NetBSD/sys/arch/hppa/spmath/impyu.S

321 lines
10 KiB
ArmAsm

/* $NetBSD: impyu.S,v 1.2 2003/10/10 15:07:43 chs Exp $ */
/* $OpenBSD: impyu.S,v 1.5 2001/03/29 03:58:18 mickey Exp $ */
/*
* Copyright 1996 1995 by Open Software Foundation, Inc.
* All Rights Reserved
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby granted,
* provided that the above copyright notice appears in all copies and
* that both the copyright notice and this permission notice appear in
* supporting documentation.
*
* OSF DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE.
*
* IN NO EVENT SHALL OSF BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT,
* NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
* WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/*
* pmk1.1
*/
/*
* (c) Copyright 1986 HEWLETT-PACKARD COMPANY
*
* To anyone who acknowledges that this file is provided "AS IS"
* without any express or implied warranty:
* permission to use, copy, modify, and distribute this file
* for any purpose is hereby granted without fee, provided that
* the above copyright notice and this notice appears in all
* copies, and that the name of Hewlett-Packard Company not be
* used in advertising or publicity pertaining to distribution
* of the software without specific, written prior permission.
* Hewlett-Packard Company makes no representations about the
* suitability of this software for any purpose.
*/
#include <machine/asm.h>
/****************************************************************************
*
*Implement an integer multiply routine for 32-bit operands and 64-bit product
* with operand values of zero (multiplicand only) and 2**32reated specially.
* The algorithm uses the multiplier, four bits at a time, from right to left,
* to generate partial product. Execution speed is more important than program
* size in this implementation.
*
*****************************************************************************/
;
; Definitions - General registers
;
gr0: .equ 0 ; General register zero
pu: .equ 3 ; upper part of product
pl: .equ 4 ; lower part of product
op2: .equ 4 ; multiplier
op1: .equ 5 ; multiplicand
cnt: .equ 6 ; count in multiply
brindex:.equ 7 ; index into the br. table
saveop2:.equ 8 ; save op2 if high bit of multiplicand
; is set
pc: .equ 9 ; carry bit of product, = 00...01
pm: .equ 10 ; value of -1 used in shifting
temp: .equ 6
;****************************************************************************
.export impyu,entry
.text
.align 4
.proc
.callinfo
;
;****************************************************************************
impyu: stws,ma pu,4(%sp) ; save registers on stack
stws,ma pl,4(%sp) ; save registers on stack
stws,ma op1,4(%sp) ; save registers on stack
stws,ma cnt,4(%sp) ; save registers on stack
stws,ma brindex,4(%sp) ; save registers on stack
stws,ma saveop2,4(%sp) ; save registers on stack
stws,ma pc,4(%sp) ; save registers on stack
stws,ma pm,4(%sp) ; save registers on stack
;
; Start multiply process
;
ldws 0(%arg0),op1 ; get multiplicand
ldws 0(%arg1),op2 ; get multiplier
addib,= 0,op1,fini0 ; op1 = 0, product = 0
addi 0,gr0,pu ; clear product
bb,>= op1,0,mpy1 ; test msb of multiplicand
addi 0,gr0,saveop2 ; clear saveop2
;
; msb of multiplicand is set so will save multiplier for a final
; addition into the result
;
extru,= op1,31,31,op1 ; clear msb of multiplicand
b mpy1 ; if op1 < 2**32, start multiply
add op2,gr0,saveop2 ; save op2 in saveop2
shd gr0,op2,1,pu ; shift op2 left 31 for result
b fini ; go to finish
shd op2,gr0,1,pl
;
mpy1: addi -1,gr0,pm ; initialize pm to 111...1
addi 1,gr0,pc ; initialize pc to 00...01
movib,tr 8,cnt,mloop ; set count for mpy loop
extru op2,31,4,brindex ; 4 bits as index into table
;
.align 8
;
b sh4c ; br. if sign overflow
sh4n: shd pu,pl,4,pl ; shift product right 4 bits
addib,<= -1,cnt,mulend ; reduce count by 1, exit if
extru pu,27,28,pu ; <= zero
;
mloop: blr brindex,gr0 ; br. into table
; entries of 2 words
extru op2,27,4,brindex ; next 4 bits into index
;
;
; branch table for the multiplication process with four multiplier bits
;
mtable: ; two words per entry
;
; ---- bits = 0000 ---- shift product 4 bits -------------------------------
;
b sh4n+4 ; just shift partial
shd pu,pl,4,pl ; product right 4 bits
;
; ---- bits = 0001 ---- add op1, then shift 4 bits
;
addb,tr op1,pu,sh4n+4 ; add op1 to product, to shift
shd pu,pl,4,pl ; product right 4 bits
;
; ---- bits = 0010 ---- add op1, add op1, then shift 4 bits
;
addb,tr op1,pu,sh4n ; add 2*op1, to shift
addb,uv op1,pu,sh4c ; product right 4 bits
;
; ---- bits = 0011 ---- add op1, add 2*op1, shift 4 bits
;
addb,tr op1,pu,sh4n-4 ; add op1 & 2*op1, shift
sh1add,nuv op1,pu,pu ; product right 4 bits
;
; ---- bits = 0100 ---- shift 2, add op1, shift 2
;
b sh2sa
shd pu,pl,2,pl ; shift product 2 bits
;
; ---- bits = 0101 ---- add op1, shift 2, add op1, and shift 2 again
;
addb,tr op1,pu,sh2us ; add op1 to product
shd pu,pl,2,pl ; shift 2 bits
;
; ---- bits = 0110 ---- add op1, add op1, shift 2, add op1, and shift 2 again
;
addb,tr op1,pu,sh2c ; add 2*op1, to shift 2 bits
addb,nuv op1,pu,sh2us ; br. if not overflow
;
; ---- bits = 0111 ---- subtract op1, shift 3, add op1, and shift 1
;
b sh3s
sub pu,op1,pu ; subtract op1, br. to sh3s
;
; ---- bits = 1000 ---- shift 3, add op1, shift 1
;
b sh3sa
shd pu,pl,3,pl ; shift product right 3 bits
;
; ---- bits = 1001 ---- add op1, shift 3, add op1, shift 1
;
addb,tr op1,pu,sh3us ; add op1, to shift 3, add op1,
shd pu,pl,3,pl ; and shift 1
;
; ---- bits = 1010 ---- add op1, add op1, shift 3, add op1, shift 1
;
addb,tr op1,pu,sh3c ; add 2*op1, to shift 3 bits
addb,nuv op1,pu,sh3us ; br. if no overflow
;
; ---- bits = 1011 ---- add -op1, shift 2, add -op1, shift 2, inc. next index
;
addib,tr 1,brindex,sh2s ; add 1 to index, subtract op1,
sub pu,op1,pu ; shift 2 with minus sign
;
; ---- bits = 1100 ---- shift 2, subtract op1, shift 2, increment next index
;
addib,tr 1,brindex,sh2sb ; add 1 to index, to shift
shd pu,pl,2,pl ; shift right 2 bits signed
;
; ---- bits = 1101 ---- add op1, shift 2, add -op1, shift 2
;
addb,tr op1,pu,sh2ns ; add op1, to shift 2
shd pu,pl,2,pl ; right 2 unsigned, etc.
;
; ---- bits = 1110 ---- shift 1 signed, add -op1, shift 3 signed
;
addib,tr 1,brindex,sh1sa ; add 1 to index, to shift
shd pu,pl,1,pl ; shift 1 bit
;
; ---- bits = 1111 ---- add -op1, shift 4 signed
;
addib,tr 1,brindex,sh4s ; add 1 to index, subtract op1,
sub pu,op1,pu ; to shift 4 signed
;
; ---- bits = 10000 ---- shift 4 signed
;
addib,tr 1,brindex,sh4s+4 ; add 1 to index
shd pu,pl,4,pl ; shift 4 signed
;
; ---- end of table ---------------------------------------------------------
;
sh4s: shd pu,pl,4,pl
addib,> -1,cnt,mloop ; decrement count, loop if > 0
shd pm,pu,4,pu ; shift 4, minus signed
addb,tr op1,pu,lastadd ; do one more add, then finish
addb,=,n saveop2,gr0,fini ; check saveop2
;
sh4c: addib,> -1,cnt,mloop ; decrement count, loop if > 0
shd pc,pu,4,pu ; shift 4 with overflow
b lastadd ; end of multiply
addb,=,n saveop2,gr0,fini ; check saveop2
;
sh3c: shd pu,pl,3,pl ; shift product 3 bits
shd pc,pu,3,pu ; shift 3 signed
addb,tr op1,pu,sh1 ; add op1, to shift 1 bit
shd pu,pl,1,pl
;
sh3us: extru pu,28,29,pu ; shift 3 unsigned
addb,tr op1,pu,sh1 ; add op1, to shift 1 bit
shd pu,pl,1,pl
;
sh3sa: extrs pu,28,29,pu ; shift 3 signed
addb,tr op1,pu,sh1 ; add op1, to shift 1 bit
shd pu,pl,1,pl
;
sh3s: shd pu,pl,3,pl ; shift 3 minus signed
shd pm,pu,3,pu
addb,tr op1,pu,sh1 ; add op1, to shift 1 bit
shd pu,pl,1,pl
;
sh1: addib,> -1,cnt,mloop ; loop if count > 0
extru pu,30,31,pu
b lastadd ; end of multiply
addb,=,n saveop2,gr0,fini ; check saveop2
;
sh2ns: addib,tr 1,brindex,sh2sb+4 ; increment index
extru pu,29,30,pu ; shift unsigned
;
sh2s: shd pu,pl,2,pl ; shift with minus sign
shd pm,pu,2,pu ;
sub pu,op1,pu ; subtract op1
shd pu,pl,2,pl ; shift with minus sign
addib,> -1,cnt,mloop ; decrement count, loop if > 0
shd pm,pu,2,pu ; shift with minus sign
addb,tr op1,pu,lastadd ; do one more add, then finish
addb,=,n saveop2,gr0,fini ; check saveop2
;
sh2sb: extrs pu,29,30,pu ; shift 2 signed
sub pu,op1,pu ; subtract op1 from product
shd pu,pl,2,pl ; shift with minus sign
addib,> -1,cnt,mloop ; decrement count, loop if > 0
shd pm,pu,2,pu ; shift with minus sign
addb,tr op1,pu,lastadd ; do one more add, then finish
addb,=,n saveop2,gr0,fini ; check saveop2
;
sh1sa: extrs pu,30,31,pu ; signed
sub pu,op1,pu ; subtract op1 from product
shd pu,pl,3,pl ; shift 3 with minus sign
addib,> -1,cnt,mloop ; decrement count, loop if >0
shd pm,pu,3,pu
addb,tr op1,pu,lastadd ; do one more add, then finish
addb,=,n saveop2,gr0,fini ; check saveop2
;
fini0: movib,tr 0,pl,fini ; product = 0 as op1 = 0
stws pu,0(%arg2) ; save high part of result
;
sh2us: extru pu,29,30,pu ; shift 2 unsigned
addb,tr op1,pu,sh2a ; add op1
shd pu,pl,2,pl ; shift 2 bits
;
sh2c: shd pu,pl,2,pl
shd pc,pu,2,pu ; shift with carry
addb,tr op1,pu,sh2a ; add op1 to product
shd pu,pl,2,pl ; br. to sh2 to shift pu
;
sh2sa: extrs pu,29,30,pu ; shift with sign
addb,tr op1,pu,sh2a ; add op1 to product
shd pu,pl,2,pl ; br. to sh2 to shift pu
;
sh2a: addib,> -1,cnt,mloop ; loop if count > 0
extru pu,29,30,pu
;
mulend: addb,=,n saveop2,gr0,fini ; check saveop2
lastadd:shd saveop2,gr0,1,temp ; if saveop2 <> 0, shift it
shd gr0,saveop2,1,saveop2 ; left 31 and add to result
add pl,temp,pl
addc pu,saveop2,pu
;
; finish
;
fini: stws pu,0(%arg2) ; save high part of result
stws pl,4(%arg2) ; save low part of result
ldws,mb -4(%sp),pm ; restore registers
ldws,mb -4(%sp),pc ; restore registers
ldws,mb -4(%sp),saveop2 ; restore registers
ldws,mb -4(%sp),brindex ; restore registers
ldws,mb -4(%sp),cnt ; restore registers
ldws,mb -4(%sp),op1 ; restore registers
ldws,mb -4(%sp),pl ; restore registers
bv 0(%rp) ; return
ldws,mb -4(%sp),pu ; restore registers
.procend
.end