NetBSD/sys/dev/usb/irmce.c

627 lines
15 KiB
C

/* $NetBSD: irmce.c,v 1.1 2011/07/19 12:23:04 jmcneill Exp $ */
/*-
* Copyright (c) 2011 Jared D. McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* IR receiver/transceiver for Windows Media Center
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: irmce.c,v 1.1 2011/07/19 12:23:04 jmcneill Exp $");
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/conf.h>
#include <sys/bus.h>
#include <sys/select.h>
#include <sys/module.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdevs.h>
#include <dev/ir/ir.h>
#include <dev/ir/cirio.h>
#include <dev/ir/cirvar.h>
enum irmce_state {
IRMCE_STATE_HEADER,
IRMCE_STATE_IRDATA,
IRMCE_STATE_CMDHEADER,
IRMCE_STATE_CMDDATA,
};
struct irmce_softc {
device_t sc_dev;
device_t sc_cirdev;
usbd_device_handle sc_udev;
usbd_interface_handle sc_iface;
int sc_bulkin_ep;
uint16_t sc_bulkin_maxpktsize;
usbd_pipe_handle sc_bulkin_pipe;
usbd_xfer_handle sc_bulkin_xfer;
uint8_t * sc_bulkin_buffer;
int sc_bulkout_ep;
uint16_t sc_bulkout_maxpktsize;
usbd_pipe_handle sc_bulkout_pipe;
usbd_xfer_handle sc_bulkout_xfer;
uint8_t * sc_bulkout_buffer;
bool sc_raw;
uint8_t sc_ir_buf[16];
size_t sc_ir_bufused;
size_t sc_ir_resid;
enum irmce_state sc_ir_state;
uint8_t sc_ir_header;
bool sc_rc6_hb[256];
size_t sc_rc6_nhb;
};
static int irmce_match(device_t, cfdata_t, void *);
static void irmce_attach(device_t, device_t, void *);
static int irmce_detach(device_t, int);
static void irmce_childdet(device_t, device_t);
static int irmce_activate(device_t, enum devact);
static int irmce_rescan(device_t, const char *, const int *);
static int irmce_print(void *, const char *);
static int irmce_reset(struct irmce_softc *);
static int irmce_open(void *, int, int, struct proc *);
static int irmce_close(void *, int, int, struct proc *);
static int irmce_read(void *, struct uio *, int);
static int irmce_write(void *, struct uio *, int);
static int irmce_setparams(void *, struct cir_params *);
static const struct cir_methods irmce_cir_methods = {
.im_open = irmce_open,
.im_close = irmce_close,
.im_read = irmce_read,
.im_write = irmce_write,
.im_setparams = irmce_setparams,
};
static const struct {
uint16_t vendor;
uint16_t product;
} irmce_devices[] = {
{ USB_VENDOR_SMK, USB_PRODUCT_SMK_MCE_IR },
};
CFATTACH_DECL2_NEW(irmce, sizeof(struct irmce_softc),
irmce_match, irmce_attach, irmce_detach, irmce_activate,
irmce_rescan, irmce_childdet);
static int
irmce_match(device_t parent, cfdata_t match, void *opaque)
{
struct usbif_attach_arg *uiaa = opaque;
unsigned int i;
for (i = 0; i < __arraycount(irmce_devices); i++) {
if (irmce_devices[i].vendor == uiaa->vendor &&
irmce_devices[i].product == uiaa->product)
return UMATCH_VENDOR_PRODUCT;
}
return UMATCH_NONE;
}
static void
irmce_attach(device_t parent, device_t self, void *opaque)
{
struct irmce_softc *sc = device_private(self);
struct usbif_attach_arg *uiaa = opaque;
usb_endpoint_descriptor_t *ed;
char *devinfop;
unsigned int i;
uint8_t nep;
pmf_device_register(self, NULL, NULL);
aprint_naive("\n");
devinfop = usbd_devinfo_alloc(uiaa->device, 0);
aprint_normal(": %s\n", devinfop);
usbd_devinfo_free(devinfop);
sc->sc_dev = self;
sc->sc_udev = uiaa->device;
sc->sc_iface = uiaa->iface;
nep = 0;
usbd_endpoint_count(sc->sc_iface, &nep);
sc->sc_bulkin_ep = sc->sc_bulkout_ep = -1;
for (i = 0; i < nep; i++) {
int dir, type;
ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
if (ed == NULL) {
aprint_error_dev(self,
"couldn't read endpoint descriptor %d\n", i);
continue;
}
dir = UE_GET_DIR(ed->bEndpointAddress);
type = UE_GET_XFERTYPE(ed->bmAttributes);
if (type != UE_BULK)
continue;
if (dir == UE_DIR_IN && sc->sc_bulkin_ep == -1) {
sc->sc_bulkin_ep = ed->bEndpointAddress;
sc->sc_bulkin_maxpktsize =
UE_GET_SIZE(UGETW(ed->wMaxPacketSize)) *
(UE_GET_TRANS(UGETW(ed->wMaxPacketSize)) + 1);
}
if (dir == UE_DIR_OUT && sc->sc_bulkout_ep == -1) {
sc->sc_bulkout_ep = ed->bEndpointAddress;
sc->sc_bulkout_maxpktsize =
UE_GET_SIZE(UGETW(ed->wMaxPacketSize)) *
(UE_GET_TRANS(UGETW(ed->wMaxPacketSize)) + 1);
}
}
aprint_debug_dev(self, "in 0x%02x/%d out 0x%02x/%d\n",
sc->sc_bulkin_ep, sc->sc_bulkin_maxpktsize,
sc->sc_bulkout_ep, sc->sc_bulkout_maxpktsize);
if (sc->sc_bulkin_maxpktsize < 16 || sc->sc_bulkout_maxpktsize < 16) {
aprint_error_dev(self, "bad maxpktsize\n");
return;
}
sc->sc_bulkin_xfer = usbd_alloc_xfer(sc->sc_udev);
sc->sc_bulkout_xfer = usbd_alloc_xfer(sc->sc_udev);
if (sc->sc_bulkin_xfer == NULL || sc->sc_bulkout_xfer == NULL) {
aprint_error_dev(self, "couldn't alloc xfer\n");
return;
}
sc->sc_bulkin_buffer = usbd_alloc_buffer(sc->sc_bulkin_xfer,
sc->sc_bulkin_maxpktsize);
sc->sc_bulkout_buffer = usbd_alloc_buffer(sc->sc_bulkout_xfer,
sc->sc_bulkout_maxpktsize);
if (sc->sc_bulkin_buffer == NULL || sc->sc_bulkout_buffer == NULL) {
aprint_error_dev(self, "couldn't alloc xfer buffer\n");
return;
}
irmce_rescan(self, NULL, NULL);
}
static int
irmce_detach(device_t self, int flags)
{
struct irmce_softc *sc = device_private(self);
int error;
if (sc->sc_cirdev) {
error = config_detach(sc->sc_cirdev, flags);
if (error)
return error;
}
if (sc->sc_bulkin_xfer) {
usbd_free_xfer(sc->sc_bulkin_xfer);
sc->sc_bulkin_buffer = NULL;
sc->sc_bulkin_xfer = NULL;
}
if (sc->sc_bulkout_xfer) {
usbd_free_xfer(sc->sc_bulkout_xfer);
sc->sc_bulkout_buffer = NULL;
sc->sc_bulkout_xfer = NULL;
}
pmf_device_deregister(self);
return 0;
}
static int
irmce_activate(device_t self, enum devact act)
{
return 0;
}
static int
irmce_rescan(device_t self, const char *ifattr, const int *locators)
{
struct irmce_softc *sc = device_private(self);
struct ir_attach_args iaa;
if (sc->sc_cirdev == NULL) {
iaa.ia_type = IR_TYPE_CIR;
iaa.ia_methods = &irmce_cir_methods;
iaa.ia_handle = sc;
sc->sc_cirdev = config_found_ia(self, "irbus",
&iaa, irmce_print);
}
return 0;
}
static int
irmce_print(void *priv, const char *pnp)
{
if (pnp)
aprint_normal("cir at %s", pnp);
return UNCONF;
}
static void
irmce_childdet(device_t self, device_t child)
{
struct irmce_softc *sc = device_private(self);
if (sc->sc_cirdev == child)
sc->sc_cirdev = NULL;
}
static int
irmce_reset(struct irmce_softc *sc)
{
static const uint8_t reset_cmd[] = { 0x00, 0xff, 0xaa };
uint8_t *p = sc->sc_bulkout_buffer;
usbd_status err;
uint32_t wlen;
unsigned int n;
for (n = 0; n < __arraycount(reset_cmd); n++)
*p++ = reset_cmd[n];
wlen = sizeof(reset_cmd);
err = usbd_bulk_transfer(sc->sc_bulkin_xfer,
sc->sc_bulkout_pipe, USBD_NO_COPY|USBD_FORCE_SHORT_XFER,
USBD_DEFAULT_TIMEOUT, sc->sc_bulkout_buffer, &wlen,
"irmcereset");
if (err != USBD_NORMAL_COMPLETION) {
if (err == USBD_INTERRUPTED)
return EINTR;
else if (err == USBD_TIMEOUT)
return ETIMEDOUT;
else
return EIO;
}
return 0;
}
static int
irmce_open(void *priv, int flag, int mode, struct proc *p)
{
struct irmce_softc *sc = priv;
usbd_status err;
err = usbd_open_pipe(sc->sc_iface, sc->sc_bulkin_ep,
USBD_EXCLUSIVE_USE, &sc->sc_bulkin_pipe);
if (err) {
aprint_error_dev(sc->sc_dev,
"couldn't open bulk-in pipe: %s\n", usbd_errstr(err));
return ENXIO;
}
err = usbd_open_pipe(sc->sc_iface, sc->sc_bulkout_ep,
USBD_EXCLUSIVE_USE, &sc->sc_bulkout_pipe);
if (err) {
aprint_error_dev(sc->sc_dev,
"couldn't open bulk-out pipe: %s\n", usbd_errstr(err));
usbd_close_pipe(sc->sc_bulkin_pipe);
sc->sc_bulkin_pipe = NULL;
return ENXIO;
}
err = irmce_reset(sc);
if (err) {
aprint_error_dev(sc->sc_dev,
"couldn't reset device: %s\n", usbd_errstr(err));
usbd_close_pipe(sc->sc_bulkin_pipe);
sc->sc_bulkin_pipe = NULL;
usbd_close_pipe(sc->sc_bulkout_pipe);
sc->sc_bulkout_pipe = NULL;
}
sc->sc_ir_state = IRMCE_STATE_HEADER;
sc->sc_rc6_nhb = 0;
return 0;
}
static int
irmce_close(void *priv, int flag, int mode, struct proc *p)
{
struct irmce_softc *sc = priv;
if (sc->sc_bulkin_pipe) {
usbd_abort_pipe(sc->sc_bulkin_pipe);
usbd_close_pipe(sc->sc_bulkin_pipe);
sc->sc_bulkin_pipe = NULL;
}
if (sc->sc_bulkout_pipe) {
usbd_abort_pipe(sc->sc_bulkout_pipe);
usbd_close_pipe(sc->sc_bulkout_pipe);
sc->sc_bulkout_pipe = NULL;
}
return 0;
}
static int
irmce_rc6_decode(struct irmce_softc *sc, uint8_t *buf, size_t buflen,
struct uio *uio)
{
bool *hb = &sc->sc_rc6_hb[0];
unsigned int n;
int state, pulse;
uint32_t data;
uint8_t mode;
bool idle = false;
for (n = 0; n < buflen; n++) {
state = (buf[n] & 0x80) ? 1 : 0;
pulse = (buf[n] & 0x7f) * 50;
if (pulse >= 300 && pulse <= 600) {
hb[sc->sc_rc6_nhb++] = state;
} else if (pulse >= 680 && pulse <= 1080) {
hb[sc->sc_rc6_nhb++] = state;
hb[sc->sc_rc6_nhb++] = state;
} else if (pulse >= 1150 && pulse <= 1450) {
hb[sc->sc_rc6_nhb++] = state;
hb[sc->sc_rc6_nhb++] = state;
hb[sc->sc_rc6_nhb++] = state;
} else if (pulse >= 2400 && pulse <= 2800) {
hb[sc->sc_rc6_nhb++] = state;
hb[sc->sc_rc6_nhb++] = state;
hb[sc->sc_rc6_nhb++] = state;
hb[sc->sc_rc6_nhb++] = state;
hb[sc->sc_rc6_nhb++] = state;
hb[sc->sc_rc6_nhb++] = state;
} else if (pulse > 3000) {
if (sc->sc_rc6_nhb & 1)
hb[sc->sc_rc6_nhb++] = state;
idle = true;
break;
} else {
aprint_debug_dev(sc->sc_dev,
"error parsing RC6 stream (pulse=%d)\n", pulse);
return EIO;
}
}
if (!idle)
return 0;
if (sc->sc_rc6_nhb < 20) {
aprint_debug_dev(sc->sc_dev, "not enough RC6 data\n");
return EIO;
}
/* RC6 leader 11111100 */
if (!hb[0] || !hb[1] || !hb[2] || !hb[3] || !hb[4] || !hb[5] ||
hb[6] || hb[7]) {
aprint_debug_dev(sc->sc_dev, "bad RC6 leader\n");
return EIO;
}
/* start bit 10 */
if (!hb[8] || hb[9]) {
aprint_debug_dev(sc->sc_dev, "missing RC6 start bit\n");
return EIO;
}
/* mode info */
mode = 0x00;
for (n = 10; n < 15; n += 2) {
if (hb[n] && !hb[n + 1])
mode = (mode << 1) | 1;
else if (!hb[n] && hb[n + 1])
mode = (mode << 1) | 0;
else {
aprint_debug_dev(sc->sc_dev, "bad RC6 mode bits\n");
return EIO;
}
}
data = 0;
for (n = 20; n < sc->sc_rc6_nhb; n += 2) {
if (hb[n] && !hb[n + 1])
data = (data << 1) | 1;
else if (!hb[n] && hb[n + 1])
data = (data << 1) | 0;
else {
aprint_debug_dev(sc->sc_dev, "bad RC6 data bits\n");
return EIO;
}
}
sc->sc_rc6_nhb = 0;
return uiomove(&data, sizeof(data), uio);
}
static int
irmce_process(struct irmce_softc *sc, uint8_t *buf, size_t buflen,
struct uio *uio)
{
uint8_t *p = buf;
uint8_t data, cmd;
int error;
while (p - buf < (ssize_t)buflen) {
switch (sc->sc_ir_state) {
case IRMCE_STATE_HEADER:
sc->sc_ir_header = data = *p++;
if ((data & 0xe0) == 0x80 && (data & 0x1f) != 0x1f) {
sc->sc_ir_bufused = 0;
sc->sc_ir_resid = data & 0x1f;
sc->sc_ir_state = IRMCE_STATE_IRDATA;
if (sc->sc_ir_resid > sizeof(sc->sc_ir_buf))
return EIO;
if (sc->sc_ir_resid == 0)
sc->sc_ir_state = IRMCE_STATE_HEADER;
} else {
sc->sc_ir_state = IRMCE_STATE_CMDHEADER;
}
break;
case IRMCE_STATE_CMDHEADER:
cmd = *p++;
data = sc->sc_ir_header;
if (data == 0x00 && cmd == 0x9f)
sc->sc_ir_resid = 1;
else if (data == 0xff && cmd == 0x0b)
sc->sc_ir_resid = 2;
else if (data == 0x9f) {
if (cmd == 0x04 || cmd == 0x06 ||
cmd == 0x0c || cmd == 0x15) {
sc->sc_ir_resid = 2;
} else if (cmd == 0x01 || cmd == 0x08 ||
cmd == 0x14) {
sc->sc_ir_resid = 1;
}
}
if (sc->sc_ir_resid > 0)
sc->sc_ir_state = IRMCE_STATE_CMDDATA;
else
sc->sc_ir_state = IRMCE_STATE_HEADER;
break;
case IRMCE_STATE_IRDATA:
sc->sc_ir_resid--;
sc->sc_ir_buf[sc->sc_ir_bufused++] = *p;
p++;
if (sc->sc_ir_resid == 0) {
sc->sc_ir_state = IRMCE_STATE_HEADER;
error = irmce_rc6_decode(sc,
sc->sc_ir_buf, sc->sc_ir_bufused, uio);
if (error)
sc->sc_rc6_nhb = 0;
}
break;
case IRMCE_STATE_CMDDATA:
p++;
sc->sc_ir_resid--;
if (sc->sc_ir_resid == 0)
sc->sc_ir_state = IRMCE_STATE_HEADER;
break;
}
}
return 0;
}
static int
irmce_read(void *priv, struct uio *uio, int flag)
{
struct irmce_softc *sc = priv;
usbd_status err;
uint32_t rlen;
int error = 0;
while (uio->uio_resid > 0) {
rlen = sc->sc_bulkin_maxpktsize;
err = usbd_bulk_transfer(sc->sc_bulkin_xfer,
sc->sc_bulkin_pipe, USBD_NO_COPY|USBD_SHORT_XFER_OK,
USBD_DEFAULT_TIMEOUT, sc->sc_bulkin_buffer, &rlen,
"irmcerd");
if (err != USBD_NORMAL_COMPLETION) {
if (err == USBD_INTERRUPTED)
return EINTR;
else if (err == USBD_TIMEOUT)
continue;
else
return EIO;
}
if (sc->sc_raw) {
error = uiomove(sc->sc_bulkin_buffer, rlen, uio);
break;
} else {
error = irmce_process(sc, sc->sc_bulkin_buffer,
rlen, uio);
if (error)
break;
}
}
return error;
}
static int
irmce_write(void *priv, struct uio *uio, int flag)
{
return EIO;
}
static int
irmce_setparams(void *priv, struct cir_params *params)
{
struct irmce_softc *sc = priv;
if (params->raw > 1)
return EINVAL;
sc->sc_raw = params->raw;
return 0;
}
MODULE(MODULE_CLASS_DRIVER, irmce, NULL);
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
irmce_modcmd(modcmd_t cmd, void *opaque)
{
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
return config_init_component(cfdriver_ioconf_irmce,
cfattach_ioconf_irmce, cfdata_ioconf_irmce);
#else
return 0;
#endif
case MODULE_CMD_FINI:
#ifdef _MODULE
return config_fini_component(cfdriver_ioconf_irmce,
cfattach_ioconf_irmce, cfdata_ioconf_irmce);
#else
return 0;
#endif
default:
return ENOTTY;
}
}