NetBSD/sys/compat/netbsd32/netbsd32_time.c

739 lines
18 KiB
C

/* $NetBSD: netbsd32_time.c,v 1.18 2005/12/06 13:37:35 christos Exp $ */
/*
* Copyright (c) 1998, 2001 Matthew R. Green
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: netbsd32_time.c,v 1.18 2005/12/06 13:37:35 christos Exp $");
#if defined(_KERNEL_OPT)
#include "opt_ntp.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mount.h>
#include <sys/time.h>
#include <sys/timex.h>
#include <sys/timevar.h>
#include <sys/proc.h>
#include <sys/pool.h>
#include <sys/resourcevar.h>
#include <sys/dirent.h>
#include <compat/netbsd32/netbsd32.h>
#include <compat/netbsd32/netbsd32_syscallargs.h>
#include <compat/netbsd32/netbsd32_conv.h>
#ifdef NTP
int
netbsd32_ntp_gettime(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct netbsd32_ntp_gettime_args /* {
syscallarg(netbsd32_ntptimevalp_t) ntvp;
} */ *uap = v;
struct netbsd32_ntptimeval ntv32;
struct timeval atv;
struct ntptimeval ntv;
int error = 0;
int s;
/* The following are NTP variables */
extern long time_maxerror;
extern long time_esterror;
extern int time_status;
extern int time_state; /* clock state */
extern int time_status; /* clock status bits */
if (SCARG(uap, ntvp)) {
s = splclock();
#ifdef EXT_CLOCK
/*
* The microtime() external clock routine returns a
* status code. If less than zero, we declare an error
* in the clock status word and return the kernel
* (software) time variable. While there are other
* places that call microtime(), this is the only place
* that matters from an application point of view.
*/
if (microtime(&atv) < 0) {
time_status |= STA_CLOCKERR;
ntv.time = time;
} else
time_status &= ~STA_CLOCKERR;
#else /* EXT_CLOCK */
microtime(&atv);
#endif /* EXT_CLOCK */
ntv.time = atv;
ntv.maxerror = time_maxerror;
ntv.esterror = time_esterror;
(void) splx(s);
netbsd32_from_timeval(&ntv.time, &ntv32.time);
ntv32.maxerror = (netbsd32_long)ntv.maxerror;
ntv32.esterror = (netbsd32_long)ntv.esterror;
error = copyout((caddr_t)&ntv32,
(caddr_t)NETBSD32PTR64(SCARG(uap, ntvp)), sizeof(ntv32));
}
if (!error) {
/*
* Status word error decode. If any of these conditions
* occur, an error is returned, instead of the status
* word. Most applications will care only about the fact
* the system clock may not be trusted, not about the
* details.
*
* Hardware or software error
*/
if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
/*
* PPS signal lost when either time or frequency
* synchronization requested
*/
(time_status & (STA_PPSFREQ | STA_PPSTIME) &&
!(time_status & STA_PPSSIGNAL)) ||
/*
* PPS jitter exceeded when time synchronization
* requested
*/
(time_status & STA_PPSTIME &&
time_status & STA_PPSJITTER) ||
/*
* PPS wander exceeded or calibration error when
* frequency synchronization requested
*/
(time_status & STA_PPSFREQ &&
time_status & (STA_PPSWANDER | STA_PPSERROR)))
*retval = TIME_ERROR;
else
*retval = time_state;
}
return (error);
}
int
netbsd32_ntp_adjtime(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct netbsd32_ntp_adjtime_args /* {
syscallarg(netbsd32_timexp_t) tp;
} */ *uap = v;
struct netbsd32_timex ntv32;
struct timex ntv;
int error = 0;
int modes;
int s;
struct proc *p = l->l_proc;
extern long time_freq; /* frequency offset (scaled ppm) */
extern long time_maxerror;
extern long time_esterror;
extern int time_state; /* clock state */
extern int time_status; /* clock status bits */
extern long time_constant; /* pll time constant */
extern long time_offset; /* time offset (us) */
extern long time_tolerance; /* frequency tolerance (scaled ppm) */
extern long time_precision; /* clock precision (us) */
if ((error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
(caddr_t)&ntv32, sizeof(ntv32))))
return (error);
netbsd32_to_timex(&ntv32, &ntv);
/*
* Update selected clock variables - only the superuser can
* change anything. Note that there is no error checking here on
* the assumption the superuser should know what it is doing.
*/
modes = ntv.modes;
if (modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)))
return (error);
s = splclock();
if (modes & MOD_FREQUENCY)
#ifdef PPS_SYNC
time_freq = ntv.freq - pps_freq;
#else /* PPS_SYNC */
time_freq = ntv.freq;
#endif /* PPS_SYNC */
if (modes & MOD_MAXERROR)
time_maxerror = ntv.maxerror;
if (modes & MOD_ESTERROR)
time_esterror = ntv.esterror;
if (modes & MOD_STATUS) {
time_status &= STA_RONLY;
time_status |= ntv.status & ~STA_RONLY;
}
if (modes & MOD_TIMECONST)
time_constant = ntv.constant;
if (modes & MOD_OFFSET)
hardupdate(ntv.offset);
/*
* Retrieve all clock variables
*/
if (time_offset < 0)
ntv.offset = -(-time_offset >> SHIFT_UPDATE);
else
ntv.offset = time_offset >> SHIFT_UPDATE;
#ifdef PPS_SYNC
ntv.freq = time_freq + pps_freq;
#else /* PPS_SYNC */
ntv.freq = time_freq;
#endif /* PPS_SYNC */
ntv.maxerror = time_maxerror;
ntv.esterror = time_esterror;
ntv.status = time_status;
ntv.constant = time_constant;
ntv.precision = time_precision;
ntv.tolerance = time_tolerance;
#ifdef PPS_SYNC
ntv.shift = pps_shift;
ntv.ppsfreq = pps_freq;
ntv.jitter = pps_jitter >> PPS_AVG;
ntv.stabil = pps_stabil;
ntv.calcnt = pps_calcnt;
ntv.errcnt = pps_errcnt;
ntv.jitcnt = pps_jitcnt;
ntv.stbcnt = pps_stbcnt;
#endif /* PPS_SYNC */
(void)splx(s);
netbsd32_from_timex(&ntv, &ntv32);
error = copyout((caddr_t)&ntv32, (caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
sizeof(ntv32));
if (!error) {
/*
* Status word error decode. See comments in
* ntp_gettime() routine.
*/
if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
(time_status & (STA_PPSFREQ | STA_PPSTIME) &&
!(time_status & STA_PPSSIGNAL)) ||
(time_status & STA_PPSTIME &&
time_status & STA_PPSJITTER) ||
(time_status & STA_PPSFREQ &&
time_status & (STA_PPSWANDER | STA_PPSERROR)))
*retval = TIME_ERROR;
else
*retval = time_state;
}
return error;
}
#else
int
netbsd32_ntp_gettime(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
return (ENOSYS);
}
int
netbsd32_ntp_adjtime(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
return (ENOSYS);
}
#endif
int
netbsd32_setitimer(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct netbsd32_setitimer_args /* {
syscallarg(int) which;
syscallarg(const netbsd32_itimervalp_t) itv;
syscallarg(netbsd32_itimervalp_t) oitv;
} */ *uap = v;
struct proc *p = l->l_proc;
struct netbsd32_itimerval s32it, *itv32;
int which = SCARG(uap, which);
struct netbsd32_getitimer_args getargs;
struct itimerval aitv;
int error;
if ((u_int)which > ITIMER_PROF)
return (EINVAL);
itv32 = (struct netbsd32_itimerval *)NETBSD32PTR64(SCARG(uap, itv));
if (itv32) {
if ((error = copyin(itv32, &s32it, sizeof(s32it))))
return (error);
netbsd32_to_itimerval(&s32it, &aitv);
}
if (SCARG(uap, oitv) != 0) {
SCARG(&getargs, which) = which;
SCARG(&getargs, itv) = SCARG(uap, oitv);
if ((error = netbsd32_getitimer(l, &getargs, retval)) != 0)
return (error);
}
if (itv32 == 0)
return 0;
return dosetitimer(p, which, &aitv);
}
int
netbsd32_getitimer(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct netbsd32_getitimer_args /* {
syscallarg(int) which;
syscallarg(netbsd32_itimervalp_t) itv;
} */ *uap = v;
struct proc *p = l->l_proc;
struct netbsd32_itimerval s32it;
struct itimerval aitv;
int error;
error = dogetitimer(p, SCARG(uap, which), &aitv);
if (error)
return error;
netbsd32_from_itimerval(&aitv, &s32it);
return (copyout(&s32it, (caddr_t)NETBSD32PTR64(SCARG(uap, itv)),
sizeof(s32it)));
}
int
netbsd32_gettimeofday(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct netbsd32_gettimeofday_args /* {
syscallarg(netbsd32_timevalp_t) tp;
syscallarg(netbsd32_timezonep_t) tzp;
} */ *uap = v;
struct timeval atv;
struct netbsd32_timeval tv32;
int error = 0;
struct netbsd32_timezone tzfake;
if (SCARG(uap, tp)) {
microtime(&atv);
netbsd32_from_timeval(&atv, &tv32);
error = copyout(&tv32, (caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
sizeof(tv32));
if (error)
return (error);
}
if (SCARG(uap, tzp)) {
/*
* NetBSD has no kernel notion of time zone, so we just
* fake up a timezone struct and return it if demanded.
*/
tzfake.tz_minuteswest = 0;
tzfake.tz_dsttime = 0;
error = copyout(&tzfake,
(caddr_t)NETBSD32PTR64(SCARG(uap, tzp)), sizeof(tzfake));
}
return (error);
}
int
netbsd32_settimeofday(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct netbsd32_settimeofday_args /* {
syscallarg(const netbsd32_timevalp_t) tv;
syscallarg(const netbsd32_timezonep_t) tzp;
} */ *uap = v;
struct netbsd32_timeval atv32;
struct timeval atv;
struct timespec ats;
int error;
struct proc *p = l->l_proc;
/* Verify all parameters before changing time. */
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
return error;
/*
* NetBSD has no kernel notion of time zone, and only an
* obsolete program would try to set it, so we log a warning.
*/
if (SCARG(uap, tzp))
printf("pid %d attempted to set the "
"(obsolete) kernel time zone\n", p->p_pid);
if (SCARG(uap, tv) == 0)
return 0;
if ((error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, tv)), &atv32,
sizeof(atv32))) != 0)
return error;
netbsd32_to_timeval(&atv32, &atv);
TIMEVAL_TO_TIMESPEC(&atv, &ats);
return settime(p, &ats);
}
int
netbsd32_adjtime(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct netbsd32_adjtime_args /* {
syscallarg(const netbsd32_timevalp_t) delta;
syscallarg(netbsd32_timevalp_t) olddelta;
} */ *uap = v;
struct netbsd32_timeval atv;
int32_t ndelta, ntickdelta, odelta;
int s, error;
struct proc *p = l->l_proc;
extern long bigadj, timedelta;
extern int tickdelta;
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
return (error);
error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, delta)), &atv,
sizeof(struct timeval));
if (error)
return (error);
/*
* Compute the total correction and the rate at which to apply it.
* Round the adjustment down to a whole multiple of the per-tick
* delta, so that after some number of incremental changes in
* hardclock(), tickdelta will become zero, lest the correction
* overshoot and start taking us away from the desired final time.
*/
ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
if (ndelta > bigadj)
ntickdelta = 10 * tickadj;
else
ntickdelta = tickadj;
if (ndelta % ntickdelta)
ndelta = ndelta / ntickdelta * ntickdelta;
/*
* To make hardclock()'s job easier, make the per-tick delta negative
* if we want time to run slower; then hardclock can simply compute
* tick + tickdelta, and subtract tickdelta from timedelta.
*/
if (ndelta < 0)
ntickdelta = -ntickdelta;
s = splclock();
odelta = timedelta;
timedelta = ndelta;
tickdelta = ntickdelta;
splx(s);
if (SCARG(uap, olddelta)) {
atv.tv_sec = odelta / 1000000;
atv.tv_usec = odelta % 1000000;
(void) copyout(&atv,
(caddr_t)NETBSD32PTR64(SCARG(uap, olddelta)), sizeof(atv));
}
return (0);
}
int
netbsd32_clock_gettime(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct netbsd32_clock_gettime_args /* {
syscallarg(netbsd32_clockid_t) clock_id;
syscallarg(netbsd32_timespecp_t) tp;
} */ *uap = v;
clockid_t clock_id;
struct timespec ats;
struct netbsd32_timespec ts32;
clock_id = SCARG(uap, clock_id);
if (clock_id != CLOCK_REALTIME)
return (EINVAL);
nanotime(&ats);
netbsd32_from_timespec(&ats, &ts32);
return copyout(&ts32, (caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
sizeof(ts32));
}
int
netbsd32_clock_settime(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct netbsd32_clock_settime_args /* {
syscallarg(netbsd32_clockid_t) clock_id;
syscallarg(const netbsd32_timespecp_t) tp;
} */ *uap = v;
struct netbsd32_timespec ts32;
clockid_t clock_id;
struct timespec ats;
int error;
struct proc *p = l->l_proc;
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
return (error);
clock_id = SCARG(uap, clock_id);
if (clock_id != CLOCK_REALTIME)
return (EINVAL);
if ((error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, tp)), &ts32,
sizeof(ts32))) != 0)
return (error);
netbsd32_to_timespec(&ts32, &ats);
return settime(p, &ats);
}
int
netbsd32_clock_getres(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct netbsd32_clock_getres_args /* {
syscallarg(netbsd32_clockid_t) clock_id;
syscallarg(netbsd32_timespecp_t) tp;
} */ *uap = v;
struct netbsd32_timespec ts32;
clockid_t clock_id;
struct timespec ts;
int error = 0;
clock_id = SCARG(uap, clock_id);
if (clock_id != CLOCK_REALTIME)
return (EINVAL);
if (SCARG(uap, tp)) {
ts.tv_sec = 0;
ts.tv_nsec = 1000000000 / hz;
netbsd32_from_timespec(&ts, &ts32);
error = copyout(&ts, (caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
sizeof(ts));
}
return error;
}
int
netbsd32_nanosleep(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct netbsd32_nanosleep_args /* {
syscallarg(const netbsd32_timespecp_t) rqtp;
syscallarg(netbsd32_timespecp_t) rmtp;
} */ *uap = v;
static int nanowait;
struct netbsd32_timespec ts32;
struct timespec rqt;
struct timespec rmt;
struct timeval atv, utv;
int error, s, timo;
error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, rqtp)), (caddr_t)&ts32,
sizeof(ts32));
if (error)
return (error);
netbsd32_to_timespec(&ts32, &rqt);
TIMESPEC_TO_TIMEVAL(&atv,&rqt);
if (itimerfix(&atv))
return (EINVAL);
s = splclock();
timeradd(&atv,&time,&atv);
timo = hzto(&atv);
/*
* Avoid inadvertantly sleeping forever
*/
if (timo == 0)
timo = 1;
splx(s);
error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
if (error == ERESTART)
error = EINTR;
if (error == EWOULDBLOCK)
error = 0;
if (SCARG(uap, rmtp)) {
int error1;
s = splclock();
utv = time;
splx(s);
timersub(&atv, &utv, &utv);
if (utv.tv_sec < 0)
timerclear(&utv);
TIMEVAL_TO_TIMESPEC(&utv,&rmt);
netbsd32_from_timespec(&rmt, &ts32);
error1 = copyout(&ts32,
NETBSD32PTR64(SCARG(uap,rmtp)), sizeof(ts32));
if (error1)
return (error1);
}
return error;
}
static int
netbsd32_timer_create_fetch(const void *src, void *dst, size_t size)
{
struct sigevent *evp = dst;
struct netbsd32_sigevent ev32;
int error;
error = copyin(src, &ev32, sizeof(ev32));
if (error)
return error;
netbsd32_to_sigevent(&ev32, evp);
return 0;
}
int
netbsd32_timer_create(struct lwp *l, void *v, register_t *retval)
{
struct netbsd32_timer_create_args /* {
syscallarg(netbsd32_clockid_t) clock_id;
syscallarg(netbsd32_sigeventp_t) evp;
syscallarg(netbsd32_timerp_t) timerid;
} */ *uap = v;
return timer_create1(NETBSD32PTR64(SCARG(uap, timerid)),
SCARG(uap, clock_id), NETBSD32PTR64(SCARG(uap, evp)),
netbsd32_timer_create_fetch, l->l_proc);
}
int
netbsd32_timer_delete(struct lwp *l, void *v, register_t *retval)
{
struct netbsd32_timer_delete_args /* {
syscallarg(netbsd32_timer_t) timerid;
} */ *uap = v;
struct sys_timer_delete_args ua;
NETBSD32TO64_UAP(timerid);
return sys_timer_delete(l, (void *)&ua, retval);
}
int
netbsd32_timer_settime(struct lwp *l, void *v, register_t *retval)
{
struct netbsd32_timer_settime_args /* {
syscallarg(netbsd32_timer_t) timerid;
syscallarg(int) flags;
syscallarg(const netbsd32_itimerspecp_t) value;
syscallarg(netbsd32_itimerspecp_t) ovalue;
} */ *uap = v;
int error;
struct itimerspec value, ovalue, *ovp = NULL;
struct netbsd32_itimerspec its32;
if ((error = copyin(NETBSD32PTR64(SCARG(uap, value)), &its32,
sizeof(its32))) != 0)
return (error);
netbsd32_to_timespec(&its32.it_interval, &value.it_interval);
netbsd32_to_timespec(&its32.it_value, &value.it_value);
if (SCARG(uap, ovalue))
ovp = &ovalue;
if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
SCARG(uap, flags), l->l_proc)) != 0)
return error;
if (ovp) {
netbsd32_from_timespec(&ovp->it_interval, &its32.it_interval);
netbsd32_from_timespec(&ovp->it_value, &its32.it_value);
return copyout(&its32, NETBSD32PTR64(SCARG(uap, ovalue)),
sizeof(its32));
}
return 0;
}
int
netbsd32_timer_gettime(struct lwp *l, void *v, register_t *retval)
{
struct netbsd32_timer_gettime_args /* {
syscallarg(netbsd32_timer_t) timerid;
syscallarg(netbsd32_itimerspecp_t) value;
} */ *uap = v;
int error;
struct itimerspec its;
struct netbsd32_itimerspec its32;
if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
&its)) != 0)
return error;
netbsd32_from_timespec(&its.it_interval, &its32.it_interval);
netbsd32_from_timespec(&its.it_value, &its32.it_value);
return copyout(&its32, (caddr_t)NETBSD32PTR64(SCARG(uap, value)),
sizeof(its32));
}
int
netbsd32_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
{
struct netbsd32_timer_getoverrun_args /* {
syscallarg(netbsd32_timer_t) timerid;
} */ *uap = v;
struct sys_timer_getoverrun_args ua;
NETBSD32TO64_UAP(timerid);
return sys_timer_getoverrun(l, (void *)&ua, retval);
}