9382c87338
- remove some trailing spaces/tabs - minor style nits
1435 lines
39 KiB
C
1435 lines
39 KiB
C
/* $NetBSD: grf_rt.c,v 1.40 2002/01/26 13:40:55 aymeric Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1993 Markus Wild
|
|
* Copyright (c) 1993 Lutz Vieweg
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Lutz Vieweg.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
#include "opt_amigacons.h"
|
|
#include "grfrt.h"
|
|
#if NGRFRT > 0
|
|
|
|
/* Graphics routines for the Retina board,
|
|
using the NCR 77C22E+ VGA controller. */
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/device.h>
|
|
#include <machine/cpu.h>
|
|
#include <amiga/amiga/device.h>
|
|
#include <amiga/dev/zbusvar.h>
|
|
#include <amiga/dev/grfioctl.h>
|
|
#include <amiga/dev/grfvar.h>
|
|
#include <amiga/dev/grf_rtreg.h>
|
|
|
|
int rt_ioctl(struct grf_softc *gp, u_long, void *);
|
|
|
|
/*
|
|
* marked true early so that retina_cnprobe() can tell if we are alive.
|
|
*/
|
|
int retina_inited;
|
|
|
|
|
|
/*
|
|
* This driver for the MacroSystem Retina board was only possible,
|
|
* because MacroSystem provided information about the pecularities
|
|
* of the board. THANKS! Competition in Europe among gfx board
|
|
* manufacturers is rather tough, so Lutz Vieweg, who wrote the
|
|
* initial driver, has made an agreement with MS not to document
|
|
* the driver source (see also his comment below).
|
|
* -> ALL comments after
|
|
* -> " -------------- START OF CODE -------------- "
|
|
* -> have been added by myself (mw) from studying the publically
|
|
* -> available "NCR 77C22E+" Data Manual
|
|
*/
|
|
/*
|
|
* This code offers low-level routines to access the Retina graphics-board
|
|
* manufactured by MS MacroSystem GmbH from within NetBSD for the Amiga.
|
|
*
|
|
* Thanks to MacroSystem for providing me with the necessary information
|
|
* to create theese routines. The sparse documentation of this code
|
|
* results from the agreements between MS and me.
|
|
*/
|
|
|
|
extern unsigned char kernel_font_8x8_width, kernel_font_8x8_height;
|
|
extern unsigned char kernel_font_8x8_lo, kernel_font_8x8_hi;
|
|
extern unsigned char kernel_font_8x8[];
|
|
|
|
|
|
#define MDF_DBL 1
|
|
#define MDF_LACE 2
|
|
#define MDF_CLKDIV2 4
|
|
|
|
|
|
/* standard-palette definition */
|
|
|
|
unsigned char NCRStdPalette[16*3] = {
|
|
/* R G B */
|
|
0, 0, 0,
|
|
192,192,192,
|
|
128, 0, 0,
|
|
0,128, 0,
|
|
0, 0,128,
|
|
128,128, 0,
|
|
0,128,128,
|
|
128, 0,128,
|
|
64, 64, 64, /* the higher 8 colors have more intensity for */
|
|
255,255,255, /* compatibility with standard attributes */
|
|
255, 0, 0,
|
|
0,255, 0,
|
|
0, 0,255,
|
|
255,255, 0,
|
|
0,255,255,
|
|
255, 0,255
|
|
};
|
|
|
|
|
|
/* The following structures are examples for monitor-definitions. To make one
|
|
of your own, first use "DefineMonitor" and create the 8-bit monitor-mode of
|
|
your dreams. Then save it, and make a structure from the values provided in
|
|
the file DefineMonitor stored - the labels in the comment above the
|
|
structure definition show where to put what value.
|
|
|
|
Then you'll need to adapt your monitor-definition to the font you want to
|
|
use. Be FX the width of the font, then the following modifications have to
|
|
be applied to your values:
|
|
|
|
HBS = (HBS * 4) / FX
|
|
HSS = (HSS * 4) / FX
|
|
HSE = (HSE * 4) / FX
|
|
HBE = (HBE * 4) / FX
|
|
HT = (HT * 4) / FX
|
|
|
|
Make sure your maximum width (MW) and height (MH) are even multiples of
|
|
the fonts' width and height.
|
|
*/
|
|
|
|
#if 0
|
|
/* horizontal 31.5 kHz */
|
|
|
|
/* FQ FLG MW MH HBS HSS HSE HBE HT VBS VSS VSE VBE VT */
|
|
struct MonDef MON_640_512_60 = { 50000000, 28, 640, 512, 81, 86, 93, 98, 95, 513, 513, 521, 535, 535,
|
|
/* Depth, PAL, TX, TY, XY,FontX, FontY, FontData, FLo, Fhi */
|
|
4, NCRStdPalette, 80, 64, 5120, 8, 8, kernel_font_8x8, 32, 255};
|
|
|
|
struct MonDef MON_640_480_62_G = { 50000000, 4, 640, 480, 161,171,184,196,195, 481, 484, 492, 502, 502,
|
|
8, NCRStdPalette,640,480, 5120, 8, 8, kernel_font_8x8, 32, 255};
|
|
/* Enter higher values here ^ ^ for panning! */
|
|
|
|
/* horizontal 38kHz */
|
|
|
|
struct MonDef MON_768_600_60 = { 75000000, 28, 768, 600, 97, 99,107,120,117, 601, 615, 625, 638, 638,
|
|
4, NCRStdPalette, 96, 75, 7200, 8, 8, kernel_font_8x8, 32, 255};
|
|
|
|
/* horizontal 64kHz */
|
|
|
|
struct MonDef MON_768_600_80 = { 50000000, 24, 768, 600, 97,104,112,122,119, 601, 606, 616, 628, 628,
|
|
4, NCRStdPalette, 96, 75, 7200, 8, 8, kernel_font_8x8, 32, 255};
|
|
|
|
struct MonDef MON_1024_768_80 = { 90000000, 24, 1024, 768, 129,130,141,172,169, 769, 770, 783, 804, 804,
|
|
4, NCRStdPalette,128, 96, 12288, 8, 8, kernel_font_8x8, 32, 255};
|
|
|
|
/* FQ FLG MW MH HBS HSS HSE HBE HT VBS VSS VSE VBE VT */
|
|
struct MonDef MON_1024_768_80_G = { 90000000, 0, 1024, 768, 257,258,280,344,343, 769, 770, 783, 804, 804,
|
|
8, NCRStdPalette, 1024, 768, 12288, 8, 8, kernel_font_8x8, 32, 255};
|
|
|
|
struct MonDef MON_1024_1024_59= { 90000000, 24, 1024,1024, 129,130,141,173,170,1025,1059,1076,1087,1087,
|
|
4, NCRStdPalette,128, 128, 16384, 8, 8, kernel_font_8x8, 32, 255};
|
|
|
|
/* WARNING: THE FOLLOWING MONITOR MODES EXCEED THE 90-MHz LIMIT THE PROCESSOR
|
|
HAS BEEN SPECIFIED FOR. USE AT YOUR OWN RISK (AND THINK ABOUT
|
|
MOUNTING SOME COOLING DEVICE AT THE PROCESSOR AND RAMDAC)! */
|
|
|
|
struct MonDef MON_1280_1024_60= {110000000, 24, 1280,1024, 161,162,176,211,208,1025,1026,1043,1073,1073,
|
|
4, NCRStdPalette,160, 128, 20480, 8, 8, kernel_font_8x8, 32, 255};
|
|
|
|
struct MonDef MON_1280_1024_60_G= {110000000, 0, 1280,1024, 321,322,349,422,421,1025,1026,1043,1073,1073,
|
|
8, NCRStdPalette,1280,1024, 20480, 8, 8, kernel_font_8x8, 32, 255};
|
|
|
|
/* horizontal 75kHz */
|
|
|
|
struct MonDef MON_1280_1024_69= {120000000, 24, 1280,1024, 161,162,175,200,197,1025,1026,1043,1073,1073,
|
|
4, NCRStdPalette,160, 128, 20480, 8, 8, kernel_font_8x8, 32, 255};
|
|
|
|
#else
|
|
|
|
struct MonDef monitor_defs[] = {
|
|
/* horizontal 31.5 kHz */
|
|
|
|
{ 50000000, 28, 640, 512, 81, 86, 93, 98, 95, 513, 513, 521, 535, 535,
|
|
4, NCRStdPalette, 80, 64, 5120, 8, 8, kernel_font_8x8, 32, 255},
|
|
|
|
/* horizontal 38kHz */
|
|
|
|
{ 75000000, 28, 768, 600, 97, 99,107,120,117, 601, 615, 625, 638, 638,
|
|
4, NCRStdPalette, 96, 75, 7200, 8, 8, kernel_font_8x8, 32, 255},
|
|
|
|
/* horizontal 64kHz */
|
|
|
|
{ 50000000, 24, 768, 600, 97,104,112,122,119, 601, 606, 616, 628, 628,
|
|
4, NCRStdPalette, 96, 75, 7200, 8, 8, kernel_font_8x8, 32, 255},
|
|
|
|
{ 90000000, 24, 1024, 768, 129,130,141,172,169, 769, 770, 783, 804, 804,
|
|
4, NCRStdPalette,128, 96, 12288, 8, 8, kernel_font_8x8, 32, 255},
|
|
|
|
/* GFX modes */
|
|
|
|
/* horizontal 31.5 kHz */
|
|
|
|
{ 50000000, 4, 640, 480, 161,171,184,196,195, 481, 484, 492, 502, 502,
|
|
8, NCRStdPalette,640, 480, 5120, 8, 8, kernel_font_8x8, 32, 255},
|
|
|
|
/* horizontal 64kHz */
|
|
|
|
{ 90000000, 0, 1024, 768, 257,258,280,344,343, 769, 770, 783, 804, 804,
|
|
8, NCRStdPalette, 1024, 768, 12288, 8, 8, kernel_font_8x8, 32, 255},
|
|
|
|
/* WARNING: THE FOLLOWING MONITOR MODES EXCEED THE 90-MHz LIMIT THE PROCESSOR
|
|
HAS BEEN SPECIFIED FOR. USE AT YOUR OWN RISK (AND THINK ABOUT
|
|
MOUNTING SOME COOLING DEVICE AT THE PROCESSOR AND RAMDAC)! */
|
|
|
|
{110000000, 0, 1280,1024, 321,322,349,422,421,1025,1026,1043,1073,1073,
|
|
8, NCRStdPalette,1280,1024, 20480, 8, 8, kernel_font_8x8, 32, 255},
|
|
};
|
|
|
|
static const char *monitor_descr[] = {
|
|
"80x64 (640x512) 31.5kHz",
|
|
"96x75 (768x600) 38kHz",
|
|
"96x75 (768x600) 64kHz",
|
|
"128x96 (1024x768) 64kHz",
|
|
|
|
"GFX (640x480) 31.5kHz",
|
|
"GFX (1024x768) 64kHz",
|
|
"GFX (1280x1024) 64kHz ***EXCEEDS CHIP LIMIT!!!***",
|
|
};
|
|
|
|
int retina_mon_max = sizeof (monitor_defs)/sizeof (monitor_defs[0]);
|
|
|
|
/* patchable */
|
|
int retina_default_mon = 0;
|
|
int retina_default_gfx = 4;
|
|
|
|
#endif
|
|
|
|
|
|
static struct MonDef *current_mon;
|
|
|
|
/* -------------- START OF CODE -------------- */
|
|
|
|
|
|
static const long FQTab[16] =
|
|
{ 25175000, 28322000, 36000000, 65000000,
|
|
44900000, 50000000, 80000000, 75000000,
|
|
56644000, 63000000, 72000000, 130000000,
|
|
90000000, 100000000, 110000000, 120000000 };
|
|
|
|
|
|
/*--------------------------------------------------*/
|
|
/*--------------------------------------------------*/
|
|
|
|
#if 0
|
|
static struct MonDef *default_monitor = &DEFAULT_MONDEF;
|
|
#endif
|
|
|
|
int retina_alive(struct MonDef *);
|
|
static int rt_load_mon(struct grf_softc *, struct MonDef *);
|
|
|
|
|
|
/*
|
|
* used to query the retina to see if its alive (?)
|
|
*/
|
|
int
|
|
retina_alive(struct MonDef *mdp)
|
|
{
|
|
short clksel;
|
|
|
|
for (clksel = 15; clksel; clksel--) {
|
|
if (FQTab[clksel] == mdp->FQ)
|
|
break;
|
|
}
|
|
if (clksel < 0)
|
|
return(0);
|
|
if (mdp->DEP != 4)
|
|
return(1);
|
|
if (mdp->FX == 4 || (mdp->FX >= 7 && mdp->FX <= 16))
|
|
return(1);
|
|
return(0);
|
|
}
|
|
|
|
static int
|
|
rt_load_mon(struct grf_softc *gp, struct MonDef *md)
|
|
{
|
|
struct grfinfo *gi = &gp->g_display;
|
|
volatile caddr_t ba, fb;
|
|
short FW, clksel, HDE, VDE;
|
|
|
|
for (clksel = 15; clksel; clksel--) {
|
|
if (FQTab[clksel] == md->FQ) break;
|
|
}
|
|
if (clksel < 0)
|
|
return(0);
|
|
|
|
ba = gp->g_regkva;;
|
|
fb = gp->g_fbkva;
|
|
|
|
FW = 0;
|
|
if (md->DEP == 4) {
|
|
switch (md->FX) {
|
|
case 4:
|
|
FW = 0;
|
|
break;
|
|
case 7:
|
|
FW = 1;
|
|
break;
|
|
case 8:
|
|
FW = 2;
|
|
break;
|
|
case 9:
|
|
FW = 3;
|
|
break;
|
|
case 10:
|
|
FW = 4;
|
|
break;
|
|
case 11:
|
|
FW = 5;
|
|
break;
|
|
case 12:
|
|
FW = 6;
|
|
break;
|
|
case 13:
|
|
FW = 7;
|
|
break;
|
|
case 14:
|
|
FW = 8;
|
|
break;
|
|
case 15:
|
|
FW = 9;
|
|
break;
|
|
case 16:
|
|
FW = 11;
|
|
break;
|
|
default:
|
|
return(0);
|
|
break;
|
|
};
|
|
}
|
|
|
|
if (md->DEP == 4) HDE = (md->MW+md->FX-1)/md->FX;
|
|
else HDE = (md->MW+3)/4;
|
|
VDE = md->MH-1;
|
|
|
|
/* hmm... */
|
|
fb[0x8000] = 0;
|
|
|
|
/* enable extension registers */
|
|
WSeq (ba, SEQ_ID_EXTENDED_ENABLE, 0x05);
|
|
|
|
#if 0
|
|
/* program the clock oscillator */
|
|
vgaw (ba, GREG_MISC_OUTPUT_W, 0xe3 | ((clksel & 3) * 0x04));
|
|
vgaw (ba, GREG_FEATURE_CONTROL_W, 0x00);
|
|
|
|
/* XXXX according to the NCR specs, this register should be set to 1
|
|
XXXX before doing the MISC_OUTPUT setting and CLOCKING_MODE
|
|
XXXX setting. */
|
|
WSeq (ba, SEQ_ID_RESET, 0x03);
|
|
|
|
WSeq (ba, SEQ_ID_CLOCKING_MODE, 0x01 | ((md->FLG & MDF_CLKDIV2)/ MDF_CLKDIV2 * 8));
|
|
WSeq (ba, SEQ_ID_MAP_MASK, 0x0f);
|
|
WSeq (ba, SEQ_ID_CHAR_MAP_SELECT, 0x00);
|
|
/* odd/even write select + extended memory */
|
|
WSeq (ba, SEQ_ID_MEMORY_MODE, 0x06);
|
|
/* XXXX I think this order of setting RESET is wrong... */
|
|
WSeq (ba, SEQ_ID_RESET, 0x01);
|
|
WSeq (ba, SEQ_ID_RESET, 0x03);
|
|
#else
|
|
WSeq (ba, SEQ_ID_RESET, 0x01);
|
|
|
|
/* set font width + rest of clocks */
|
|
WSeq (ba, SEQ_ID_EXT_CLOCK_MODE, 0x30 | (FW & 0x0f) | ((clksel & 4) / 4 * 0x40) );
|
|
/* another clock bit, plus hw stuff */
|
|
WSeq (ba, SEQ_ID_MISC_FEATURE_SEL, 0xf4 | (clksel & 8) );
|
|
|
|
/* program the clock oscillator */
|
|
vgaw (ba, GREG_MISC_OUTPUT_W, 0xe3 | ((clksel & 3) * 0x04));
|
|
vgaw (ba, GREG_FEATURE_CONTROL_W, 0x00);
|
|
|
|
WSeq (ba, SEQ_ID_CLOCKING_MODE, 0x01 | ((md->FLG & MDF_CLKDIV2)/ MDF_CLKDIV2 * 8));
|
|
WSeq (ba, SEQ_ID_MAP_MASK, 0x0f);
|
|
WSeq (ba, SEQ_ID_CHAR_MAP_SELECT, 0x00);
|
|
/* odd/even write select + extended memory */
|
|
WSeq (ba, SEQ_ID_MEMORY_MODE, 0x06);
|
|
WSeq (ba, SEQ_ID_RESET, 0x03);
|
|
#endif
|
|
|
|
/* monochrome cursor */
|
|
WSeq (ba, SEQ_ID_CURSOR_CONTROL, 0x00);
|
|
/* bank0 */
|
|
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, 0x00);
|
|
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, 0x00);
|
|
WSeq (ba, SEQ_ID_DISP_OFF_HI , 0x00);
|
|
WSeq (ba, SEQ_ID_DISP_OFF_LO , 0x00);
|
|
/* bank0 */
|
|
WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, 0x00);
|
|
WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, 0x00);
|
|
/* 1M-chips + ena SEC + ena EMem + rw PrimA0/rw Sec/B0 */
|
|
WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA, 0x3 | 0x4 | 0x10 | 0x40);
|
|
#if 0
|
|
/* set font width + rest of clocks */
|
|
WSeq (ba, SEQ_ID_EXT_CLOCK_MODE, 0x30 | (FW & 0x0f) | ((clksel & 4) / 4 * 0x40) );
|
|
#endif
|
|
if (md->DEP == 4) {
|
|
/* no ext-chain4 + no host-addr-bit-16 */
|
|
WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, 0x00);
|
|
/* no packed/nibble + no 256bit gfx format */
|
|
WSeq (ba, SEQ_ID_EXT_PIXEL_CNTL, 0x00);
|
|
}
|
|
else {
|
|
WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, 0x02);
|
|
/* 256bit gfx format */
|
|
WSeq (ba, SEQ_ID_EXT_PIXEL_CNTL, 0x01);
|
|
}
|
|
/* AT-interface */
|
|
WSeq (ba, SEQ_ID_BUS_WIDTH_FEEDB, 0x06);
|
|
/* see fg/bg color expansion */
|
|
WSeq (ba, SEQ_ID_COLOR_EXP_WFG, 0x01);
|
|
WSeq (ba, SEQ_ID_COLOR_EXP_WBG, 0x00);
|
|
WSeq (ba, SEQ_ID_EXT_RW_CONTROL, 0x00);
|
|
#if 0
|
|
/* another clock bit, plus hw stuff */
|
|
WSeq (ba, SEQ_ID_MISC_FEATURE_SEL, 0xf4 | (clksel & 8) );
|
|
#endif
|
|
/* don't tristate PCLK and PIX */
|
|
WSeq (ba, SEQ_ID_COLOR_KEY_CNTL, 0x40 );
|
|
/* reset CRC circuit */
|
|
WSeq (ba, SEQ_ID_CRC_CONTROL, 0x00 );
|
|
/* set RAS/CAS swap */
|
|
WSeq (ba, SEQ_ID_PERF_SELECT, 0x20);
|
|
|
|
WCrt (ba, CRT_ID_END_VER_RETR, (md->VSE & 0xf ) | 0x20);
|
|
WCrt (ba, CRT_ID_HOR_TOTAL, md->HT & 0xff);
|
|
WCrt (ba, CRT_ID_HOR_DISP_ENA_END, (HDE-1) & 0xff);
|
|
WCrt (ba, CRT_ID_START_HOR_BLANK, md->HBS & 0xff);
|
|
WCrt (ba, CRT_ID_END_HOR_BLANK, (md->HBE & 0x1f) | 0x80);
|
|
|
|
WCrt (ba, CRT_ID_START_HOR_RETR, md->HSS & 0xff);
|
|
WCrt (ba, CRT_ID_END_HOR_RETR, (md->HSE & 0x1f) | ((md->HBE & 0x20)/ 0x20 * 0x80));
|
|
WCrt (ba, CRT_ID_VER_TOTAL, (md->VT & 0xff));
|
|
WCrt (ba, CRT_ID_OVERFLOW, (( (md->VSS & 0x200) / 0x200 * 0x80)
|
|
| ((VDE & 0x200) / 0x200 * 0x40)
|
|
| ((md->VT & 0x200) / 0x200 * 0x20)
|
|
| 0x10
|
|
| ((md->VBS & 0x100) / 0x100 * 8 )
|
|
| ((md->VSS & 0x100) / 0x100 * 4 )
|
|
| ((VDE & 0x100) / 0x100 * 2 )
|
|
| ((md->VT & 0x100) / 0x100 )));
|
|
WCrt (ba, CRT_ID_PRESET_ROW_SCAN, 0x00);
|
|
|
|
if (md->DEP == 4) {
|
|
WCrt (ba, CRT_ID_MAX_SCAN_LINE, (( (md->FLG & MDF_DBL)/ MDF_DBL * 0x80)
|
|
| 0x40
|
|
| ((md->VBS & 0x200)/0x200 * 0x20)
|
|
| ((md->FY-1) & 0x1f)));
|
|
}
|
|
else {
|
|
WCrt (ba, CRT_ID_MAX_SCAN_LINE, (( (md->FLG & MDF_DBL)/ MDF_DBL * 0x80)
|
|
| 0x40
|
|
| ((md->VBS & 0x200)/0x200 * 0x20)
|
|
| (0 & 0x1f)));
|
|
}
|
|
|
|
WCrt (ba, CRT_ID_CURSOR_START, (md->FY & 0x1f) - 2);
|
|
WCrt (ba, CRT_ID_CURSOR_END, (md->FY & 0x1f) - 1);
|
|
|
|
WCrt (ba, CRT_ID_START_ADDR_HIGH, 0x00);
|
|
WCrt (ba, CRT_ID_START_ADDR_LOW, 0x00);
|
|
|
|
WCrt (ba, CRT_ID_CURSOR_LOC_HIGH, 0x00);
|
|
WCrt (ba, CRT_ID_CURSOR_LOC_LOW, 0x00);
|
|
|
|
WCrt (ba, CRT_ID_START_VER_RETR, md->VSS & 0xff);
|
|
WCrt (ba, CRT_ID_END_VER_RETR, (md->VSE & 0x0f) | 0x80 | 0x20);
|
|
WCrt (ba, CRT_ID_VER_DISP_ENA_END, VDE & 0xff);
|
|
if (md->DEP == 4)
|
|
WCrt (ba, CRT_ID_OFFSET, (HDE / 2) & 0xff);
|
|
else
|
|
WCrt (ba, CRT_ID_OFFSET, (md->TX / 8) & 0xff);
|
|
|
|
WCrt (ba, CRT_ID_UNDERLINE_LOC, (md->FY-1) & 0x1f);
|
|
WCrt (ba, CRT_ID_START_VER_BLANK, md->VBS & 0xff);
|
|
WCrt (ba, CRT_ID_END_VER_BLANK, md->VBE & 0xff);
|
|
/* byte mode + wrap + select row scan counter + cms */
|
|
WCrt (ba, CRT_ID_MODE_CONTROL, 0xe3);
|
|
WCrt (ba, CRT_ID_LINE_COMPARE, 0xff);
|
|
|
|
/* enable extended end bits + those bits */
|
|
WCrt (ba, CRT_ID_EXT_HOR_TIMING1, ( 0x20
|
|
| ((md->FLG & MDF_LACE) / MDF_LACE * 0x10)
|
|
| ((md->HT & 0x100) / 0x100 * 0x01)
|
|
| (((HDE-1) & 0x100) / 0x100 * 0x02)
|
|
| ((md->HBS & 0x100) / 0x100 * 0x04)
|
|
| ((md->HSS & 0x100) / 0x100 * 0x08)));
|
|
|
|
if (md->DEP == 4)
|
|
WCrt (ba, CRT_ID_EXT_START_ADDR, (((HDE / 2) & 0x100)/0x100 * 16));
|
|
else
|
|
WCrt (ba, CRT_ID_EXT_START_ADDR, (((md->TX / 8) & 0x100)/0x100 * 16));
|
|
|
|
WCrt (ba, CRT_ID_EXT_HOR_TIMING2, ( ((md->HT & 0x200)/ 0x200 * 0x01)
|
|
| (((HDE-1) & 0x200)/ 0x200 * 0x02)
|
|
| ((md->HBS & 0x200)/ 0x200 * 0x04)
|
|
| ((md->HSS & 0x200)/ 0x200 * 0x08)
|
|
| ((md->HBE & 0xc0) / 0x40 * 0x10)
|
|
| ((md->HSE & 0x60) / 0x20 * 0x40)));
|
|
|
|
WCrt (ba, CRT_ID_EXT_VER_TIMING, ( ((md->VSE & 0x10) / 0x10 * 0x80)
|
|
| ((md->VBE & 0x300)/ 0x100 * 0x20)
|
|
| 0x10
|
|
| ((md->VSS & 0x400)/ 0x400 * 0x08)
|
|
| ((md->VBS & 0x400)/ 0x400 * 0x04)
|
|
| ((VDE & 0x400)/ 0x400 * 0x02)
|
|
| ((md->VT & 0x400)/ 0x400 * 0x01)));
|
|
|
|
WGfx (ba, GCT_ID_SET_RESET, 0x00);
|
|
WGfx (ba, GCT_ID_ENABLE_SET_RESET, 0x00);
|
|
WGfx (ba, GCT_ID_COLOR_COMPARE, 0x00);
|
|
WGfx (ba, GCT_ID_DATA_ROTATE, 0x00);
|
|
WGfx (ba, GCT_ID_READ_MAP_SELECT, 0x00);
|
|
WGfx (ba, GCT_ID_GRAPHICS_MODE, 0x00);
|
|
if (md->DEP == 4)
|
|
WGfx (ba, GCT_ID_MISC, 0x04);
|
|
else
|
|
WGfx (ba, GCT_ID_MISC, 0x05);
|
|
WGfx (ba, GCT_ID_COLOR_XCARE, 0xff);
|
|
WGfx (ba, GCT_ID_BITMASK, 0xff);
|
|
|
|
/* reset the Attribute Controller flipflop */
|
|
vgar (ba, GREG_STATUS1_R);
|
|
WAttr (ba, ACT_ID_PALETTE0, 0x00);
|
|
WAttr (ba, ACT_ID_PALETTE1, 0x01);
|
|
WAttr (ba, ACT_ID_PALETTE2, 0x02);
|
|
WAttr (ba, ACT_ID_PALETTE3, 0x03);
|
|
WAttr (ba, ACT_ID_PALETTE4, 0x04);
|
|
WAttr (ba, ACT_ID_PALETTE5, 0x05);
|
|
WAttr (ba, ACT_ID_PALETTE6, 0x06);
|
|
WAttr (ba, ACT_ID_PALETTE7, 0x07);
|
|
WAttr (ba, ACT_ID_PALETTE8, 0x08);
|
|
WAttr (ba, ACT_ID_PALETTE9, 0x09);
|
|
WAttr (ba, ACT_ID_PALETTE10, 0x0a);
|
|
WAttr (ba, ACT_ID_PALETTE11, 0x0b);
|
|
WAttr (ba, ACT_ID_PALETTE12, 0x0c);
|
|
WAttr (ba, ACT_ID_PALETTE13, 0x0d);
|
|
WAttr (ba, ACT_ID_PALETTE14, 0x0e);
|
|
WAttr (ba, ACT_ID_PALETTE15, 0x0f);
|
|
|
|
vgar (ba, GREG_STATUS1_R);
|
|
if (md->DEP == 4)
|
|
WAttr (ba, ACT_ID_ATTR_MODE_CNTL, 0x08);
|
|
else
|
|
WAttr (ba, ACT_ID_ATTR_MODE_CNTL, 0x09);
|
|
|
|
WAttr (ba, ACT_ID_OVERSCAN_COLOR, 0x00);
|
|
WAttr (ba, ACT_ID_COLOR_PLANE_ENA, 0x0f);
|
|
WAttr (ba, ACT_ID_HOR_PEL_PANNING, 0x00);
|
|
WAttr (ba, ACT_ID_COLOR_SELECT, 0x00);
|
|
|
|
vgar (ba, GREG_STATUS1_R);
|
|
/* I have *NO* idea what strobing reg-0x20 might do... */
|
|
vgaw (ba, ACT_ADDRESS_W, 0x20);
|
|
|
|
if (md->DEP == 4)
|
|
WCrt (ba, CRT_ID_MAX_SCAN_LINE, ( ((md->FLG & MDF_DBL)/ MDF_DBL * 0x80)
|
|
| 0x40
|
|
| ((md->VBS & 0x200)/0x200 * 0x20)
|
|
| ((md->FY-1) & 0x1f)));
|
|
else
|
|
WCrt (ba, CRT_ID_MAX_SCAN_LINE, ( ((md->FLG & MDF_DBL)/ MDF_DBL * 0x80)
|
|
| 0x40
|
|
| ((md->VBS & 0x200)/0x200 * 0x20)
|
|
| (0 & 0x1f)));
|
|
|
|
|
|
/* not it's time for guessing... */
|
|
|
|
vgaw (ba, VDAC_REG_D, 0x02);
|
|
|
|
/* if this does what I think it does, it selects DAC
|
|
register 0, and writes the palette in subsequent
|
|
registers, thus it works similar to the WD33C93
|
|
select/data mechanism */
|
|
vgaw (ba, VDAC_REG_SELECT, 0x00);
|
|
|
|
{
|
|
|
|
short x = 15;
|
|
const unsigned char * col = md->PAL;
|
|
do {
|
|
|
|
vgaw (ba, VDAC_REG_DATA, *col++);
|
|
vgaw (ba, VDAC_REG_DATA, *col++);
|
|
vgaw (ba, VDAC_REG_DATA, *col++);
|
|
|
|
|
|
} while (x--);
|
|
|
|
if (md->DEP != 4) {
|
|
short x = 256-17;
|
|
unsigned char col = 16;
|
|
do {
|
|
|
|
vgaw(ba, VDAC_REG_DATA, col);
|
|
vgaw(ba, VDAC_REG_DATA, col);
|
|
vgaw(ba, VDAC_REG_DATA, col);
|
|
col++;
|
|
|
|
} while (x--);
|
|
}
|
|
}
|
|
|
|
|
|
/* now load the font into maps 2 (and 3 for fonts wider than 8 pixels) */
|
|
if (md->DEP == 4) {
|
|
|
|
/* first set the whole font memory to a test-pattern, so we
|
|
can see if something that shouldn't be drawn IS drawn.. */
|
|
{
|
|
volatile caddr_t c = fb;
|
|
long x;
|
|
Map(2);
|
|
|
|
for (x = 0; x < 65536; x++) {
|
|
*c++ = (x & 1)? 0xaa : 0x55;
|
|
}
|
|
}
|
|
|
|
{
|
|
volatile caddr_t c = fb;
|
|
long x;
|
|
Map(3);
|
|
|
|
for (x = 0; x < 65536; x++) {
|
|
*c++ = (x & 1)? 0xaa : 0x55;
|
|
}
|
|
}
|
|
|
|
{
|
|
/* ok, now position at first defined character, and
|
|
copy over the images */
|
|
volatile caddr_t c = fb + md->FLo * 32;
|
|
const unsigned char * f = md->FData;
|
|
unsigned short z;
|
|
|
|
Map(2);
|
|
for (z = md->FLo; z <= md->FHi; z++) {
|
|
|
|
short y = md->FY-1;
|
|
if (md->FX > 8){
|
|
do {
|
|
*c++ = *f;
|
|
f += 2;
|
|
} while (y--);
|
|
}
|
|
else {
|
|
do {
|
|
*c++ = *f++;
|
|
} while (y--);
|
|
}
|
|
|
|
c += 32-md->FY;
|
|
|
|
}
|
|
|
|
if (md->FX > 8) {
|
|
unsigned short z;
|
|
|
|
Map(3);
|
|
c = fb + md->FLo*32;
|
|
f = md->FData+1;
|
|
for (z = md->FLo; z <= md->FHi; z++) {
|
|
|
|
short y = md->FY-1;
|
|
do {
|
|
*c++ = *f;
|
|
f += 2;
|
|
} while (y--);
|
|
|
|
c += 32-md->FY;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/* select map 0 */
|
|
WGfx (ba, GCT_ID_READ_MAP_SELECT, 0);
|
|
if (md->DEP == 4)
|
|
/* allow writes into maps 0 and 1 */
|
|
WSeq (ba, SEQ_ID_MAP_MASK, 3);
|
|
else
|
|
/* allow writes into all maps */
|
|
WSeq (ba, SEQ_ID_MAP_MASK, 0x0f);
|
|
|
|
/* select extended chain4 addressing:
|
|
!A0/!A1 map 0 character to be displayed
|
|
!A1/ A1 map 1 attribute of that character
|
|
A0/!A1 map 2 not used (masked out, ignored)
|
|
A0/ A1 map 3 not used (masked out, ignored) */
|
|
WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02);
|
|
|
|
if (md->DEP == 4) {
|
|
/* position in display memory */
|
|
unsigned short * c = (unsigned short *) fb;
|
|
|
|
/* fill with blank, white on black */
|
|
const unsigned short fill_val = 0x2010;
|
|
short x = md->XY;
|
|
do {
|
|
*c = fill_val;
|
|
c += 2; } while (x--);
|
|
|
|
/* I won't comment this :-)) */
|
|
c = (unsigned short *) fb;
|
|
c += (md->TX-6)*2;
|
|
{
|
|
unsigned short init_msg[6] = {0x520a, 0x450b, 0x540c, 0x490d, 0x4e0e, 0x410f};
|
|
unsigned short * f = init_msg;
|
|
x = 5;
|
|
do {
|
|
*c = *f++;
|
|
c += 2;
|
|
} while (x--);
|
|
}
|
|
}
|
|
else if (md->DEP == 8) {
|
|
/* could clear the gfx screen here, but that's what the X server does anyway */
|
|
;
|
|
}
|
|
|
|
gp->g_data = (caddr_t)md;
|
|
gi->gd_regaddr = (caddr_t)ztwopa(ba);
|
|
gi->gd_regsize = 64*1024;
|
|
|
|
gi->gd_fbaddr = (caddr_t)ztwopa(fb);
|
|
#ifdef BANKEDDEVPAGER
|
|
gi->gd_fbsize = 4*1024*1024; /* XXX */
|
|
gi->gd_bank_size = 64*1024;
|
|
#else
|
|
gi->gd_fbsize = 64*1024; /* larger, but that's whats mappable */
|
|
#endif
|
|
|
|
gi->gd_colors = 1 << md->DEP;
|
|
gi->gd_planes = md->DEP;
|
|
|
|
gi->gd_fbwidth = md->MW;
|
|
gi->gd_fbheight = md->MH;
|
|
gi->gd_fbx = 0;
|
|
gi->gd_fby = 0;
|
|
gi->gd_dwidth = md->TX * md->FX;
|
|
gi->gd_dheight = md->TY * md->FY;
|
|
gi->gd_dx = 0;
|
|
gi->gd_dy = 0;
|
|
|
|
/* initialized, works, return 1 */
|
|
return(1);
|
|
}
|
|
|
|
void grfrtattach(struct device *, struct device *, void *);
|
|
int grfrtprint(void *, const char *);
|
|
int grfrtmatch(struct device *, struct cfdata *, void *);
|
|
|
|
int rt_mode(struct grf_softc *, u_long, void *, u_long, int);
|
|
static int rt_getvmode(struct grf_softc *, struct grfvideo_mode *);
|
|
static int rt_setvmode(struct grf_softc *, unsigned, int);
|
|
int rt_getspritepos(struct grf_softc *, struct grf_position *);
|
|
int rt_setspritepos(struct grf_softc *, struct grf_position *);
|
|
int rt_getspriteinfo(struct grf_softc *, struct grf_spriteinfo *);
|
|
int rt_setspriteinfo(struct grf_softc *, struct grf_spriteinfo *);
|
|
int rt_getspritemax(struct grf_softc *, struct grf_position *);
|
|
int rt_getcmap(struct grf_softc *, struct grf_colormap *);
|
|
int rt_putcmap(struct grf_softc *, struct grf_colormap *);
|
|
int rt_bitblt(struct grf_softc *, struct grf_bitblt *);
|
|
int rt_blank(struct grf_softc *, int *);
|
|
|
|
struct cfattach grfrt_ca = {
|
|
sizeof(struct grf_softc), grfrtmatch, grfrtattach
|
|
};
|
|
|
|
/*
|
|
* only used in console init
|
|
*/
|
|
static struct cfdata *cfdata;
|
|
|
|
/*
|
|
* we make sure to only init things once. this is somewhat
|
|
* tricky regarding the console.
|
|
*/
|
|
int
|
|
grfrtmatch(struct device *pdp, struct cfdata *cfp, void *auxp)
|
|
{
|
|
#ifdef RETINACONSOLE
|
|
static int rtconunit = -1;
|
|
#endif
|
|
struct zbus_args *zap;
|
|
|
|
zap = auxp;
|
|
|
|
/*
|
|
* allow only one retina console
|
|
*/
|
|
if (amiga_realconfig == 0)
|
|
#ifdef RETINACONSOLE
|
|
if (rtconunit != -1)
|
|
#endif
|
|
return(0);
|
|
/*
|
|
* check that this is a retina board.
|
|
*/
|
|
if (zap->manid != 18260 || zap->prodid != 6)
|
|
return(0);
|
|
|
|
#ifdef RETINACONSOLE
|
|
if (amiga_realconfig == 0 || rtconunit != cfp->cf_unit) {
|
|
#endif
|
|
if ((unsigned)retina_default_mon >= retina_mon_max ||
|
|
monitor_defs[retina_default_mon].DEP == 8)
|
|
retina_default_mon = 0;
|
|
|
|
current_mon = monitor_defs + retina_default_mon;
|
|
if (retina_alive(current_mon) == 0)
|
|
return(0);
|
|
#ifdef RETINACONSOLE
|
|
if (amiga_realconfig == 0) {
|
|
rtconunit = cfp->cf_unit;
|
|
cfdata = cfp;
|
|
}
|
|
}
|
|
#endif
|
|
return(1);
|
|
}
|
|
|
|
/*
|
|
* attach to the grfbus (zbus)
|
|
*/
|
|
void
|
|
grfrtattach(struct device *pdp, struct device *dp, void *auxp)
|
|
{
|
|
static struct grf_softc congrf;
|
|
struct zbus_args *zap;
|
|
struct grf_softc *gp;
|
|
|
|
zap = auxp;
|
|
|
|
if (dp == NULL)
|
|
gp = &congrf;
|
|
else
|
|
gp = (struct grf_softc *)dp;
|
|
|
|
if (dp != NULL && congrf.g_regkva != 0) {
|
|
/*
|
|
* we inited earlier just copy the info
|
|
* take care not to copy the device struct though.
|
|
*/
|
|
bcopy(&congrf.g_display, &gp->g_display,
|
|
(char *)&gp[1] - (char *)&gp->g_display);
|
|
} else {
|
|
gp->g_regkva = (volatile caddr_t)zap->va;
|
|
gp->g_fbkva = (volatile caddr_t)zap->va + 64 * 1024;
|
|
gp->g_unit = GRF_RETINAII_UNIT;
|
|
gp->g_flags = GF_ALIVE;
|
|
gp->g_mode = rt_mode;
|
|
gp->g_conpri = grfrt_cnprobe();
|
|
grfrt_iteinit(gp);
|
|
(void)rt_load_mon(gp, current_mon);
|
|
}
|
|
if (dp != NULL)
|
|
printf("\n");
|
|
/*
|
|
* attach grf
|
|
*/
|
|
amiga_config_found(cfdata, &gp->g_device, gp, grfrtprint);
|
|
}
|
|
|
|
int
|
|
grfrtprint(void *auxp, const char *pnp)
|
|
{
|
|
if (pnp)
|
|
printf("grf%d at %s", ((struct grf_softc *)auxp)->g_unit,
|
|
pnp);
|
|
return(UNCONF);
|
|
}
|
|
|
|
static int
|
|
rt_getvmode(struct grf_softc *gp, struct grfvideo_mode *vm)
|
|
{
|
|
struct MonDef *md;
|
|
int vmul;
|
|
|
|
if (vm->mode_num && vm->mode_num > retina_mon_max)
|
|
return (EINVAL);
|
|
|
|
if (! vm->mode_num)
|
|
vm->mode_num = (current_mon - monitor_defs) + 1;
|
|
|
|
md = monitor_defs + (vm->mode_num - 1);
|
|
strncpy (vm->mode_descr, monitor_descr[vm->mode_num - 1],
|
|
sizeof (vm->mode_descr));
|
|
vm->pixel_clock = md->FQ;
|
|
vm->disp_width = md->MW;
|
|
vm->disp_height = md->MH;
|
|
vm->depth = md->DEP;
|
|
|
|
/*
|
|
* From observation of the monitor definition table above, I guess that
|
|
* the horizontal timings are in units of longwords. Hence, I get the
|
|
* pixels by multiplication with 32 and division by the depth.
|
|
* The text modes, apparently marked by depth == 4, are even more weird.
|
|
* According to a comment above, they are computed from a depth==8 mode
|
|
* (thats for us: * 32 / 8) by applying another factor of 4 / font width.
|
|
* Reverse applying the latter formula most of the constants cancel
|
|
* themselves and we are left with a nice (* font width).
|
|
* That is, internal timings are in units of longwords for graphics
|
|
* modes, or in units of characters widths for text modes.
|
|
* We better don't WRITE modes until this has been real live checked.
|
|
* - Ignatios Souvatzis
|
|
*/
|
|
|
|
if (md->DEP != 4) {
|
|
vm->hblank_start = md->HBS * 32 / md->DEP;
|
|
vm->hsync_start = md->HSS * 32 / md->DEP;
|
|
vm->hsync_stop = md->HSE * 32 / md->DEP;
|
|
vm->htotal = md->HT * 32 / md->DEP;
|
|
} else {
|
|
vm->hblank_start = md->HBS * md->FX;
|
|
vm->hsync_start = md->HSS * md->FX;
|
|
vm->hsync_stop = md->HSE * md->FX;
|
|
vm->htotal = md->HT * md->FX;
|
|
}
|
|
|
|
|
|
/* XXX move vm->disp_flags and vmul to rt_load_mon
|
|
* if rt_setvmode can add new modes with grfconfig */
|
|
vm->disp_flags = 0;
|
|
vmul = 2;
|
|
if (md->FLG & MDF_DBL) {
|
|
vm->disp_flags |= GRF_FLAGS_DBLSCAN;
|
|
vmul = 4;
|
|
}
|
|
if (md->FLG & MDF_LACE) {
|
|
vm->disp_flags |= GRF_FLAGS_LACE;
|
|
vmul = 1;
|
|
}
|
|
vm->vblank_start = md->VBS * vmul / 2;
|
|
vm->vsync_start = md->VSS * vmul / 2;
|
|
vm->vsync_stop = md->VSE * vmul / 2;
|
|
vm->vtotal = md->VT * vmul / 2;
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static int
|
|
rt_setvmode(struct grf_softc *gp, unsigned mode, int txtonly)
|
|
{
|
|
int error;
|
|
|
|
if (!mode || mode > retina_mon_max)
|
|
return (EINVAL);
|
|
|
|
if (txtonly && monitor_defs[mode-1].DEP == 8)
|
|
return (EINVAL);
|
|
|
|
current_mon = monitor_defs + (mode - 1);
|
|
|
|
error = rt_load_mon (gp, current_mon) ? 0 : EINVAL;
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*
|
|
* Change the mode of the display.
|
|
* Return a UNIX error number or 0 for success.
|
|
*/
|
|
int
|
|
rt_mode(struct grf_softc *gp, u_long cmd, void *arg, u_long a2, int a3)
|
|
{
|
|
/* implement these later... */
|
|
|
|
switch (cmd) {
|
|
case GM_GRFON:
|
|
rt_setvmode (gp, retina_default_gfx + 1, 0);
|
|
return (0);
|
|
|
|
case GM_GRFOFF:
|
|
rt_setvmode (gp, retina_default_mon + 1, 0);
|
|
return (0);
|
|
|
|
case GM_GRFCONFIG:
|
|
return (0);
|
|
|
|
case GM_GRFGETVMODE:
|
|
return (rt_getvmode (gp, (struct grfvideo_mode *) arg));
|
|
|
|
case GM_GRFSETVMODE:
|
|
return (rt_setvmode (gp, *(unsigned *) arg, 1));
|
|
|
|
case GM_GRFGETNUMVM:
|
|
*(int *)arg = retina_mon_max;
|
|
return (0);
|
|
|
|
#ifdef BANKEDDEVPAGER
|
|
case GM_GRFGETBANK:
|
|
*(int *)arg = rt_getbank (gp, a2, a3);
|
|
return (0);
|
|
|
|
case GM_GRFGETCURBANK:
|
|
*(int *)arg = rt_getcurbank (gp);
|
|
return (0);
|
|
|
|
case GM_GRFSETBANK:
|
|
return (rt_setbank (gp, arg));
|
|
#endif
|
|
case GM_GRFIOCTL:
|
|
return (rt_ioctl (gp, a2, arg));
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return (EINVAL);
|
|
}
|
|
|
|
int
|
|
rt_ioctl(register struct grf_softc *gp, u_long cmd, void *data)
|
|
{
|
|
switch (cmd) {
|
|
case GRFIOCGSPRITEPOS:
|
|
return (rt_getspritepos (gp, (struct grf_position *) data));
|
|
|
|
case GRFIOCSSPRITEPOS:
|
|
return (rt_setspritepos (gp, (struct grf_position *) data));
|
|
|
|
case GRFIOCSSPRITEINF:
|
|
return (rt_setspriteinfo (gp, (struct grf_spriteinfo *) data));
|
|
|
|
case GRFIOCGSPRITEINF:
|
|
return (rt_getspriteinfo (gp, (struct grf_spriteinfo *) data));
|
|
|
|
case GRFIOCGSPRITEMAX:
|
|
return (rt_getspritemax (gp, (struct grf_position *) data));
|
|
|
|
case GRFIOCGETCMAP:
|
|
return (rt_getcmap (gp, (struct grf_colormap *) data));
|
|
|
|
case GRFIOCPUTCMAP:
|
|
return (rt_putcmap (gp, (struct grf_colormap *) data));
|
|
|
|
case GRFIOCBITBLT:
|
|
return (rt_bitblt (gp, (struct grf_bitblt *) data));
|
|
|
|
case GRFIOCBLANK:
|
|
return (rt_blank(gp, (int *)data));
|
|
}
|
|
|
|
return (EINVAL);
|
|
}
|
|
|
|
#ifdef BANKEDDEVPAGER
|
|
|
|
/* Retina banks can overlap. Don't use this information (yet?), and
|
|
only switch 64k sized banks. */
|
|
|
|
int
|
|
rt_getbank(struct grf_softc *gp, u_long offs, int prot)
|
|
{
|
|
/* XXX */
|
|
if (offs < 0 || offs >= 4*1024*1024)
|
|
return (-1);
|
|
else
|
|
return (offs >> 16);
|
|
}
|
|
|
|
|
|
int
|
|
rt_getcurbank(struct grf_softc *gp)
|
|
{
|
|
struct grfinfo *gi = &gp->g_display;
|
|
volatile unsigned char *ba;
|
|
int bank;
|
|
|
|
ba = gp->g_regkva;
|
|
bank = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO) |
|
|
(RSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI) << 8);
|
|
|
|
/* bank register is multiple of 64 byte, make this multiple of 64k */
|
|
bank >>= 10;
|
|
return (bank);
|
|
}
|
|
|
|
|
|
int
|
|
rt_setbank(struct grf_softc *gp, int bank)
|
|
{
|
|
volatile unsigned char *ba;
|
|
|
|
ba = gp->g_regkva;
|
|
/* bank register is multiple of 64 byte, make this multiple of 64k */
|
|
bank <<= 10;
|
|
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, (unsigned char) bank);
|
|
bank >>= 8;
|
|
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, (unsigned char) bank);
|
|
|
|
return (0);
|
|
}
|
|
|
|
#endif /* BANKEDDEVPAGER */
|
|
|
|
|
|
int
|
|
rt_getcmap(struct grf_softc *gfp, struct grf_colormap *cmap)
|
|
{
|
|
volatile unsigned char *ba;
|
|
u_char red[256], green[256], blue[256], *rp, *gp, *bp;
|
|
short x;
|
|
int error;
|
|
|
|
if (cmap->count == 0 || cmap->index >= 256)
|
|
return (0);
|
|
|
|
if (cmap->index + cmap->count > 256)
|
|
cmap->count = 256 - cmap->index;
|
|
|
|
ba = gfp->g_regkva;
|
|
/* first read colors out of the chip, then copyout to userspace */
|
|
vgaw (ba, VDAC_REG_SELECT, cmap->index);
|
|
x = cmap->count - 1;
|
|
rp = red + cmap->index;
|
|
gp = green + cmap->index;
|
|
bp = blue + cmap->index;
|
|
do {
|
|
*rp++ = vgar (ba, VDAC_REG_DATA);
|
|
*gp++ = vgar (ba, VDAC_REG_DATA);
|
|
*bp++ = vgar (ba, VDAC_REG_DATA);
|
|
}
|
|
while (x--);
|
|
|
|
if (!(error = copyout (red + cmap->index, cmap->red, cmap->count))
|
|
&& !(error = copyout (green + cmap->index, cmap->green, cmap->count))
|
|
&& !(error = copyout (blue + cmap->index, cmap->blue, cmap->count)))
|
|
return (0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
rt_putcmap(struct grf_softc *gfp, struct grf_colormap *cmap)
|
|
{
|
|
volatile unsigned char *ba;
|
|
u_char red[256], green[256], blue[256], *rp, *gp, *bp;
|
|
short x;
|
|
int error;
|
|
|
|
if (cmap->count == 0 || cmap->index >= 256)
|
|
return 0;
|
|
|
|
if (cmap->index + cmap->count > 256)
|
|
cmap->count = 256 - cmap->index;
|
|
|
|
/* first copy the colors into kernelspace */
|
|
if (!(error = copyin (cmap->red, red + cmap->index, cmap->count))
|
|
&& !(error = copyin (cmap->green, green + cmap->index, cmap->count))
|
|
&& !(error = copyin (cmap->blue, blue + cmap->index, cmap->count)))
|
|
{
|
|
ba = gfp->g_regkva;
|
|
vgaw (ba, VDAC_REG_SELECT, cmap->index);
|
|
x = cmap->count - 1;
|
|
rp = red + cmap->index;
|
|
gp = green + cmap->index;
|
|
bp = blue + cmap->index;
|
|
do {
|
|
vgaw (ba, VDAC_REG_DATA, *rp++);
|
|
vgaw (ba, VDAC_REG_DATA, *gp++);
|
|
vgaw (ba, VDAC_REG_DATA, *bp++);
|
|
}
|
|
while (x--);
|
|
return (0);
|
|
} else
|
|
return (error);
|
|
}
|
|
|
|
|
|
int
|
|
rt_getspritepos(struct grf_softc *gp, struct grf_position *pos)
|
|
{
|
|
volatile unsigned char *ba;
|
|
|
|
ba = gp->g_regkva;
|
|
pos->x = vgar (ba, SEQ_ID_CURSOR_X_LOC_LO) |
|
|
(vgar (ba, SEQ_ID_CURSOR_X_LOC_HI) << 8);
|
|
pos->y = vgar (ba, SEQ_ID_CURSOR_Y_LOC_LO) |
|
|
(vgar (ba, SEQ_ID_CURSOR_Y_LOC_HI) << 8);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
rt_setspritepos(struct grf_softc *gp, struct grf_position *pos)
|
|
{
|
|
volatile unsigned char *ba;
|
|
|
|
ba = gp->g_regkva;
|
|
vgaw (ba, SEQ_ID_CURSOR_X_LOC_LO, pos->x & 0xff);
|
|
vgaw (ba, SEQ_ID_CURSOR_X_LOC_HI, (pos->x >> 8) & 0x07);
|
|
vgaw (ba, SEQ_ID_CURSOR_Y_LOC_LO, pos->y & 0xff);
|
|
vgaw (ba, SEQ_ID_CURSOR_Y_LOC_HI, (pos->y >> 8) & 0x07);
|
|
return (0);
|
|
}
|
|
|
|
/* assume an at least 2M retina (XXX), sprite is last in memory.
|
|
* According to the bogus docs, the cursor can be at most 128 lines
|
|
* in height, and the x-hostspot can be placed at most at pos 31,
|
|
* this gives width of a long
|
|
*/
|
|
#define SPRITE_ADDR (2*1024*1024 - 128*4)
|
|
|
|
int
|
|
rt_getspriteinfo(struct grf_softc *gp, struct grf_spriteinfo *info)
|
|
{
|
|
volatile caddr_t ba, fb;
|
|
|
|
ba = gp->g_regkva;
|
|
fb = gp->g_fbkva;
|
|
if (info->set & GRFSPRSET_ENABLE)
|
|
info->enable = vgar (ba, SEQ_ID_CURSOR_CONTROL) & 0x01;
|
|
if (info->set & GRFSPRSET_POS)
|
|
rt_getspritepos (gp, &info->pos);
|
|
if (info->set & GRFSPRSET_HOT) {
|
|
info->hot.x = vgar (ba, SEQ_ID_CURSOR_X_INDEX) & 0x1f;
|
|
info->hot.y = vgar (ba, SEQ_ID_CURSOR_Y_INDEX) & 0x7f;
|
|
}
|
|
if (info->set & GRFSPRSET_CMAP) {
|
|
struct grf_colormap cmap;
|
|
int index;
|
|
cmap.index = 0;
|
|
cmap.count = 256;
|
|
rt_getcmap (gp, &cmap);
|
|
index = vgar (ba, SEQ_ID_CURSOR_COLOR0);
|
|
info->cmap.red[0] = cmap.red[index];
|
|
info->cmap.green[0] = cmap.green[index];
|
|
info->cmap.blue[0] = cmap.blue[index];
|
|
index = vgar (ba, SEQ_ID_CURSOR_COLOR1);
|
|
info->cmap.red[1] = cmap.red[index];
|
|
info->cmap.green[1] = cmap.green[index];
|
|
info->cmap.blue[1] = cmap.blue[index];
|
|
}
|
|
if (info->set & GRFSPRSET_SHAPE) {
|
|
int saved_bank_lo = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO);
|
|
int saved_bank_hi = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI);
|
|
int last_bank = SPRITE_ADDR >> 6;
|
|
int last_bank_lo = last_bank & 0xff;
|
|
int last_bank_hi = last_bank >> 8;
|
|
u_char mask;
|
|
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, last_bank_lo);
|
|
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, last_bank_hi);
|
|
copyout (fb, info->image, 128*4);
|
|
mask = RSeq (ba, SEQ_ID_CURSOR_PIXELMASK);
|
|
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, saved_bank_lo);
|
|
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, saved_bank_hi);
|
|
copyout (&mask, info->mask, 1);
|
|
info->size.x = 32; /* ??? */
|
|
info->size.y = (RSeq (ba, SEQ_ID_CURSOR_CONTROL) & 6) << 4;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
int
|
|
rt_setspriteinfo(struct grf_softc *gp, struct grf_spriteinfo *info)
|
|
{
|
|
volatile caddr_t ba, fb;
|
|
u_char control;
|
|
|
|
ba = gp->g_regkva;
|
|
fb = gp->g_fbkva;
|
|
control = vgar (ba, SEQ_ID_CURSOR_CONTROL);
|
|
if (info->set & GRFSPRSET_ENABLE) {
|
|
if (info->enable)
|
|
control |= 1;
|
|
else
|
|
control &= ~1;
|
|
vgaw (ba, SEQ_ID_CURSOR_CONTROL, control);
|
|
}
|
|
if (info->set & GRFSPRSET_POS)
|
|
rt_setspritepos (gp, &info->pos);
|
|
if (info->set & GRFSPRSET_HOT) {
|
|
vgaw (ba, SEQ_ID_CURSOR_X_INDEX, info->hot.x & 0x1f);
|
|
vgaw (ba, SEQ_ID_CURSOR_Y_INDEX, info->hot.y & 0x7f);
|
|
}
|
|
if (info->set & GRFSPRSET_CMAP) {
|
|
/* hey cheat a bit here.. XXX */
|
|
vgaw (ba, SEQ_ID_CURSOR_COLOR0, 0);
|
|
vgaw (ba, SEQ_ID_CURSOR_COLOR1, 1);
|
|
}
|
|
if (info->set & GRFSPRSET_SHAPE) {
|
|
int saved_bank_lo = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO);
|
|
int saved_bank_hi = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI);
|
|
int last_bank = SPRITE_ADDR >> 6;
|
|
int last_bank_lo = last_bank & 0xff;
|
|
int last_bank_hi = last_bank >> 8;
|
|
u_char mask;
|
|
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, last_bank_lo);
|
|
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, last_bank_hi);
|
|
copyin (info->image, fb, 128*4);
|
|
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, saved_bank_lo);
|
|
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, saved_bank_hi);
|
|
copyin (info->mask, &mask, 1);
|
|
WSeq (ba, SEQ_ID_CURSOR_PIXELMASK, mask);
|
|
/* info->size.x = 32; *//* ??? */
|
|
|
|
info->size.y = (RSeq (ba, SEQ_ID_CURSOR_CONTROL) & 6) << 4;
|
|
control = (control & ~6) | ((info->size.y >> 4) & 6);
|
|
vgaw (ba, SEQ_ID_CURSOR_CONTROL, control);
|
|
|
|
/* sick intel bull-addressing.. */
|
|
WSeq (ba, SEQ_ID_CURSOR_STORE_LO, SPRITE_ADDR & 0x0f);
|
|
WSeq (ba, SEQ_ID_CURSOR_STORE_HI, 0);
|
|
WSeq (ba, SEQ_ID_CURSOR_ST_OFF_LO, (SPRITE_ADDR >> 4) & 0xff);
|
|
WSeq (ba, SEQ_ID_CURSOR_ST_OFF_HI, ((SPRITE_ADDR >> 4) >> 8) & 0xff);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
int
|
|
rt_getspritemax(struct grf_softc *gp, struct grf_position *pos)
|
|
{
|
|
pos->x = 32;
|
|
pos->y = 128;
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* !!! THIS AREA UNDER CONSTRUCTION !!!
|
|
*/
|
|
|
|
int
|
|
rt_bitblt(struct grf_softc *gp, struct grf_bitblt *bb)
|
|
{
|
|
return (EINVAL);
|
|
|
|
#if 0
|
|
volatile caddr_t ba, fb;
|
|
u_char control;
|
|
u_char saved_bank_lo;
|
|
u_char saved_bank_hi;
|
|
u_char src_bank_lo, src_bank_hi;
|
|
u_char dst_bank_lo, dst_bank_hi;
|
|
u_long src_offset, dst_offset;
|
|
u_short src_bank, dst_bank;
|
|
u_char *srcp, *dstp;
|
|
short x, y;
|
|
u_long tot;
|
|
|
|
ba = gp->g_regkva;
|
|
fb = gp->g_fbkva;
|
|
|
|
saved_bank_lo = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO);
|
|
saved_bank_hi = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI);
|
|
|
|
/* for now, only GRFBBcopy is supported, and only for depth 8. No
|
|
clipping is performed, either... */
|
|
|
|
if (bb->op != GRFBBcopy && gp->g_display.gd_planes != 8)
|
|
return EINVAL;
|
|
|
|
src_offset = op->src_x + op->src_y * gp->g_display.gd_fbwidth;
|
|
dst_offset = op->dst_x + op->dst_y * gp->g_display.gd_fbwidth;
|
|
tot = op->w * op->h;
|
|
|
|
/* set write mode 1, "[...] data in the read latches is written
|
|
to memory during CPU memory write cycles. [...]" */
|
|
WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1);
|
|
/* write to primary, read from secondary */
|
|
WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA, (RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0 );
|
|
|
|
if (src_offset < dst_offset)
|
|
{
|
|
/* start at end */
|
|
src_offset += tot;
|
|
dst_offset += tot;
|
|
}
|
|
|
|
src_bank_lo = (src_offset >> 6) & 0xff;
|
|
src_bank_hi = (src_offset >> 14) & 0xff;
|
|
dst_bank_lo = (dst_offset >> 6) & 0xff;
|
|
dst_bank_hi = (dst_offset >> 14) & 0xff;
|
|
|
|
while (tot)
|
|
{
|
|
WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, src_bank_lo);
|
|
WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, src_bank_hi);
|
|
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, dst_bank_lo);
|
|
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, dst_bank_hi);
|
|
|
|
if (src_offset < dst_offset)
|
|
{
|
|
|
|
|
|
}
|
|
else
|
|
{
|
|
|
|
}
|
|
}
|
|
|
|
|
|
#endif
|
|
}
|
|
|
|
|
|
int
|
|
rt_blank(struct grf_softc *gp, int *on)
|
|
{
|
|
struct MonDef *md = (struct MonDef *)gp->g_data;
|
|
int r;
|
|
|
|
r = 0x01 | ((md->FLG & MDF_CLKDIV2)/ MDF_CLKDIV2 * 8);
|
|
|
|
WSeq(gp->g_regkva, SEQ_ID_CLOCKING_MODE, *on > 0 ? r : 0x21);
|
|
|
|
return(0);
|
|
}
|
|
|
|
#endif /* NGRF */
|