NetBSD/sys/dev/usb/usb_mem.c

549 lines
14 KiB
C

/* $NetBSD: usb_mem.c,v 1.64 2013/12/22 18:29:25 mlelstv Exp $ */
/*
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (lennart@augustsson.net) at
* Carlstedt Research & Technology.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* USB DMA memory allocation.
* We need to allocate a lot of small (many 8 byte, some larger)
* memory blocks that can be used for DMA. Using the bus_dma
* routines directly would incur large overheads in space and time.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: usb_mem.c,v 1.64 2013/12/22 18:29:25 mlelstv Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/queue.h>
#include <sys/device.h> /* for usbdivar.h */
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/once.h>
#include <sys/extent.h>
#ifdef DIAGNOSTIC
#include <sys/proc.h>
#endif
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h> /* just for usb_dma_t */
#include <dev/usb/usb_mem.h>
#ifdef USB_DEBUG
#define DPRINTF(x) if (usbdebug) printf x
#define DPRINTFN(n,x) if (usbdebug>(n)) printf x
extern int usbdebug;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
#define USB_MEM_SMALL roundup(64, CACHE_LINE_SIZE)
#define USB_MEM_CHUNKS 64
#define USB_MEM_BLOCK (USB_MEM_SMALL * USB_MEM_CHUNKS)
/* This struct is overlayed on free fragments. */
struct usb_frag_dma {
usb_dma_block_t *block;
u_int offs;
LIST_ENTRY(usb_frag_dma) next;
};
Static usbd_status usb_block_allocmem(bus_dma_tag_t, size_t, size_t,
usb_dma_block_t **, bool);
Static void usb_block_freemem(usb_dma_block_t *);
LIST_HEAD(usb_dma_block_qh, usb_dma_block);
Static struct usb_dma_block_qh usb_blk_freelist =
LIST_HEAD_INITIALIZER(usb_blk_freelist);
kmutex_t usb_blk_lock;
#ifdef DEBUG
Static struct usb_dma_block_qh usb_blk_fraglist =
LIST_HEAD_INITIALIZER(usb_blk_fraglist);
Static struct usb_dma_block_qh usb_blk_fulllist =
LIST_HEAD_INITIALIZER(usb_blk_fulllist);
#endif
Static u_int usb_blk_nfree = 0;
/* XXX should have different free list for different tags (for speed) */
Static LIST_HEAD(, usb_frag_dma) usb_frag_freelist =
LIST_HEAD_INITIALIZER(usb_frag_freelist);
Static int usb_mem_init(void);
Static int
usb_mem_init(void)
{
mutex_init(&usb_blk_lock, MUTEX_DEFAULT, IPL_NONE);
return 0;
}
Static usbd_status
usb_block_allocmem(bus_dma_tag_t tag, size_t size, size_t align,
usb_dma_block_t **dmap, bool multiseg)
{
usb_dma_block_t *b;
int error;
DPRINTFN(5, ("usb_block_allocmem: size=%zu align=%zu\n", size, align));
if (size == 0) {
#ifdef DIAGNOSTIC
printf("usb_block_allocmem: called with size==0\n");
#endif
return USBD_INVAL;
}
#ifdef DIAGNOSTIC
if (cpu_softintr_p() || cpu_intr_p()) {
printf("usb_block_allocmem: in interrupt context, size=%lu\n",
(unsigned long) size);
}
#endif
KASSERT(mutex_owned(&usb_blk_lock));
/* First check the free list. */
LIST_FOREACH(b, &usb_blk_freelist, next) {
/* Don't allocate multiple segments to unwilling callers */
if (b->nsegs != 1 && !multiseg)
continue;
if (b->tag == tag && b->size >= size && b->align >= align) {
LIST_REMOVE(b, next);
usb_blk_nfree--;
*dmap = b;
DPRINTFN(6,("usb_block_allocmem: free list size=%zu\n",
b->size));
return (USBD_NORMAL_COMPLETION);
}
}
#ifdef DIAGNOSTIC
if (cpu_softintr_p() || cpu_intr_p()) {
printf("usb_block_allocmem: in interrupt context, failed\n");
return (USBD_NOMEM);
}
#endif
DPRINTFN(6, ("usb_block_allocmem: no free\n"));
b = kmem_zalloc(sizeof *b, KM_SLEEP);
if (b == NULL)
return (USBD_NOMEM);
b->tag = tag;
b->size = size;
b->align = align;
if (!multiseg)
/* Caller wants one segment */
b->nsegs = 1;
else
b->nsegs = (size + (PAGE_SIZE-1)) / PAGE_SIZE;
b->segs = kmem_alloc(b->nsegs * sizeof(*b->segs), KM_SLEEP);
if (b->segs == NULL) {
kmem_free(b, sizeof *b);
return USBD_NOMEM;
}
b->nsegs_alloc = b->nsegs;
error = bus_dmamem_alloc(tag, b->size, align, 0,
b->segs, b->nsegs,
&b->nsegs, BUS_DMA_NOWAIT);
if (error)
goto free0;
error = bus_dmamem_map(tag, b->segs, b->nsegs, b->size,
&b->kaddr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
if (error)
goto free1;
error = bus_dmamap_create(tag, b->size, b->nsegs, b->size,
0, BUS_DMA_NOWAIT, &b->map);
if (error)
goto unmap;
error = bus_dmamap_load(tag, b->map, b->kaddr, b->size, NULL,
BUS_DMA_NOWAIT);
if (error)
goto destroy;
*dmap = b;
#ifdef USB_FRAG_DMA_WORKAROUND
memset(b->kaddr, 0, b->size);
#endif
return (USBD_NORMAL_COMPLETION);
destroy:
bus_dmamap_destroy(tag, b->map);
unmap:
bus_dmamem_unmap(tag, b->kaddr, b->size);
free1:
bus_dmamem_free(tag, b->segs, b->nsegs);
free0:
kmem_free(b->segs, b->nsegs_alloc * sizeof(*b->segs));
kmem_free(b, sizeof *b);
return (USBD_NOMEM);
}
#if 0
void
usb_block_real_freemem(usb_dma_block_t *b)
{
#ifdef DIAGNOSTIC
if (cpu_softintr_p() || cpu_intr_p()) {
printf("usb_block_real_freemem: in interrupt context\n");
return;
}
#endif
bus_dmamap_unload(b->tag, b->map);
bus_dmamap_destroy(b->tag, b->map);
bus_dmamem_unmap(b->tag, b->kaddr, b->size);
bus_dmamem_free(b->tag, b->segs, b->nsegs);
kmem_free(b->segs, b->nsegs_alloc * sizeof(*b->segs));
kmem_free(b, sizeof *b);
}
#endif
#ifdef DEBUG
static bool
usb_valid_block_p(usb_dma_block_t *b, struct usb_dma_block_qh *qh)
{
usb_dma_block_t *xb;
LIST_FOREACH(xb, qh, next) {
if (xb == b)
return true;
}
return false;
}
#endif
/*
* Do not free the memory unconditionally since we might be called
* from an interrupt context and that is BAD.
* XXX when should we really free?
*/
Static void
usb_block_freemem(usb_dma_block_t *b)
{
KASSERT(mutex_owned(&usb_blk_lock));
DPRINTFN(6, ("usb_block_freemem: size=%zu\n", b->size));
#ifdef DEBUG
LIST_REMOVE(b, next);
#endif
LIST_INSERT_HEAD(&usb_blk_freelist, b, next);
usb_blk_nfree++;
}
usbd_status
usb_allocmem(usbd_bus_handle bus, size_t size, size_t align, usb_dma_t *p)
{
return usb_allocmem_flags(bus, size, align, p, 0);
}
usbd_status
usb_allocmem_flags(usbd_bus_handle bus, size_t size, size_t align, usb_dma_t *p,
int flags)
{
bus_dma_tag_t tag = bus->dmatag;
usbd_status err;
struct usb_frag_dma *f;
usb_dma_block_t *b;
int i;
static ONCE_DECL(init_control);
bool frag;
RUN_ONCE(&init_control, usb_mem_init);
frag = (flags & USBMALLOC_MULTISEG);
/* If the request is large then just use a full block. */
if (size > USB_MEM_SMALL || align > USB_MEM_SMALL) {
DPRINTFN(1, ("usb_allocmem: large alloc %d\n", (int)size));
size = (size + USB_MEM_BLOCK - 1) & ~(USB_MEM_BLOCK - 1);
mutex_enter(&usb_blk_lock);
err = usb_block_allocmem(tag, size, align, &p->block, frag);
if (!err) {
#ifdef DEBUG
LIST_INSERT_HEAD(&usb_blk_fulllist, p->block, next);
#endif
p->block->flags = USB_DMA_FULLBLOCK;
p->offs = 0;
}
mutex_exit(&usb_blk_lock);
return (err);
}
mutex_enter(&usb_blk_lock);
/* Check for free fragments. */
LIST_FOREACH(f, &usb_frag_freelist, next) {
KDASSERTMSG(usb_valid_block_p(f->block, &usb_blk_fraglist),
"%s: usb frag %p: unknown block pointer %p",
__func__, f, f->block);
if (f->block->tag == tag)
break;
}
if (f == NULL) {
DPRINTFN(1, ("usb_allocmem: adding fragments\n"));
err = usb_block_allocmem(tag, USB_MEM_BLOCK, USB_MEM_SMALL, &b,
false);
if (err) {
mutex_exit(&usb_blk_lock);
return (err);
}
#ifdef DEBUG
LIST_INSERT_HEAD(&usb_blk_fraglist, b, next);
#endif
b->flags = 0;
for (i = 0; i < USB_MEM_BLOCK; i += USB_MEM_SMALL) {
f = (struct usb_frag_dma *)((char *)b->kaddr + i);
f->block = b;
f->offs = i;
LIST_INSERT_HEAD(&usb_frag_freelist, f, next);
#ifdef USB_FRAG_DMA_WORKAROUND
i += 1 * USB_MEM_SMALL;
#endif
}
f = LIST_FIRST(&usb_frag_freelist);
}
p->block = f->block;
p->offs = f->offs;
#ifdef USB_FRAG_DMA_WORKAROUND
p->offs += USB_MEM_SMALL;
#endif
p->block->flags &= ~USB_DMA_RESERVE;
LIST_REMOVE(f, next);
mutex_exit(&usb_blk_lock);
DPRINTFN(5, ("usb_allocmem: use frag=%p size=%d\n", f, (int)size));
return (USBD_NORMAL_COMPLETION);
}
void
usb_freemem(usbd_bus_handle bus, usb_dma_t *p)
{
struct usb_frag_dma *f;
mutex_enter(&usb_blk_lock);
if (p->block->flags & USB_DMA_FULLBLOCK) {
KDASSERTMSG(usb_valid_block_p(p->block, &usb_blk_fulllist),
"%s: dma %p: invalid block pointer %p",
__func__, p, p->block);
DPRINTFN(1, ("usb_freemem: large free\n"));
usb_block_freemem(p->block);
mutex_exit(&usb_blk_lock);
return;
}
KDASSERTMSG(usb_valid_block_p(p->block, &usb_blk_fraglist),
"%s: dma %p: invalid block pointer %p",
__func__, p, p->block);
//usb_syncmem(p, 0, USB_MEM_SMALL, BUS_DMASYNC_POSTREAD);
f = KERNADDR(p, 0);
#ifdef USB_FRAG_DMA_WORKAROUND
f = (void *)((uintptr_t)f - USB_MEM_SMALL);
#endif
f->block = p->block;
f->offs = p->offs;
#ifdef USB_FRAG_DMA_WORKAROUND
f->offs -= USB_MEM_SMALL;
#endif
LIST_INSERT_HEAD(&usb_frag_freelist, f, next);
mutex_exit(&usb_blk_lock);
DPRINTFN(5, ("usb_freemem: frag=%p\n", f));
}
bus_addr_t
usb_dmaaddr(usb_dma_t *dma, unsigned int offset)
{
unsigned int i;
bus_size_t seg_offs;
offset += dma->offs;
KASSERT(offset < dma->block->size);
if (dma->block->nsegs == 1) {
KASSERT(dma->block->map->dm_segs[0].ds_len > offset);
return dma->block->map->dm_segs[0].ds_addr + offset;
}
/* Search for a bus_segment_t corresponding to this offset. With no
* record of the offset in the map to a particular dma_segment_t, we
* have to iterate from the start of the list each time. Could be
* improved */
seg_offs = 0;
for (i = 0; i < dma->block->nsegs; i++) {
if (seg_offs + dma->block->map->dm_segs[i].ds_len > offset)
break;
seg_offs += dma->block->map->dm_segs[i].ds_len;
}
KASSERT(i != dma->block->nsegs);
offset -= seg_offs;
return dma->block->map->dm_segs[i].ds_addr + offset;
}
void
usb_syncmem(usb_dma_t *p, bus_addr_t offset, bus_size_t len, int ops)
{
bus_dmamap_sync(p->block->tag, p->block->map, p->offs + offset,
len, ops);
}
usbd_status
usb_reserve_allocm(struct usb_dma_reserve *rs, usb_dma_t *dma, u_int32_t size)
{
int error;
u_long start;
bus_addr_t baddr;
if (rs->vaddr == 0 || size > USB_MEM_RESERVE)
return USBD_NOMEM;
dma->block = kmem_zalloc(sizeof *dma->block, KM_SLEEP);
if (dma->block == NULL) {
aprint_error_dev(rs->dv, "%s: failed allocating dma block",
__func__);
goto out0;
}
dma->block->nsegs = 1;
dma->block->segs = kmem_alloc(dma->block->nsegs *
sizeof(*dma->block->segs), KM_SLEEP);
if (dma->block->segs == NULL) {
aprint_error_dev(rs->dv, "%s: failed allocating 1 dma segment",
__func__);
goto out1;
}
error = extent_alloc(rs->extent, size, PAGE_SIZE, 0,
EX_NOWAIT, &start);
if (error != 0) {
aprint_error_dev(rs->dv, "%s: extent_alloc size %u failed "
"(error %d)", __func__, size, error);
goto out2;
}
baddr = start;
dma->offs = baddr - rs->paddr;
dma->block->flags = USB_DMA_RESERVE;
dma->block->align = PAGE_SIZE;
dma->block->size = size;
dma->block->segs[0] = rs->map->dm_segs[0];
dma->block->map = rs->map;
dma->block->kaddr = rs->vaddr;
dma->block->tag = rs->dtag;
return USBD_NORMAL_COMPLETION;
out2:
kmem_free(dma->block->segs, dma->block->nsegs *
sizeof(*dma->block->segs));
out1:
kmem_free(dma->block, sizeof *dma->block);
out0:
return USBD_NOMEM;
}
void
usb_reserve_freem(struct usb_dma_reserve *rs, usb_dma_t *dma)
{
extent_free(rs->extent,
(u_long)(rs->paddr + dma->offs), dma->block->size, 0);
kmem_free(dma->block->segs, dma->block->nsegs *
sizeof(*dma->block->segs));
kmem_free(dma->block, sizeof *dma->block);
}
int
usb_setup_reserve(device_t dv, struct usb_dma_reserve *rs, bus_dma_tag_t dtag,
size_t size)
{
int error, nseg;
bus_dma_segment_t seg;
rs->dtag = dtag;
rs->size = size;
rs->dv = dv;
error = bus_dmamem_alloc(dtag, USB_MEM_RESERVE, PAGE_SIZE, 0,
&seg, 1, &nseg, BUS_DMA_NOWAIT);
if (error != 0)
return error;
error = bus_dmamem_map(dtag, &seg, nseg, USB_MEM_RESERVE,
&rs->vaddr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
if (error != 0)
goto freeit;
error = bus_dmamap_create(dtag, USB_MEM_RESERVE, 1,
USB_MEM_RESERVE, 0, BUS_DMA_NOWAIT, &rs->map);
if (error != 0)
goto unmap;
error = bus_dmamap_load(dtag, rs->map, rs->vaddr, USB_MEM_RESERVE,
NULL, BUS_DMA_NOWAIT);
if (error != 0)
goto destroy;
rs->paddr = rs->map->dm_segs[0].ds_addr;
rs->extent = extent_create(device_xname(dv), (u_long)rs->paddr,
(u_long)(rs->paddr + USB_MEM_RESERVE - 1), 0, 0, 0);
if (rs->extent == NULL) {
rs->vaddr = 0;
return ENOMEM;
}
return 0;
destroy:
bus_dmamap_destroy(dtag, rs->map);
unmap:
bus_dmamem_unmap(dtag, rs->vaddr, size);
freeit:
bus_dmamem_free(dtag, &seg, nseg);
rs->vaddr = 0;
return error;
}