NetBSD/sys/arch/evbarm/mini2440/mini2440_machdep.c
nisimura 77b78cdcff Add FriendlyARM Mini2440 support.
- new code for Samsung S3C2440 SoC.
- update for other S3C2xx0.
This port was done by Paul Fleischer.
2012-01-30 03:28:33 +00:00

1142 lines
33 KiB
C

/*-
* Copyright (c) 2012 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Fleischer <paul@xpg.dk>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/* This file is based on arch/evbarm/smdk2xx0/smdk2410_machdep.c */
/*
* Copyright (c) 2002, 2003 Fujitsu Component Limited
* Copyright (c) 2002, 2003, 2005 Genetec Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of The Fujitsu Component Limited nor the name of
* Genetec corporation may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
* CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
* CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 2001,2002 ARM Ltd
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* Copyright (c) 1997,1998 Mark Brinicombe.
* Copyright (c) 1997,1998 Causality Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Machine dependant functions for kernel setup for integrator board
*
* Created : 24/11/97
*/
/*
* Machine dependant functions for kernel setup for FriendlyARM MINI2440
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: mini2440_machdep.c,v 1.1 2012/01/30 03:28:34 nisimura Exp $");
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_pmap_debug.h"
#include "opt_md.h"
#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <sys/ksyms.h>
#include <sys/mount.h>
#include <net/if.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <uvm/uvm_extern.h>
#include <dev/cons.h>
#include <dev/md.h>
#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#ifdef KGDB
#include <sys/kgdb.h>
#endif
#include <sys/exec_elf.h>
#include <sys/bus.h>
#include <machine/cpu.h>
#include <machine/frame.h>
#include <machine/intr.h>
#include <arm/undefined.h>
#include <machine/autoconf.h>
#include <arm/arm32/machdep.h>
#include <arm/s3c2xx0/s3c2440reg.h>
#include <arm/s3c2xx0/s3c2440var.h>
#include <arch/evbarm/mini2440/mini2440_bootinfo.h>
#include "ksyms.h"
#ifndef SDRAM_START
#define SDRAM_START S3C2440_SDRAM_START
#endif
#ifndef SDRAM_SIZE
#define SDRAM_SIZE (64*1024*1024) /* 64 Mb */
#endif
/*
* Address to map I/O registers in early initialize stage.
*/
#define MINI2440_IO_VBASE 0xfd000000
/* Kernel text starts 2MB in from the bottom of the kernel address space. */
#define KERNEL_OFFSET 0x00200000
#define KERNEL_TEXT_BASE (KERNEL_BASE + KERNEL_OFFSET)
#define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
/*
* The range 0xc1000000 - 0xccffffff is available for kernel VM space
* Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
*/
#define KERNEL_VM_SIZE 0x0C000000
/*
* Address to call from cpu_reset() to reset the machine.
* This is machine architecture dependant as it varies depending
* on where the ROM appears when you turn the MMU off.
*/
u_int cpu_reset_address = (u_int)0;
/* Define various stack sizes in pages */
#define IRQ_STACK_SIZE 1
#define ABT_STACK_SIZE 1
#define UND_STACK_SIZE 1
/* Declared extern elsewhere in the kernel */
BootConfig bootconfig; /* Boot config storage */
char *boot_args = NULL;
//char *boot_file = NULL;
char bootinfo[BOOTINFO_MAXSIZE];
struct btinfo_rootdevice *bi_rdev;
struct btinfo_net *bi_net;
struct btinfo_bootpath *bi_path;
vm_offset_t physical_start;
vm_offset_t physical_freestart;
vm_offset_t physical_freeend;
vm_offset_t physical_freeend_low;
vm_offset_t physical_end;
u_int free_pages;
vm_offset_t pagetables_start;
int physmem = 0;
/*int debug_flags;*/
#ifndef PMAP_STATIC_L1S
int max_processes = 64; /* Default number */
#endif /* !PMAP_STATIC_L1S */
/* Physical and virtual addresses for some global pages */
pv_addr_t irqstack;
pv_addr_t undstack;
pv_addr_t abtstack;
pv_addr_t kernelstack;
vm_offset_t msgbufphys;
extern u_int data_abort_handler_address;
extern u_int prefetch_abort_handler_address;
extern u_int undefined_handler_address;
#ifdef PMAP_DEBUG
extern int pmap_debug_level;
#endif
#define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
#define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
#define KERNEL_PT_KERNEL_NUM 2 /* L2 tables for mapping kernel VM */
#define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
#define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
#define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
struct user *proc0paddr;
/* Prototypes */
void consinit(void);
void kgdb_port_init(void);
static void mini2440_ksyms(struct btinfo_symtab *bi_symtab);
static void *lookup_bootinfo(int type);
static void mini2440_device_register(device_t dev, void *aux);
#include "com.h"
#if NCOM > 0
#include <dev/ic/comreg.h>
#include <dev/ic/comvar.h>
#endif
#include "sscom.h"
#if NSSCOM > 0
#include "opt_sscom.h"
#include <arm/s3c2xx0/sscom_var.h>
#endif
/*
* Define the default console speed for the board. This is generally
* what the firmware provided with the board defaults to.
*/
#ifndef CONSPEED
#define CONSPEED B115200 /* TTYDEF_SPEED */
#endif
#ifndef CONMODE
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
int comcnspeed = CONSPEED;
int comcnmode = CONMODE;
/*
* void cpu_reboot(int howto, char *bootstr)
*
* Reboots the system
*
* Deal with any syncing, unmounting, dumping and shutdown hooks,
* then reset the CPU.
*/
void
cpu_reboot(int howto, char *bootstr)
{
#ifdef DIAGNOSTIC
/* info */
printf("boot: howto=%08x curproc=%p\n", howto, curproc);
#endif
cpu_reset_address = vtophys((u_int)s3c2440_softreset);
/*
* If we are still cold then hit the air brakes
* and crash to earth fast
*/
if (cold) {
doshutdownhooks();
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
printf("rebooting...\n");
cpu_reset();
/* NOTREACHED */
}
/* Disable console buffering */
/*
* If RB_NOSYNC was not specified sync the discs.
* Note: Unless cold is set to 1 here, syslogd will die during the
* unmount. It looks like syslogd is getting woken up only to find
* that it cannot page part of the binary in as the filesystem has
* been unmounted.
*/
if (!(howto & RB_NOSYNC))
bootsync();
/* Say NO to interrupts */
splhigh();
/* Do a dump if requested. */
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
dumpsys();
/* Run any shutdown hooks */
doshutdownhooks();
/* Make sure IRQ's are disabled */
IRQdisable;
if (howto & RB_HALT) {
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
}
printf("rebooting...\n");
cpu_reset();
/* NOTREACHED */
}
/*
* Static device mappings. These peripheral registers are mapped at
* fixed virtual addresses very early in initarm() so that we can use
* them while booting the kernel , and stay at the same address
* throughout whole kernel's life time.
*
* We use this table twice; once with bootstrap page table, and once
* with kernel's page table which we build up in initarm().
*
* Since we map these registers into the bootstrap page table using
* pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
* registers segment-aligned and segment-rounded in order to avoid
* using the 2nd page tables.
*/
#define _A(a) ((a) & ~L1_S_OFFSET)
#define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
#define _V(n) (MINI2440_IO_VBASE + (n) * L1_S_SIZE)
#define GPIO_VBASE _V(0)
#define INTCTL_VBASE _V(1)
#define CLKMAN_VBASE _V(2)
#define UART_VBASE _V(3)
static const struct pmap_devmap mini2440_devmap[] = {
/* GPIO registers */
{
GPIO_VBASE,
_A(S3C2440_GPIO_BASE),
_S(S3C2440_GPIO_SIZE),
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
},
{
INTCTL_VBASE,
_A(S3C2440_INTCTL_BASE),
_S(S3C2440_INTCTL_SIZE),
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
},
{
CLKMAN_VBASE,
_A(S3C2440_CLKMAN_BASE),
_S(S3C24X0_CLKMAN_SIZE),
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
},
{ /* UART registers for UART0, 1, 2. */
UART_VBASE,
_A(S3C2440_UART0_BASE),
_S(S3C2440_UART_BASE(3) - S3C2440_UART0_BASE),
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
},
{ 0, 0, 0, 0 }
};
#undef _A
#undef _S
static inline pd_entry_t *
read_ttb(void)
{
long ttb;
__asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(ttb));
return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
}
#define ioreg_write32(a,v) (*(volatile uint32_t *)(a)=(v))
/*
* u_int initarm(...)
*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responsible for setting up everything that must be
* in place when main is called.
* This includes
* Taking a copy of the boot configuration structure.
* Initialising the physical console so characters can be printed.
* Setting up page tables for the kernel
* Relocating the kernel to the bottom of physical memory
*/
u_int
initarm(void *arg)
{
int loop;
int loop1;
u_int l1pagetable;
extern int etext __asm("_etext");
extern int end __asm("_end");
uint32_t kerneldatasize;
struct btinfo_magic *bi_magic = arg;
struct btinfo_bootstring *bi_bootstring;
struct btinfo_symtab *bi_symtab;
boothowto = 0;
/* Copy bootinfo from boot loader into kernel memory where it remains.
*/
if (bi_magic != 0x0 && bi_magic->magic == BOOTINFO_MAGIC) {
memcpy(bootinfo, bi_magic, sizeof(bootinfo));
} else {
memset(bootinfo, 0, sizeof(bootinfo));
}
/* Extract boot_args from bootinfo */
bi_bootstring = lookup_bootinfo(BTINFO_BOOTSTRING);
if (bi_bootstring ) {
printf("Bootloader args are %s\n", bi_bootstring->bootstring);
boot_args = bi_bootstring->bootstring;
parse_mi_bootargs(boot_args);
}
#define pdatb (*(volatile uint8_t *)(S3C2440_GPIO_BASE+GPIO_PBDAT))
// 0x1E0 is the mask for GPB5, GPB6, GPB7, and GPB8
#define __LED(x) (pdatb = (pdatb & ~0x1e0) | (~(1<<(x+5)) & 0x1e0))
__LED(0);
/*
* Heads up ... Setup the CPU / MMU / TLB functions
*/
if (set_cpufuncs())
panic("cpu not recognized!");
/*
* Map I/O registers that are used in startup. Now we are
* still using page table prepared by bootloader. Later we'll
* map those registers at the same address in the kernel page
* table.
*/
pmap_devmap_bootstrap((vaddr_t)read_ttb(), mini2440_devmap);
#undef pdatb
#define pdatb (*(volatile uint8_t *)(GPIO_VBASE+GPIO_PBDAT))
/* Disable all peripheral interrupts */
ioreg_write32(INTCTL_VBASE + INTCTL_INTMSK, ~0);
__LED(1);
/* initialize some variables so that splfoo() doesn't
touch illegal address. */
s3c2xx0_intr_bootstrap(INTCTL_VBASE);
__LED(2);
consinit();
__LED(3);
/* Extract information from the bootloader configuration */
bi_rdev = lookup_bootinfo(BTINFO_ROOTDEVICE);
bi_net = lookup_bootinfo(BTINFO_NET);
bi_path = lookup_bootinfo(BTINFO_BOOTPATH);
#ifdef VERBOSE_INIT_ARM
printf("consinit done\n");
#endif
#ifdef KGDB
kgdb_port_init();
#endif
#ifdef VERBOSE_INIT_ARM
/* Talk to the user */
printf("\nNetBSD/evbarm (MINI2440) booting ...\n");
#endif
/*
* Ok we have the following memory map
*
* Physical Address Range Description
* ----------------------- ----------------------------------
* 0x30000000 - 0x33ffffff SDRAM (64MB)
*
* Kernel is loaded by bootloader at 0x30200000
*
* The initarm() has the responsibility for creating the kernel
* page tables.
* It must also set up various memory pointers that are used
* by pmap etc.
*/
/* Fake bootconfig structure for the benefit of pmap.c */
/* XXX must make the memory description h/w independent */
bootconfig.dramblocks = 1;
bootconfig.dram[0].address = SDRAM_START;
bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE;
/*
* Set up the variables that define the availablilty of
* physical memory.
* We use the 2MB between the physical start and the kernel to
* begin with. Allocating from 0x30200000 and downwards
* If we get too close to the bottom of SDRAM, we
* will panic. We will update physical_freestart and
* physical_freeend later to reflect what pmap_bootstrap()
* wants to see.
*
* XXX pmap_bootstrap() needs an enema.
*/
physical_start = bootconfig.dram[0].address;
physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
physical_freestart = SDRAM_START; /* XXX */
physical_freeend = SDRAM_START + KERNEL_OFFSET;
physmem = (physical_end - physical_start) / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
/* Tell the user about the memory */
printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
physical_start, physical_end - 1);
printf("phys_end: 0x%08lx\n", physical_end);
#endif
/*
* XXX
* Okay, the kernel starts 2MB in from the bottom of physical
* memory. We are going to allocate our bootstrap pages downwards
* from there.
*
* We need to allocate some fixed page tables to get the kernel
* going. We allocate one page directory and a number of page
* tables and store the physical addresses in the kernel_pt_table
* array.
*
* The kernel page directory must be on a 16K boundary. The page
* tables must be on 4K boundaries. What we do is allocate the
* page directory on the first 16K boundary that we encounter, and
* the page tables on 4K boundaries otherwise. Since we allocate
* at least 3 L2 page tables, we are guaranteed to encounter at
* least one 16K aligned region.
*/
#ifdef VERBOSE_INIT_ARM
printf("Allocating page tables\n");
#endif
free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%08x), freeend = 0x%08lx\n",
physical_freestart, free_pages, free_pages, physical_freeend);
#endif
/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np) \
alloc_pages((var).pv_pa, (np)); \
(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
#define alloc_pages(var, np) \
physical_freeend -= ((np) * PAGE_SIZE); \
if (physical_freeend < physical_freestart) \
panic("initarm: out of memory"); \
(var) = physical_freeend; \
free_pages -= (np); \
memset((char *)(var), 0, ((np) * PAGE_SIZE));
loop1 = 0;
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
/* Are we 16KB aligned for an L1 ? */
if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
&& kernel_l1pt.pv_pa == 0) {
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
} else {
valloc_pages(kernel_pt_table[loop1],
L2_TABLE_SIZE / PAGE_SIZE);
++loop1;
}
}
/* This should never be able to happen but better confirm that. */
if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
panic("initarm: Failed to align the kernel page directory\n");
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
alloc_pages(systempage.pv_pa, 1);
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, UPAGES);
#ifdef VERBOSE_INIT_ARM
printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
irqstack.pv_va);
printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
abtstack.pv_va);
printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
undstack.pv_va);
printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
kernelstack.pv_va);
printf("Free memory in bootstrap region: %ld bytes\n", physical_freeend - physical_freestart);
#endif
alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
physical_freeend_low = physical_freeend;
/*
* Ok we have allocated physical pages for the primary kernel
* page tables
*/
#ifdef VERBOSE_INIT_ARM
printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_pa;
/* Map the L2 pages tables in the L1 page table */
pmap_link_l2pt(l1pagetable, 0x00000000,
&kernel_pt_table[KERNEL_PT_SYS]);
for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_KERNEL + loop]);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_VMDATA + loop]);
/* update the top of the kernel VM */
pmap_curmaxkvaddr =
KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
#ifdef VERBOSE_INIT_ARM
printf("Mapping kernel\n");
#endif
/* Now we fill in the L2 pagetable for the kernel static code/data */
{
/* Total size must include symbol table, if it exists.
The size of the symbol table can be acquired from the ELF
header, to which a pointer is passed in the boot info (ssym).
*/
size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE;
kerneldatasize = (uintptr_t)&end - KERNEL_TEXT_BASE;
u_int logical;
bi_symtab = lookup_bootinfo(BTINFO_SYMTAB);
if (bi_symtab) {
Elf_Ehdr *elfHeader;
Elf_Shdr *sectionHeader;
int nsection;
int sz = 0;
elfHeader = bi_symtab->ssym;
#ifdef VERBOSE_INIT_ARM
printf("Symbol table information provided by bootloader\n");
printf("ELF header is at %p\n", elfHeader);
#endif
sectionHeader = (Elf_Shdr*)((char*)(bi_symtab->ssym) +
(elfHeader->e_shoff));
nsection = elfHeader->e_shnum;
#ifdef VERBOSE_INIT_ARM
printf("Number of sections: %d\n", nsection);
#endif
for(; nsection > 0; nsection--, sectionHeader++) {
if (sectionHeader->sh_offset > 0 &&
(sectionHeader->sh_offset + sectionHeader->sh_size) > sz)
sz = sectionHeader->sh_offset + sectionHeader->sh_size;
}
#ifdef VERBOSE_INIT_ARM
printf("Max size of sections: %d\n", sz);
#endif
kerneldatasize += sz;
}
#ifdef VERBOSE_INIT_ARM
printf("Textsize: %u, kerneldatasize: %u\n", (uint)textsize,
(uint)kerneldatasize);
printf("&etext: 0x%x\n", (uint)&etext);
printf("&end: 0x%x\n", (uint)&end);
printf("KERNEL_TEXT_BASE: 0x%x\n", KERNEL_TEXT_BASE);
#endif
textsize = (textsize + PGOFSET) & ~PGOFSET;
kerneldatasize = (kerneldatasize + PGOFSET) & ~PGOFSET;
logical = KERNEL_OFFSET; /* offset of kernel in RAM */
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, textsize,
VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, kerneldatasize - textsize,
VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
}
#ifdef VERBOSE_INIT_ARM
printf("Constructing L2 page tables\n");
#endif
/* Map the stack pages */
pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
PTE_CACHE);
pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
PTE_CACHE);
pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
PTE_CACHE);
pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
}
/* Map the vector page. */
#if 0
/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
* cache-clean code there. */
pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
#else
pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
#endif
/*
* map integrated peripherals at same address in l1pagetable
* so that we can continue to use console.
*/
pmap_devmap_bootstrap(l1pagetable, mini2440_devmap);
/*
* Now we have the real page tables in place so we can switch to them.
* Once this is done we will be running with the REAL kernel page
* tables.
*/
/*
* Update the physical_freestart/physical_freeend/free_pages
* variables.
*/
physical_freestart = physical_start +
(KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize;
physical_freeend = physical_end;
free_pages =
(physical_freeend - physical_freestart) / PAGE_SIZE;
/* Switch tables */
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
physical_freestart, free_pages, free_pages);
printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
#endif
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
cpu_setttb(kernel_l1pt.pv_pa);
cpu_tlb_flushID();
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
/*
* Moved from cpu_startup() as data_abort_handler() references
* this during uvm init
*/
uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
#ifdef VERBOSE_INIT_ARM
printf("done!\n");
#endif
#ifdef VERBOSE_INIT_ARM
printf("bootstrap done.\n");
#endif
arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
#ifdef VERBOSE_INIT_ARM
printf("init subsystems: stacks ");
#endif
set_stackptr(PSR_IRQ32_MODE,
irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_ABT32_MODE,
abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_UND32_MODE,
undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
cpu_idcache_wbinv_all();
/*
* Well we should set a data abort handler.
* Once things get going this will change as we will need a proper
* handler.
* Until then we will use a handler that just panics but tells us
* why.
* Initialisation of the vectors will just panic on a data abort.
* This just fills in a slightly better one.
*/
#ifdef VERBOSE_INIT_ARM
printf("vectors ");
#endif
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
/* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
printf("undefined ");
#endif
undefined_init();
/* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
printf("page ");
#endif
uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
atop(physical_freestart), atop(physical_freeend),
VM_FREELIST_DEFAULT);
uvm_page_physload(atop(SDRAM_START), atop(physical_freeend_low),
atop(SDRAM_START), atop(physical_freeend_low),
VM_FREELIST_DEFAULT);
/* Boot strap pmap telling it where the kernel page table is */
#ifdef VERBOSE_INIT_ARM
printf("pmap ");
#endif
pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
#ifdef VERBOSE_INIT_ARM
printf("done.\n");
#endif
#ifdef BOOTHOWTO
boothowto |= BOOTHOWTO;
#endif
#ifdef KGDB
if (boothowto & RB_KDB) {
kgdb_debug_init = 1;
kgdb_connect(1);
}
#endif
mini2440_ksyms(bi_symtab);
#ifdef DDB
/*db_machine_init();*/
if (boothowto & RB_KDB)
Debugger();
#endif
evbarm_device_register = mini2440_device_register;
/* We return the new stack pointer address */
return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
}
void
consinit(void)
{
static int consinit_done = 0;
#if defined(SSCOM0CONSOLE) || defined(SSCOM1CONSOLE)
bus_space_tag_t iot = &s3c2xx0_bs_tag;
#endif
int pclk;
if (consinit_done != 0)
return;
consinit_done = 1;
s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
#if NSSCOM > 0
#ifdef SSCOM0CONSOLE
if (0 == s3c2440_sscom_cnattach(iot, 0, comcnspeed,
pclk, comcnmode))
return;
#endif
#ifdef SSCOM1CONSOLE
if (0 == s3c2440_sscom_cnattach(iot, 1, comcnspeed,
pclk, comcnmode))
return;
#endif
#endif /* NSSCOM */
#if NCOM>0 && defined(CONCOMADDR)
if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
COM_FREQ, COM_TYPE_NORMAL, comcnmode))
panic("can't init serial console @%x", CONCOMADDR);
return;
#endif
consinit_done = 0;
}
#ifdef KGDB
#if (NSSCOM > 0)
#ifdef KGDB_DEVNAME
const char kgdb_devname[] = KGDB_DEVNAME;
#else
const char kgdb_devname[] = "";
#endif
#ifndef KGDB_DEVMODE
#define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */
#endif
int kgdb_sscom_mode = KGDB_DEVMODE;
#endif /* NSSCOM */
void
kgdb_port_init(void)
{
#if (NSSCOM > 0)
int unit = -1;
int pclk;
if (strcmp(kgdb_devname, "sscom0") == 0)
unit = 0;
else if (strcmp(kgdb_devname, "sscom1") == 0)
unit = 1;
if (unit >= 0) {
s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
s3c2440_sscom_kgdb_attach(&s3c2xx0_bs_tag,
unit, kgdb_rate, pclk, kgdb_sscom_mode);
}
#endif
}
#endif
static struct arm32_dma_range mini2440_dma_ranges[1];
bus_dma_tag_t
s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template)
{
extern paddr_t physical_start, physical_end;
struct arm32_bus_dma_tag *dmat;
mini2440_dma_ranges[0].dr_sysbase = physical_start;
mini2440_dma_ranges[0].dr_busbase = physical_start;
mini2440_dma_ranges[0].dr_len = physical_end - physical_start;
#if 1
dmat = dma_tag_template;
#else
dmat = malloc(sizeof *dmat, M_DEVBUF, M_NOWAIT);
if (dmat == NULL)
return NULL;
*dmat = *dma_tag_template;
#endif
dmat->_ranges = mini2440_dma_ranges;
dmat->_nranges = 1;
return dmat;
}
void
mini2440_ksyms(struct btinfo_symtab *bi_symtab)
{
#if NKSYMS || defined(DDB) || defined(LKM)
extern int end;
#ifdef DDB
db_machine_init();
#endif
if (bi_symtab == NULL) {
return;
}
#ifdef VERBOSE_INIT_ARM
printf("Got symbol table. nsym=%d, ssym=%p, esym=%p\n",
bi_symtab->nsym,
bi_symtab->ssym,
bi_symtab->esym);
#endif
ksyms_addsyms_elf(bi_symtab->nsym,
(int*)bi_symtab->ssym,
(int*)bi_symtab->esym);
#endif
}
void *
lookup_bootinfo(int type)
{
struct btinfo_common *bt;
struct btinfo_common *help = (struct btinfo_common *)bootinfo;
if (help->next == 0)
return (NULL); /* bootinfo[] was not made */
do {
bt = help;
if (bt->type == type)
return (help);
help = (struct btinfo_common *)((char*)help + bt->next);
} while (bt->next &&
(size_t)help < (size_t)bootinfo + BOOTINFO_MAXSIZE);
return (NULL);
}
extern char *booted_kernel;
static void
mini2440_device_register(device_t dev, void *aux) {
if (device_class(dev) == DV_IFNET) {
if (bi_rdev != NULL && device_is_a(dev, bi_rdev->devname) ) {
booted_device = dev;
rootfstype = MOUNT_NFS;
if( bi_path != NULL ) {
booted_kernel = bi_path->bootpath;
}
}
if (bi_net != NULL && device_is_a(dev, bi_net->devname)) {
prop_data_t pd;
pd = prop_data_create_data_nocopy(bi_net->mac_address, ETHER_ADDR_LEN);
KASSERT(pd != NULL);
if (prop_dictionary_set(device_properties(dev), "mac-address", pd) == false) {
printf("WARNING: Unable to set mac-address property for %s\n", device_xname(dev));
}
prop_object_release(pd);
bi_net = NULL;
}
}
if (bi_rdev != NULL && device_class(dev) == DV_DISK
&& device_is_a(dev, bi_rdev->devname)
&& device_unit(dev) == bi_rdev->cookie) {
booted_device = dev;
booted_partition = bi_rdev->partition;
rootfstype = ROOT_FSTYPE_ANY;
if( bi_path != NULL ) {
booted_kernel = bi_path->bootpath;
}
}
}