifp)
{
struct cs_softc *sc;
struct mbuf *pMbuf;
struct mbuf *pMbufChain;
u_int16_t BusStatus;
u_int16_t Length;
int txLoop = 0;
int dropout = 0;
sc = ifp->if_softc;
/* check that the interface is up and running */
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
return;
}
/* Don't interrupt a transmission in progress */
if (sc->sc_txbusy) {
return;
}
/* this loop will only run through once if transmission is successful */
/*
* While there are packets to transmit and a transmit is not in
* progress
*/
while (sc->sc_txbusy == 0 && dropout == 0) {
IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
if (pMbufChain == NULL)
break;
/*
* If BPF is listening on this interface, let it see the packet
* before we commit it to the wire.
*/
bpf_mtap(ifp, pMbufChain);
/* Find the total length of the data to transmit */
Length = 0;
for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
Length += pMbuf->m_len;
do {
/*
* Request that the transmit be started after all
* data has been copied
*
* In IO mode must write to the IO port not the packet
* page address
*
* If this is changed to start transmission after a
* small amount of data has been copied you tend to
* get packet missed errors i think because the ISA
* bus is too slow. Or possibly the copy routine is
* not streamlined enough.
*/
if (sc->sc_memorymode) {
CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
cs_xmit_early_table[sc->sc_xe_ent].txcmd);
CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
}
else {
CS_WRITE_PORT(sc, PORT_TX_CMD,
cs_xmit_early_table[sc->sc_xe_ent].txcmd);
CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
}
/*
* Adjust early-transmit machinery.
*/
if (--sc->sc_xe_togo == 0) {
sc->sc_xe_ent =
cs_xmit_early_table[sc->sc_xe_ent].better;
sc->sc_xe_togo =
cs_xmit_early_table[sc->sc_xe_ent].better_count;
}
/*
* Read the BusStatus register which indicates
* success of the request
*/
BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
/*
* If there was an error in the transmit bid free the
* mbuf and go on. This is presuming that mbuf is
* corrupt.
*/
if (BusStatus & BUS_ST_TX_BID_ERR) {
aprint_error_dev(sc->sc_dev,
"transmit bid error (too big)");
/* Discard the bad mbuf chain */
m_freem(pMbufChain);
sc->sc_ethercom.ec_if.if_oerrors++;
/* Loop up to transmit the next chain */
txLoop = 0;
} else {
if (BusStatus & BUS_ST_RDY4TXNOW) {
/*
* The chip is ready for transmission
* now
*/
/*
* Copy the frame to the chip to
* start transmission
*/
cs_copy_tx_frame(sc, pMbufChain);
/* Free the mbuf chain */
m_freem(pMbufChain);
/* Transmission is now in progress */
sc->sc_txbusy = TRUE;
txLoop = 0;
} else {
/*
* if we get here we want to try
* again with the same mbuf, until
* the chip lets us transmit.
*/
txLoop++;
if (txLoop > CS_OUTPUT_LOOP_MAX) {
/* Free the mbuf chain */
m_freem(pMbufChain);
/*
* Transmission is not in
* progress
*/
sc->sc_txbusy = FALSE;
/*
* Increment the output error
* count
*/
ifp->if_oerrors++;
/*
* exit the routine and drop
* the packet.
*/
txLoop = 0;
dropout = 1;
}
}
}
} while (txLoop);
}
}
void
cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
{
struct mbuf *m;
int len, leftover, frameoff;
u_int16_t dbuf;
u_int8_t *p;
#ifdef DIAGNOSTIC
u_int8_t *lim;
#endif
/* Initialize frame pointer and data port address */
frameoff = PKTPG_TX_FRAME;
/* start out with no leftover data */
leftover = 0;
dbuf = 0;
/* Process the chain of mbufs */
for (m = m0; m != NULL; m = m->m_next) {
/*
* Process all of the data in a single mbuf.
*/
p = mtod(m, u_int8_t *);
len = m->m_len;
#ifdef DIAGNOSTIC
lim = p + len;
#endif
while (len > 0) {
if (leftover) {
/*
* Data left over (from mbuf or realignment).
* Buffer the next byte, and write it and
* the leftover data out.
*/
dbuf |= *p++ << 8;
len--;
if (sc->sc_memorymode) {
CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
frameoff += 2;
}
else {
CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
}
leftover = 0;
} else if ((long) p & 1) {
/*
* Misaligned data. Buffer the next byte.
*/
dbuf = *p++;
len--;
leftover = 1;
} else {
/*
* Aligned data. This is the case we like.
*
* Write-region out as much as we can, then
* buffer the remaining byte (if any).
*/
leftover = len & 1;
len &= ~1;
if (sc->sc_memorymode) {
MEM_WRITE_REGION_2(sc, frameoff,
(u_int16_t *) p, len >> 1);
frameoff += len;
}
else {
IO_WRITE_MULTI_2(sc,
PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
}
p += len;
if (leftover)
dbuf = *p++;
len = 0;
}
}
if (len < 0)
panic("cs_copy_tx_frame: negative len");
#ifdef DIAGNOSTIC
if (p != lim)
panic("cs_copy_tx_frame: p != lim");
#endif
}
if (leftover) {
if (sc->sc_memorymode) {
CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
}
else {
CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
}
}
}
static int
cs_enable(struct cs_softc *sc)
{
if (CS_IS_ENABLED(sc) == 0) {
if (sc->sc_enable != NULL) {
int error;
error = (*sc->sc_enable)(sc);
if (error)
return (error);
}
sc->sc_cfgflags |= CFGFLG_ENABLED;
}
return (0);
}
static void
cs_disable(struct cs_softc *sc)
{
if (CS_IS_ENABLED(sc)) {
if (sc->sc_disable != NULL)
(*sc->sc_disable)(sc);
sc->sc_cfgflags &= ~CFGFLG_ENABLED;
}
}
static void
cs_stop(struct ifnet *ifp, int disable)
{
struct cs_softc *sc = ifp->if_softc;
CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
if (disable) {
cs_disable(sc);
}
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
}
int
cs_activate(device_t self, enum devact act)
{
struct cs_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
if_deactivate(&sc->sc_ethercom.ec_if);
return 0;
default:
return EOPNOTSUPP;
}
}