NetBSD/sys/arch/acorn32/podulebus/sbicvar.h
reinoud 7d4a1addde Initial commit of the splitting off of arch/acorn32 from arch/arm32.
The IOMD/VIDC combination is now moved to arch/arm/iomd together. These
files still need a lot of cleaning up :( .... esp. the RC7500 support that
is still dormant in it; this needs either to be removed or split out for
RC7500's ``VIDC'' video/audio variant.

Apart from the RC7500 support wich is still in arch/arm32 the
iomd,vidc,riscpc and podulebus subdirectories of arch/arm32 can be removed.

This split still uses some small parts of arch/arm32 .... those are the MI
parts that haven't been moved yet.

RiscPC/A7000 have been tested and confirmed to build as should NC.
2001-10-05 22:27:40 +00:00

225 lines
7.7 KiB
C

/* $NetBSD: sbicvar.h,v 1.1 2001/10/05 22:27:59 reinoud Exp $ */
/*
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Van Jacobson of Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)scsivar.h 7.1 (Berkeley) 5/8/90
*/
#ifndef _SBICVAR_H_
#define _SBICVAR_H_
#include <sys/malloc.h>
#include <sys/callout.h>
/*
* ACB. Holds additional information for each SCSI command Comments: We
* need a separate scsi command block because we may need to overwrite it
* with a request sense command. Basicly, we refrain from fiddling with
* the scsi_xfer struct (except do the expected updating of return values).
* We'll generally update: xs->{flags,resid,error,sense,status} and
* occasionally xs->retries.
*/
struct sbic_acb {
TAILQ_ENTRY(sbic_acb) chain;
struct scsipi_xfer *xs; /* SCSI xfer ctrl block from above */
int flags; /* Status */
#define ACB_FREE 0x00
#define ACB_ACTIVE 0x01
#define ACB_DONE 0x02
#define ACB_DATAIN 0x04 /* DMA direction flag */
#define ACB_DMA 0x08 /* ACB using DMA this time */
struct scsi_generic cmd; /* SCSI command block */
int clen;
bus_dmamap_t dmamap_xfer; /* Handle for dma */
u_char *data; /* Data buffer... */
int datalen; /* ... and its length. */
int offset;
u_long sc_tcnt; /* number of bytes for this DMA */
};
/*
* Some info about each (possible) target on the SCSI bus. This should
* probably have been a "per target+lunit" structure, but we'll leave it at
* this for now. Is there a way to reliably hook it up to sc->fordriver??
*/
struct sbic_tinfo {
int cmds; /* #commands processed */
int dconns; /* #disconnects */
int touts; /* #timeouts */
int perrs; /* #parity errors */
u_char* bounce; /* Bounce buffer for this device */
ushort lubusy; /* What local units/subr. are busy? */
u_char flags;
u_char period; /* Period suggestion */
u_char offset; /* Offset suggestion */
} tinfo_t;
struct sbic_softc {
struct device sc_dev;
/* struct isr sc_isr;*/
struct callout sc_timo_ch;
struct target_sync {
u_char state;
u_char period;
u_char offset;
} sc_sync[8];
u_char target; /* Currently active target */
u_char lun;
struct scsipi_channel sc_channel;
struct scsipi_adapter sc_adapter;
sbic_regmap sc_sbicp; /* Handle for the SBIC */
volatile void *sc_cregs; /* driver specific regs */
/* Lists of command blocks */
TAILQ_HEAD(acb_list, sbic_acb) free_list,
ready_list,
nexus_list;
struct sbic_acb *sc_nexus; /* current command */
struct sbic_acb sc_acb[8]; /* the real command blocks */
struct sbic_tinfo sc_tinfo[8];
u_char sc_flags;
u_char sc_scsiaddr;
u_char sc_stat[2];
u_char sc_msg[7];
u_long sc_clkfreq;
int sc_dmaflags; /* Target-specific busdma flags */
void *sc_dmah; /* Interface specific dma handle */
bus_dma_tag_t sc_dmat; /* Tag for dma accesses */
int sc_max_dmalen; /* Maximum DMA segment length */
int sc_dmamode; /* Machine-specific DMA mode for
the SBIC chip */
u_short sc_dmatimo; /* dma timeout */
int (*sc_dmaok) (void *, bus_dma_tag_t, struct sbic_acb *);
int (*sc_dmasetup) (void *, bus_dma_tag_t, struct sbic_acb *, int);
int (*sc_dmanext) (void *, bus_dma_tag_t, struct sbic_acb *, int);
void (*sc_dmastop) (void *, bus_dma_tag_t, struct sbic_acb *);
void (*sc_dmafinish) (void *, bus_dma_tag_t, struct sbic_acb *);
void (*sc_enintr) (struct sbic_softc *);
};
/* sc_flags */
#define SBICF_ALIVE 0x01 /* controller initialized */
#define SBICF_SELECTED 0x02 /* bus is in selected state. */
#define SBICF_ICMD 0x04 /* Immediate command in execution */
#define SBICF_BADDMA 0x08 /* controller can only DMA to ztwobus space */
#define SBICF_NODMA 0x10 /* Don't use DMA */
#define SBICF_INTR 0x20 /* SBICF interrupt expected */
#define SBICF_INDMA 0x40 /* not used yet, DMA I/O in progress */
/* sync states */
#define SYNC_START 0 /* no sync handshake started */
#define SYNC_SENT 1 /* we sent sync request, no answer yet */
#define SYNC_DONE 2 /* target accepted our (or inferior) settings,
or it rejected the request and we stay
async */
#ifdef DEBUG
#define DDB_FOLLOW 0x04
#define DDB_IO 0x08
#endif
extern u_char sbic_inhibit_sync[8];
extern int sbic_no_dma;
extern int sbic_clock_override;
#define PHASE_MASK 0x07 /* mask for psns/pctl phase */
#define DATA_OUT_PHASE 0x00
#define DATA_IN_PHASE 0x01
#define CMD_PHASE 0x02
#define STATUS_PHASE 0x03
#define BUS_FREE_PHASE 0x04
#define ARB_SEL_PHASE 0x05 /* Fuji chip combines arbitration with sel. */
#define MESG_OUT_PHASE 0x06
#define MESG_IN_PHASE 0x07
#define MSG_CMD_COMPLETE 0x00
#define MSG_EXT_MESSAGE 0x01
#define MSG_SAVE_DATA_PTR 0x02
#define MSG_RESTORE_PTR 0x03
#define MSG_DISCONNECT 0x04
#define MSG_INIT_DETECT_ERROR 0x05
#define MSG_ABORT 0x06
#define MSG_REJECT 0x07
#define MSG_NOOP 0x08
#define MSG_PARITY_ERROR 0x09
#define MSG_BUS_DEVICE_RESET 0x0C
#define MSG_IDENTIFY 0x80
#define MSG_IDENTIFY_DR 0xc0 /* (disconnect/reconnect allowed) */
#define MSG_SYNC_REQ 0x01
#define MSG_ISIDENTIFY(x) (x&MSG_IDENTIFY)
#define IFY_TRN 0x20
#define IFY_LUNTRN(x) (x&0x07)
#define IFY_LUN(x) (!(x&0x20))
/* Check if high bit set */
#define STS_CHECKCOND 0x02 /* Check Condition (ie., read sense) */
#define STS_CONDMET 0x04 /* Condition Met (ie., search worked) */
#define STS_BUSY 0x08
#define STS_INTERMED 0x10 /* Intermediate status sent */
#define STS_EXT 0x80 /* Extended status valid */
/* States returned by our state machine */
#define SBIC_STATE_ERROR -1
#define SBIC_STATE_DONE 0
#define SBIC_STATE_RUNNING 1
#define SBIC_STATE_DISCONNECT 2
/*
* XXXX
*/
struct scsi_fmt_cdb {
int len; /* cdb length (in bytes) */
u_char cdb[28]; /* cdb to use on next read/write */
};
struct buf;
struct scsipi_xfer;
void sbic_minphys (struct buf *bp);
void sbic_scsi_request (struct scsipi_channel *,
scsipi_adapter_req_t, void *);
int sbicinit (struct sbic_softc *dev);
int sbicintr (struct sbic_softc *);
void sbic_dump (struct sbic_softc *dev);
#endif /* _SBICVAR_H_ */