NetBSD/sys/arch/news68k/dev/zs.c

632 lines
14 KiB
C

/* $NetBSD: zs.c,v 1.20 2004/09/04 13:43:11 tsutsui Exp $ */
/*-
* Copyright (c) 1996 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Gordon W. Ross.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Zilog Z8530 Dual UART driver (machine-dependent part)
*
* Runs two serial lines per chip using slave drivers.
* Plain tty/async lines use the zs_async slave.
*/
/*
* news68k/dev/zs.c - based on {newsmips,x68k,mvme68k}/dev/zs.c
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.20 2004/09/04 13:43:11 tsutsui Exp $");
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/tty.h>
#include <machine/cpu.h>
#include <machine/z8530var.h>
#include <dev/cons.h>
#include <dev/ic/z8530reg.h>
#include <news68k/dev/hbvar.h>
#include "ioconf.h"
int zs_getc(void *);
void zs_putc(void *, int);
/*
* Some warts needed by z8530tty.c -
* The default parity REALLY needs to be the same as the PROM uses,
* or you can not see messages done with printf during boot-up...
*/
int zs_def_cflag = (CREAD | CS8 | HUPCL);
/*
* The news68k machines use three different clocks for the ZS chips.
*/
#define NPCLK 3
#define PCLK0 (9600 * 416) /* news1700: 3.9936MHz */
#define PCLK1 (9600 * 512) /* news1200: 4.9152MHz */
#define PCLK2 (9600 * 384) /* external: 3.6864MHz */
static const u_int pclk[NPCLK] = {
PCLK0,
PCLK1,
PCLK2,
};
/*
* Define interrupt levels.
*/
#define ZSHARD_PRI 5
#define ZS_IVECT 64
#define ZS_DELAY() /* delay(2) */
/* The layout of this is hardware-dependent (padding, order). */
struct zschan {
volatile u_char zc_csr; /* ctrl,status, and indirect access */
volatile u_char zc_data; /* data */
};
struct zsdevice {
/* Yes, they are backwards. */
struct zschan zs_chan_b;
struct zschan zs_chan_a;
};
static u_char zs_sir;
/* Default speed for all channels */
static int zs_defspeed = 9600;
/* console status from cninit */
static struct zs_chanstate zs_conschan_store;
static struct zs_chanstate *zs_conschan;
static struct zschan *zc_cons;
static u_char zs_init_reg[16] = {
0, /* 0: CMD (reset, etc.) */
0, /* 1: No interrupts yet. */
ZS_IVECT, /* IVECT */
ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
0, /* 6: TXSYNC/SYNCLO */
0, /* 7: RXSYNC/SYNCHI */
0, /* 8: alias for data port */
ZSWR9_MASTER_IE,
0, /*10: Misc. TX/RX control bits */
ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
BPS_TO_TCONST((PCLK0/16), 9600), /*12: BAUDLO (default=9600) */
0, /*13: BAUDHI (default=9600) */
ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
ZSWR15_BREAK_IE,
};
/****************************************************************
* Autoconfig
****************************************************************/
/* Definition of the driver for autoconfig. */
static int zs_match(struct device *, struct cfdata *, void *);
static void zs_attach(struct device *, struct device *, void *);
static int zs_print(void *, const char *name);
CFATTACH_DECL(zsc, sizeof(struct zsc_softc),
zs_match, zs_attach, NULL, NULL);
static int zshard(void *);
void zssoft(void *);
#if 0
static int zs_get_speed(struct zs_chanstate *);
#endif
/*
* Is the zs chip present?
*/
static int
zs_match(struct device *parent, struct cfdata *cf, void *aux)
{
struct hb_attach_args *ha = aux;
u_int addr;
if (strcmp(ha->ha_name, "zsc"))
return 0;
/* XXX no default address */
if (ha->ha_address == (u_int)-1)
return 0;
addr = IIOV(ha->ha_address);
/* This returns -1 on a fault (bus error). */
if (badaddr((void *)addr, 1))
return 0;
return 1;
}
/*
* Attach a found zs.
*/
static void
zs_attach(struct device *parent, struct device *self, void *aux)
{
struct zsc_softc *zsc = (void *) self;
struct cfdata *cf = self->dv_cfdata;
struct hb_attach_args *ha = aux;
struct zsc_attach_args zsc_args;
struct zsdevice *zs;
struct zschan *zc;
struct zs_chanstate *cs;
int s, channel, clk;
zs = (void *)IIOV(ha->ha_address);
clk = cf->cf_flags;
if (clk < 0 || clk >= NPCLK)
clk = 0;
printf("\n");
/*
* Initialize software state for each channel.
*/
for (channel = 0; channel < 2; channel++) {
zsc_args.channel = channel;
cs = &zsc->zsc_cs_store[channel];
simple_lock_init(&cs->cs_lock);
zsc->zsc_cs[channel] = cs;
zc = (channel == 0) ? &zs->zs_chan_a : &zs->zs_chan_b;
if (ha->ha_vect != -1)
zs_init_reg[2] = ha->ha_vect;
if (zc == zc_cons) {
memcpy(cs, zs_conschan, sizeof(struct zs_chanstate));
zs_conschan = cs;
zsc_args.hwflags = ZS_HWFLAG_CONSOLE;
} else {
cs->cs_reg_csr = &zc->zc_csr;
cs->cs_reg_data = &zc->zc_data;
memcpy(cs->cs_creg, zs_init_reg, 16);
memcpy(cs->cs_preg, zs_init_reg, 16);
cs->cs_defspeed = zs_defspeed;
zsc_args.hwflags = 0;
}
cs->cs_defcflag = zs_def_cflag;
cs->cs_channel = channel;
cs->cs_private = NULL;
cs->cs_ops = &zsops_null;
cs->cs_brg_clk = pclk[clk] / 16;
/* Make these correspond to cs_defcflag (-crtscts) */
cs->cs_rr0_dcd = ZSRR0_DCD;
cs->cs_rr0_cts = 0;
cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
cs->cs_wr5_rts = 0;
/*
* Clear the master interrupt enable.
* The INTENA is common to both channels,
* so just do it on the A channel.
*/
if (channel == 0) {
s = splhigh();
zs_write_reg(cs, 9, 0);
splx(s);
}
/*
* Look for a child driver for this channel.
* The child attach will setup the hardware.
*/
if (!config_found(self, (void *)&zsc_args, zs_print)) {
/* No sub-driver. Just reset it. */
u_char reset = (channel == 0) ?
ZSWR9_A_RESET : ZSWR9_B_RESET;
s = splhigh();
zs_write_reg(cs, 9, reset);
splx(s);
}
}
/*
* Now safe to install interrupt handlers.
*/
hb_intr_establish(zs_init_reg[2], zshard, ZSHARD_PRI, zsc);
/*
* Set the master interrupt enable and interrupt vector.
* (common to both channels, do it on A)
*/
cs = zsc->zsc_cs[0];
s = splhigh();
/* interrupt vector */
zs_write_reg(cs, 2, zs_init_reg[2]);
/* master interrupt control (enable) */
zs_write_reg(cs, 9, zs_init_reg[9]);
splx(s);
if (zs_sir == 0)
zs_sir = allocate_sir(zssoft, zsc);
}
static int
zs_print(void *aux, const char *name)
{
struct zsc_attach_args *args = aux;
if (name != NULL)
aprint_normal("%s: ", name);
if (args->channel != -1)
aprint_normal(" channel %d", args->channel);
return UNCONF;
}
/*
* For news68k-port, we don't use autovectored interrupt.
* We do not need to look at all of the zs chips.
*/
static int
zshard(void *arg)
{
struct zsc_softc *zsc = arg;
int rval;
rval = zsc_intr_hard(zsc);
/* We are at splzs here, so no need to lock. */
if (zsc->zsc_cs[0]->cs_softreq || zsc->zsc_cs[1]->cs_softreq) {
setsoftint(zs_sir);
}
return rval;
}
/*
* Shared among the all chips. We have to look at all of them.
*/
void
zssoft(void *arg)
{
struct zsc_softc *zsc;
int s, unit;
/* Make sure we call the tty layer at spltty. */
s = spltty();
for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
zsc = zsc_cd.cd_devs[unit];
if (zsc == NULL)
continue;
(void) zsc_intr_soft(zsc);
}
splx(s);
}
/*
* Compute the current baud rate given a ZS channel.
*/
#if 0
static int
zs_get_speed(struct zs_chanstate *cs)
{
int tconst;
tconst = zs_read_reg(cs, 12);
tconst |= zs_read_reg(cs, 13) << 8;
return TCONST_TO_BPS(cs->cs_brg_clk, tconst);
}
#endif
/*
* MD functions for setting the baud rate and control modes.
*/
int
zs_set_speed(struct zs_chanstate *cs, int bps)
{
int tconst, real_bps;
if (bps == 0)
return 0;
#ifdef DIAGNOSTIC
if (cs->cs_brg_clk == 0)
panic("zs_set_speed");
#endif
tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
if (tconst < 0)
return EINVAL;
/* Convert back to make sure we can do it. */
real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
/* XXX - Allow some tolerance here? */
if (real_bps != bps)
return EINVAL;
cs->cs_preg[12] = tconst;
cs->cs_preg[13] = tconst >> 8;
/* Caller will stuff the pending registers. */
return 0;
}
int
zs_set_modes(struct zs_chanstate *cs, int cflag)
{
int s;
/*
* Output hardware flow control on the chip is horrendous:
* if carrier detect drops, the receiver is disabled, and if
* CTS drops, the transmitter is stoped IN MID CHARACTER!
* Therefore, NEVER set the HFC bit, and instead use the
* status interrupt to detect CTS changes.
*/
s = splzs();
cs->cs_rr0_pps = 0;
if ((cflag & (CLOCAL | MDMBUF)) != 0) {
cs->cs_rr0_dcd = 0;
if ((cflag & MDMBUF) == 0)
cs->cs_rr0_pps = ZSRR0_DCD;
} else
cs->cs_rr0_dcd = ZSRR0_DCD;
if ((cflag & CRTSCTS) != 0) {
cs->cs_wr5_dtr = ZSWR5_DTR;
cs->cs_wr5_rts = ZSWR5_RTS;
cs->cs_rr0_cts = ZSRR0_CTS;
} else if ((cflag & MDMBUF) != 0) {
cs->cs_wr5_dtr = 0;
cs->cs_wr5_rts = ZSWR5_DTR;
cs->cs_rr0_cts = ZSRR0_DCD;
} else {
cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
cs->cs_wr5_rts = 0;
cs->cs_rr0_cts = 0;
}
splx(s);
/* Caller will stuff the pending registers. */
return 0;
}
/*
* Read or write the chip with suitable delays.
*/
u_char
zs_read_reg(struct zs_chanstate *cs, u_char reg)
{
u_char val;
*cs->cs_reg_csr = reg;
ZS_DELAY();
val = *cs->cs_reg_csr;
ZS_DELAY();
return val;
}
void
zs_write_reg(struct zs_chanstate *cs, u_char reg, u_char val)
{
*cs->cs_reg_csr = reg;
ZS_DELAY();
*cs->cs_reg_csr = val;
ZS_DELAY();
}
u_char
zs_read_csr(struct zs_chanstate *cs)
{
u_char val;
val = *cs->cs_reg_csr;
ZS_DELAY();
return val;
}
void
zs_write_csr(struct zs_chanstate *cs, u_char val)
{
*cs->cs_reg_csr = val;
ZS_DELAY();
}
u_char
zs_read_data(struct zs_chanstate *cs)
{
u_char val;
val = *cs->cs_reg_data;
ZS_DELAY();
return val;
}
void
zs_write_data(struct zs_chanstate *cs, u_char val)
{
*cs->cs_reg_data = val;
ZS_DELAY();
}
void
zs_abort(struct zs_chanstate *cs)
{
#ifdef DDB
Debugger();
#endif
}
/*
* Polled input char.
*/
int
zs_getc(void *arg)
{
struct zs_chanstate *cs = arg;
int s, c, rr0;
s = splhigh();
/* Wait for a character to arrive. */
do {
rr0 = *cs->cs_reg_csr;
ZS_DELAY();
} while ((rr0 & ZSRR0_RX_READY) == 0);
c = *cs->cs_reg_data;
ZS_DELAY();
splx(s);
return c;
}
/*
* Polled output char.
*/
void
zs_putc(void *arg, int c)
{
struct zs_chanstate *cs = arg;
int s, rr0;
s = splhigh();
/* Wait for transmitter to become ready. */
do {
rr0 = *cs->cs_reg_csr;
ZS_DELAY();
} while ((rr0 & ZSRR0_TX_READY) == 0);
*cs->cs_reg_data = c;
ZS_DELAY();
splx(s);
}
/*****************************************************************/
static void zscnprobe(struct consdev *);
static void zscninit(struct consdev *);
static int zscngetc(dev_t);
static void zscnputc(dev_t, int);
struct consdev consdev_zs = {
zscnprobe,
zscninit,
zscngetc,
zscnputc,
nullcnpollc,
NULL,
NULL,
NULL,
NODEV,
CN_DEAD
};
static void
zscnprobe(struct consdev *cn)
{
}
static void
zscninit(struct consdev *cn)
{
struct zs_chanstate *cs;
extern const struct cdevsw zstty_cdevsw;
extern int tty00_is_console;
extern volatile u_char *sccport0a;
cn->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), 0);
if (tty00_is_console)
cn->cn_pri = CN_REMOTE;
else
cn->cn_pri = CN_NORMAL;
zc_cons = (struct zschan *)sccport0a; /* XXX */
zs_conschan = cs = &zs_conschan_store;
/* Setup temporary chanstate. */
cs->cs_reg_csr = &zc_cons->zc_csr;
cs->cs_reg_data = &zc_cons->zc_data;
/* Initialize the pending registers. */
memcpy(cs->cs_preg, zs_init_reg, 16);
cs->cs_preg[5] |= ZSWR5_DTR | ZSWR5_RTS;
cs->cs_preg[12] = BPS_TO_TCONST(pclk[systype] / 16, 9600); /* XXX */
cs->cs_preg[13] = 0;
cs->cs_defspeed = 9600;
/* Clear the master interrupt enable. */
zs_write_reg(cs, 9, 0);
/* Reset the whole SCC chip. */
zs_write_reg(cs, 9, ZSWR9_HARD_RESET);
/* Copy "pending" to "current" and H/W */
zs_loadchannelregs(cs);
}
static int
zscngetc(dev_t dev)
{
return zs_getc((void *)zs_conschan);
}
static void
zscnputc(dev_t dev, int c)
{
zs_putc((void *)zs_conschan, c);
}