NetBSD/sys/dev/ic/mb89352.c
thorpej fc96443d15 New callout mechanism with two major improvements over the old
timeout()/untimeout() API:
- Clients supply callout handle storage, thus eliminating problems of
  resource allocation.
- Insertion and removal of callouts is constant time, important as
  this facility is used quite a lot in the kernel.

The old timeout()/untimeout() API has been removed from the kernel.
2000-03-23 07:01:25 +00:00

2204 lines
55 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* $NetBSD: mb89352.c,v 1.5 2000/03/23 07:01:31 thorpej Exp $ */
/* NecBSD: mb89352.c,v 1.4 1998/03/14 07:31:20 kmatsuda Exp */
#ifdef DDB
#define integrate
#else
#define integrate __inline static
#endif
/*-
* Copyright (c) 1996,97,98,99 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum, Masaru Oki and Kouichi Matsuda.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles M. Hannum.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Copyright (c) 1994 Jarle Greipsland
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* [NetBSD for NEC PC-98 series]
* Copyright (c) 1996, 1997, 1998
* NetBSD/pc98 porting staff. All rights reserved.
* Copyright (c) 1996, 1997, 1998
* Kouichi Matsuda. All rights reserved.
*/
/*
* Acknowledgements: Many of the algorithms used in this driver are
* inspired by the work of Julian Elischer (julian@tfs.com) and
* Charles Hannum (mycroft@duality.gnu.ai.mit.edu). Thanks a million!
*/
/* TODO list:
* 1) Get the DMA stuff working.
* 2) Get the iov/uio stuff working. Is this a good thing ???
* 3) Get the synch stuff working.
* 4) Rewrite it to use malloc for the acb structs instead of static alloc.?
*/
/*
* A few customizable items:
*/
/* Use doubleword transfers to/from SCSI chip. Note: This requires
* motherboard support. Basicly, some motherboard chipsets are able to
* split a 32 bit I/O operation into two 16 bit I/O operations,
* transparently to the processor. This speeds up some things, notably long
* data transfers.
*/
#define SPC_USE_DWORDS 0
/* Synchronous data transfers? */
#define SPC_USE_SYNCHRONOUS 0
#define SPC_SYNC_REQ_ACK_OFS 8
/* Wide data transfers? */
#define SPC_USE_WIDE 0
#define SPC_MAX_WIDTH 0
/* Max attempts made to transmit a message */
#define SPC_MSG_MAX_ATTEMPT 3 /* Not used now XXX */
/*
* Some spin loop parameters (essentially how long to wait some places)
* The problem(?) is that sometimes we expect either to be able to transmit a
* byte or to get a new one from the SCSI bus pretty soon. In order to avoid
* returning from the interrupt just to get yanked back for the next byte we
* may spin in the interrupt routine waiting for this byte to come. How long?
* This is really (SCSI) device and processor dependent. Tuneable, I guess.
*/
#define SPC_MSGIN_SPIN 1 /* Will spinwait upto ?ms for a new msg byte */
#define SPC_MSGOUT_SPIN 1
/* Include debug functions? At the end of this file there are a bunch of
* functions that will print out various information regarding queued SCSI
* commands, driver state and chip contents. You can call them from the
* kernel debugger. If you set SPC_DEBUG to 0 they are not included (the
* kernel uses less memory) but you lose the debugging facilities.
*/
#define SPC_DEBUG 1
#define SPC_ABORT_TIMEOUT 2000 /* time to wait for abort */
/* End of customizable parameters */
/*
* MB89352 SCSI Protocol Controller (SPC) routines.
*/
#include "opt_ddb.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/queue.h>
#include <machine/intr.h>
#include <machine/bus.h>
#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsi_message.h>
#include <dev/scsipi/scsiconf.h>
#include <dev/ic/mb89352reg.h>
#include <dev/ic/mb89352var.h>
#ifndef DDB
#define Debugger() panic("should call debugger here (mb89352.c)")
#endif /* ! DDB */
#if SPC_DEBUG
int spc_debug = 0x00; /* SPC_SHOWSTART|SPC_SHOWMISC|SPC_SHOWTRACE; */
#endif
void spc_minphys __P((struct buf *));
void spc_done __P((struct spc_softc *, struct spc_acb *));
void spc_dequeue __P((struct spc_softc *, struct spc_acb *));
int spc_scsi_cmd __P((struct scsipi_xfer *));
int spc_poll __P((struct spc_softc *, struct scsipi_xfer *, int));
integrate void spc_sched_msgout __P((struct spc_softc *, u_char));
integrate void spc_setsync __P((struct spc_softc *, struct spc_tinfo *));
void spc_select __P((struct spc_softc *, struct spc_acb *));
void spc_timeout __P((void *));
void spc_scsi_reset __P((struct spc_softc *));
void spc_reset __P((struct spc_softc *));
void spc_free_acb __P((struct spc_softc *, struct spc_acb *, int));
struct spc_acb* spc_get_acb __P((struct spc_softc *, int));
int spc_reselect __P((struct spc_softc *, int));
void spc_sense __P((struct spc_softc *, struct spc_acb *));
void spc_msgin __P((struct spc_softc *));
void spc_abort __P((struct spc_softc *, struct spc_acb *));
void spc_msgout __P((struct spc_softc *));
int spc_dataout_pio __P((struct spc_softc *, u_char *, int));
int spc_datain_pio __P((struct spc_softc *, u_char *, int));
#if SPC_DEBUG
void spc_print_acb __P((struct spc_acb *));
void spc_dump_driver __P((struct spc_softc *));
void spc_dump89352 __P((struct spc_softc *));
void spc_show_scsi_cmd __P((struct spc_acb *));
void spc_print_active_acb __P((void));
#endif
extern struct cfdriver spc_cd;
struct scsipi_device spc_dev = {
NULL, /* Use default error handler */
NULL, /* have a queue, served by this */
NULL, /* have no async handler */
NULL, /* Use default 'done' routine */
};
/*
* INITIALIZATION ROUTINES (probe, attach ++)
*/
/*
* Do the real search-for-device.
* Prerequisite: sc->sc_iobase should be set to the proper value
*/
int
spc_find(iot, ioh, bdid)
bus_space_tag_t iot;
bus_space_handle_t ioh;
int bdid;
{
long timeout = SPC_ABORT_TIMEOUT;
SPC_TRACE(("spc: probing for spc-chip\n"));
/*
* Disable interrupts then reset the FUJITSU chip.
*/
bus_space_write_1(iot, ioh, SCTL, SCTL_DISABLE | SCTL_CTRLRST);
bus_space_write_1(iot, ioh, SCMD, 0);
bus_space_write_1(iot, ioh, PCTL, 0);
bus_space_write_1(iot, ioh, TEMP, 0);
bus_space_write_1(iot, ioh, TCH, 0);
bus_space_write_1(iot, ioh, TCM, 0);
bus_space_write_1(iot, ioh, TCL, 0);
bus_space_write_1(iot, ioh, INTS, 0);
bus_space_write_1(iot, ioh, SCTL, SCTL_DISABLE | SCTL_ABRT_ENAB | SCTL_PARITY_ENAB | SCTL_RESEL_ENAB);
bus_space_write_1(iot, ioh, BDID, bdid);
delay(400);
bus_space_write_1(iot, ioh, SCTL, bus_space_read_1(iot, ioh, SCTL) & ~SCTL_DISABLE);
/* The following detection is derived from spc.c
* (by Takahide Matsutsuka) in FreeBSD/pccard-test.
*/
while (bus_space_read_1(iot, ioh, PSNS) && timeout)
timeout--;
if (!timeout) {
printf("spc: find failed\n");
return 0;
}
SPC_START(("SPC found"));
return 1;
}
void
spcattach(sc)
struct spc_softc *sc;
{
SPC_TRACE(("spcattach "));
sc->sc_state = SPC_INIT;
sc->sc_freq = 20; /* XXXX Assume 20 MHz. */
#if SPC_USE_SYNCHRONOUS
/*
* These are the bounds of the sync period, based on the frequency of
* the chip's clock input and the size and offset of the sync period
* register.
*
* For a 20Mhz clock, this gives us 25, or 100nS, or 10MB/s, as a
* maximum transfer rate, and 112.5, or 450nS, or 2.22MB/s, as a
* minimum transfer rate.
*/
sc->sc_minsync = (2 * 250) / sc->sc_freq;
sc->sc_maxsync = (9 * 250) / sc->sc_freq;
#endif
spc_init(sc); /* Init chip and driver */
/*
* Fill in the adapter.
*/
sc->sc_adapter.scsipi_cmd = spc_scsi_cmd;
sc->sc_adapter.scsipi_minphys = spc_minphys;
/*
* Fill in the prototype scsipi_link
*/
sc->sc_link.scsipi_scsi.channel = SCSI_CHANNEL_ONLY_ONE;
sc->sc_link.adapter_softc = sc;
sc->sc_link.scsipi_scsi.adapter_target = sc->sc_initiator;
sc->sc_link.adapter = &sc->sc_adapter;
sc->sc_link.device = &spc_dev;
sc->sc_link.openings = 2;
sc->sc_link.scsipi_scsi.max_target = 7;
sc->sc_link.scsipi_scsi.max_lun = 7;
sc->sc_link.type = BUS_SCSI;
/*
* ask the adapter what subunits are present
*/
config_found(&sc->sc_dev, &sc->sc_link, scsiprint);
}
/*
* Initialize MB89352 chip itself
* The following conditions should hold:
* spc_isa_probe should have succeeded, i.e. the iobase address in spc_softc
* must be valid.
*/
void
spc_reset(sc)
struct spc_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
SPC_TRACE(("spc_reset "));
/*
* Disable interrupts then reset the FUJITSU chip.
*/
bus_space_write_1(iot, ioh, SCTL, SCTL_DISABLE | SCTL_CTRLRST);
bus_space_write_1(iot, ioh, SCMD, 0);
bus_space_write_1(iot, ioh, PCTL, 0);
bus_space_write_1(iot, ioh, TEMP, 0);
bus_space_write_1(iot, ioh, TCH, 0);
bus_space_write_1(iot, ioh, TCM, 0);
bus_space_write_1(iot, ioh, TCL, 0);
bus_space_write_1(iot, ioh, INTS, 0);
bus_space_write_1(iot, ioh, SCTL, SCTL_DISABLE | SCTL_ABRT_ENAB | SCTL_PARITY_ENAB | SCTL_RESEL_ENAB);
bus_space_write_1(iot, ioh, BDID, sc->sc_initiator);
delay(400);
bus_space_write_1(iot, ioh, SCTL, bus_space_read_1(iot, ioh, SCTL) & ~SCTL_DISABLE);
}
/*
* Pull the SCSI RST line for 500us.
*/
void
spc_scsi_reset(sc)
struct spc_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
SPC_TRACE(("spc_scsi_reset "));
bus_space_write_1(iot, ioh, SCMD, bus_space_read_1(iot, ioh, SCMD) | SCMD_RST);
delay(500);
bus_space_write_1(iot, ioh, SCMD, bus_space_read_1(iot, ioh, SCMD) & ~SCMD_RST);
delay(50);
}
/*
* Initialize spc SCSI driver.
*/
void
spc_init(sc)
struct spc_softc *sc;
{
struct spc_acb *acb;
int r;
SPC_TRACE(("spc_init "));
spc_reset(sc);
spc_scsi_reset(sc);
spc_reset(sc);
if (sc->sc_state == SPC_INIT) {
/* First time through; initialize. */
TAILQ_INIT(&sc->ready_list);
TAILQ_INIT(&sc->nexus_list);
TAILQ_INIT(&sc->free_list);
sc->sc_nexus = NULL;
acb = sc->sc_acb;
bzero(acb, sizeof(sc->sc_acb));
for (r = 0; r < sizeof(sc->sc_acb) / sizeof(*acb); r++) {
TAILQ_INSERT_TAIL(&sc->free_list, acb, chain);
acb++;
}
bzero(&sc->sc_tinfo, sizeof(sc->sc_tinfo));
} else {
/* Cancel any active commands. */
sc->sc_state = SPC_CLEANING;
if ((acb = sc->sc_nexus) != NULL) {
acb->xs->error = XS_DRIVER_STUFFUP;
callout_stop(&acb->xs->xs_callout);
spc_done(sc, acb);
}
while ((acb = sc->nexus_list.tqh_first) != NULL) {
acb->xs->error = XS_DRIVER_STUFFUP;
callout_stop(&acb->xs->xs_callout);
spc_done(sc, acb);
}
}
sc->sc_prevphase = PH_INVALID;
for (r = 0; r < 8; r++) {
struct spc_tinfo *ti = &sc->sc_tinfo[r];
ti->flags = 0;
#if SPC_USE_SYNCHRONOUS
ti->flags |= DO_SYNC;
ti->period = sc->sc_minsync;
ti->offset = SPC_SYNC_REQ_ACK_OFS;
#else
ti->period = ti->offset = 0;
#endif
#if SPC_USE_WIDE
ti->flags |= DO_WIDE;
ti->width = SPC_MAX_WIDTH;
#else
ti->width = 0;
#endif
}
sc->sc_state = SPC_IDLE;
bus_space_write_1(sc->sc_iot, sc->sc_ioh, SCTL,
bus_space_read_1(sc->sc_iot, sc->sc_ioh, SCTL) | SCTL_INTR_ENAB);
}
void
spc_free_acb(sc, acb, flags)
struct spc_softc *sc;
struct spc_acb *acb;
int flags;
{
int s;
SPC_TRACE(("spc_free_acb "));
s = splbio();
acb->flags = 0;
TAILQ_INSERT_HEAD(&sc->free_list, acb, chain);
/*
* If there were none, wake anybody waiting for one to come free,
* starting with queued entries.
*/
if (acb->chain.tqe_next == 0)
wakeup(&sc->free_list);
splx(s);
}
struct spc_acb *
spc_get_acb(sc, flags)
struct spc_softc *sc;
int flags;
{
struct spc_acb *acb;
int s;
SPC_TRACE(("spc_get_acb "));
s = splbio();
while ((acb = sc->free_list.tqh_first) == NULL &&
(flags & XS_CTL_NOSLEEP) == 0)
tsleep(&sc->free_list, PRIBIO, "spcacb", 0);
if (acb) {
TAILQ_REMOVE(&sc->free_list, acb, chain);
acb->flags |= ACB_ALLOC;
}
splx(s);
return acb;
}
/*
* DRIVER FUNCTIONS CALLABLE FROM HIGHER LEVEL DRIVERS
*/
/*
* Expected sequence:
* 1) Command inserted into ready list
* 2) Command selected for execution
* 3) Command won arbitration and has selected target device
* 4) Send message out (identify message, eventually also sync.negotiations)
* 5) Send command
* 5a) Receive disconnect message, disconnect.
* 5b) Reselected by target
* 5c) Receive identify message from target.
* 6) Send or receive data
* 7) Receive status
* 8) Receive message (command complete etc.)
* 9) If status == SCSI_CHECK construct a synthetic request sense SCSI cmd.
* Repeat 2-8 (no disconnects please...)
*/
/*
* Start a SCSI-command
* This function is called by the higher level SCSI-driver to queue/run
* SCSI-commands.
*/
int
spc_scsi_cmd(xs)
struct scsipi_xfer *xs;
{
struct scsipi_link *sc_link = xs->sc_link;
struct spc_softc *sc = sc_link->adapter_softc;
struct spc_acb *acb;
int s, flags;
SPC_TRACE(("spc_scsi_cmd "));
SPC_CMDS(("[0x%x, %d]->%d ", (int)xs->cmd->opcode, xs->cmdlen,
sc_link->scsipi_scsi.target));
flags = xs->xs_control;
if ((acb = spc_get_acb(sc, flags)) == NULL) {
xs->error = XS_DRIVER_STUFFUP;
return TRY_AGAIN_LATER;
}
/* Initialize acb */
acb->xs = xs;
acb->timeout = xs->timeout;
if (xs->xs_control & XS_CTL_RESET) {
acb->flags |= ACB_RESET;
acb->scsipi_cmd_length = 0;
acb->data_length = 0;
} else {
bcopy(xs->cmd, &acb->scsipi_cmd, xs->cmdlen);
#if 1
acb->scsipi_cmd.bytes[0] |= sc_link->scsipi_scsi.lun << 5; /* XXX? */
#endif
acb->scsipi_cmd_length = xs->cmdlen;
acb->data_addr = xs->data;
acb->data_length = xs->datalen;
}
acb->target_stat = 0;
s = splbio();
TAILQ_INSERT_TAIL(&sc->ready_list, acb, chain);
/*
* Start scheduling unless a queue process is in progress.
*/
if (sc->sc_state == SPC_IDLE)
spc_sched(sc);
/*
* After successful sending, check if we should return just now.
* If so, return SUCCESSFULLY_QUEUED.
*/
splx(s);
if ((flags & XS_CTL_POLL) == 0)
return SUCCESSFULLY_QUEUED;
/* Not allowed to use interrupts, use polling instead */
s = splbio();
if (spc_poll(sc, xs, acb->timeout)) {
spc_timeout(acb);
if (spc_poll(sc, xs, acb->timeout))
spc_timeout(acb);
}
splx(s);
return COMPLETE;
}
/*
* Adjust transfer size in buffer structure
*/
void
spc_minphys(bp)
struct buf *bp;
{
SPC_TRACE(("spc_minphys "));
minphys(bp);
}
/*
* Used when interrupt driven I/O isn't allowed, e.g. during boot.
*/
int
spc_poll(sc, xs, count)
struct spc_softc *sc;
struct scsipi_xfer *xs;
int count;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
SPC_TRACE(("spc_poll "));
while (count) {
/*
* If we had interrupts enabled, would we
* have got an interrupt?
*/
if (bus_space_read_1(iot, ioh, INTS) != 0)
spcintr(sc);
if ((xs->xs_status & XS_STS_DONE) != 0)
return 0;
delay(1000);
count--;
}
return 1;
}
/*
* LOW LEVEL SCSI UTILITIES
*/
integrate void
spc_sched_msgout(sc, m)
struct spc_softc *sc;
u_char m;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
SPC_TRACE(("spc_sched_msgout "));
if (sc->sc_msgpriq == 0)
bus_space_write_1(iot, ioh, SCMD, SCMD_SET_ATN);
sc->sc_msgpriq |= m;
}
/*
* Set synchronous transfer offset and period.
*/
integrate void
spc_setsync(sc, ti)
struct spc_softc *sc;
struct spc_tinfo *ti;
{
#if SPC_USE_SYNCHRONOUS
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
SPC_TRACE(("spc_setsync "));
if (ti->offset != 0)
bus_space_write_1(iot, ioh, TMOD,
((ti->period * sc->sc_freq) / 250 - 2) << 4 | ti->offset);
else
bus_space_write_1(iot, ioh, TMOD, 0);
#endif
}
/*
* Start a selection. This is used by spc_sched() to select an idle target,
* and by spc_done() to immediately reselect a target to get sense information.
*/
void
spc_select(sc, acb)
struct spc_softc *sc;
struct spc_acb *acb;
{
struct scsipi_link *sc_link = acb->xs->sc_link;
int target = sc_link->scsipi_scsi.target;
struct spc_tinfo *ti = &sc->sc_tinfo[target];
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
SPC_TRACE(("spc_select "));
spc_setsync(sc, ti);
#if 0
bus_space_write_1(iot, ioh, SCMD, SCMD_SET_ATN);
#endif
#ifdef x68k /* XXX? */
do {
asm ("nop");
} while (bus_space_read_1(iot, ioh, SSTS) &
(SSTS_ACTIVE|SSTS_TARGET|SSTS_BUSY));
#endif
bus_space_write_1(iot, ioh, PCTL, 0);
bus_space_write_1(iot, ioh, TEMP, (1 << sc->sc_initiator) | (1 << target));
/*
* Setup BSY timeout (selection timeout).
* 250ms according to the SCSI specification.
* T = (X * 256 + 15) * Tclf * 2 (Tclf = 200ns on x68k)
* To setup 256ms timeout,
* 128000ns/200ns = X * 256 + 15
* 640 - 15 = X * 256
* X = 625 / 256
* X = 2 + 113 / 256
* ==> tch = 2, tcm = 113 (correct?)
*/
bus_space_write_1(iot, ioh, TCH, 2);
bus_space_write_1(iot, ioh, TCM, 113);
/* Time to the information transfer phase start. */
bus_space_write_1(iot, ioh, TCL, 3);
bus_space_write_1(iot, ioh, SCMD, SCMD_SELECT);
sc->sc_state = SPC_SELECTING;
}
int
spc_reselect(sc, message)
struct spc_softc *sc;
int message;
{
u_char selid, target, lun;
struct spc_acb *acb;
struct scsipi_link *sc_link;
struct spc_tinfo *ti;
SPC_TRACE(("spc_reselect "));
/*
* The SCSI chip made a snapshot of the data bus while the reselection
* was being negotiated. This enables us to determine which target did
* the reselect.
*/
selid = sc->sc_selid & ~(1 << sc->sc_initiator);
if (selid & (selid - 1)) {
printf("%s: reselect with invalid selid %02x; sending DEVICE RESET\n",
sc->sc_dev.dv_xname, selid);
SPC_BREAK();
goto reset;
}
/*
* Search wait queue for disconnected cmd
* The list should be short, so I haven't bothered with
* any more sophisticated structures than a simple
* singly linked list.
*/
target = ffs(selid) - 1;
lun = message & 0x07;
for (acb = sc->nexus_list.tqh_first; acb != NULL;
acb = acb->chain.tqe_next) {
sc_link = acb->xs->sc_link;
if (sc_link->scsipi_scsi.target == target &&
sc_link->scsipi_scsi.lun == lun)
break;
}
if (acb == NULL) {
printf("%s: reselect from target %d lun %d with no nexus; sending ABORT\n",
sc->sc_dev.dv_xname, target, lun);
SPC_BREAK();
goto abort;
}
/* Make this nexus active again. */
TAILQ_REMOVE(&sc->nexus_list, acb, chain);
sc->sc_state = SPC_CONNECTED;
sc->sc_nexus = acb;
ti = &sc->sc_tinfo[target];
ti->lubusy |= (1 << lun);
spc_setsync(sc, ti);
if (acb->flags & ACB_RESET)
spc_sched_msgout(sc, SEND_DEV_RESET);
else if (acb->flags & ACB_ABORT)
spc_sched_msgout(sc, SEND_ABORT);
/* Do an implicit RESTORE POINTERS. */
sc->sc_dp = acb->data_addr;
sc->sc_dleft = acb->data_length;
sc->sc_cp = (u_char *)&acb->scsipi_cmd;
sc->sc_cleft = acb->scsipi_cmd_length;
return (0);
reset:
spc_sched_msgout(sc, SEND_DEV_RESET);
return (1);
abort:
spc_sched_msgout(sc, SEND_ABORT);
return (1);
}
/*
* Schedule a SCSI operation. This has now been pulled out of the interrupt
* handler so that we may call it from spc_scsi_cmd and spc_done. This may
* save us an unecessary interrupt just to get things going. Should only be
* called when state == SPC_IDLE and at bio pl.
*/
void
spc_sched(sc)
struct spc_softc *sc;
{
struct spc_acb *acb;
struct scsipi_link *sc_link;
struct spc_tinfo *ti;
/* missing the hw, just return and wait for our hw */
if (sc->sc_flags & SPC_INACTIVE)
return;
SPC_TRACE(("spc_sched "));
/*
* Find first acb in ready queue that is for a target/lunit pair that
* is not busy.
*/
for (acb = sc->ready_list.tqh_first; acb != NULL;
acb = acb->chain.tqe_next) {
sc_link = acb->xs->sc_link;
ti = &sc->sc_tinfo[sc_link->scsipi_scsi.target];
if ((ti->lubusy & (1 << sc_link->scsipi_scsi.lun)) == 0) {
SPC_MISC(("selecting %d:%d ",
sc_link->scsipi_scsi.target, sc_link->scsipi_scsi.lun));
TAILQ_REMOVE(&sc->ready_list, acb, chain);
sc->sc_nexus = acb;
spc_select(sc, acb);
return;
} else
SPC_MISC(("%d:%d busy\n",
sc_link->scsipi_scsi.target, sc_link->scsipi_scsi.lun));
}
SPC_MISC(("idle "));
/* Nothing to start; just enable reselections and wait. */
}
void
spc_sense(sc, acb)
struct spc_softc *sc;
struct spc_acb *acb;
{
struct scsipi_xfer *xs = acb->xs;
struct scsipi_link *sc_link = xs->sc_link;
struct spc_tinfo *ti = &sc->sc_tinfo[sc_link->scsipi_scsi.target];
struct scsipi_sense *ss = (void *)&acb->scsipi_cmd;
SPC_MISC(("requesting sense "));
/* Next, setup a request sense command block */
bzero(ss, sizeof(*ss));
ss->opcode = REQUEST_SENSE;
ss->byte2 = sc_link->scsipi_scsi.lun << 5;
ss->length = sizeof(struct scsipi_sense_data);
acb->scsipi_cmd_length = sizeof(*ss);
acb->data_addr = (char *)&xs->sense.scsi_sense;
acb->data_length = sizeof(struct scsipi_sense_data);
acb->flags |= ACB_SENSE;
ti->senses++;
if (acb->flags & ACB_NEXUS)
ti->lubusy &= ~(1 << sc_link->scsipi_scsi.lun);
if (acb == sc->sc_nexus) {
spc_select(sc, acb);
} else {
spc_dequeue(sc, acb);
TAILQ_INSERT_HEAD(&sc->ready_list, acb, chain);
if (sc->sc_state == SPC_IDLE)
spc_sched(sc);
}
}
/*
* POST PROCESSING OF SCSI_CMD (usually current)
*/
void
spc_done(sc, acb)
struct spc_softc *sc;
struct spc_acb *acb;
{
struct scsipi_xfer *xs = acb->xs;
struct scsipi_link *sc_link = xs->sc_link;
struct spc_tinfo *ti = &sc->sc_tinfo[sc_link->scsipi_scsi.target];
SPC_TRACE(("spc_done "));
/*
* Now, if we've come here with no error code, i.e. we've kept the
* initial XS_NOERROR, and the status code signals that we should
* check sense, we'll need to set up a request sense cmd block and
* push the command back into the ready queue *before* any other
* commands for this target/lunit, else we lose the sense info.
* We don't support chk sense conditions for the request sense cmd.
*/
if (xs->error == XS_NOERROR) {
if (acb->flags & ACB_ABORT) {
xs->error = XS_DRIVER_STUFFUP;
} else if (acb->flags & ACB_SENSE) {
xs->error = XS_SENSE;
} else {
switch (acb->target_stat) {
case SCSI_CHECK:
/* First, save the return values */
xs->resid = acb->data_length;
xs->status = acb->target_stat;
spc_sense(sc, acb);
return;
case SCSI_BUSY:
xs->error = XS_BUSY;
break;
case SCSI_OK:
xs->resid = acb->data_length;
break;
default:
xs->error = XS_DRIVER_STUFFUP;
#if SPC_DEBUG
printf("%s: spc_done: bad stat 0x%x\n",
sc->sc_dev.dv_xname, acb->target_stat);
#endif
break;
}
}
}
xs->xs_status |= XS_STS_DONE;
#if SPC_DEBUG
if ((spc_debug & SPC_SHOWMISC) != 0) {
if (xs->resid != 0)
printf("resid=%d ", xs->resid);
if (xs->error == XS_SENSE)
printf("sense=0x%02x\n", xs->sense.scsi_sense.error_code);
else
printf("error=%d\n", xs->error);
}
#endif
/*
* Remove the ACB from whatever queue it happens to be on.
*/
if (acb->flags & ACB_NEXUS)
ti->lubusy &= ~(1 << sc_link->scsipi_scsi.lun);
if (acb == sc->sc_nexus) {
sc->sc_nexus = NULL;
sc->sc_state = SPC_IDLE;
spc_sched(sc);
} else
spc_dequeue(sc, acb);
spc_free_acb(sc, acb, xs->xs_control);
ti->cmds++;
scsipi_done(xs);
}
void
spc_dequeue(sc, acb)
struct spc_softc *sc;
struct spc_acb *acb;
{
SPC_TRACE(("spc_dequeue "));
if (acb->flags & ACB_NEXUS) {
TAILQ_REMOVE(&sc->nexus_list, acb, chain);
} else {
TAILQ_REMOVE(&sc->ready_list, acb, chain);
}
}
/*
* INTERRUPT/PROTOCOL ENGINE
*/
#define IS1BYTEMSG(m) (((m) != 0x01 && (m) < 0x20) || (m) >= 0x80)
#define IS2BYTEMSG(m) (((m) & 0xf0) == 0x20)
#define ISEXTMSG(m) ((m) == 0x01)
/*
* Precondition:
* The SCSI bus is already in the MSGI phase and there is a message byte
* on the bus, along with an asserted REQ signal.
*/
void
spc_msgin(sc)
struct spc_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int n;
SPC_TRACE(("spc_msgin "));
if (sc->sc_prevphase == PH_MSGIN) {
/* This is a continuation of the previous message. */
n = sc->sc_imp - sc->sc_imess;
goto nextbyte;
}
/* This is a new MESSAGE IN phase. Clean up our state. */
sc->sc_flags &= ~SPC_DROP_MSGIN;
nextmsg:
n = 0;
sc->sc_imp = &sc->sc_imess[n];
nextbyte:
/*
* Read a whole message, but don't ack the last byte. If we reject the
* message, we have to assert ATN during the message transfer phase
* itself.
*/
for (;;) {
#if 0
for (;;) {
if ((bus_space_read_1(iot, ioh, PSNS) & PSNS_REQ) != 0)
break;
/* Wait for REQINIT. XXX Need timeout. */
}
#endif
if (bus_space_read_1(iot, ioh, INTS) != 0) {
/*
* Target left MESSAGE IN, probably because it
* a) noticed our ATN signal, or
* b) ran out of messages.
*/
goto out;
}
/* If parity error, just dump everything on the floor. */
if ((bus_space_read_1(iot, ioh, SERR) &
(SERR_SCSI_PAR|SERR_SPC_PAR)) != 0) {
sc->sc_flags |= SPC_DROP_MSGIN;
spc_sched_msgout(sc, SEND_PARITY_ERROR);
}
/* send TRANSFER command. */
bus_space_write_1(iot, ioh, TCH, 0);
bus_space_write_1(iot, ioh, TCM, 0);
bus_space_write_1(iot, ioh, TCL, 1);
bus_space_write_1(iot, ioh, PCTL,
sc->sc_phase | PCTL_BFINT_ENAB);
#ifdef x68k
bus_space_write_1(iot, ioh, SCMD, SCMD_XFR); /* | SCMD_PROG_XFR */
#else
bus_space_write_1(iot, ioh, SCMD, SCMD_XFR | SCMD_PROG_XFR); /* XXX */
#endif
for (;;) {
/*if ((bus_space_read_1(iot, ioh, SSTS) & SSTS_BUSY) != 0
&& (bus_space_read_1(iot, ioh, SSTS) & SSTS_DREG_EMPTY) != 0)*/
if ((bus_space_read_1(iot, ioh, SSTS) & SSTS_DREG_EMPTY) == 0)
break;
if (bus_space_read_1(iot, ioh, INTS) != 0)
goto out;
}
/* Gather incoming message bytes if needed. */
if ((sc->sc_flags & SPC_DROP_MSGIN) == 0) {
if (n >= SPC_MAX_MSG_LEN) {
(void) bus_space_read_1(iot, ioh, DREG);
sc->sc_flags |= SPC_DROP_MSGIN;
spc_sched_msgout(sc, SEND_REJECT);
} else {
*sc->sc_imp++ = bus_space_read_1(iot, ioh, DREG);
n++;
/*
* This testing is suboptimal, but most
* messages will be of the one byte variety, so
* it should not affect performance
* significantly.
*/
if (n == 1 && IS1BYTEMSG(sc->sc_imess[0]))
break;
if (n == 2 && IS2BYTEMSG(sc->sc_imess[0]))
break;
if (n >= 3 && ISEXTMSG(sc->sc_imess[0]) &&
n == sc->sc_imess[1] + 2)
break;
}
} else
(void) bus_space_read_1(iot, ioh, DREG);
/*
* If we reach this spot we're either:
* a) in the middle of a multi-byte message, or
* b) dropping bytes.
*/
#if 0
/* Ack the last byte read. */
/*(void) bus_space_read_1(iot, ioh, DREG);*/
while ((bus_space_read_1(iot, ioh, PSNS) & ACKI) != 0)
;
#endif
}
SPC_MISC(("n=%d imess=0x%02x ", n, sc->sc_imess[0]));
/* We now have a complete message. Parse it. */
switch (sc->sc_state) {
struct spc_acb *acb;
struct scsipi_link *sc_link;
struct spc_tinfo *ti;
case SPC_CONNECTED:
SPC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
ti = &sc->sc_tinfo[acb->xs->sc_link->scsipi_scsi.target];
switch (sc->sc_imess[0]) {
case MSG_CMDCOMPLETE:
if (sc->sc_dleft < 0) {
sc_link = acb->xs->sc_link;
printf("%s: %d extra bytes from %d:%d\n",
sc->sc_dev.dv_xname, -sc->sc_dleft,
sc_link->scsipi_scsi.target, sc_link->scsipi_scsi.lun);
acb->data_length = 0;
}
acb->xs->resid = acb->data_length = sc->sc_dleft;
sc->sc_state = SPC_CMDCOMPLETE;
break;
case MSG_PARITY_ERROR:
/* Resend the last message. */
spc_sched_msgout(sc, sc->sc_lastmsg);
break;
case MSG_MESSAGE_REJECT:
SPC_MISC(("message rejected %02x ", sc->sc_lastmsg));
switch (sc->sc_lastmsg) {
#if SPC_USE_SYNCHRONOUS + SPC_USE_WIDE
case SEND_IDENTIFY:
ti->flags &= ~(DO_SYNC | DO_WIDE);
ti->period = ti->offset = 0;
spc_setsync(sc, ti);
ti->width = 0;
break;
#endif
#if SPC_USE_SYNCHRONOUS
case SEND_SDTR:
ti->flags &= ~DO_SYNC;
ti->period = ti->offset = 0;
spc_setsync(sc, ti);
break;
#endif
#if SPC_USE_WIDE
case SEND_WDTR:
ti->flags &= ~DO_WIDE;
ti->width = 0;
break;
#endif
case SEND_INIT_DET_ERR:
spc_sched_msgout(sc, SEND_ABORT);
break;
}
break;
case MSG_NOOP:
break;
case MSG_DISCONNECT:
ti->dconns++;
sc->sc_state = SPC_DISCONNECT;
break;
case MSG_SAVEDATAPOINTER:
acb->data_addr = sc->sc_dp;
acb->data_length = sc->sc_dleft;
break;
case MSG_RESTOREPOINTERS:
sc->sc_dp = acb->data_addr;
sc->sc_dleft = acb->data_length;
sc->sc_cp = (u_char *)&acb->scsipi_cmd;
sc->sc_cleft = acb->scsipi_cmd_length;
break;
case MSG_EXTENDED:
switch (sc->sc_imess[2]) {
#if SPC_USE_SYNCHRONOUS
case MSG_EXT_SDTR:
if (sc->sc_imess[1] != 3)
goto reject;
ti->period = sc->sc_imess[3];
ti->offset = sc->sc_imess[4];
ti->flags &= ~DO_SYNC;
if (ti->offset == 0) {
} else if (ti->period < sc->sc_minsync ||
ti->period > sc->sc_maxsync ||
ti->offset > 8) {
ti->period = ti->offset = 0;
spc_sched_msgout(sc, SEND_SDTR);
} else {
scsi_print_addr(acb->xs->sc_link);
printf("sync, offset %d, period %dnsec\n",
ti->offset, ti->period * 4);
}
spc_setsync(sc, ti);
break;
#endif
#if SPC_USE_WIDE
case MSG_EXT_WDTR:
if (sc->sc_imess[1] != 2)
goto reject;
ti->width = sc->sc_imess[3];
ti->flags &= ~DO_WIDE;
if (ti->width == 0) {
} else if (ti->width > SPC_MAX_WIDTH) {
ti->width = 0;
spc_sched_msgout(sc, SEND_WDTR);
} else {
scsi_print_addr(acb->xs->sc_link);
printf("wide, width %d\n",
1 << (3 + ti->width));
}
break;
#endif
default:
printf("%s: unrecognized MESSAGE EXTENDED; sending REJECT\n",
sc->sc_dev.dv_xname);
SPC_BREAK();
goto reject;
}
break;
default:
printf("%s: unrecognized MESSAGE; sending REJECT\n",
sc->sc_dev.dv_xname);
SPC_BREAK();
reject:
spc_sched_msgout(sc, SEND_REJECT);
break;
}
break;
case SPC_RESELECTED:
if (!MSG_ISIDENTIFY(sc->sc_imess[0])) {
printf("%s: reselect without IDENTIFY; sending DEVICE RESET\n",
sc->sc_dev.dv_xname);
SPC_BREAK();
goto reset;
}
(void) spc_reselect(sc, sc->sc_imess[0]);
break;
default:
printf("%s: unexpected MESSAGE IN; sending DEVICE RESET\n",
sc->sc_dev.dv_xname);
SPC_BREAK();
reset:
spc_sched_msgout(sc, SEND_DEV_RESET);
break;
#ifdef notdef
abort:
spc_sched_msgout(sc, SEND_ABORT);
break;
#endif
}
/* Ack the last message byte. */
#if 0 /* XXX? */
(void) bus_space_read_1(iot, ioh, DREG);
while ((bus_space_read_1(iot, ioh, PSNS) & ACKI) != 0)
;
#endif
/* Go get the next message, if any. */
goto nextmsg;
out:
bus_space_write_1(iot, ioh, SCMD, SCMD_RST_ACK);
SPC_MISC(("n=%d imess=0x%02x ", n, sc->sc_imess[0]));
}
/*
* Send the highest priority, scheduled message.
*/
void
spc_msgout(sc)
struct spc_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
#if SPC_USE_SYNCHRONOUS
struct spc_tinfo *ti;
#endif
int n;
SPC_TRACE(("spc_msgout "));
if (sc->sc_prevphase == PH_MSGOUT) {
if (sc->sc_omp == sc->sc_omess) {
/*
* This is a retransmission.
*
* We get here if the target stayed in MESSAGE OUT
* phase. Section 5.1.9.2 of the SCSI 2 spec indicates
* that all of the previously transmitted messages must
* be sent again, in the same order. Therefore, we
* requeue all the previously transmitted messages, and
* start again from the top. Our simple priority
* scheme keeps the messages in the right order.
*/
SPC_MISC(("retransmitting "));
sc->sc_msgpriq |= sc->sc_msgoutq;
/*
* Set ATN. If we're just sending a trivial 1-byte
* message, we'll clear ATN later on anyway.
*/
bus_space_write_1(iot, ioh, SCMD, SCMD_SET_ATN); /* XXX? */
} else {
/* This is a continuation of the previous message. */
n = sc->sc_omp - sc->sc_omess;
goto nextbyte;
}
}
/* No messages transmitted so far. */
sc->sc_msgoutq = 0;
sc->sc_lastmsg = 0;
nextmsg:
/* Pick up highest priority message. */
sc->sc_currmsg = sc->sc_msgpriq & -sc->sc_msgpriq;
sc->sc_msgpriq &= ~sc->sc_currmsg;
sc->sc_msgoutq |= sc->sc_currmsg;
/* Build the outgoing message data. */
switch (sc->sc_currmsg) {
case SEND_IDENTIFY:
SPC_ASSERT(sc->sc_nexus != NULL);
sc->sc_omess[0] =
MSG_IDENTIFY(sc->sc_nexus->xs->sc_link->scsipi_scsi.lun, 1);
n = 1;
break;
#if SPC_USE_SYNCHRONOUS
case SEND_SDTR:
SPC_ASSERT(sc->sc_nexus != NULL);
ti = &sc->sc_tinfo[sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
sc->sc_omess[4] = MSG_EXTENDED;
sc->sc_omess[3] = 3;
sc->sc_omess[2] = MSG_EXT_SDTR;
sc->sc_omess[1] = ti->period >> 2;
sc->sc_omess[0] = ti->offset;
n = 5;
break;
#endif
#if SPC_USE_WIDE
case SEND_WDTR:
SPC_ASSERT(sc->sc_nexus != NULL);
ti = &sc->sc_tinfo[sc->sc_nexus->xs->sc_link->scsipi_scsi.target];
sc->sc_omess[3] = MSG_EXTENDED;
sc->sc_omess[2] = 2;
sc->sc_omess[1] = MSG_EXT_WDTR;
sc->sc_omess[0] = ti->width;
n = 4;
break;
#endif
case SEND_DEV_RESET:
sc->sc_flags |= SPC_ABORTING;
sc->sc_omess[0] = MSG_BUS_DEV_RESET;
n = 1;
break;
case SEND_REJECT:
sc->sc_omess[0] = MSG_MESSAGE_REJECT;
n = 1;
break;
case SEND_PARITY_ERROR:
sc->sc_omess[0] = MSG_PARITY_ERROR;
n = 1;
break;
case SEND_INIT_DET_ERR:
sc->sc_omess[0] = MSG_INITIATOR_DET_ERR;
n = 1;
break;
case SEND_ABORT:
sc->sc_flags |= SPC_ABORTING;
sc->sc_omess[0] = MSG_ABORT;
n = 1;
break;
default:
printf("%s: unexpected MESSAGE OUT; sending NOOP\n",
sc->sc_dev.dv_xname);
SPC_BREAK();
sc->sc_omess[0] = MSG_NOOP;
n = 1;
break;
}
sc->sc_omp = &sc->sc_omess[n];
nextbyte:
/* Send message bytes. */
/* send TRANSFER command. */
bus_space_write_1(iot, ioh, TCH, n >> 16);
bus_space_write_1(iot, ioh, TCM, n >> 8);
bus_space_write_1(iot, ioh, TCL, n);
bus_space_write_1(iot, ioh, PCTL, sc->sc_phase | PCTL_BFINT_ENAB);
#ifdef x68k
bus_space_write_1(iot, ioh, SCMD, SCMD_XFR); /* XXX */
#else
bus_space_write_1(iot, ioh, SCMD, SCMD_XFR | SCMD_PROG_XFR | SCMD_ICPT_XFR);
#endif
for (;;) {
if ((bus_space_read_1(iot, ioh, SSTS) & SSTS_BUSY) != 0)
break;
if (bus_space_read_1(iot, ioh, INTS) != 0)
goto out;
}
for (;;) {
#if 0
for (;;) {
if ((bus_space_read_1(iot, ioh, PSNS) & PSNS_REQ) != 0)
break;
/* Wait for REQINIT. XXX Need timeout. */
}
#endif
if (bus_space_read_1(iot, ioh, INTS) != 0) {
/*
* Target left MESSAGE OUT, possibly to reject
* our message.
*
* If this is the last message being sent, then we
* deassert ATN, since either the target is going to
* ignore this message, or it's going to ask for a
* retransmission via MESSAGE PARITY ERROR (in which
* case we reassert ATN anyway).
*/
#if 0
if (sc->sc_msgpriq == 0)
bus_space_write_1(iot, ioh, SCMD, SCMD_RST_ATN);
#endif
goto out;
}
#if 0
/* Clear ATN before last byte if this is the last message. */
if (n == 1 && sc->sc_msgpriq == 0)
bus_space_write_1(iot, ioh, SCMD, SCMD_RST_ATN);
#endif
while ((bus_space_read_1(iot, ioh, SSTS) & SSTS_DREG_FULL) != 0)
;
/* Send message byte. */
bus_space_write_1(iot, ioh, DREG, *--sc->sc_omp);
--n;
/* Keep track of the last message we've sent any bytes of. */
sc->sc_lastmsg = sc->sc_currmsg;
#if 0
/* Wait for ACK to be negated. XXX Need timeout. */
while ((bus_space_read_1(iot, ioh, PSNS) & ACKI) != 0)
;
#endif
if (n == 0)
break;
}
/* We get here only if the entire message has been transmitted. */
if (sc->sc_msgpriq != 0) {
/* There are more outgoing messages. */
goto nextmsg;
}
/*
* The last message has been transmitted. We need to remember the last
* message transmitted (in case the target switches to MESSAGE IN phase
* and sends a MESSAGE REJECT), and the list of messages transmitted
* this time around (in case the target stays in MESSAGE OUT phase to
* request a retransmit).
*/
out:
/* Disable REQ/ACK protocol. */
}
/*
* spc_dataout_pio: perform a data transfer using the FIFO datapath in the spc
* Precondition: The SCSI bus should be in the DOUT phase, with REQ asserted
* and ACK deasserted (i.e. waiting for a data byte)
*
* This new revision has been optimized (I tried) to make the common case fast,
* and the rarer cases (as a result) somewhat more comlex
*/
int
spc_dataout_pio(sc, p, n)
struct spc_softc *sc;
u_char *p;
int n;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_char intstat = 0;
int out = 0;
#define DOUTAMOUNT 8 /* Full FIFO */
SPC_TRACE(("spc_dataout_pio "));
/* send TRANSFER command. */
bus_space_write_1(iot, ioh, TCH, n >> 16);
bus_space_write_1(iot, ioh, TCM, n >> 8);
bus_space_write_1(iot, ioh, TCL, n);
bus_space_write_1(iot, ioh, PCTL, sc->sc_phase | PCTL_BFINT_ENAB);
#ifdef x68k
bus_space_write_1(iot, ioh, SCMD, SCMD_XFR); /* XXX */
#else
bus_space_write_1(iot, ioh, SCMD, SCMD_XFR | SCMD_PROG_XFR | SCMD_ICPT_XFR); /* XXX */
#endif
for (;;) {
if ((bus_space_read_1(iot, ioh, SSTS) & SSTS_BUSY) != 0)
break;
if (bus_space_read_1(iot, ioh, INTS) != 0)
break;
}
/*
* I have tried to make the main loop as tight as possible. This
* means that some of the code following the loop is a bit more
* complex than otherwise.
*/
while (n > 0) {
int xfer;
for (;;) {
intstat = bus_space_read_1(iot, ioh, INTS);
/* Wait till buffer is empty. */
if ((bus_space_read_1(iot, ioh, SSTS) & SSTS_DREG_EMPTY) != 0)
break;
/* Break on interrupt. */
if (intstat != 0)
goto phasechange;
}
xfer = min(DOUTAMOUNT, n);
SPC_MISC(("%d> ", xfer));
n -= xfer;
out += xfer;
while (xfer-- > 0) {
bus_space_write_1(iot, ioh, DREG, *p++);
}
}
if (out == 0) {
for (;;) {
if (bus_space_read_1(iot, ioh, INTS) != 0)
break;
}
SPC_MISC(("extra data "));
} else {
/* See the bytes off chip */
for (;;) {
/* Wait till buffer is empty. */
if ((bus_space_read_1(iot, ioh, SSTS) & SSTS_DREG_EMPTY) != 0)
break;
intstat = bus_space_read_1(iot, ioh, INTS);
/* Break on interrupt. */
if (intstat != 0)
goto phasechange;
}
}
phasechange:
/* Stop the FIFO data path. */
if (intstat != 0) {
/* Some sort of phase change. */
int amount;
amount = ((bus_space_read_1(iot, ioh, TCH) << 16) |
(bus_space_read_1(iot, ioh, TCM) << 8) |
bus_space_read_1(iot, ioh, TCL));
if (amount > 0) {
out -= amount;
SPC_MISC(("+%d ", amount));
}
}
/* Turn on ENREQINIT again. */
return out;
}
/*
* spc_datain_pio: perform data transfers using the FIFO datapath in the spc
* Precondition: The SCSI bus should be in the DIN phase, with REQ asserted
* and ACK deasserted (i.e. at least one byte is ready).
*
* For now, uses a pretty dumb algorithm, hangs around until all data has been
* transferred. This, is OK for fast targets, but not so smart for slow
* targets which don't disconnect or for huge transfers.
*/
int
spc_datain_pio(sc, p, n)
struct spc_softc *sc;
u_char *p;
int n;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_short intstat;
int in = 0;
#define DINAMOUNT 8 /* Full FIFO */
SPC_TRACE(("spc_datain_pio "));
/* send TRANSFER command. */
bus_space_write_1(iot, ioh, TCH, n >> 16);
bus_space_write_1(iot, ioh, TCM, n >> 8);
bus_space_write_1(iot, ioh, TCL, n);
bus_space_write_1(iot, ioh, PCTL, sc->sc_phase | PCTL_BFINT_ENAB);
#ifdef x68k
bus_space_write_1(iot, ioh, SCMD, SCMD_XFR); /* XXX */
#else
bus_space_write_1(iot, ioh, SCMD, SCMD_XFR | SCMD_PROG_XFR); /* XXX */
#endif
for (;;) {
if ((bus_space_read_1(iot, ioh, SSTS) & SSTS_BUSY) != 0)
break;
if (bus_space_read_1(iot, ioh, INTS) != 0)
goto phasechange;
}
/*
* We leave this loop if one or more of the following is true:
* a) phase != PH_DATAIN && FIFOs are empty
* b) reset has occurred or busfree is detected.
*/
while (n > 0) {
int xfer;
#define INTSMASK 0xff
/* Wait for fifo half full or phase mismatch */
for (;;) {
intstat = ((bus_space_read_1(iot, ioh, SSTS) << 8) |
bus_space_read_1(iot, ioh, INTS));
if ((intstat & (INTSMASK | (SSTS_DREG_FULL << 8))) !=
0)
break;
if ((intstat & (SSTS_DREG_EMPTY << 8)) == 0)
break;
}
#if 1
if ((intstat & INTSMASK) != 0)
goto phasechange;
#else
if ((intstat & INTSMASK) != 0 &&
(intstat & (SSTS_DREG_EMPTY << 8)))
goto phasechange;
#endif
if ((intstat & (SSTS_DREG_FULL << 8)) != 0)
xfer = min(DINAMOUNT, n);
else
xfer = min(1, n);
SPC_MISC((">%d ", xfer));
n -= xfer;
in += xfer;
while (xfer-- > 0) {
*p++ = bus_space_read_1(iot, ioh, DREG);
}
if ((intstat & INTSMASK) != 0)
goto phasechange;
}
/*
* Some SCSI-devices are rude enough to transfer more data than what
* was requested, e.g. 2048 bytes from a CD-ROM instead of the
* requested 512. Test for progress, i.e. real transfers. If no real
* transfers have been performed (n is probably already zero) and the
* FIFO is not empty, waste some bytes....
*/
if (in == 0) {
for (;;) {
if (bus_space_read_1(iot, ioh, INTS) != 0)
break;
}
SPC_MISC(("extra data "));
}
phasechange:
/* Stop the FIFO data path. */
/* Turn on ENREQINIT again. */
return in;
}
/*
* Catch an interrupt from the adaptor
*/
/*
* This is the workhorse routine of the driver.
* Deficiencies (for now):
* 1) always uses programmed I/O
*/
int
spcintr(arg)
void *arg;
{
struct spc_softc *sc = arg;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_char ints;
struct spc_acb *acb;
struct scsipi_link *sc_link;
struct spc_tinfo *ti;
int n;
/*
* Disable interrupt.
*/
bus_space_write_1(iot, ioh, SCTL, bus_space_read_1(iot, ioh, SCTL) & ~SCTL_INTR_ENAB);
SPC_TRACE(("spcintr "));
loop:
/*
* Loop until transfer completion.
*/
/*
* First check for abnormal conditions, such as reset.
*/
#ifdef x68k /* XXX? */
while ((ints = bus_space_read_1(iot, ioh, INTS)) == 0)
delay(1);
SPC_MISC(("ints = 0x%x ", ints));
#else
ints = bus_space_read_1(iot, ioh, INTS);
SPC_MISC(("ints = 0x%x ", ints));
#endif
if ((ints & INTS_RST) != 0) {
printf("%s: SCSI bus reset\n", sc->sc_dev.dv_xname);
goto reset;
}
/*
* Check for less serious errors.
*/
if ((bus_space_read_1(iot, ioh, SERR) & (SERR_SCSI_PAR|SERR_SPC_PAR)) != 0) {
printf("%s: SCSI bus parity error\n", sc->sc_dev.dv_xname);
if (sc->sc_prevphase == PH_MSGIN) {
sc->sc_flags |= SPC_DROP_MSGIN;
spc_sched_msgout(sc, SEND_PARITY_ERROR);
} else
spc_sched_msgout(sc, SEND_INIT_DET_ERR);
}
/*
* If we're not already busy doing something test for the following
* conditions:
* 1) We have been reselected by something
* 2) We have selected something successfully
* 3) Our selection process has timed out
* 4) This is really a bus free interrupt just to get a new command
* going?
* 5) Spurious interrupt?
*/
switch (sc->sc_state) {
case SPC_IDLE:
case SPC_SELECTING:
SPC_MISC(("ints:0x%02x ", ints));
if ((ints & INTS_SEL) != 0) {
/*
* We don't currently support target mode.
*/
printf("%s: target mode selected; going to BUS FREE\n",
sc->sc_dev.dv_xname);
goto sched;
} else if ((ints & INTS_RESEL) != 0) {
SPC_MISC(("reselected "));
/*
* If we're trying to select a target ourselves,
* push our command back into the ready list.
*/
if (sc->sc_state == SPC_SELECTING) {
SPC_MISC(("backoff selector "));
SPC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
sc->sc_nexus = NULL;
TAILQ_INSERT_HEAD(&sc->ready_list, acb, chain);
}
/* Save reselection ID. */
sc->sc_selid = bus_space_read_1(iot, ioh, TEMP);
sc->sc_state = SPC_RESELECTED;
} else if ((ints & INTS_CMD_DONE) != 0) {
SPC_MISC(("selected "));
/*
* We have selected a target. Things to do:
* a) Determine what message(s) to send.
* b) Verify that we're still selecting the target.
* c) Mark device as busy.
*/
if (sc->sc_state != SPC_SELECTING) {
printf("%s: selection out while idle; resetting\n",
sc->sc_dev.dv_xname);
SPC_BREAK();
goto reset;
}
SPC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
sc_link = acb->xs->sc_link;
ti = &sc->sc_tinfo[sc_link->scsipi_scsi.target];
sc->sc_msgpriq = SEND_IDENTIFY;
if (acb->flags & ACB_RESET)
sc->sc_msgpriq |= SEND_DEV_RESET;
else if (acb->flags & ACB_ABORT)
sc->sc_msgpriq |= SEND_ABORT;
else {
#if SPC_USE_SYNCHRONOUS
if ((ti->flags & DO_SYNC) != 0)
sc->sc_msgpriq |= SEND_SDTR;
#endif
#if SPC_USE_WIDE
if ((ti->flags & DO_WIDE) != 0)
sc->sc_msgpriq |= SEND_WDTR;
#endif
}
acb->flags |= ACB_NEXUS;
ti->lubusy |= (1 << sc_link->scsipi_scsi.lun);
/* Do an implicit RESTORE POINTERS. */
sc->sc_dp = acb->data_addr;
sc->sc_dleft = acb->data_length;
sc->sc_cp = (u_char *)&acb->scsipi_cmd;
sc->sc_cleft = acb->scsipi_cmd_length;
/* On our first connection, schedule a timeout. */
if ((acb->xs->xs_control & XS_CTL_POLL) == 0)
callout_reset(&acb->xs->xs_callout,
(acb->timeout * hz) / 1000,
spc_timeout, acb);
sc->sc_state = SPC_CONNECTED;
} else if ((ints & INTS_TIMEOUT) != 0) {
SPC_MISC(("selection timeout "));
if (sc->sc_state != SPC_SELECTING) {
printf("%s: selection timeout while idle; resetting\n",
sc->sc_dev.dv_xname);
SPC_BREAK();
goto reset;
}
SPC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
delay(250);
acb->xs->error = XS_SELTIMEOUT;
goto finish;
} else {
if (sc->sc_state != SPC_IDLE) {
printf("%s: BUS FREE while not idle; state=%d\n",
sc->sc_dev.dv_xname, sc->sc_state);
SPC_BREAK();
goto out;
}
goto sched;
}
/*
* Turn off selection stuff, and prepare to catch bus free
* interrupts, parity errors, and phase changes.
*/
sc->sc_flags = 0;
sc->sc_prevphase = PH_INVALID;
goto dophase;
}
if ((ints & INTS_DISCON) != 0) {
/* We've gone to BUS FREE phase. */
bus_space_write_1(iot, ioh, PCTL,
bus_space_read_1(iot, ioh, PCTL) & ~PCTL_BFINT_ENAB);
/* disable disconnect interrupt */
bus_space_write_1(iot, ioh, INTS, ints);
/* XXX reset interrput */
switch (sc->sc_state) {
case SPC_RESELECTED:
goto sched;
case SPC_CONNECTED:
SPC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
#if SPC_USE_SYNCHRONOUS + SPC_USE_WIDE
if (sc->sc_prevphase == PH_MSGOUT) {
/*
* If the target went to BUS FREE phase during
* or immediately after sending a SDTR or WDTR
* message, disable negotiation.
*/
sc_link = acb->xs->sc_link;
ti = &sc->sc_tinfo[sc_link->scsipi_scsi.target];
switch (sc->sc_lastmsg) {
#if SPC_USE_SYNCHRONOUS
case SEND_SDTR:
ti->flags &= ~DO_SYNC;
ti->period = ti->offset = 0;
break;
#endif
#if SPC_USE_WIDE
case SEND_WDTR:
ti->flags &= ~DO_WIDE;
ti->width = 0;
break;
#endif
}
}
#endif
if ((sc->sc_flags & SPC_ABORTING) == 0) {
/*
* Section 5.1.1 of the SCSI 2 spec suggests
* issuing a REQUEST SENSE following an
* unexpected disconnect. Some devices go into
* a contingent allegiance condition when
* disconnecting, and this is necessary to
* clean up their state.
*/
printf("%s: unexpected disconnect; sending REQUEST SENSE\n",
sc->sc_dev.dv_xname);
SPC_BREAK();
spc_sense(sc, acb);
goto out;
}
acb->xs->error = XS_DRIVER_STUFFUP;
goto finish;
case SPC_DISCONNECT:
SPC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
TAILQ_INSERT_HEAD(&sc->nexus_list, acb, chain);
sc->sc_nexus = NULL;
goto sched;
case SPC_CMDCOMPLETE:
SPC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
goto finish;
}
}
else if ((ints & INTS_CMD_DONE) != 0 &&
sc->sc_prevphase == PH_MSGIN && sc->sc_state != SPC_CONNECTED)
goto out;
dophase:
#if 0
if ((bus_space_read_1(iot, ioh, PSNS) & PSNS_REQ) == 0) {
/* Wait for REQINIT. */
goto out;
}
#else
bus_space_write_1(iot, ioh, INTS, ints);
ints = 0;
while ((bus_space_read_1(iot, ioh, PSNS) & PSNS_REQ) == 0)
delay(1); /* need timeout XXX */
#endif
/*
* State transition.
*/
sc->sc_phase = bus_space_read_1(iot, ioh, PSNS) & PH_MASK;
/* bus_space_write_1(iot, ioh, PCTL, sc->sc_phase);*/
SPC_MISC(("phase=%d\n", sc->sc_phase));
switch (sc->sc_phase) {
case PH_MSGOUT:
if (sc->sc_state != SPC_CONNECTED &&
sc->sc_state != SPC_RESELECTED)
break;
spc_msgout(sc);
sc->sc_prevphase = PH_MSGOUT;
goto loop;
case PH_MSGIN:
if (sc->sc_state != SPC_CONNECTED &&
sc->sc_state != SPC_RESELECTED)
break;
spc_msgin(sc);
sc->sc_prevphase = PH_MSGIN;
goto loop;
case PH_CMD:
if (sc->sc_state != SPC_CONNECTED)
break;
#if SPC_DEBUG
if ((spc_debug & SPC_SHOWMISC) != 0) {
SPC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
printf("cmd=0x%02x+%d ",
acb->scsipi_cmd.opcode, acb->scsipi_cmd_length-1);
}
#endif
n = spc_dataout_pio(sc, sc->sc_cp, sc->sc_cleft);
sc->sc_cp += n;
sc->sc_cleft -= n;
sc->sc_prevphase = PH_CMD;
goto loop;
case PH_DATAOUT:
if (sc->sc_state != SPC_CONNECTED)
break;
SPC_MISC(("dataout dleft=%d ", sc->sc_dleft));
n = spc_dataout_pio(sc, sc->sc_dp, sc->sc_dleft);
sc->sc_dp += n;
sc->sc_dleft -= n;
sc->sc_prevphase = PH_DATAOUT;
goto loop;
case PH_DATAIN:
if (sc->sc_state != SPC_CONNECTED)
break;
SPC_MISC(("datain "));
n = spc_datain_pio(sc, sc->sc_dp, sc->sc_dleft);
sc->sc_dp += n;
sc->sc_dleft -= n;
sc->sc_prevphase = PH_DATAIN;
goto loop;
case PH_STAT:
if (sc->sc_state != SPC_CONNECTED)
break;
SPC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
/*acb->target_stat = bus_space_read_1(iot, ioh, DREG);*/
spc_datain_pio(sc, &acb->target_stat, 1);
SPC_MISC(("target_stat=0x%02x ", acb->target_stat));
sc->sc_prevphase = PH_STAT;
goto loop;
}
printf("%s: unexpected bus phase; resetting\n", sc->sc_dev.dv_xname);
SPC_BREAK();
reset:
spc_init(sc);
return 1;
finish:
callout_stop(&acb->xs->xs_callout);
bus_space_write_1(iot, ioh, INTS, ints);
ints = 0;
spc_done(sc, acb);
goto out;
sched:
sc->sc_state = SPC_IDLE;
spc_sched(sc);
goto out;
out:
if (ints)
bus_space_write_1(iot, ioh, INTS, ints);
bus_space_write_1(iot, ioh, SCTL,
bus_space_read_1(iot, ioh, SCTL) | SCTL_INTR_ENAB);
return 1;
}
void
spc_abort(sc, acb)
struct spc_softc *sc;
struct spc_acb *acb;
{
/* 2 secs for the abort */
acb->timeout = SPC_ABORT_TIMEOUT;
acb->flags |= ACB_ABORT;
if (acb == sc->sc_nexus) {
/*
* If we're still selecting, the message will be scheduled
* after selection is complete.
*/
if (sc->sc_state == SPC_CONNECTED)
spc_sched_msgout(sc, SEND_ABORT);
} else {
spc_dequeue(sc, acb);
TAILQ_INSERT_HEAD(&sc->ready_list, acb, chain);
if (sc->sc_state == SPC_IDLE)
spc_sched(sc);
}
}
void
spc_timeout(arg)
void *arg;
{
struct spc_acb *acb = arg;
struct scsipi_xfer *xs = acb->xs;
struct scsipi_link *sc_link = xs->sc_link;
struct spc_softc *sc = sc_link->adapter_softc;
int s;
scsi_print_addr(sc_link);
printf("timed out");
s = splbio();
if (acb->flags & ACB_ABORT) {
/* abort timed out */
printf(" AGAIN\n");
/* XXX Must reset! */
} else {
/* abort the operation that has timed out */
printf("\n");
acb->xs->error = XS_TIMEOUT;
spc_abort(sc, acb);
}
splx(s);
}
#ifdef SPC_DEBUG
/*
* The following functions are mostly used for debugging purposes, either
* directly called from the driver or from the kernel debugger.
*/
void
spc_show_scsi_cmd(acb)
struct spc_acb *acb;
{
u_char *b = (u_char *)&acb->scsipi_cmd;
struct scsipi_link *sc_link = acb->xs->sc_link;
int i;
scsi_print_addr(sc_link);
if ((acb->xs->xs_control & XS_CTL_RESET) == 0) {
for (i = 0; i < acb->scsipi_cmd_length; i++) {
if (i)
printf(",");
printf("%x", b[i]);
}
printf("\n");
} else
printf("RESET\n");
}
void
spc_print_acb(acb)
struct spc_acb *acb;
{
printf("acb@%p xs=%p flags=%x", acb, acb->xs, acb->flags);
printf(" dp=%p dleft=%d target_stat=%x\n",
acb->data_addr, acb->data_length, acb->target_stat);
spc_show_scsi_cmd(acb);
}
void
spc_print_active_acb()
{
struct spc_acb *acb;
struct spc_softc *sc = spc_cd.cd_devs[0]; /* XXX */
printf("ready list:\n");
for (acb = sc->ready_list.tqh_first; acb != NULL;
acb = acb->chain.tqe_next)
spc_print_acb(acb);
printf("nexus:\n");
if (sc->sc_nexus != NULL)
spc_print_acb(sc->sc_nexus);
printf("nexus list:\n");
for (acb = sc->nexus_list.tqh_first; acb != NULL;
acb = acb->chain.tqe_next)
spc_print_acb(acb);
}
void
spc_dump89352(sc)
struct spc_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
printf("mb89352: BDID=%x SCTL=%x SCMD=%x TMOD=%x\n",
bus_space_read_1(iot, ioh, BDID),
bus_space_read_1(iot, ioh, SCTL),
bus_space_read_1(iot, ioh, SCMD),
bus_space_read_1(iot, ioh, TMOD));
printf(" INTS=%x PSNS=%x SSTS=%x SERR=%x PCTL=%x\n",
bus_space_read_1(iot, ioh, INTS),
bus_space_read_1(iot, ioh, PSNS),
bus_space_read_1(iot, ioh, SSTS),
bus_space_read_1(iot, ioh, SERR),
bus_space_read_1(iot, ioh, PCTL));
printf(" MBC=%x DREG=%x TEMP=%x TCH=%x TCM=%x\n",
bus_space_read_1(iot, ioh, MBC),
#if 0
bus_space_read_1(iot, ioh, DREG),
#else
0,
#endif
bus_space_read_1(iot, ioh, TEMP),
bus_space_read_1(iot, ioh, TCH),
bus_space_read_1(iot, ioh, TCM));
printf(" TCL=%x EXBF=%x\n",
bus_space_read_1(iot, ioh, TCL),
bus_space_read_1(iot, ioh, EXBF));
}
void
spc_dump_driver(sc)
struct spc_softc *sc;
{
struct spc_tinfo *ti;
int i;
printf("nexus=%p prevphase=%x\n", sc->sc_nexus, sc->sc_prevphase);
printf("state=%x msgin=%x msgpriq=%x msgoutq=%x lastmsg=%x currmsg=%x\n",
sc->sc_state, sc->sc_imess[0],
sc->sc_msgpriq, sc->sc_msgoutq, sc->sc_lastmsg, sc->sc_currmsg);
for (i = 0; i < 7; i++) {
ti = &sc->sc_tinfo[i];
printf("tinfo%d: %d cmds %d disconnects %d timeouts",
i, ti->cmds, ti->dconns, ti->touts);
printf(" %d senses flags=%x\n", ti->senses, ti->flags);
}
}
#endif