NetBSD/sys/dev/pci/if_lmc.c
2006-02-13 14:25:05 +00:00

7810 lines
224 KiB
C

/*-
* $NetSBD$
*
* Copyright (c) 2002-2006 David Boggs. <boggs@boggs.palo-alto.ca.us>
* All rights reserved.
*
* BSD License:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* GNU General Public License:
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Description:
*
* This is an open-source Unix device driver for PCI-bus WAN interface cards.
* It sends and receives packets in HDLC frames over synchronous links.
* A generic PC plus Unix plus some LMC cards makes an OPEN router.
* This driver works with FreeBSD, NetBSD, OpenBSD, BSD/OS and Linux.
* It has been tested on i386 (32-bit little-end), PowerPC (32-bit
* big-end), Sparc (64-bit big-end), and Alpha (64-bit little-end)
* architectures.
*
* History and Authors:
*
* Ron Crane had the neat idea to use a Fast Ethernet chip as a PCI
* interface and add an Ethernet-to-HDLC gate array to make a WAN card.
* David Boggs designed the Ethernet-to-HDLC gate arrays and PC cards.
* We did this at our company, LAN Media Corporation (LMC).
* SBE Corp aquired LMC and continues to make the cards.
*
* Since the cards use Tulip Ethernet chips, we started with Matt Thomas'
* ubiquitous "de" driver. Michael Graff stripped out the Ethernet stuff
* and added HSSI stuff. Basil Gunn ported it to Solaris (lost) and
* Rob Braun ported it to Linux. Andrew Stanley-Jones added support
* for three more cards and wrote the first version of lmcconfig.
* During 2002-5 David Boggs rewrote it and now feels responsible for it.
*
* Responsible Individual:
*
* Send bug reports and improvements to <boggs@boggs.palo-alto.ca.us>.
*/
#if defined(__FreeBSD__)
# include <sys/param.h> /* OS version */
# include "opt_inet.h" /* INET */
# include "opt_inet6.h" /* INET6 */
# include "opt_netgraph.h" /* NETGRAPH */
# if defined(HAVE_KERNEL_OPTION_HEADERS)
# include "opt_device_polling.h" /* DEVICE_POLLING */
# else
# include "opt_global.h" /* ALTQ, DEVICE_POLLING */
# endif
# include "opt_bpf.h" /* DEV_BPF */
# define NBPFILTER DEV_BPF
# define IFNET 1
# define NETDEV 0
# define NAPI 0
# define SPPP 1
# define P2P 0
# define GEN_HDLC 0
# define SYNC_PPP 0
#
# include <sys/systm.h>
# include <sys/kernel.h>
# include <sys/malloc.h>
# include <sys/mbuf.h>
# include <sys/socket.h>
# include <sys/sockio.h>
# include <sys/lock.h>
# include <sys/mutex.h>
# include <sys/module.h>
# include <sys/bus.h>
# include <net/if.h>
# include <net/if_types.h>
# include <net/if_media.h>
# include <net/netisr.h>
# include <machine/bus.h>
# include <machine/resource.h>
# include <machine/clock.h>
# include <sys/rman.h>
# include <vm/vm.h>
# include <vm/pmap.h>
# include <dev/pci/pcivar.h>
# if NETGRAPH
# include <netgraph/ng_message.h>
# include <netgraph/netgraph.h>
# endif
# if INET || INET6
# include <netinet/in.h>
# include <netinet/in_var.h>
# endif
# if SPPP
# include <net/if_sppp.h>
# endif
# if NBPFILTER
# include <net/bpf.h>
# endif
# ifndef NETGRAPH
# define NETGRAPH 0
# endif
# ifndef DEVICE_POLLING
# define DEVICE_POLLING 0
# endif
# ifndef ALTQ
# define ALTQ 0
# endif
/* and finally... */
# include <dev/lmc/if_lmc.h>
#endif /*__FreeBSD__*/
#if defined(__NetBSD__)
# include <sys/param.h> /* OS version */
# include "opt_inet.h" /* INET6, INET */
# include "opt_altq_enabled.h" /* ALTQ */
# include "bpfilter.h" /* NBPFILTER */
# define IFNET 1
# define NETDEV 0
# define NAPI 0
# define SPPP 1
# define P2P 0
# define GEN_HDLC 0
# define SYNC_PPP 0
# define NETGRAPH 0
# define DEVICE_POLLING 0
#
# include <sys/systm.h>
# include <sys/kernel.h>
# include <sys/lkm.h>
# include <sys/mbuf.h>
# include <sys/socket.h>
# include <sys/sockio.h>
# include <sys/device.h>
# include <sys/reboot.h>
# include <sys/lock.h>
# include <net/if.h>
# include <net/if_types.h>
# include <net/if_media.h>
# include <net/netisr.h>
# include <machine/bus.h>
# include <machine/intr.h>
# include <dev/pci/pcivar.h>
# include <uvm/uvm_extern.h>
# if INET || INET6
# include <netinet/in.h>
# include <netinet/in_var.h>
# endif
# if SPPP
# include <net/if_spppvar.h>
# endif
# if NBPFILTER
# include <net/bpf.h>
# endif
# ifndef ALTQ
# define ALTQ 0
# endif
/* and finally... */
# include "if_lmc.h"
#endif /*__NetBSD__*/
#if defined(__OpenBSD__)
# include <sys/param.h> /* OS version */
/* -DINET is passed on the compiler command line */
/* -DINET6 is passed on the compiler command line */
/* -DALTQ is passed on the compiler command line */
# include "bpfilter.h" /* NBPFILTER */
# define IFNET 1
# define NAPI 0
# define SPPP 1
# define P2P 0
# define GEN_HDLC 0
# define SYNC_PPP 0
# define NETGRAPH 0
# define DEVICE_POLLING 0
#
# include <sys/systm.h>
# include <sys/kernel.h>
# include <sys/conf.h>
# include <sys/exec.h>
# include <sys/lkm.h>
# include <sys/mbuf.h>
# include <sys/socket.h>
# include <sys/sockio.h>
# include <sys/device.h>
# include <sys/lock.h>
# include <net/if.h>
# include <net/if_types.h>
# include <net/if_media.h>
# include <net/netisr.h>
# include <machine/bus.h>
# include <machine/intr.h>
# include <uvm/uvm_extern.h>
# include <dev/pci/pcivar.h>
# if INET || INET6
# include <netinet/in.h>
# include <netinet/in_var.h>
# endif
# if SPPP
# include <net/if_sppp.h>
# endif
# if NBPFILTER
# include <net/bpf.h>
# endif
# ifndef ALTQ
# define ALTQ 0
# endif
# undef NETDEV
# define NETDEV 0
/* and finally... */
# include "if_lmc.h"
#endif /*__OpenBSD__*/
#if defined(__bsdi__)
# include <sys/param.h> /* OS version */
/* -DINET is passed on the compiler command line */
/* -DINET6 is passed on the compiler command line */
/* -DPPP is passed on the compiler command line */
/* -DCISCO_HDLC is passed on the compiler command line */
/* -DFR is passed on the compiler command line */
# if PPP || CISCO_HDLC || FR
# define P2P 1
# else
# define P2P 0
# endif
# include "bpfilter.h" /* NBPFILTER */
# define IFNET 1
# define NETDEV 0
# define NAPI 0
# define ALTQ 0
# define SPPP 0
# define GEN_HDLC 0
# define SYNC_PPP 0
# define NETGRAPH 0
# define DEVICE_POLLING 0
#
# include <sys/kernel.h>
# include <sys/malloc.h>
# include <sys/mbuf.h>
# include <sys/socket.h>
# include <sys/sockio.h>
# include <sys/device.h>
# include <sys/reboot.h>
# include <sys/lock.h>
# include <net/if.h>
# include <net/if_types.h>
# include <net/if_media.h>
# include <net/netisr.h>
# include <net/raw_cb.h>
# include <vm/vm.h>
# include <i386/isa/dma.h>
# include <i386/isa/isavar.h>
# include <i386/include/cpu.h>
# include <i386/pci/pci.h>
# if INET || INET6
# include <netinet/in.h>
# include <netinet/in_var.h>
# endif
# if P2P
# include <net/if_p2p.h>
# include <sys/ttycom.h>
# endif
# if NBPFILTER
# include <net/bpf.h>
# endif
/* and finally... */
# include "if_lmc.h"
#endif /*__bsdi__*/
#if defined(__linux__)
# include <linux/config.h>
# if CONFIG_LANMEDIA_GEN_HDLC
# define GEN_HDLC 1
# else
# define GEN_HDLC 0
# endif
# if CONFIG_LANMEDIA_SYNC_PPP
# define SYNC_PPP 1
# else
# define SYNC_PPP 0
# endif
# if CONFIG_LANMEDIA_NAPI
# define NAPI 1
# else
# define NAPI 0
# endif
# define BSD 0
# define IFNET 0
# define NETDEV 1
# define ALTQ 0
# define P2P 0
# define SPPP 0
# define NETGRAPH 0
# define NBPFILTER 0
# define DEVICE_POLLING 0
#
# include <linux/pci.h>
# include <linux/delay.h>
# include <linux/netdevice.h>
# include <linux/if_arp.h>
# if GEN_HDLC
# include <linux/hdlc.h>
# endif
# if SYNC_PPP
# include <net/syncppp.h>
# endif
/* and finally... */
# include "if_lmc.h"
#endif /* __linux__ */
/* The SROM is a generic 93C46 serial EEPROM (64 words by 16 bits). */
/* Data is set up before the RISING edge of CLK; CLK is parked low. */
static void
srom_shift_bits(softc_t *sc, u_int32_t data, u_int32_t len)
{
u_int32_t csr = READ_CSR(TLP_SROM_MII);
for (; len>0; len--)
{ /* MSB first */
if (data & (1<<(len-1)))
csr |= TLP_SROM_DIN; /* DIN setup */
else
csr &= ~TLP_SROM_DIN; /* DIN setup */
WRITE_CSR(TLP_SROM_MII, csr);
csr |= TLP_SROM_CLK; /* CLK rising edge */
WRITE_CSR(TLP_SROM_MII, csr);
csr &= ~TLP_SROM_CLK; /* CLK falling edge */
WRITE_CSR(TLP_SROM_MII, csr);
}
}
/* Data is sampled on the RISING edge of CLK; CLK is parked low. */
static u_int16_t /* User context */
srom_read(softc_t *sc, u_int8_t addr)
{
int i;
u_int32_t csr;
u_int16_t data;
/* Enable SROM access. */
csr = (TLP_SROM_SEL | TLP_SROM_RD | TLP_MII_MDOE);
WRITE_CSR(TLP_SROM_MII, csr);
/* CS rising edge prepares SROM for a new cycle. */
csr |= TLP_SROM_CS;
WRITE_CSR(TLP_SROM_MII, csr); /* assert CS */
srom_shift_bits(sc, 6, 4); /* issue read cmd */
srom_shift_bits(sc, addr, 6); /* issue address */
for (data=0, i=16; i>=0; i--) /* read ->17<- bits of data */
{ /* MSB first */
csr = READ_CSR(TLP_SROM_MII); /* DOUT sampled */
data = (data<<1) | ((csr & TLP_SROM_DOUT) ? 1:0);
csr |= TLP_SROM_CLK; /* CLK rising edge */
WRITE_CSR(TLP_SROM_MII, csr);
csr &= ~TLP_SROM_CLK; /* CLK falling edge */
WRITE_CSR(TLP_SROM_MII, csr);
}
/* Disable SROM access. */
WRITE_CSR(TLP_SROM_MII, TLP_MII_MDOE);
return data;
}
/* The SROM is formatted by the mfgr and should NOT be written! */
/* But lmcconfig can rewrite it in case it gets overwritten somehow. */
static void /* User context */
srom_write(softc_t *sc, u_int8_t addr, u_int16_t data)
{
u_int32_t csr;
int i;
/* Enable SROM access. */
csr = (TLP_SROM_SEL | TLP_SROM_RD | TLP_MII_MDOE);
WRITE_CSR(TLP_SROM_MII, csr);
/* Issue write-enable command. */
csr |= TLP_SROM_CS;
WRITE_CSR(TLP_SROM_MII, csr); /* assert CS */
srom_shift_bits(sc, 4, 4); /* issue write enable cmd */
srom_shift_bits(sc, 63, 6); /* issue address */
csr &= ~TLP_SROM_CS;
WRITE_CSR(TLP_SROM_MII, csr); /* deassert CS */
/* Issue erase command. */
csr |= TLP_SROM_CS;
WRITE_CSR(TLP_SROM_MII, csr); /* assert CS */
srom_shift_bits(sc, 7, 4); /* issue erase cmd */
srom_shift_bits(sc, addr, 6); /* issue address */
csr &= ~TLP_SROM_CS;
WRITE_CSR(TLP_SROM_MII, csr); /* deassert CS */
/* Issue write command. */
csr |= TLP_SROM_CS;
WRITE_CSR(TLP_SROM_MII, csr); /* assert CS */
for (i=0; i<10; i++) /* 100 ms max wait */
if ((READ_CSR(TLP_SROM_MII) & TLP_SROM_DOUT)==0) SLEEP(10000);
srom_shift_bits(sc, 5, 4); /* issue write cmd */
srom_shift_bits(sc, addr, 6); /* issue address */
srom_shift_bits(sc, data, 16); /* issue data */
csr &= ~TLP_SROM_CS;
WRITE_CSR(TLP_SROM_MII, csr); /* deassert CS */
/* Issue write-disable command. */
csr |= TLP_SROM_CS;
WRITE_CSR(TLP_SROM_MII, csr); /* assert CS */
for (i=0; i<10; i++) /* 100 ms max wait */
if ((READ_CSR(TLP_SROM_MII) & TLP_SROM_DOUT)==0) SLEEP(10000);
srom_shift_bits(sc, 4, 4); /* issue write disable cmd */
srom_shift_bits(sc, 0, 6); /* issue address */
csr &= ~TLP_SROM_CS;
WRITE_CSR(TLP_SROM_MII, csr); /* deassert CS */
/* Disable SROM access. */
WRITE_CSR(TLP_SROM_MII, TLP_MII_MDOE);
}
/* Not all boards have BIOS roms. */
/* The BIOS ROM is an AMD 29F010 1Mbit (128K by 8) EEPROM. */
static u_int8_t /* User context */
bios_read(softc_t *sc, u_int32_t addr)
{
u_int32_t srom_mii;
/* Load the BIOS rom address register. */
WRITE_CSR(TLP_BIOS_ROM, addr);
/* Enable the BIOS rom. */
srom_mii = TLP_BIOS_SEL | TLP_BIOS_RD | TLP_MII_MDOE;
WRITE_CSR(TLP_SROM_MII, srom_mii);
/* Wait at least 20 PCI cycles. */
DELAY(20);
/* Read the BIOS rom data. */
srom_mii = READ_CSR(TLP_SROM_MII);
/* Disable the BIOS rom. */
WRITE_CSR(TLP_SROM_MII, TLP_MII_MDOE);
return (u_int8_t)srom_mii & 0xFF;
}
static void
bios_write_phys(softc_t *sc, u_int32_t addr, u_int8_t data)
{
u_int32_t srom_mii;
/* Load the BIOS rom address register. */
WRITE_CSR(TLP_BIOS_ROM, addr);
/* Enable the BIOS rom. */
srom_mii = TLP_BIOS_SEL | TLP_BIOS_WR | TLP_MII_MDOE;
/* Load the data into the data register. */
srom_mii = (srom_mii & 0xFFFFFF00) | (data & 0xFF);
WRITE_CSR(TLP_SROM_MII, srom_mii);
/* Wait at least 20 PCI cycles. */
DELAY(20);
/* Disable the BIOS rom. */
WRITE_CSR(TLP_SROM_MII, TLP_MII_MDOE);
}
static void /* User context */
bios_write(softc_t *sc, u_int32_t addr, u_int8_t data)
{
u_int8_t read_data;
/* this sequence enables writing */
bios_write_phys(sc, 0x5555, 0xAA);
bios_write_phys(sc, 0x2AAA, 0x55);
bios_write_phys(sc, 0x5555, 0xA0);
bios_write_phys(sc, addr, data);
/* Wait for the write operation to complete. */
for (;;) /* interruptible syscall */
{
for (;;)
{
read_data = bios_read(sc, addr);
if ((read_data & 0x80) == (data & 0x80)) break;
if (read_data & 0x20)
{ /* Data sheet says read it again. */
read_data = bios_read(sc, addr);
if ((read_data & 0x80) == (data & 0x80)) break;
if (sc->config.debug)
printf("%s: bios_write() failed; rom addr=0x%x\n",
NAME_UNIT, addr);
return;
}
}
read_data = bios_read(sc, addr);
if (read_data == data) break;
}
}
static void /* User context */
bios_erase(softc_t *sc)
{
unsigned char read_data;
/* This sequence enables erasing: */
bios_write_phys(sc, 0x5555, 0xAA);
bios_write_phys(sc, 0x2AAA, 0x55);
bios_write_phys(sc, 0x5555, 0x80);
bios_write_phys(sc, 0x5555, 0xAA);
bios_write_phys(sc, 0x2AAA, 0x55);
bios_write_phys(sc, 0x5555, 0x10);
/* Wait for the erase operation to complete. */
for (;;) /* interruptible syscall */
{
for (;;)
{
read_data = bios_read(sc, 0);
if (read_data & 0x80) break;
if (read_data & 0x20)
{ /* Data sheet says read it again. */
read_data = bios_read(sc, 0);
if (read_data & 0x80) break;
if (sc->config.debug)
printf("%s: bios_erase() failed\n", NAME_UNIT);
return;
}
}
read_data = bios_read(sc, 0);
if (read_data == 0xFF) break;
}
}
/* MDIO is 3-stated between tranactions. */
/* MDIO is set up before the RISING edge of MDC; MDC is parked low. */
static void
mii_shift_bits(softc_t *sc, u_int32_t data, u_int32_t len)
{
u_int32_t csr = READ_CSR(TLP_SROM_MII);
for (; len>0; len--)
{ /* MSB first */
if (data & (1<<(len-1)))
csr |= TLP_MII_MDOUT; /* MDOUT setup */
else
csr &= ~TLP_MII_MDOUT; /* MDOUT setup */
WRITE_CSR(TLP_SROM_MII, csr);
csr |= TLP_MII_MDC; /* MDC rising edge */
WRITE_CSR(TLP_SROM_MII, csr);
csr &= ~TLP_MII_MDC; /* MDC falling edge */
WRITE_CSR(TLP_SROM_MII, csr);
}
}
/* The specification for the MII is IEEE Std 802.3 clause 22. */
/* MDIO is sampled on the RISING edge of MDC; MDC is parked low. */
static u_int16_t /* User context */
mii_read(softc_t *sc, u_int8_t regad)
{
int i;
u_int32_t csr;
u_int16_t data = 0;
WRITE_CSR(TLP_SROM_MII, TLP_MII_MDOUT);
mii_shift_bits(sc, 0xFFFFF, 20); /* preamble */
mii_shift_bits(sc, 0xFFFFF, 20); /* preamble */
mii_shift_bits(sc, 1, 2); /* start symbol */
mii_shift_bits(sc, 2, 2); /* read op */
mii_shift_bits(sc, 0, 5); /* phyad=0 */
mii_shift_bits(sc, regad, 5); /* regad */
csr = READ_CSR(TLP_SROM_MII);
csr |= TLP_MII_MDOE;
WRITE_CSR(TLP_SROM_MII, csr);
mii_shift_bits(sc, 0, 2); /* turn-around */
for (i=15; i>=0; i--) /* data */
{ /* MSB first */
csr = READ_CSR(TLP_SROM_MII); /* MDIN sampled */
data = (data<<1) | ((csr & TLP_MII_MDIN) ? 1:0);
csr |= TLP_MII_MDC; /* MDC rising edge */
WRITE_CSR(TLP_SROM_MII, csr);
csr &= ~TLP_MII_MDC; /* MDC falling edge */
WRITE_CSR(TLP_SROM_MII, csr);
}
return data;
}
static void /* User context */
mii_write(softc_t *sc, u_int8_t regad, u_int16_t data)
{
WRITE_CSR(TLP_SROM_MII, TLP_MII_MDOUT);
mii_shift_bits(sc, 0xFFFFF, 20); /* preamble */
mii_shift_bits(sc, 0xFFFFF, 20); /* preamble */
mii_shift_bits(sc, 1, 2); /* start symbol */
mii_shift_bits(sc, 1, 2); /* write op */
mii_shift_bits(sc, 0, 5); /* phyad=0 */
mii_shift_bits(sc, regad, 5); /* regad */
mii_shift_bits(sc, 2, 2); /* turn-around */
mii_shift_bits(sc, data, 16); /* data */
WRITE_CSR(TLP_SROM_MII, TLP_MII_MDOE);
if (regad == 16) sc->led_state = data; /* a small optimization */
}
static void
mii16_set_bits(softc_t *sc, u_int16_t bits)
{
u_int16_t mii16 = mii_read(sc, 16);
mii16 |= bits;
mii_write(sc, 16, mii16);
}
static void
mii16_clr_bits(softc_t *sc, u_int16_t bits)
{
u_int16_t mii16 = mii_read(sc, 16);
mii16 &= ~bits;
mii_write(sc, 16, mii16);
}
static void
mii17_set_bits(softc_t *sc, u_int16_t bits)
{
u_int16_t mii17 = mii_read(sc, 17);
mii17 |= bits;
mii_write(sc, 17, mii17);
}
static void
mii17_clr_bits(softc_t *sc, u_int16_t bits)
{
u_int16_t mii17 = mii_read(sc, 17);
mii17 &= ~bits;
mii_write(sc, 17, mii17);
}
/*
* Watchdog code is more readable if it refreshes LEDs
* once a second whether they need it or not.
* But MII refs take 150 uSecs each, so remember the last value
* written to MII16 and avoid LED writes that do nothing.
*/
static void
led_off(softc_t *sc, u_int16_t led)
{
if ((led & sc->led_state) == led) return;
mii16_set_bits(sc, led);
}
static void
led_on(softc_t *sc, u_int16_t led)
{
if ((led & sc->led_state) == 0) return;
mii16_clr_bits(sc, led);
}
static void
led_inv(softc_t *sc, u_int16_t led)
{
u_int16_t mii16 = mii_read(sc, 16);
mii16 ^= led;
mii_write(sc, 16, mii16);
}
/*
* T1 & T3 framer registers are accessed through MII regs 17 & 18.
* Write the address to MII reg 17 then R/W data through MII reg 18.
* The hardware interface is an Intel-style 8-bit muxed A/D bus.
*/
static void
framer_write(softc_t *sc, u_int16_t addr, u_int8_t data)
{
mii_write(sc, 17, addr);
mii_write(sc, 18, data);
}
static u_int8_t
framer_read(softc_t *sc, u_int16_t addr)
{
mii_write(sc, 17, addr);
return (u_int8_t)mii_read(sc, 18);
}
/* Tulip's hardware implementation of General Purpose IO
* (GPIO) pins makes life difficult for software.
* Bits 7-0 in the Tulip GPIO CSR are used for two purposes
* depending on the state of bit 8.
* If bit 8 is 0 then bits 7-0 are "data" bits.
* If bit 8 is 1 then bits 7-0 are "direction" bits.
* If a direction bit is one, the data bit is an output.
* The problem is that the direction bits are WRITE-ONLY.
* Software must remember the direction bits in a shadow copy.
* (sc->gpio_dir) in order to change some but not all of the bits.
* All accesses to the Tulip GPIO register use these five procedures.
*/
static void
gpio_make_input(softc_t *sc, u_int32_t bits)
{
sc->gpio_dir &= ~bits;
WRITE_CSR(TLP_GPIO, TLP_GPIO_DIR | (sc->gpio_dir));
}
static void
gpio_make_output(softc_t *sc, u_int32_t bits)
{
sc->gpio_dir |= bits;
WRITE_CSR(TLP_GPIO, TLP_GPIO_DIR | (sc->gpio_dir));
}
static u_int32_t
gpio_read(softc_t *sc)
{
return READ_CSR(TLP_GPIO);
}
static void
gpio_set_bits(softc_t *sc, u_int32_t bits)
{
WRITE_CSR(TLP_GPIO, (gpio_read(sc) | bits) & 0xFF);
}
static void
gpio_clr_bits(softc_t *sc, u_int32_t bits)
{
WRITE_CSR(TLP_GPIO, (gpio_read(sc) & ~bits) & 0xFF);
}
/* Reset ALL of the flip-flops in the gate array to zero. */
/* This does NOT change the gate array programming. */
/* Called during initialization so it must not sleep. */
static void
xilinx_reset(softc_t *sc)
{
/* Drive RESET low to force initialization. */
gpio_clr_bits(sc, GPIO_RESET);
gpio_make_output(sc, GPIO_RESET);
/* Hold RESET low for more than 10 uSec. */
DELAY(50);
/* Done with RESET; make it an input. */
gpio_make_input(sc, GPIO_RESET);
}
/* Load Xilinx gate array program from on-board rom. */
/* This changes the gate array programming. */
static void /* User context */
xilinx_load_from_rom(softc_t *sc)
{
int i;
/* Drive MODE low to load from ROM rather than GPIO. */
gpio_clr_bits(sc, GPIO_MODE);
gpio_make_output(sc, GPIO_MODE);
/* Drive DP & RESET low to force configuration. */
gpio_clr_bits(sc, GPIO_RESET | GPIO_DP);
gpio_make_output(sc, GPIO_RESET | GPIO_DP);
/* Hold RESET & DP low for more than 10 uSec. */
DELAY(50);
/* Done with RESET & DP; make them inputs. */
gpio_make_input(sc, GPIO_DP | GPIO_RESET);
/* BUSY-WAIT for Xilinx chip to configure itself from ROM bits. */
for (i=0; i<100; i++) /* 1 sec max delay */
if ((gpio_read(sc) & GPIO_DP)==0) SLEEP(10000);
/* Done with MODE; make it an input. */
gpio_make_input(sc, GPIO_MODE);
}
/* Load the Xilinx gate array program from userland bits. */
/* This changes the gate array programming. */
static int /* User context */
xilinx_load_from_file(softc_t *sc, char *addr, u_int32_t len)
{
char *data;
int i, j, error;
/* Get some pages to hold the Xilinx bits; biggest file is < 6 KB. */
if (len > 8192) return EFBIG; /* too big */
data = malloc(len, M_TEMP, M_WAITOK);
if (data == NULL) return ENOMEM;
/* Copy the Xilinx bits from userland. */
if ((error = copyin(addr, data, len)))
{
free(data, M_TEMP);
return error;
}
/* Drive MODE high to load from GPIO rather than ROM. */
gpio_set_bits(sc, GPIO_MODE);
gpio_make_output(sc, GPIO_MODE);
/* Drive DP & RESET low to force configuration. */
gpio_clr_bits(sc, GPIO_RESET | GPIO_DP);
gpio_make_output(sc, GPIO_RESET | GPIO_DP);
/* Hold RESET & DP low for more than 10 uSec. */
DELAY(50);
/* Done with RESET & DP; make them inputs. */
gpio_make_input(sc, GPIO_RESET | GPIO_DP);
/* BUSY-WAIT for Xilinx chip to clear its config memory. */
gpio_make_input(sc, GPIO_INIT);
for (i=0; i<10000; i++) /* 1 sec max delay */
if ((gpio_read(sc) & GPIO_INIT)==0) SLEEP(10000);
/* Configure CLK and DATA as outputs. */
gpio_set_bits(sc, GPIO_CLK); /* park CLK high */
gpio_make_output(sc, GPIO_CLK | GPIO_DATA);
/* Write bits to Xilinx; CLK is parked HIGH. */
/* DATA is set up before the RISING edge of CLK. */
for (i=0; i<len; i++)
for (j=0; j<8; j++)
{ /* LSB first */
if (data[i] & (1<<j))
gpio_set_bits(sc, GPIO_DATA); /* DATA setup */
else
gpio_clr_bits(sc, GPIO_DATA); /* DATA setup */
gpio_clr_bits(sc, GPIO_CLK); /* CLK falling edge */
gpio_set_bits(sc, GPIO_CLK); /* CLK rising edge */
}
/* Stop driving all Xilinx-related signals. */
/* Pullup and pulldown resistors take over. */
gpio_make_input(sc, GPIO_CLK | GPIO_DATA | GPIO_MODE);
free(data, M_TEMP);
return 0;
}
/* Write fragments of a command into the synthesized oscillator. */
/* DATA is set up before the RISING edge of CLK. CLK is parked low. */
static void
synth_shift_bits(softc_t *sc, u_int32_t data, u_int32_t len)
{
int i;
for (i=0; i<len; i++)
{ /* LSB first */
if (data & (1<<i))
gpio_set_bits(sc, GPIO_DATA); /* DATA setup */
else
gpio_clr_bits(sc, GPIO_DATA); /* DATA setup */
gpio_set_bits(sc, GPIO_CLK); /* CLK rising edge */
gpio_clr_bits(sc, GPIO_CLK); /* CLK falling edge */
}
}
/* Write a command to the synthesized oscillator on SSI and HSSIc. */
static void /* User context */
synth_write(softc_t *sc, struct synth *synth)
{
/* SSI cards have a programmable prescaler */
if (sc->status.card_type == LMC_CSID_SSI)
{
if (synth->prescale == 9) /* divide by 512 */
mii17_set_bits(sc, MII17_SSI_PRESCALE);
else /* divide by 32 */
mii17_clr_bits(sc, MII17_SSI_PRESCALE);
}
gpio_clr_bits(sc, GPIO_DATA | GPIO_CLK);
gpio_make_output(sc, GPIO_DATA | GPIO_CLK);
/* SYNTH is a low-true chip enable for the AV9110 chip. */
gpio_set_bits(sc, GPIO_SSI_SYNTH);
gpio_make_output(sc, GPIO_SSI_SYNTH);
gpio_clr_bits(sc, GPIO_SSI_SYNTH);
/* Serially shift the command into the AV9110 chip. */
synth_shift_bits(sc, synth->n, 7);
synth_shift_bits(sc, synth->m, 7);
synth_shift_bits(sc, synth->v, 1);
synth_shift_bits(sc, synth->x, 2);
synth_shift_bits(sc, synth->r, 2);
synth_shift_bits(sc, 0x16, 5); /* enable clk/x output */
/* SYNTH (chip enable) going high ends the command. */
gpio_set_bits(sc, GPIO_SSI_SYNTH);
gpio_make_input(sc, GPIO_SSI_SYNTH);
/* Stop driving serial-related signals; pullups/pulldowns take over. */
gpio_make_input(sc, GPIO_DATA | GPIO_CLK);
/* remember the new synthesizer parameters */
if (&sc->config.synth != synth) sc->config.synth = *synth;
}
/* Write a command to the DAC controlling the VCXO on some T3 adapters. */
/* The DAC is a TI-TLV5636: 12-bit resolution and a serial interface. */
/* DATA is set up before the FALLING edge of CLK. CLK is parked HIGH. */
static void /* User context */
dac_write(softc_t *sc, u_int16_t data)
{
int i;
/* Prepare to use DATA and CLK. */
gpio_set_bits(sc, GPIO_DATA | GPIO_CLK);
gpio_make_output(sc, GPIO_DATA | GPIO_CLK);
/* High-to-low transition prepares DAC for new value. */
gpio_set_bits(sc, GPIO_T3_DAC);
gpio_make_output(sc, GPIO_T3_DAC);
gpio_clr_bits(sc, GPIO_T3_DAC);
/* Serially shift command bits into DAC. */
for (i=0; i<16; i++)
{ /* MSB first */
if (data & (1<<(15-i)))
gpio_set_bits(sc, GPIO_DATA); /* DATA setup */
else
gpio_clr_bits(sc, GPIO_DATA); /* DATA setup */
gpio_clr_bits(sc, GPIO_CLK); /* CLK falling edge */
gpio_set_bits(sc, GPIO_CLK); /* CLK rising edge */
}
/* Done with DAC; make it an input; loads new value into DAC. */
gpio_set_bits(sc, GPIO_T3_DAC);
gpio_make_input(sc, GPIO_T3_DAC);
/* Stop driving serial-related signals; pullups/pulldowns take over. */
gpio_make_input(sc, GPIO_DATA | GPIO_CLK);
}
/* Begin HSSI card code */
static struct card hssi_card =
{
.ident = hssi_ident,
.watchdog = hssi_watchdog,
.ioctl = hssi_ioctl,
.attach = hssi_attach,
.detach = hssi_detach,
};
static void
hssi_ident(softc_t *sc)
{
printf(", EIA-613");
}
/* Called from a soft_irq once a second. */
static void
hssi_watchdog(softc_t *sc)
{
u_int16_t mii16 = mii_read(sc, 16) & MII16_HSSI_MODEM;
sc->status.link_state = STATE_UP;
led_inv(sc, MII16_HSSI_LED_UL); /* Software is alive. */
led_on(sc, MII16_HSSI_LED_LL); /* always on (SSI cable) */
/* Check the transmit clock. */
if (sc->status.tx_speed == 0)
{
led_on(sc, MII16_HSSI_LED_UR);
sc->status.link_state = STATE_DOWN;
}
else
led_off(sc, MII16_HSSI_LED_UR);
/* Is the modem ready? */
if ((mii16 & MII16_HSSI_CA)==0)
{
led_off(sc, MII16_HSSI_LED_LR);
sc->status.link_state = STATE_DOWN;
}
else
led_on(sc, MII16_HSSI_LED_LR);
/* Print the modem control signals if they changed. */
if ((sc->config.debug) && (mii16 != sc->last_mii16))
{
const char *on = "ON ", *off = "OFF";
printf("%s: TA=%s CA=%s LA=%s LB=%s LC=%s TM=%s\n", NAME_UNIT,
(mii16 & MII16_HSSI_TA) ? on : off,
(mii16 & MII16_HSSI_CA) ? on : off,
(mii16 & MII16_HSSI_LA) ? on : off,
(mii16 & MII16_HSSI_LB) ? on : off,
(mii16 & MII16_HSSI_LC) ? on : off,
(mii16 & MII16_HSSI_TM) ? on : off);
}
/* SNMP one-second-report */
sc->status.snmp.hssi.sigs = mii16 & MII16_HSSI_MODEM;
/* Remember this state until next time. */
sc->last_mii16 = mii16;
/* If a loop back is in effect, link status is UP */
if (sc->config.loop_back != CFG_LOOP_NONE)
sc->status.link_state = STATE_UP;
}
static int /* User context */
hssi_ioctl(softc_t *sc, struct ioctl *ioctl)
{
int error = 0;
if (ioctl->cmd == IOCTL_SNMP_SIGS)
{
u_int16_t mii16 = mii_read(sc, 16);
mii16 &= ~MII16_HSSI_MODEM;
mii16 |= (MII16_HSSI_MODEM & ioctl->data);
mii_write(sc, 16, mii16);
}
else if (ioctl->cmd == IOCTL_SET_STATUS)
{
if (ioctl->data)
mii16_set_bits(sc, MII16_HSSI_TA);
else
mii16_clr_bits(sc, MII16_HSSI_TA);
}
else
error = EINVAL;
return error;
}
/* Must not sleep. */
static void
hssi_attach(softc_t *sc, struct config *config)
{
if (config == NULL) /* startup config */
{
sc->status.card_type = READ_PCI_CFG(sc, TLP_CSID);
sc->config.crc_len = CFG_CRC_16;
sc->config.loop_back = CFG_LOOP_NONE;
sc->config.tx_clk_src = CFG_CLKMUX_ST;
sc->config.dte_dce = CFG_DTE;
sc->config.synth.n = 52; /* 52.000 Mbs */
sc->config.synth.m = 5;
sc->config.synth.v = 0;
sc->config.synth.x = 0;
sc->config.synth.r = 0;
sc->config.synth.prescale = 2;
}
else if (config != &sc->config) /* change config */
{
u_int32_t *old_synth = (u_int32_t *)&sc->config.synth;
u_int32_t *new_synth = (u_int32_t *)&config->synth;
if ((sc->config.crc_len == config->crc_len) &&
(sc->config.loop_back == config->loop_back) &&
(sc->config.tx_clk_src == config->tx_clk_src) &&
(sc->config.dte_dce == config->dte_dce) &&
(*old_synth == *new_synth))
return; /* nothing changed */
sc->config.crc_len = config->crc_len;
sc->config.loop_back = config->loop_back;
sc->config.tx_clk_src = config->tx_clk_src;
sc->config.dte_dce = config->dte_dce;
*old_synth = *new_synth;
}
/* If (config == &sc->config) then the FPGA microcode
* was just initialized and the current config should
* be reloaded into the card.
*/
/* set CRC length */
if (sc->config.crc_len == CFG_CRC_32)
mii16_set_bits(sc, MII16_HSSI_CRC32);
else
mii16_clr_bits(sc, MII16_HSSI_CRC32);
/* Assert pin LA in HSSI conn: ask modem for local loop. */
if (sc->config.loop_back == CFG_LOOP_LL)
mii16_set_bits(sc, MII16_HSSI_LA);
else
mii16_clr_bits(sc, MII16_HSSI_LA);
/* Assert pin LB in HSSI conn: ask modem for remote loop. */
if (sc->config.loop_back == CFG_LOOP_RL)
mii16_set_bits(sc, MII16_HSSI_LB);
else
mii16_clr_bits(sc, MII16_HSSI_LB);
if (sc->status.card_type == LMC_CSID_HSSI)
{
/* set TXCLK src */
if (sc->config.tx_clk_src == CFG_CLKMUX_ST)
gpio_set_bits(sc, GPIO_HSSI_TXCLK);
else
gpio_clr_bits(sc, GPIO_HSSI_TXCLK);
gpio_make_output(sc, GPIO_HSSI_TXCLK);
}
else if (sc->status.card_type == LMC_CSID_HSSIc)
{ /* cPCI HSSI rev C has extra features */
/* Set TXCLK source. */
u_int16_t mii16 = mii_read(sc, 16);
mii16 &= ~MII16_HSSI_CLKMUX;
mii16 |= (sc->config.tx_clk_src&3)<<13;
mii_write(sc, 16, mii16);
/* cPCI HSSI implements loopback towards the net. */
if (sc->config.loop_back == CFG_LOOP_LINE)
mii16_set_bits(sc, MII16_HSSI_LOOP);
else
mii16_clr_bits(sc, MII16_HSSI_LOOP);
/* Set DTE/DCE mode. */
if (sc->config.dte_dce == CFG_DCE)
gpio_set_bits(sc, GPIO_HSSI_DCE);
else
gpio_clr_bits(sc, GPIO_HSSI_DCE);
gpio_make_output(sc, GPIO_HSSI_DCE);
/* Program the synthesized oscillator. */
synth_write(sc, &sc->config.synth);
}
}
static void
hssi_detach(softc_t *sc)
{
mii16_clr_bits(sc, MII16_HSSI_TA);
led_on(sc, MII16_LED_ALL);
}
/* End HSSI card code */
/* Begin DS3 card code */
static struct card t3_card =
{
.ident = t3_ident,
.watchdog = t3_watchdog,
.ioctl = t3_ioctl,
.attach = t3_attach,
.detach = t3_detach,
};
static void
t3_ident(softc_t *sc)
{
printf(", TXC03401 rev B");
}
/* Called from a soft_irq once a second. */
static void
t3_watchdog(softc_t *sc)
{
u_int16_t CV;
u_int8_t CERR, PERR, MERR, FERR, FEBE;
u_int8_t ctl1, stat16, feac;
u_int16_t mii16;
sc->status.link_state = STATE_UP;
/* Read the alarm registers. */
ctl1 = framer_read(sc, T3CSR_CTL1);
stat16 = framer_read(sc, T3CSR_STAT16);
mii16 = mii_read(sc, 16);
/* Always ignore the RTLOC alarm bit. */
stat16 &= ~STAT16_RTLOC;
/* Software is alive. */
led_inv(sc, MII16_DS3_LED_GRN);
/* Receiving Alarm Indication Signal (AIS). */
if (stat16 & STAT16_RAIS) /* receiving ais */
led_on(sc, MII16_DS3_LED_BLU);
else if (ctl1 & CTL1_TXAIS) /* sending ais */
led_inv(sc, MII16_DS3_LED_BLU);
else
led_off(sc, MII16_DS3_LED_BLU);
/* Receiving Remote Alarm Indication (RAI). */
if (stat16 & STAT16_XERR) /* receiving rai */
led_on(sc, MII16_DS3_LED_YEL);
else if ((ctl1 & CTL1_XTX) == 0) /* sending rai */
led_inv(sc, MII16_DS3_LED_YEL);
else
led_off(sc, MII16_DS3_LED_YEL);
/* If certain status bits are set then the link is 'down'. */
/* The bad bits are: rxlos rxoof rxais rxidl xerr. */
if (stat16 & ~(STAT16_FEAC | STAT16_SEF))
sc->status.link_state = STATE_DOWN;
/* Declare local Red Alarm if the link is down. */
if (sc->status.link_state == STATE_DOWN)
led_on(sc, MII16_DS3_LED_RED);
else if (sc->loop_timer) /* loopback is active */
led_inv(sc, MII16_DS3_LED_RED);
else
led_off(sc, MII16_DS3_LED_RED);
/* Print latched error bits if they changed. */
if ((sc->config.debug) && ((stat16 & ~STAT16_FEAC) != sc->last_stat16))
{
const char *on = "ON ", *off = "OFF";
printf("%s: RLOS=%s ROOF=%s RAIS=%s RIDL=%s SEF=%s XERR=%s\n",
NAME_UNIT,
(stat16 & STAT16_RLOS) ? on : off,
(stat16 & STAT16_ROOF) ? on : off,
(stat16 & STAT16_RAIS) ? on : off,
(stat16 & STAT16_RIDL) ? on : off,
(stat16 & STAT16_SEF) ? on : off,
(stat16 & STAT16_XERR) ? on : off);
}
/* Check and print error counters if non-zero. */
CV = framer_read(sc, T3CSR_CVHI)<<8;
CV += framer_read(sc, T3CSR_CVLO);
PERR = framer_read(sc, T3CSR_PERR);
CERR = framer_read(sc, T3CSR_CERR);
FERR = framer_read(sc, T3CSR_FERR);
MERR = framer_read(sc, T3CSR_MERR);
FEBE = framer_read(sc, T3CSR_FEBE);
/* CV is invalid during LOS. */
if (stat16 & STAT16_RLOS) CV = 0;
/* CERR & FEBE are invalid in M13 mode */
if (sc->config.format == CFG_FORMAT_T3M13) CERR = FEBE = 0;
/* FEBE is invalid during AIS. */
if (stat16 & STAT16_RAIS) FEBE = 0;
if (sc->config.debug && (CV || PERR || CERR || FERR || MERR || FEBE))
printf("%s: CV=%u PERR=%u CERR=%u FERR=%u MERR=%u FEBE=%u\n",
NAME_UNIT, CV, PERR, CERR, FERR, MERR, FEBE);
/* Driver keeps crude link-level error counters (SNMP is better). */
sc->status.cntrs.lcv_errs += CV;
sc->status.cntrs.par_errs += PERR;
sc->status.cntrs.cpar_errs += CERR;
sc->status.cntrs.frm_errs += FERR;
sc->status.cntrs.mfrm_errs += MERR;
sc->status.cntrs.febe_errs += FEBE;
/* Check for FEAC messages (FEAC not defined in M13 mode). */
if (FORMAT_T3CPAR && (stat16 & STAT16_FEAC)) do
{
feac = framer_read(sc, T3CSR_FEAC_STK);
if ((feac & FEAC_STK_VALID)==0) break;
/* Ignore RxFEACs while a far end loopback has been requested. */
if (sc->status.snmp.t3.line & TLOOP_FAR_LINE) continue;
switch (feac & FEAC_STK_FEAC)
{
case T3BOP_LINE_UP: break;
case T3BOP_LINE_DOWN: break;
case T3BOP_LOOP_DS3:
{
if (sc->last_FEAC == T3BOP_LINE_DOWN)
{
if (sc->config.debug)
printf("%s: Received a 'line loopback deactivate' FEAC msg\n", NAME_UNIT);
mii16_clr_bits(sc, MII16_DS3_LNLBK);
sc->loop_timer = 0;
}
if (sc->last_FEAC == T3BOP_LINE_UP)
{
if (sc->config.debug)
printf("%s: Received a 'line loopback activate' FEAC msg\n", NAME_UNIT);
mii16_set_bits(sc, MII16_DS3_LNLBK);
sc->loop_timer = 300;
}
break;
}
case T3BOP_OOF:
{
if (sc->config.debug)
printf("%s: Received a 'far end LOF' FEAC msg\n", NAME_UNIT);
break;
}
case T3BOP_IDLE:
{
if (sc->config.debug)
printf("%s: Received a 'far end IDL' FEAC msg\n", NAME_UNIT);
break;
}
case T3BOP_AIS:
{
if (sc->config.debug)
printf("%s: Received a 'far end AIS' FEAC msg\n", NAME_UNIT);
break;
}
case T3BOP_LOS:
{
if (sc->config.debug)
printf("%s: Received a 'far end LOS' FEAC msg\n", NAME_UNIT);
break;
}
default:
{
if (sc->config.debug)
printf("%s: Received a 'type 0x%02X' FEAC msg\n", NAME_UNIT, feac & FEAC_STK_FEAC);
break;
}
}
sc->last_FEAC = feac & FEAC_STK_FEAC;
} while (feac & FEAC_STK_MORE);
stat16 &= ~STAT16_FEAC;
/* Send Service-Affecting priority FEAC messages */
if (((sc->last_stat16 ^ stat16) & 0xF0) && (FORMAT_T3CPAR))
{
/* Transmit continuous FEACs */
framer_write(sc, T3CSR_CTL14,
framer_read(sc, T3CSR_CTL14) & ~CTL14_FEAC10);
if (stat16 & STAT16_RLOS)
framer_write(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_LOS);
else if (stat16 & STAT16_ROOF)
framer_write(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_OOF);
else if (stat16 & STAT16_RAIS)
framer_write(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_AIS);
else if (stat16 & STAT16_RIDL)
framer_write(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_IDLE);
else
framer_write(sc, T3CSR_TX_FEAC, CTL5_EMODE);
}
/* Start sending RAI, Remote Alarm Indication. */
if ((stat16 & STAT16_ROOF) && !(stat16 & STAT16_RLOS) &&
!(sc->last_stat16 & STAT16_ROOF))
framer_write(sc, T3CSR_CTL1, ctl1 &= ~CTL1_XTX);
/* Stop sending RAI, Remote Alarm Indication. */
else if (!(stat16 & STAT16_ROOF) && (sc->last_stat16 & STAT16_ROOF))
framer_write(sc, T3CSR_CTL1, ctl1 |= CTL1_XTX);
/* Start sending AIS, Alarm Indication Signal */
if ((stat16 & STAT16_RLOS) && !(sc->last_stat16 & STAT16_RLOS))
{
mii16_set_bits(sc, MII16_DS3_FRAME);
framer_write(sc, T3CSR_CTL1, ctl1 | CTL1_TXAIS);
}
/* Stop sending AIS, Alarm Indication Signal */
else if (!(stat16 & STAT16_RLOS) && (sc->last_stat16 & STAT16_RLOS))
{
mii16_clr_bits(sc, MII16_DS3_FRAME);
framer_write(sc, T3CSR_CTL1, ctl1 & ~CTL1_TXAIS);
}
/* Time out loopback requests. */
if (sc->loop_timer)
if (--sc->loop_timer == 0)
if (mii16 & MII16_DS3_LNLBK)
{
if (sc->config.debug)
printf("%s: Timeout: Loop Down after 300 seconds\n", NAME_UNIT);
mii16_clr_bits(sc, MII16_DS3_LNLBK); /* line loopback off */
}
/* SNMP error counters */
sc->status.snmp.t3.lcv = CV;
sc->status.snmp.t3.pcv = PERR;
sc->status.snmp.t3.ccv = CERR;
sc->status.snmp.t3.febe = FEBE;
/* SNMP Line Status */
sc->status.snmp.t3.line = 0;
if (!(ctl1 & CTL1_XTX)) sc->status.snmp.t3.line |= TLINE_TX_RAI;
if (stat16 & STAT16_XERR) sc->status.snmp.t3.line |= TLINE_RX_RAI;
if (ctl1 & CTL1_TXAIS) sc->status.snmp.t3.line |= TLINE_TX_AIS;
if (stat16 & STAT16_RAIS) sc->status.snmp.t3.line |= TLINE_RX_AIS;
if (stat16 & STAT16_ROOF) sc->status.snmp.t3.line |= TLINE_LOF;
if (stat16 & STAT16_RLOS) sc->status.snmp.t3.line |= TLINE_LOS;
if (stat16 & STAT16_SEF) sc->status.snmp.t3.line |= T3LINE_SEF;
/* SNMP Loopback Status */
sc->status.snmp.t3.loop &= ~TLOOP_FAR_LINE;
if (sc->config.loop_back == CFG_LOOP_TULIP)
sc->status.snmp.t3.loop |= TLOOP_NEAR_OTHER;
if (ctl1 & CTL1_3LOOP) sc->status.snmp.t3.loop |= TLOOP_NEAR_INWARD;
if (mii16 & MII16_DS3_TRLBK) sc->status.snmp.t3.loop |= TLOOP_NEAR_OTHER;
if (mii16 & MII16_DS3_LNLBK) sc->status.snmp.t3.loop |= TLOOP_NEAR_LINE;
/*if (ctl12 & CTL12_RTPLOOP) sc->status.snmp.t3.loop |= TLOOP_NEAR_PAYLOAD; */
/* Remember this state until next time. */
sc->last_stat16 = stat16;
/* If an INWARD loopback is in effect, link status is UP */
if (sc->config.loop_back != CFG_LOOP_NONE) /* XXX INWARD ONLY */
sc->status.link_state = STATE_UP;
}
static void /* User context */
t3_send_dbl_feac(softc_t *sc, int feac1, int feac2)
{
u_int8_t tx_feac;
int i;
/* The FEAC transmitter could be sending a continuous */
/* FEAC msg when told to send a double FEAC message. */
/* So save the current state of the FEAC transmitter. */
tx_feac = framer_read(sc, T3CSR_TX_FEAC);
/* Load second FEAC code and stop FEAC transmitter. */
framer_write(sc, T3CSR_TX_FEAC, CTL5_EMODE + feac2);
/* FEAC transmitter sends 10 more FEACs and then stops. */
SLEEP(20000); /* sending one FEAC takes 1700 uSecs */
/* Load first FEAC code and start FEAC transmitter. */
framer_write(sc, T3CSR_DBL_FEAC, CTL13_DFEXEC + feac1);
/* Wait for double FEAC sequence to complete -- about 70 ms. */
for (i=0; i<10; i++) /* max delay 100 ms */
if (framer_read(sc, T3CSR_DBL_FEAC) & CTL13_DFEXEC) SLEEP(10000);
/* Flush received FEACS; don't respond to our own loop cmd! */
while (framer_read(sc, T3CSR_FEAC_STK) & FEAC_STK_VALID) DELAY(1);
/* Restore previous state of the FEAC transmitter. */
/* If it was sending a continous FEAC, it will resume. */
framer_write(sc, T3CSR_TX_FEAC, tx_feac);
}
static int /* User context */
t3_ioctl(softc_t *sc, struct ioctl *ioctl)
{
int error = 0;
switch (ioctl->cmd)
{
case IOCTL_SNMP_SEND: /* set opstatus? */
{
if (sc->config.format != CFG_FORMAT_T3CPAR)
error = EINVAL;
else if (ioctl->data == TSEND_LINE)
{
sc->status.snmp.t3.loop |= TLOOP_FAR_LINE;
t3_send_dbl_feac(sc, T3BOP_LINE_UP, T3BOP_LOOP_DS3);
}
else if (ioctl->data == TSEND_RESET)
{
t3_send_dbl_feac(sc, T3BOP_LINE_DOWN, T3BOP_LOOP_DS3);
sc->status.snmp.t3.loop &= ~TLOOP_FAR_LINE;
}
else
error = EINVAL;
break;
}
case IOCTL_SNMP_LOOP: /* set opstatus = test? */
{
if (ioctl->data == CFG_LOOP_NONE)
{
mii16_clr_bits(sc, MII16_DS3_FRAME);
mii16_clr_bits(sc, MII16_DS3_TRLBK);
mii16_clr_bits(sc, MII16_DS3_LNLBK);
framer_write(sc, T3CSR_CTL1,
framer_read(sc, T3CSR_CTL1) & ~CTL1_3LOOP);
framer_write(sc, T3CSR_CTL12,
framer_read(sc, T3CSR_CTL12) & ~(CTL12_RTPLOOP | CTL12_RTPLLEN));
}
else if (ioctl->data == CFG_LOOP_LINE)
mii16_set_bits(sc, MII16_DS3_LNLBK);
else if (ioctl->data == CFG_LOOP_OTHER)
mii16_set_bits(sc, MII16_DS3_TRLBK);
else if (ioctl->data == CFG_LOOP_INWARD)
framer_write(sc, T3CSR_CTL1,
framer_read(sc, T3CSR_CTL1) | CTL1_3LOOP);
else if (ioctl->data == CFG_LOOP_DUAL)
{
mii16_set_bits(sc, MII16_DS3_LNLBK);
framer_write(sc, T3CSR_CTL1,
framer_read(sc, T3CSR_CTL1) | CTL1_3LOOP);
}
else if (ioctl->data == CFG_LOOP_PAYLOAD)
{
mii16_set_bits(sc, MII16_DS3_FRAME);
framer_write(sc, T3CSR_CTL12,
framer_read(sc, T3CSR_CTL12) | CTL12_RTPLOOP);
framer_write(sc, T3CSR_CTL12,
framer_read(sc, T3CSR_CTL12) | CTL12_RTPLLEN);
DELAY(25); /* at least two frames (22 uS) */
framer_write(sc, T3CSR_CTL12,
framer_read(sc, T3CSR_CTL12) & ~CTL12_RTPLLEN);
}
else
error = EINVAL;
break;
}
case IOCTL_SET_STATUS:
{
#if 0
if (ioctl->data)
framer_write(sc, T3CSR_CTL1,
framer_read(sc, T3CSR_CTL1) & ~CTL1_TXIDL);
else /* off */
framer_write(sc, T3CSR_CTL1,
framer_read(sc, T3CSR_CTL1) | CTL1_TXIDL);
#endif
break;
}
default:
error = EINVAL;
break;
}
return error;
}
/* Must not sleep. */
static void
t3_attach(softc_t *sc, struct config *config)
{
int i;
u_int8_t ctl1;
if (config == NULL) /* startup config */
{
sc->status.card_type = LMC_CSID_T3;
sc->config.crc_len = CFG_CRC_16;
sc->config.loop_back = CFG_LOOP_NONE;
sc->config.format = CFG_FORMAT_T3CPAR;
sc->config.cable_len = 10; /* meters */
sc->config.scrambler = CFG_SCRAM_DL_KEN;
sc->config.tx_clk_src = CFG_CLKMUX_INT;
/* Center the VCXO -- get within 20 PPM of 44736000. */
dac_write(sc, 0x9002); /* set Vref = 2.048 volts */
dac_write(sc, 2048); /* range is 0..4095 */
}
else if (config != &sc->config) /* change config */
{
if ((sc->config.crc_len == config->crc_len) &&
(sc->config.loop_back == config->loop_back) &&
(sc->config.format == config->format) &&
(sc->config.cable_len == config->cable_len) &&
(sc->config.scrambler == config->scrambler) &&
(sc->config.tx_clk_src == config->tx_clk_src))
return; /* nothing changed */
sc->config.crc_len = config->crc_len;
sc->config.loop_back = config->loop_back;
sc->config.format = config->format;
sc->config.cable_len = config->cable_len;
sc->config.scrambler = config->scrambler;
sc->config.tx_clk_src = config->tx_clk_src;
}
/* Set cable length. */
if (sc->config.cable_len > 30)
mii16_clr_bits(sc, MII16_DS3_ZERO);
else
mii16_set_bits(sc, MII16_DS3_ZERO);
/* Set payload scrambler polynomial. */
if (sc->config.scrambler == CFG_SCRAM_LARS)
mii16_set_bits(sc, MII16_DS3_POLY);
else
mii16_clr_bits(sc, MII16_DS3_POLY);
/* Set payload scrambler on/off. */
if (sc->config.scrambler == CFG_SCRAM_OFF)
mii16_clr_bits(sc, MII16_DS3_SCRAM);
else
mii16_set_bits(sc, MII16_DS3_SCRAM);
/* Set CRC length. */
if (sc->config.crc_len == CFG_CRC_32)
mii16_set_bits(sc, MII16_DS3_CRC32);
else
mii16_clr_bits(sc, MII16_DS3_CRC32);
/* Loopback towards host thru the line interface. */
if (sc->config.loop_back == CFG_LOOP_OTHER)
mii16_set_bits(sc, MII16_DS3_TRLBK);
else
mii16_clr_bits(sc, MII16_DS3_TRLBK);
/* Loopback towards network thru the line interface. */
if (sc->config.loop_back == CFG_LOOP_LINE)
mii16_set_bits(sc, MII16_DS3_LNLBK);
else if (sc->config.loop_back == CFG_LOOP_DUAL)
mii16_set_bits(sc, MII16_DS3_LNLBK);
else
mii16_clr_bits(sc, MII16_DS3_LNLBK);
/* Configure T3 framer chip; write EVERY writeable register. */
ctl1 = CTL1_SER | CTL1_XTX;
if (sc->config.format == CFG_FORMAT_T3M13) ctl1 |= CTL1_M13MODE;
if (sc->config.loop_back == CFG_LOOP_INWARD) ctl1 |= CTL1_3LOOP;
if (sc->config.loop_back == CFG_LOOP_DUAL) ctl1 |= CTL1_3LOOP;
framer_write(sc, T3CSR_CTL1, ctl1);
framer_write(sc, T3CSR_TX_FEAC, CTL5_EMODE);
framer_write(sc, T3CSR_CTL8, CTL8_FBEC);
framer_write(sc, T3CSR_CTL12, CTL12_DLCB1 | CTL12_C21 | CTL12_MCB1);
framer_write(sc, T3CSR_DBL_FEAC, 0);
framer_write(sc, T3CSR_CTL14, CTL14_RGCEN | CTL14_TGCEN);
framer_write(sc, T3CSR_INTEN, 0);
framer_write(sc, T3CSR_CTL20, CTL20_CVEN);
/* Clear error counters and latched error bits */
/* that may have happened while initializing. */
for (i=0; i<21; i++) framer_read(sc, i);
}
static void
t3_detach(softc_t *sc)
{
framer_write(sc, T3CSR_CTL1,
framer_read(sc, T3CSR_CTL1) | CTL1_TXIDL);
led_on(sc, MII16_LED_ALL);
}
/* End DS3 card code */
/* Begin SSI card code */
static struct card ssi_card =
{
.ident = ssi_ident,
.watchdog = ssi_watchdog,
.ioctl = ssi_ioctl,
.attach = ssi_attach,
.detach = ssi_detach,
};
static void
ssi_ident(softc_t *sc)
{
printf(", LTC1343/44");
}
/* Called from a soft_irq once a second. */
static void
ssi_watchdog(softc_t *sc)
{
u_int16_t cable;
u_int16_t mii16 = mii_read(sc, 16) & MII16_SSI_MODEM;
sc->status.link_state = STATE_UP;
/* Software is alive. */
led_inv(sc, MII16_SSI_LED_UL);
/* Check the transmit clock. */
if (sc->status.tx_speed == 0)
{
led_on(sc, MII16_SSI_LED_UR);
sc->status.link_state = STATE_DOWN;
}
else
led_off(sc, MII16_SSI_LED_UR);
/* Check the external cable. */
cable = mii_read(sc, 17);
cable = cable & MII17_SSI_CABLE_MASK;
cable = cable >> MII17_SSI_CABLE_SHIFT;
if (cable == 7)
{
led_off(sc, MII16_SSI_LED_LL); /* no cable */
sc->status.link_state = STATE_DOWN;
}
else
led_on(sc, MII16_SSI_LED_LL);
/* The unit at the other end of the cable is ready if: */
/* DTE mode and DCD pin is asserted */
/* DCE mode and DSR pin is asserted */
if (((sc->config.dte_dce == CFG_DTE) && !(mii16 & MII16_SSI_DCD)) ||
((sc->config.dte_dce == CFG_DCE) && !(mii16 & MII16_SSI_DSR)))
{
led_off(sc, MII16_SSI_LED_LR);
sc->status.link_state = STATE_DOWN;
}
else
led_on(sc, MII16_SSI_LED_LR);
if (sc->config.debug && (cable != sc->status.cable_type))
printf("%s: SSI cable type changed to '%s'\n",
NAME_UNIT, ssi_cables[cable]);
sc->status.cable_type = cable;
/* Print the modem control signals if they changed. */
if ((sc->config.debug) && (mii16 != sc->last_mii16))
{
const char *on = "ON ", *off = "OFF";
printf("%s: DTR=%s DSR=%s RTS=%s CTS=%s DCD=%s RI=%s LL=%s RL=%s TM=%s\n",
NAME_UNIT,
(mii16 & MII16_SSI_DTR) ? on : off,
(mii16 & MII16_SSI_DSR) ? on : off,
(mii16 & MII16_SSI_RTS) ? on : off,
(mii16 & MII16_SSI_CTS) ? on : off,
(mii16 & MII16_SSI_DCD) ? on : off,
(mii16 & MII16_SSI_RI) ? on : off,
(mii16 & MII16_SSI_LL) ? on : off,
(mii16 & MII16_SSI_RL) ? on : off,
(mii16 & MII16_SSI_TM) ? on : off);
}
/* SNMP one-second report */
sc->status.snmp.ssi.sigs = mii16 & MII16_SSI_MODEM;
/* Remember this state until next time. */
sc->last_mii16 = mii16;
/* If a loop back is in effect, link status is UP */
if (sc->config.loop_back != CFG_LOOP_NONE)
sc->status.link_state = STATE_UP;
}
static int /* User context */
ssi_ioctl(softc_t *sc, struct ioctl *ioctl)
{
int error = 0;
if (ioctl->cmd == IOCTL_SNMP_SIGS)
{
u_int16_t mii16 = mii_read(sc, 16);
mii16 &= ~MII16_SSI_MODEM;
mii16 |= (MII16_SSI_MODEM & ioctl->data);
mii_write(sc, 16, mii16);
}
else if (ioctl->cmd == IOCTL_SET_STATUS)
{
if (ioctl->data)
mii16_set_bits(sc, (MII16_SSI_DTR | MII16_SSI_RTS | MII16_SSI_DCD));
else
mii16_clr_bits(sc, (MII16_SSI_DTR | MII16_SSI_RTS | MII16_SSI_DCD));
}
else
error = EINVAL;
return error;
}
/* Must not sleep. */
static void
ssi_attach(softc_t *sc, struct config *config)
{
if (config == NULL) /* startup config */
{
sc->status.card_type = LMC_CSID_SSI;
sc->config.crc_len = CFG_CRC_16;
sc->config.loop_back = CFG_LOOP_NONE;
sc->config.tx_clk_src = CFG_CLKMUX_ST;
sc->config.dte_dce = CFG_DTE;
sc->config.synth.n = 51; /* 1.536 MHz */
sc->config.synth.m = 83;
sc->config.synth.v = 1;
sc->config.synth.x = 1;
sc->config.synth.r = 1;
sc->config.synth.prescale = 4;
}
else if (config != &sc->config) /* change config */
{
u_int32_t *old_synth = (u_int32_t *)&sc->config.synth;
u_int32_t *new_synth = (u_int32_t *)&config->synth;
if ((sc->config.crc_len == config->crc_len) &&
(sc->config.loop_back == config->loop_back) &&
(sc->config.tx_clk_src == config->tx_clk_src) &&
(sc->config.dte_dce == config->dte_dce) &&
(*old_synth == *new_synth))
return; /* nothing changed */
sc->config.crc_len = config->crc_len;
sc->config.loop_back = config->loop_back;
sc->config.tx_clk_src = config->tx_clk_src;
sc->config.dte_dce = config->dte_dce;
*old_synth = *new_synth;
}
/* Disable the TX clock driver while programming the oscillator. */
gpio_clr_bits(sc, GPIO_SSI_DCE);
gpio_make_output(sc, GPIO_SSI_DCE);
/* Program the synthesized oscillator. */
synth_write(sc, &sc->config.synth);
/* Set DTE/DCE mode. */
/* If DTE mode then DCD & TXC are received. */
/* If DCE mode then DCD & TXC are driven. */
/* Boards with MII rev=4.0 don't drive DCD. */
if (sc->config.dte_dce == CFG_DCE)
gpio_set_bits(sc, GPIO_SSI_DCE);
else
gpio_clr_bits(sc, GPIO_SSI_DCE);
gpio_make_output(sc, GPIO_SSI_DCE);
/* Set CRC length. */
if (sc->config.crc_len == CFG_CRC_32)
mii16_set_bits(sc, MII16_SSI_CRC32);
else
mii16_clr_bits(sc, MII16_SSI_CRC32);
/* Loop towards host thru cable drivers and receivers. */
/* Asserts DCD at the far end of a null modem cable. */
if (sc->config.loop_back == CFG_LOOP_PINS)
mii16_set_bits(sc, MII16_SSI_LOOP);
else
mii16_clr_bits(sc, MII16_SSI_LOOP);
/* Assert pin LL in modem conn: ask modem for local loop. */
/* Asserts TM at the far end of a null modem cable. */
if (sc->config.loop_back == CFG_LOOP_LL)
mii16_set_bits(sc, MII16_SSI_LL);
else
mii16_clr_bits(sc, MII16_SSI_LL);
/* Assert pin RL in modem conn: ask modem for remote loop. */
if (sc->config.loop_back == CFG_LOOP_RL)
mii16_set_bits(sc, MII16_SSI_RL);
else
mii16_clr_bits(sc, MII16_SSI_RL);
}
static void
ssi_detach(softc_t *sc)
{
mii16_clr_bits(sc, (MII16_SSI_DTR | MII16_SSI_RTS | MII16_SSI_DCD));
led_on(sc, MII16_LED_ALL);
}
/* End SSI card code */
/* Begin T1E1 card code */
static struct card t1_card =
{
.ident = t1_ident,
.watchdog = t1_watchdog,
.ioctl = t1_ioctl,
.attach = t1_attach,
.detach = t1_detach,
};
static void
t1_ident(softc_t *sc)
{
printf(", Bt837%x rev %x",
framer_read(sc, Bt8370_DID)>>4,
framer_read(sc, Bt8370_DID)&0x0F);
}
/* Called from a soft_irq once a second. */
static void
t1_watchdog(softc_t *sc)
{
u_int16_t LCV = 0, FERR = 0, CRC = 0, FEBE = 0;
u_int8_t alm1, alm3, loop, isr0;
int i;
sc->status.link_state = STATE_UP;
/* Read the alarm registers */
alm1 = framer_read(sc, Bt8370_ALM1);
alm3 = framer_read(sc, Bt8370_ALM3);
loop = framer_read(sc, Bt8370_LOOP);
isr0 = framer_read(sc, Bt8370_ISR0);
/* Always ignore the SIGFRZ alarm bit, */
alm1 &= ~ALM1_SIGFRZ;
if (FORMAT_T1ANY) /* ignore RYEL in T1 modes */
alm1 &= ~ALM1_RYEL;
else if (FORMAT_E1NONE) /* ignore all alarms except LOS */
alm1 &= ALM1_RLOS;
/* Software is alive. */
led_inv(sc, MII16_T1_LED_GRN);
/* Receiving Alarm Indication Signal (AIS). */
if (alm1 & ALM1_RAIS) /* receiving ais */
led_on(sc, MII16_T1_LED_BLU);
else if (alm1 & ALM1_RLOS) /* sending ais */
led_inv(sc, MII16_T1_LED_BLU);
else
led_off(sc, MII16_T1_LED_BLU);
/* Receiving Remote Alarm Indication (RAI). */
if (alm1 & (ALM1_RMYEL | ALM1_RYEL)) /* receiving rai */
led_on(sc, MII16_T1_LED_YEL);
else if (alm1 & ALM1_RLOF) /* sending rai */
led_inv(sc, MII16_T1_LED_YEL);
else
led_off(sc, MII16_T1_LED_YEL);
/* If any alarm bits are set then the link is 'down'. */
/* The bad bits are: rmyel ryel rais ralos rlos rlof. */
/* Some alarm bits have been masked by this point. */
if (alm1) sc->status.link_state = STATE_DOWN;
/* Declare local Red Alarm if the link is down. */
if (sc->status.link_state == STATE_DOWN)
led_on(sc, MII16_T1_LED_RED);
else if (sc->loop_timer) /* loopback is active */
led_inv(sc, MII16_T1_LED_RED);
else
led_off(sc, MII16_T1_LED_RED);
/* Print latched error bits if they changed. */
if ((sc->config.debug) && (alm1 != sc->last_alm1))
{
const char *on = "ON ", *off = "OFF";
printf("%s: RLOF=%s RLOS=%s RALOS=%s RAIS=%s RYEL=%s RMYEL=%s\n",
NAME_UNIT,
(alm1 & ALM1_RLOF) ? on : off,
(alm1 & ALM1_RLOS) ? on : off,
(alm1 & ALM1_RALOS) ? on : off,
(alm1 & ALM1_RAIS) ? on : off,
(alm1 & ALM1_RYEL) ? on : off,
(alm1 & ALM1_RMYEL) ? on : off);
}
/* Check and print error counters if non-zero. */
LCV = framer_read(sc, Bt8370_LCV_LO) +
(framer_read(sc, Bt8370_LCV_HI)<<8);
if (!FORMAT_E1NONE)
FERR = framer_read(sc, Bt8370_FERR_LO) +
(framer_read(sc, Bt8370_FERR_HI)<<8);
if (FORMAT_E1CRC || FORMAT_T1ESF)
CRC = framer_read(sc, Bt8370_CRC_LO) +
(framer_read(sc, Bt8370_CRC_HI)<<8);
if (FORMAT_E1CRC)
FEBE = framer_read(sc, Bt8370_FEBE_LO) +
(framer_read(sc, Bt8370_FEBE_HI)<<8);
/* Only LCV is valid if Out-Of-Frame */
if (FORMAT_E1NONE) FERR = CRC = FEBE = 0;
if ((sc->config.debug) && (LCV || FERR || CRC || FEBE))
printf("%s: LCV=%u FERR=%u CRC=%u FEBE=%u\n",
NAME_UNIT, LCV, FERR, CRC, FEBE);
/* Driver keeps crude link-level error counters (SNMP is better). */
sc->status.cntrs.lcv_errs += LCV;
sc->status.cntrs.frm_errs += FERR;
sc->status.cntrs.crc_errs += CRC;
sc->status.cntrs.febe_errs += FEBE;
/* Check for BOP messages in the ESF Facility Data Link. */
if ((FORMAT_T1ESF) && (framer_read(sc, Bt8370_ISR1) & 0x80))
{
u_int8_t bop_code = framer_read(sc, Bt8370_RBOP) & 0x3F;
switch (bop_code)
{
case T1BOP_OOF:
{
if ((sc->config.debug) && !(sc->last_alm1 & ALM1_RMYEL))
printf("%s: Receiving a 'yellow alarm' BOP msg\n", NAME_UNIT);
break;
}
case T1BOP_LINE_UP:
{
if (sc->config.debug)
printf("%s: Received a 'line loopback activate' BOP msg\n", NAME_UNIT);
framer_write(sc, Bt8370_LOOP, LOOP_LINE);
sc->loop_timer = 305;
break;
}
case T1BOP_LINE_DOWN:
{
if (sc->config.debug)
printf("%s: Received a 'line loopback deactivate' BOP msg\n", NAME_UNIT);
framer_write(sc, Bt8370_LOOP,
framer_read(sc, Bt8370_LOOP) & ~LOOP_LINE);
sc->loop_timer = 0;
break;
}
case T1BOP_PAY_UP:
{
if (sc->config.debug)
printf("%s: Received a 'payload loopback activate' BOP msg\n", NAME_UNIT);
framer_write(sc, Bt8370_LOOP, LOOP_PAYLOAD);
sc->loop_timer = 305;
break;
}
case T1BOP_PAY_DOWN:
{
if (sc->config.debug)
printf("%s: Received a 'payload loopback deactivate' BOP msg\n", NAME_UNIT);
framer_write(sc, Bt8370_LOOP,
framer_read(sc, Bt8370_LOOP) & ~LOOP_PAYLOAD);
sc->loop_timer = 0;
break;
}
default:
{
if (sc->config.debug)
printf("%s: Received a type 0x%02X BOP msg\n", NAME_UNIT, bop_code);
break;
}
}
}
/* Check for HDLC pkts in the ESF Facility Data Link. */
if ((FORMAT_T1ESF) && (framer_read(sc, Bt8370_ISR2) & 0x70))
{
/* while (not fifo-empty && not start-of-msg) flush fifo */
while ((framer_read(sc, Bt8370_RDL1_STAT) & 0x0C)==0)
framer_read(sc, Bt8370_RDL1);
/* If (not fifo-empty), then begin processing fifo contents. */
if ((framer_read(sc, Bt8370_RDL1_STAT) & 0x0C) == 0x08)
{
u_int8_t msg[64];
u_int8_t stat = framer_read(sc, Bt8370_RDL1);
sc->status.cntrs.fdl_pkts++;
for (i=0; i<(stat & 0x3F); i++)
msg[i] = framer_read(sc, Bt8370_RDL1);
/* Is this FDL message a T1.403 performance report? */
if (((stat & 0x3F)==11) &&
((msg[0]==0x38) || (msg[0]==0x3A)) &&
(msg[1]==1) && (msg[2]==3))
/* Copy 4 PRs from FDL pkt to SNMP struct. */
memcpy(sc->status.snmp.t1.prm, msg+3, 8);
}
}
/* Check for inband loop up/down commands. */
if (FORMAT_T1ANY)
{
u_int8_t isr6 = framer_read(sc, Bt8370_ISR6);
u_int8_t alarm2 = framer_read(sc, Bt8370_ALM2);
u_int8_t tlb = framer_read(sc, Bt8370_TLB);
/* Inband Code == Loop Up && On Transition && Inband Tx Inactive */
if ((isr6 & 0x40) && (alarm2 & 0x40) && !(tlb & 1))
{ /* CSU loop up is 10000 10000 ... */
if (sc->config.debug)
printf("%s: Received a 'CSU Loop Up' inband msg\n", NAME_UNIT);
framer_write(sc, Bt8370_LOOP, LOOP_LINE); /* Loop up */
sc->loop_timer = 305;
}
/* Inband Code == Loop Down && On Transition && Inband Tx Inactive */
if ((isr6 & 0x80) && (alarm2 & 0x80) && !(tlb & 1))
{ /* CSU loop down is 100 100 100 ... */
if (sc->config.debug)
printf("%s: Received a 'CSU Loop Down' inband msg\n", NAME_UNIT);
framer_write(sc, Bt8370_LOOP,
framer_read(sc, Bt8370_LOOP) & ~LOOP_LINE); /* loop down */
sc->loop_timer = 0;
}
}
/* Manually send Yellow Alarm BOP msgs. */
if (FORMAT_T1ESF)
{
u_int8_t isr7 = framer_read(sc, Bt8370_ISR7);
if ((isr7 & 0x02) && (alm1 & 0x02)) /* RLOF on-transition */
{ /* Start sending continuous Yellow Alarm BOP messages. */
framer_write(sc, Bt8370_BOP, RBOP_25 | TBOP_CONT);
framer_write(sc, Bt8370_TBOP, 0x00); /* send BOP; order matters */
}
else if ((isr7 & 0x02) && !(alm1 & 0x02)) /* RLOF off-transition */
{ /* Stop sending continuous Yellow Alarm BOP messages. */
framer_write(sc, Bt8370_BOP, RBOP_25 | TBOP_OFF);
}
}
/* Time out loopback requests. */
if (sc->loop_timer)
if (--sc->loop_timer == 0)
if (loop)
{
if (sc->config.debug)
printf("%s: Timeout: Loop Down after 300 seconds\n", NAME_UNIT);
framer_write(sc, Bt8370_LOOP, loop & ~(LOOP_PAYLOAD | LOOP_LINE));
}
/* RX Test Pattern status */
if ((sc->config.debug) && (isr0 & 0x10))
printf("%s: RX Test Pattern Sync\n", NAME_UNIT);
/* SNMP Error Counters */
sc->status.snmp.t1.lcv = LCV;
sc->status.snmp.t1.fe = FERR;
sc->status.snmp.t1.crc = CRC;
sc->status.snmp.t1.febe = FEBE;
/* SNMP Line Status */
sc->status.snmp.t1.line = 0;
if (alm1 & ALM1_RMYEL) sc->status.snmp.t1.line |= TLINE_RX_RAI;
if (alm1 & ALM1_RYEL) sc->status.snmp.t1.line |= TLINE_RX_RAI;
if (alm1 & ALM1_RLOF) sc->status.snmp.t1.line |= TLINE_TX_RAI;
if (alm1 & ALM1_RAIS) sc->status.snmp.t1.line |= TLINE_RX_AIS;
if (alm1 & ALM1_RLOS) sc->status.snmp.t1.line |= TLINE_TX_AIS;
if (alm1 & ALM1_RLOF) sc->status.snmp.t1.line |= TLINE_LOF;
if (alm1 & ALM1_RLOS) sc->status.snmp.t1.line |= TLINE_LOS;
if (alm3 & ALM3_RMAIS) sc->status.snmp.t1.line |= T1LINE_RX_TS16_AIS;
if (alm3 & ALM3_SRED) sc->status.snmp.t1.line |= T1LINE_TX_TS16_LOMF;
if (alm3 & ALM3_SEF) sc->status.snmp.t1.line |= T1LINE_SEF;
if (isr0 & 0x10) sc->status.snmp.t1.line |= T1LINE_RX_TEST;
if ((alm1 & ALM1_RMYEL) && (FORMAT_E1CAS))
sc->status.snmp.t1.line |= T1LINE_RX_TS16_LOMF;
/* SNMP Loopback Status */
sc->status.snmp.t1.loop &= ~(TLOOP_FAR_LINE | TLOOP_FAR_PAYLOAD);
if (sc->config.loop_back == CFG_LOOP_TULIP)
sc->status.snmp.t1.loop |= TLOOP_NEAR_OTHER;
if (loop & LOOP_PAYLOAD) sc->status.snmp.t1.loop |= TLOOP_NEAR_PAYLOAD;
if (loop & LOOP_LINE) sc->status.snmp.t1.loop |= TLOOP_NEAR_LINE;
if (loop & LOOP_ANALOG) sc->status.snmp.t1.loop |= TLOOP_NEAR_OTHER;
if (loop & LOOP_FRAMER) sc->status.snmp.t1.loop |= TLOOP_NEAR_INWARD;
/* Remember this state until next time. */
sc->last_alm1 = alm1;
/* If an INWARD loopback is in effect, link status is UP */
if (sc->config.loop_back != CFG_LOOP_NONE) /* XXX INWARD ONLY */
sc->status.link_state = STATE_UP;
}
static void /* User context */
t1_send_bop(softc_t *sc, int bop_code)
{
u_int8_t bop;
int i;
/* The BOP transmitter could be sending a continuous */
/* BOP msg when told to send this BOP_25 message. */
/* So save and restore the state of the BOP machine. */
bop = framer_read(sc, Bt8370_BOP);
framer_write(sc, Bt8370_BOP, RBOP_OFF | TBOP_OFF);
for (i=0; i<40; i++) /* max delay 400 ms. */
if (framer_read(sc, Bt8370_BOP_STAT) & 0x80) SLEEP(10000);
/* send 25 repetitions of bop_code */
framer_write(sc, Bt8370_BOP, RBOP_OFF | TBOP_25);
framer_write(sc, Bt8370_TBOP, bop_code); /* order matters */
/* wait for tx to stop */
for (i=0; i<40; i++) /* max delay 400 ms. */
if (framer_read(sc, Bt8370_BOP_STAT) & 0x80) SLEEP(10000);
/* Restore previous state of the BOP machine. */
framer_write(sc, Bt8370_BOP, bop);
}
static int /* User context */
t1_ioctl(softc_t *sc, struct ioctl *ioctl)
{
int error = 0;
switch (ioctl->cmd)
{
case IOCTL_SNMP_SEND: /* set opstatus? */
{
switch (ioctl->data)
{
case TSEND_NORMAL:
{
framer_write(sc, Bt8370_TPATT, 0x00); /* tx pattern generator off */
framer_write(sc, Bt8370_RPATT, 0x00); /* rx pattern detector off */
framer_write(sc, Bt8370_TLB, 0x00); /* tx inband generator off */
break;
}
case TSEND_LINE:
{
if (FORMAT_T1ESF)
t1_send_bop(sc, T1BOP_LINE_UP);
else if (FORMAT_T1SF)
{
framer_write(sc, Bt8370_LBP, 0x08); /* 10000 10000 ... */
framer_write(sc, Bt8370_TLB, 0x05); /* 5 bits, framed, start */
}
sc->status.snmp.t1.loop |= TLOOP_FAR_LINE;
break;
}
case TSEND_PAYLOAD:
{
t1_send_bop(sc, T1BOP_PAY_UP);
sc->status.snmp.t1.loop |= TLOOP_FAR_PAYLOAD;
break;
}
case TSEND_RESET:
{
if (sc->status.snmp.t1.loop == TLOOP_FAR_LINE)
{
if (FORMAT_T1ESF)
t1_send_bop(sc, T1BOP_LINE_DOWN);
else if (FORMAT_T1SF)
{
framer_write(sc, Bt8370_LBP, 0x24); /* 100100 100100 ... */
framer_write(sc, Bt8370_TLB, 0x09); /* 6 bits, framed, start */
}
sc->status.snmp.t1.loop &= ~TLOOP_FAR_LINE;
}
if (sc->status.snmp.t1.loop == TLOOP_FAR_PAYLOAD)
{
t1_send_bop(sc, T1BOP_PAY_DOWN);
sc->status.snmp.t1.loop &= ~TLOOP_FAR_PAYLOAD;
}
break;
}
case TSEND_QRS:
{
framer_write(sc, Bt8370_TPATT, 0x1E); /* framed QRSS */
break;
}
default:
{
error = EINVAL;
break;
}
}
break;
}
case IOCTL_SNMP_LOOP: /* set opstatus = test? */
{
u_int8_t new_loop = 0;
if (ioctl->data == CFG_LOOP_NONE)
new_loop = 0;
else if (ioctl->data == CFG_LOOP_PAYLOAD)
new_loop = LOOP_PAYLOAD;
else if (ioctl->data == CFG_LOOP_LINE)
new_loop = LOOP_LINE;
else if (ioctl->data == CFG_LOOP_OTHER)
new_loop = LOOP_ANALOG;
else if (ioctl->data == CFG_LOOP_INWARD)
new_loop = LOOP_FRAMER;
else if (ioctl->data == CFG_LOOP_DUAL)
new_loop = LOOP_DUAL;
else
error = EINVAL;
if (!error)
{
framer_write(sc, Bt8370_LOOP, new_loop);
sc->config.loop_back = ioctl->data;
}
break;
}
case IOCTL_SET_STATUS:
{
#if 0
if (ioctl->data)
mii16_set_bits(sc, MII16_T1_XOE);
else
mii16_clr_bits(sc, MII16_T1_XOE);
#endif
break;
}
default:
error = EINVAL;
break;
}
return error;
}
/* Must not sleep. */
static void
t1_attach(softc_t *sc, struct config *config)
{
int i;
u_int8_t pulse, lbo, gain;
if (config == NULL) /* startup config */
{
/* Disable transmitter output drivers. */
mii16_clr_bits(sc, MII16_T1_XOE);
/* Bt8370 occasionally powers up in a loopback mode. */
/* Data sheet says zero LOOP reg and do a sw-reset. */
framer_write(sc, Bt8370_LOOP, 0x00); /* no loopback */
framer_write(sc, Bt8370_CR0, 0x80); /* sw-reset */
for (i=0; i<10; i++) /* wait for sw-reset to clear; max 10 ms */
if (framer_read(sc, Bt8370_CR0) & 0x80) DELAY(1000);
sc->status.card_type = LMC_CSID_T1E1;
sc->config.crc_len = CFG_CRC_16;
sc->config.loop_back = CFG_LOOP_NONE;
sc->config.tx_clk_src = CFG_CLKMUX_RT; /* loop timed */
#if 1 /* USA */ /* decide using time zone? */
sc->config.format = CFG_FORMAT_T1ESF;
#else /* REST OF PLANET */
sc->config.format = CFG_FORMAT_E1FASCRC;
#endif
sc->config.time_slots = 0xFFFFFFFF;
sc->config.cable_len = 10;
sc->config.tx_pulse = CFG_PULSE_AUTO;
sc->config.rx_gain_max = CFG_GAIN_AUTO;
sc->config.tx_lbo = CFG_LBO_AUTO;
}
else if (config != &sc->config) /* change config */
{
if ((sc->config.crc_len == config->crc_len) &&
(sc->config.loop_back == config->loop_back) &&
(sc->config.tx_clk_src == config->tx_clk_src) &&
(sc->config.format == config->format) &&
(sc->config.time_slots == config->time_slots) &&
(sc->config.cable_len == config->cable_len) &&
(sc->config.tx_pulse == config->tx_pulse) &&
(sc->config.rx_gain_max == config->rx_gain_max) &&
(sc->config.tx_lbo == config->tx_lbo))
return; /* nothing changed */
sc->config.crc_len = config->crc_len;
sc->config.loop_back = config->loop_back;
sc->config.tx_clk_src = config->tx_clk_src;
sc->config.format = config->format;
sc->config.cable_len = config->cable_len;
sc->config.time_slots = config->time_slots;
sc->config.tx_pulse = config->tx_pulse;
sc->config.rx_gain_max = config->rx_gain_max;
sc->config.tx_lbo = config->tx_lbo;
}
/* Set CRC length. */
if (sc->config.crc_len == CFG_CRC_32)
mii16_set_bits(sc, MII16_T1_CRC32);
else
mii16_clr_bits(sc, MII16_T1_CRC32);
/* Invert HDLC payload data in SF/AMI mode. */
/* HDLC stuff bits satisfy T1 pulse density. */
if (FORMAT_T1SF)
mii16_set_bits(sc, MII16_T1_INVERT);
else
mii16_clr_bits(sc, MII16_T1_INVERT);
/* Set the transmitter output impedance. */
if (FORMAT_E1ANY) mii16_set_bits(sc, MII16_T1_Z);
/* 001:CR0 -- Control Register 0 - T1/E1 and frame format */
framer_write(sc, Bt8370_CR0, sc->config.format);
/* 002:JAT_CR -- Jitter Attenuator Control Register */
if (sc->config.tx_clk_src == CFG_CLKMUX_RT) /* loop timing */
framer_write(sc, Bt8370_JAT_CR, 0xA3); /* JAT in RX path */
else
{ /* 64-bit elastic store; free-running JCLK and CLADO */
framer_write(sc, Bt8370_JAT_CR, 0x4B); /* assert jcenter */
framer_write(sc, Bt8370_JAT_CR, 0x43); /* release jcenter */
}
/* 00C-013:IERn -- Interrupt Enable Registers */
for (i=Bt8370_IER7; i<=Bt8370_IER0; i++)
framer_write(sc, i, 0); /* no interrupts; polled */
/* 014:LOOP -- loopbacks */
if (sc->config.loop_back == CFG_LOOP_PAYLOAD)
framer_write(sc, Bt8370_LOOP, LOOP_PAYLOAD);
else if (sc->config.loop_back == CFG_LOOP_LINE)
framer_write(sc, Bt8370_LOOP, LOOP_LINE);
else if (sc->config.loop_back == CFG_LOOP_OTHER)
framer_write(sc, Bt8370_LOOP, LOOP_ANALOG);
else if (sc->config.loop_back == CFG_LOOP_INWARD)
framer_write(sc, Bt8370_LOOP, LOOP_FRAMER);
else if (sc->config.loop_back == CFG_LOOP_DUAL)
framer_write(sc, Bt8370_LOOP, LOOP_DUAL);
else
framer_write(sc, Bt8370_LOOP, 0x00); /* no loopback */
/* 015:DL3_TS -- Data Link 3 */
framer_write(sc, Bt8370_DL3_TS, 0x00); /* disabled */
/* 018:PIO -- Programmable I/O */
framer_write(sc, Bt8370_PIO, 0xFF); /* all pins are outputs */
/* 019:POE -- Programmable Output Enable */
framer_write(sc, Bt8370_POE, 0x00); /* all outputs are enabled */
/* 01A;CMUX -- Clock Input Mux */
if (sc->config.tx_clk_src == CFG_CLKMUX_EXT)
framer_write(sc, Bt8370_CMUX, 0x0C); /* external timing */
else
framer_write(sc, Bt8370_CMUX, 0x0F); /* internal timing */
/* 020:LIU_CR -- Line Interface Unit Config Register */
framer_write(sc, Bt8370_LIU_CR, 0xC1); /* reset LIU, squelch */
/* 022:RLIU_CR -- RX Line Interface Unit Config Reg */
/* Errata sheet says don't use freeze-short, but we do anyway! */
framer_write(sc, Bt8370_RLIU_CR, 0xB1); /* AGC=2048, Long Eye */
/* Select Rx sensitivity based on cable length. */
if ((gain = sc->config.rx_gain_max) == CFG_GAIN_AUTO)
{
if (sc->config.cable_len > 2000)
gain = CFG_GAIN_EXTEND;
else if (sc->config.cable_len > 1000)
gain = CFG_GAIN_LONG;
else if (sc->config.cable_len > 100)
gain = CFG_GAIN_MEDIUM;
else
gain = CFG_GAIN_SHORT;
}
/* 024:VGA_MAX -- Variable Gain Amplifier Max gain */
framer_write(sc, Bt8370_VGA_MAX, gain);
/* 028:PRE_EQ -- Pre Equalizer */
if (gain == CFG_GAIN_EXTEND)
framer_write(sc, Bt8370_PRE_EQ, 0xE6); /* ON; thresh 6 */
else
framer_write(sc, Bt8370_PRE_EQ, 0xA6); /* OFF; thresh 6 */
/* 038-03C:GAINn -- RX Equalizer gain thresholds */
framer_write(sc, Bt8370_GAIN0, 0x24);
framer_write(sc, Bt8370_GAIN1, 0x28);
framer_write(sc, Bt8370_GAIN2, 0x2C);
framer_write(sc, Bt8370_GAIN3, 0x30);
framer_write(sc, Bt8370_GAIN4, 0x34);
/* 040:RCR0 -- Receiver Control Register 0 */
if (FORMAT_T1ESF)
framer_write(sc, Bt8370_RCR0, 0x05); /* B8ZS, 2/5 FErrs */
else if (FORMAT_T1SF)
framer_write(sc, Bt8370_RCR0, 0x84); /* AMI, 2/5 FErrs */
else if (FORMAT_E1NONE)
framer_write(sc, Bt8370_RCR0, 0x41); /* HDB3, rabort */
else if (FORMAT_E1CRC)
framer_write(sc, Bt8370_RCR0, 0x09); /* HDB3, 3 FErrs or 915 CErrs */
else /* E1 no CRC */
framer_write(sc, Bt8370_RCR0, 0x19); /* HDB3, 3 FErrs */
/* 041:RPATT -- Receive Test Pattern configuration */
framer_write(sc, Bt8370_RPATT, 0x3E); /* looking for framed QRSS */
/* 042:RLB -- Receive Loop Back code detector config */
framer_write(sc, Bt8370_RLB, 0x09); /* 6 bits down; 5 bits up */
/* 043:LBA -- Loop Back Activate code */
framer_write(sc, Bt8370_LBA, 0x08); /* 10000 10000 10000 ... */
/* 044:LBD -- Loop Back Deactivate code */
framer_write(sc, Bt8370_LBD, 0x24); /* 100100 100100 100100 ... */
/* 045:RALM -- Receive Alarm signal configuration */
framer_write(sc, Bt8370_RALM, 0x0C); /* yel_intg rlof_intg */
/* 046:LATCH -- Alarm/Error/Counter Latch register */
framer_write(sc, Bt8370_LATCH, 0x1F); /* stop_cnt latch_{cnt,err,alm} */
/* Select Pulse Shape based on cable length (T1 only). */
if ((pulse = sc->config.tx_pulse) == CFG_PULSE_AUTO)
{
if (FORMAT_T1ANY)
{
if (sc->config.cable_len > 200)
pulse = CFG_PULSE_T1CSU;
else if (sc->config.cable_len > 160)
pulse = CFG_PULSE_T1DSX4;
else if (sc->config.cable_len > 120)
pulse = CFG_PULSE_T1DSX3;
else if (sc->config.cable_len > 80)
pulse = CFG_PULSE_T1DSX2;
else if (sc->config.cable_len > 40)
pulse = CFG_PULSE_T1DSX1;
else
pulse = CFG_PULSE_T1DSX0;
}
else
pulse = CFG_PULSE_E1TWIST;
}
/* Select Line Build Out based on cable length (T1CSU only). */
if ((lbo = sc->config.tx_lbo) == CFG_LBO_AUTO)
{
if (pulse == CFG_PULSE_T1CSU)
{
if (sc->config.cable_len > 1500)
lbo = CFG_LBO_0DB;
else if (sc->config.cable_len > 1000)
lbo = CFG_LBO_7DB;
else if (sc->config.cable_len > 500)
lbo = CFG_LBO_15DB;
else
lbo = CFG_LBO_22DB;
}
else
lbo = 0;
}
/* 068:TLIU_CR -- Transmit LIU Control Register */
framer_write(sc, Bt8370_TLIU_CR, (0x40 | (lbo & 0x30) | (pulse & 0x0E)));
/* 070:TCR0 -- Transmit Framer Configuration */
framer_write(sc, Bt8370_TCR0, sc->config.format>>1);
/* 071:TCR1 -- Transmitter Configuration */
if (FORMAT_T1SF)
framer_write(sc, Bt8370_TCR1, 0x43); /* tabort, AMI PDV enforced */
else
framer_write(sc, Bt8370_TCR1, 0x41); /* tabort, B8ZS or HDB3 */
/* 072:TFRM -- Transmit Frame format MYEL YEL MF FE CRC FBIT */
if (sc->config.format == CFG_FORMAT_T1ESF)
framer_write(sc, Bt8370_TFRM, 0x0B); /* - YEL MF - CRC FBIT */
else if (sc->config.format == CFG_FORMAT_T1SF)
framer_write(sc, Bt8370_TFRM, 0x19); /* - YEL MF - - FBIT */
else if (sc->config.format == CFG_FORMAT_E1FAS)
framer_write(sc, Bt8370_TFRM, 0x11); /* - YEL - - - FBIT */
else if (sc->config.format == CFG_FORMAT_E1FASCRC)
framer_write(sc, Bt8370_TFRM, 0x1F); /* - YEL MF FE CRC FBIT */
else if (sc->config.format == CFG_FORMAT_E1FASCAS)
framer_write(sc, Bt8370_TFRM, 0x31); /* MYEL YEL - - - FBIT */
else if (sc->config.format == CFG_FORMAT_E1FASCRCCAS)
framer_write(sc, Bt8370_TFRM, 0x3F); /* MYEL YEL MF FE CRC FBIT */
else if (sc->config.format == CFG_FORMAT_E1NONE)
framer_write(sc, Bt8370_TFRM, 0x00); /* NO FRAMING BITS AT ALL! */
/* 073:TERROR -- Transmit Error Insert */
framer_write(sc, Bt8370_TERROR, 0x00); /* no errors, please! */
/* 074:TMAN -- Transmit Manual Sa-byte/FEBE configuration */
framer_write(sc, Bt8370_TMAN, 0x00); /* none */
/* 075:TALM -- Transmit Alarm Signal Configuration */
if (FORMAT_E1ANY)
framer_write(sc, Bt8370_TALM, 0x38); /* auto_myel auto_yel auto_ais */
else if (FORMAT_T1ANY)
framer_write(sc, Bt8370_TALM, 0x18); /* auto_yel auto_ais */
/* 076:TPATT -- Transmit Test Pattern Configuration */
framer_write(sc, Bt8370_TPATT, 0x00); /* disabled */
/* 077:TLB -- Transmit Inband Loopback Code Configuration */
framer_write(sc, Bt8370_TLB, 0x00); /* disabled */
/* 090:CLAD_CR -- Clack Rate Adapter Configuration */
if (FORMAT_T1ANY)
framer_write(sc, Bt8370_CLAD_CR, 0x06); /* loop filter gain 1/2^6 */
else
framer_write(sc, Bt8370_CLAD_CR, 0x08); /* loop filter gain 1/2^8 */
/* 091:CSEL -- CLAD frequency Select */
if (FORMAT_T1ANY)
framer_write(sc, Bt8370_CSEL, 0x55); /* 1544 kHz */
else
framer_write(sc, Bt8370_CSEL, 0x11); /* 2048 kHz */
/* 092:CPHASE -- CLAD Phase detector */
if (FORMAT_T1ANY)
framer_write(sc, Bt8370_CPHASE, 0x22); /* phase compare @ 386 kHz */
else
framer_write(sc, Bt8370_CPHASE, 0x00); /* phase compare @ 2048 kHz */
if (FORMAT_T1ESF) /* BOP & PRM are enabled in T1ESF mode only. */
{
/* 0A0:BOP -- Bit Oriented Protocol messages */
framer_write(sc, Bt8370_BOP, RBOP_25 | TBOP_OFF);
/* 0A4:DL1_TS -- Data Link 1 Time Slot Enable */
framer_write(sc, Bt8370_DL1_TS, 0x40); /* FDL bits in odd frames */
/* 0A6:DL1_CTL -- Data Link 1 Control */
framer_write(sc, Bt8370_DL1_CTL, 0x03); /* FCS mode, TX on, RX on */
/* 0A7:RDL1_FFC -- Rx Data Link 1 Fifo Fill Control */
framer_write(sc, Bt8370_RDL1_FFC, 0x30); /* assert "near full" at 48 */
/* 0AA:PRM -- Performance Report Messages */
framer_write(sc, Bt8370_PRM, 0x80);
}
/* 0D0:SBI_CR -- System Bus Interface Configuration Register */
if (FORMAT_T1ANY)
framer_write(sc, Bt8370_SBI_CR, 0x47); /* 1.544 with 24 TS +Fbits */
else
framer_write(sc, Bt8370_SBI_CR, 0x46); /* 2.048 with 32 TS */
/* 0D1:RSB_CR -- Receive System Bus Configuration Register */
/* Change RINDO & RFSYNC on falling edge of RSBCLKI. */
framer_write(sc, Bt8370_RSB_CR, 0x70);
/* 0D2,0D3:RSYNC_{TS,BIT} -- Receive frame Sync offset */
framer_write(sc, Bt8370_RSYNC_BIT, 0x00);
framer_write(sc, Bt8370_RSYNC_TS, 0x00);
/* 0D4:TSB_CR -- Transmit System Bus Configuration Register */
/* Change TINDO & TFSYNC on falling edge of TSBCLKI. */
framer_write(sc, Bt8370_TSB_CR, 0x30);
/* 0D5,0D6:TSYNC_{TS,BIT} -- Transmit frame Sync offset */
framer_write(sc, Bt8370_TSYNC_BIT, 0x00);
framer_write(sc, Bt8370_TSYNC_TS, 0x00);
/* 0D7:RSIG_CR -- Receive SIGnalling Configuratin Register */
framer_write(sc, Bt8370_RSIG_CR, 0x00);
/* Assign and configure 64Kb TIME SLOTS. */
/* TS24..TS1 must be assigned for T1, TS31..TS0 for E1. */
/* Timeslots with no user data have RINDO and TINDO off. */
for (sc->status.time_slots = 0, i=0; i<32; i++)
{
/* 0E0-0FF:SBCn -- System Bus Per-Channel Control */
if (FORMAT_T1ANY && (i==0 || i>24))
framer_write(sc, Bt8370_SBCn +i, 0x00); /* not assigned in T1 mode */
else if (FORMAT_E1ANY && (i==0) && !FORMAT_E1NONE)
framer_write(sc, Bt8370_SBCn +i, 0x01); /* assigned, TS0 o/h bits */
else if (FORMAT_E1CAS && (i==16) && !FORMAT_E1NONE)
framer_write(sc, Bt8370_SBCn +i, 0x01); /* assigned, TS16 o/h bits */
else if ((sc->status.time_slots |= (sc->config.time_slots & (1<<i))))
framer_write(sc, Bt8370_SBCn +i, 0x0D); /* assigned, RINDO, TINDO */
else
framer_write(sc, Bt8370_SBCn +i, 0x01); /* assigned, idle */
/* 100-11F:TPCn -- Transmit Per-Channel Control */
if (FORMAT_E1CAS && (i==0))
framer_write(sc, Bt8370_TPCn +i, 0x30); /* tidle, sig=0000 (MAS) */
else if (FORMAT_E1CAS && (i==16))
framer_write(sc, Bt8370_TPCn +i, 0x3B); /* tidle, sig=1011 (XYXX) */
else if ((sc->config.time_slots & (1<<i)) == 0)
framer_write(sc, Bt8370_TPCn +i, 0x20); /* tidle: use TSLIP_LOn */
else
framer_write(sc, Bt8370_TPCn +i, 0x00); /* nothing special */
/* 140-15F:TSLIP_LOn -- Transmit PCM Slip Buffer */
framer_write(sc, Bt8370_TSLIP_LOn +i, 0x7F); /* idle chan data */
/* 180-19F:RPCn -- Receive Per-Channel Control */
framer_write(sc, Bt8370_RPCn +i, 0x00); /* nothing special */
}
/* Enable transmitter output drivers. */
mii16_set_bits(sc, MII16_T1_XOE);
}
static void
t1_detach(softc_t *sc)
{
led_on(sc, MII16_LED_ALL);
}
/* End T1E1 card code */
#if NETGRAPH /* FreeBSD */
static struct line netgraph_line =
{
.watchdog = netgraph_line_watchdog,
.ioctl = netgraph_line_ioctl,
.input = netgraph_line_input,
.output = netgraph_line_output,
.open = netgraph_line_open,
.attach = netgraph_line_attach,
.detach = netgraph_line_detach,
};
static void
netgraph_line_watchdog(softc_t *sc)
{
sc->status.line_pkg = PKG_NETGRAPH;
sc->status.line_prot = PROT_NONE;
}
static int
netgraph_line_ioctl(softc_t *sc, u_long cmd, caddr_t data)
{
if (sc->config.debug)
printf("%s: netgraph_line_ioctl() was called\n", NAME_UNIT);
return EINVAL;
}
static void
netgraph_line_input(softc_t *sc, struct mbuf *m)
{
int error; /* ignore error */
NG_SEND_DATA_ONLY(error, sc->ng_hook, m);
}
static void
netgraph_line_output(softc_t *sc)
{
if (!IFQ_IS_EMPTY(&sc->ng_fastq))
IFQ_DEQUEUE(&sc->ng_fastq, sc->tx_mbuf);
else
IFQ_DEQUEUE(&sc->ng_sndq, sc->tx_mbuf);
}
static int
netgraph_line_open(softc_t *sc, struct config *config)
{
sc->config.line_prot = PROT_NONE;
return 0;
}
static int
netgraph_line_attach(softc_t *sc, struct config *config)
{
int error;
if ((error = ng_attach(sc)))
return error;
sc->config.line_prot = PROT_NONE;
sc->line = &netgraph_line;
return 0;
}
static int /* never fails */
netgraph_line_detach(softc_t *sc)
{
ng_detach(sc);
sc->config.line_pkg = PKG_NONE;
sc->config.line_prot = PROT_NONE;
sc->line = NULL;
return 0;
}
#endif /* NETGRAPH */
#if SYNC_PPP /* Linux */
static struct line sync_ppp_line =
{
.watchdog = sync_ppp_line_watchdog,
.ioctl = sync_ppp_line_ioctl,
.type = sync_ppp_line_type,
.mtu = sync_ppp_line_mtu,
.open = sync_ppp_line_open,
.attach = sync_ppp_line_attach,
.detach = sync_ppp_line_detach,
};
static void
sync_ppp_line_watchdog(softc_t *sc)
{
/* Notice when the link comes up. */
if ((sc->last_link_state != STATE_UP) &&
(sc->status.link_state == STATE_UP))
sppp_reopen(sc->netdev);
/* Notice when the link goes down. */
if ((sc->last_link_state == STATE_UP) &&
(sc->status.link_state != STATE_UP))
sppp_close(sc->netdev);
/* Report current line protocol. */
sc->status.line_pkg = PKG_SYNC_PPP;
if (sc->sppp->pp_flags & PP_CISCO)
sc->status.line_prot = PROT_C_HDLC;
else
sc->status.line_prot = PROT_PPP;
/* Report keep-alive status. */
sc->status.keep_alive = sc->sppp->pp_flags & PP_KEEPALIVE;
}
static int
sync_ppp_line_ioctl(softc_t *sc, struct ifreq *ifr, int cmd)
{
return sppp_do_ioctl(sc->netdev, ifr, cmd);
}
static int
sync_ppp_line_type(softc_t *sc, struct sk_buff *skb)
{
return htons(ETH_P_WAN_PPP);
}
static int
sync_ppp_line_mtu(softc_t *sc, int mtu)
{
return ((mtu < 128) || (mtu > PPP_MTU)) ? -EINVAL : 0;
}
static int /* never fails */
sync_ppp_line_open(softc_t *sc, struct config *config)
{
/* Refresh the keep_alive flag. */
if (config->keep_alive)
sc->sppp->pp_flags |= PP_KEEPALIVE;
else
sc->sppp->pp_flags &= ~PP_KEEPALIVE;
sc->config.keep_alive = config->keep_alive;
/* Done if line_prot isn't changing. */
if (config->line_prot == sc->config.line_prot)
return 0;
/* Close */
sppp_close(sc->netdev);
/* Change line protocol. */
switch (config->line_prot)
{
case PROT_PPP:
sc->sppp->pp_flags &= ~PP_CISCO;
sc->netdev->type = ARPHRD_PPP;
sc->config.line_prot = PROT_PPP;
break;
default:
case PROT_C_HDLC:
sc->sppp->pp_flags |= PP_CISCO;
sc->netdev->type = ARPHRD_CISCO;
sc->config.line_prot = PROT_C_HDLC;
break;
}
/* Open */
sppp_open(sc->netdev);
return 0;
}
static int /* never fails */
sync_ppp_line_attach(softc_t *sc, struct config *config)
{
sc->ppd = &sc->ppp_dev; /* struct ppp_device* */
sc->netdev->priv = &sc->ppd; /* struct ppp_device** */
sc->ppp_dev.dev = sc->netdev;
sc->sppp = &sc->ppp_dev.sppp;
sppp_attach(&sc->ppp_dev);
sc->netdev->do_ioctl = netdev_ioctl;
config->keep_alive = 1;
sc->config.line_pkg = PKG_SYNC_PPP;
sc->line = &sync_ppp_line;
return 0;
}
static int /* never fails */
sync_ppp_line_detach(softc_t *sc)
{
sppp_close(sc->netdev);
sppp_detach(sc->netdev);
netdev_setup(sc->netdev);
sc->config.line_pkg = PKG_NONE;
sc->config.line_prot = PROT_NONE;
sc->line = NULL;
return 0;
}
#endif /* SYNC_PPP */
#if GEN_HDLC /* Linux only */
static struct line gen_hdlc_line =
{
.watchdog = gen_hdlc_line_watchdog,
.ioctl = gen_hdlc_line_ioctl,
.type = gen_hdlc_line_type,
.mtu = gen_hdlc_line_mtu,
.open = gen_hdlc_line_open,
.attach = gen_hdlc_line_attach,
.detach = gen_hdlc_line_detach,
};
static void
gen_hdlc_line_watchdog(softc_t *sc)
{
/* Notice when the link comes up. */
if ((sc->last_link_state != STATE_UP) &&
(sc->status.link_state == STATE_UP))
hdlc_set_carrier(1, sc->netdev);
/* Notice when the link goes down. */
if ((sc->last_link_state == STATE_UP) &&
(sc->status.link_state != STATE_UP))
hdlc_set_carrier(0, sc->netdev);
/* Report current line protocol. */
sc->status.line_pkg = PKG_GEN_HDLC;
switch (sc->hdlcdev->proto.id)
{
case IF_PROTO_PPP:
{
struct sppp* sppp = &sc->hdlcdev->state.ppp.pppdev.sppp;
sc->status.keep_alive = sppp->pp_flags & PP_KEEPALIVE;
sc->status.line_prot = PROT_PPP;
break;
}
case IF_PROTO_CISCO:
sc->status.line_prot = PROT_C_HDLC;
break;
case IF_PROTO_FR:
sc->status.line_prot = PROT_FRM_RLY;
break;
case IF_PROTO_HDLC:
sc->status.line_prot = PROT_IP_HDLC;
break;
case IF_PROTO_X25:
sc->status.line_prot = PROT_X25;
break;
case IF_PROTO_HDLC_ETH:
sc->status.line_prot = PROT_ETH_HDLC;
break;
default:
sc->status.line_prot = PROT_NONE;
break;
}
}
static int
gen_hdlc_line_ioctl(softc_t *sc, struct ifreq *ifr, int cmd)
{
te1_settings settings;
int error = 0;
if (cmd == SIOCWANDEV)
switch (ifr->ifr_settings.type)
{
case IF_GET_IFACE: /* get interface config */
{
unsigned int size;
/* NOTE: This assumes struct sync_serial_settings has the */
/* same layout as the first part of struct te1_settings. */
if (sc->status.card_type == LMC_CSID_T1E1)
{
if (FORMAT_T1ANY) ifr->ifr_settings.type = IF_IFACE_T1;
if (FORMAT_E1ANY) ifr->ifr_settings.type = IF_IFACE_E1;
size = sizeof(te1_settings);
}
else
{
ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
size = sizeof(sync_serial_settings);
}
if (ifr->ifr_settings.size < size)
{
ifr->ifr_settings.size = size;
return -ENOBUFS;
}
ifr->ifr_settings.size = size;
if (sc->config.tx_clk_src == CFG_CLKMUX_ST)
settings.clock_type = CLOCK_EXT;
if (sc->config.tx_clk_src == CFG_CLKMUX_INT)
settings.clock_type = CLOCK_TXINT;
if (sc->config.tx_clk_src == CFG_CLKMUX_RT)
settings.clock_type = CLOCK_TXFROMRX;
settings.loopback = (sc->config.loop_back != CFG_LOOP_NONE) ? 1:0;
settings.clock_rate = sc->status.tx_speed;
if (sc->status.card_type == LMC_CSID_T1E1)
settings.slot_map = sc->status.time_slots;
error = copy_to_user(ifr->ifr_settings.ifs_ifsu.te1,
&settings, size);
break;
}
case IF_IFACE_SYNC_SERIAL: /* set interface config */
case IF_IFACE_T1:
case IF_IFACE_E1:
{
struct config config = sc->config;
if (!capable(CAP_NET_ADMIN)) return -EPERM;
if (ifr->ifr_settings.size > sizeof(te1_settings))
return -ENOBUFS;
error = copy_from_user(&settings,
ifr->ifr_settings.ifs_ifsu.te1, sizeof(te1_settings));
if (settings.clock_type == CLOCK_EXT)
config.tx_clk_src = CFG_CLKMUX_ST;
else if (settings.clock_type == CLOCK_TXINT)
config.tx_clk_src = CFG_CLKMUX_INT;
else if (settings.clock_type == CLOCK_TXFROMRX)
config.tx_clk_src = CFG_CLKMUX_RT;
if (settings.loopback)
config.loop_back = CFG_LOOP_TULIP;
else
config.loop_back = CFG_LOOP_NONE;
tulip_loop(sc, &config);
sc->card->attach(sc, &config);
break;
}
default: /* Pass the rest to the line pkg. */
{
error = hdlc_ioctl(sc->netdev, ifr, cmd);
break;
}
}
else
error = -EINVAL;
return error;
}
static int
gen_hdlc_line_type(softc_t *sc, struct sk_buff *skb)
{
return hdlc_type_trans(skb, sc->netdev);
}
static int
gen_hdlc_line_mtu(softc_t *sc, int mtu)
{
return ((mtu < 68) || (mtu > HDLC_MAX_MTU)) ? -EINVAL : 0;
}
static int
gen_hdlc_line_open(softc_t *sc, struct config *config)
{
int error = 0;
/* Refresh the keep_alive flag. */
if (sc->hdlcdev->proto.id == IF_PROTO_PPP)
{
struct sppp* sppp = &sc->hdlcdev->state.ppp.pppdev.sppp;
if (config->keep_alive)
sppp->pp_flags |= PP_KEEPALIVE;
else
sppp->pp_flags &= ~PP_KEEPALIVE;
sc->config.keep_alive = config->keep_alive;
}
/* Done if line_prot isn't changing. */
if (config->line_prot == sc->config.line_prot)
return 0;
/* Close */
hdlc_close(sc->netdev);
/* Generic-HDLC gets protocol params using copy_from_user().
* This is a problem for a kernel-resident device driver.
* Luckily, PPP doesn't need any params so no copy_from_user().
*/
/* Change line protocol. */
if (config->line_prot == PROT_PPP)
{
struct ifreq ifr;
ifr.ifr_settings.size = 0;
ifr.ifr_settings.type = IF_PROTO_PPP;
hdlc_ioctl(sc->netdev, &ifr, SIOCWANDEV);
}
/* Changing to any protocol other than PPP */
/* requires using the 'sethdlc' program. */
/* Open */
if ((error = hdlc_open(sc->netdev)))
{
if (sc->config.debug)
printk("%s: hdlc_open(): error %d\n", NAME_UNIT, error);
if (error == -ENOSYS)
printk("%s: Try 'sethdlc %s hdlc|ppp|cisco|fr'\n",
NAME_UNIT, NAME_UNIT);
sc->config.line_prot = PROT_NONE;
}
else
sc->config.line_prot = config->line_prot;
return error;
}
static int /* never fails */
gen_hdlc_line_attach(softc_t *sc, struct config *config)
{
sc->netdev->priv = sc->hdlcdev;
/* hdlc_attach(sc->netdev); */
sc->netdev->mtu = HDLC_MAX_MTU;
sc->hdlcdev->attach = gen_hdlc_card_params;
sc->hdlcdev->xmit = netdev_start;
config->keep_alive = 1;
sc->config.line_pkg = PKG_GEN_HDLC;
sc->line = &gen_hdlc_line;
return 0;
}
static int /* never fails */
gen_hdlc_line_detach(softc_t *sc)
{
hdlc_close(sc->netdev);
/* hdlc_detach(sc->netdev); */
hdlc_proto_detach(sc->hdlcdev);
memset(&sc->hdlcdev->proto, 0, sizeof(sc->hdlcdev->proto));
netdev_setup(sc->netdev);
sc->config.line_pkg = PKG_NONE;
sc->config.line_prot = PROT_NONE;
sc->line = NULL;
return 0;
}
static int
gen_hdlc_card_params(struct net_device *netdev,
unsigned short encoding, unsigned short parity)
{
softc_t *sc = NETDEV2SC(netdev);
struct config config = sc->config;
/* Encoding doesn't seem to apply to synchronous interfaces, */
/* but Parity seems to be generic-HDLC's name for CRC. */
if (parity == PARITY_CRC32_PR1_CCITT)
config.crc_len = CFG_CRC_32;
if (parity == PARITY_CRC16_PR1_CCITT)
config.crc_len = CFG_CRC_16;
sc->card->attach(sc, &config);
return 0;
}
#endif /* GEN_HDLC */
#if P2P /* BSD/OS */
static struct line p2p_line =
{
.watchdog = p2p_line_watchdog,
.ioctl = p2p_line_ioctl,
.input = p2p_line_input,
.output = p2p_line_output,
.open = p2p_line_open,
.attach = p2p_line_attach,
.detach = p2p_line_detach,
};
static void
p2p_line_watchdog(softc_t *sc)
{
/* Notice change in link status. */
if ((sc->last_link_state != sc->status.link_state) &&
/* if_slowtimo() can run before raw_init() has inited rawcb. */
(sc->p2p->p2p_modem != NULL) && (rawcb.rcb_next != NULL))
(*sc->p2p->p2p_modem)(sc->p2p, sc->status.link_state==STATE_UP);
/* Report current line protocol. */
sc->status.line_pkg = PKG_P2P;
switch (sc->ifp->if_type)
{
case IFT_PPP:
sc->status.line_prot = PROT_PPP;
break;
case IFT_PTPSERIAL:
sc->status.line_prot = PROT_C_HDLC;
break;
case IFT_FRELAY:
sc->status.line_prot = PROT_FRM_RLY;
break;
default:
sc->status.line_prot = PROT_NONE;
break;
}
}
static int
p2p_line_ioctl(softc_t *sc, u_long cmd, caddr_t data)
{
return p2p_ioctl(sc->ifp, cmd, data);
}
static void
p2p_line_input(softc_t *sc, struct mbuf *mbuf)
{
struct mbuf *new_mbuf = mbuf;
while (new_mbuf)
{
sc->p2p->p2p_hdrinput(sc->p2p, new_mbuf->m_data, new_mbuf->m_len);
new_mbuf = new_mbuf->m_next;
}
sc->p2p->p2p_input(sc->p2p, NULL);
m_freem(mbuf);
}
static void
p2p_line_output(softc_t *sc)
{
if (!IFQ_IS_EMPTY(&sc->p2p->p2p_isnd))
IFQ_DEQUEUE(&sc->p2p->p2p_isnd, sc->tx_mbuf);
else
IFQ_DEQUEUE(&sc->ifp->if_snd, sc->tx_mbuf);
}
static int
p2p_line_open(softc_t *sc, struct config *config)
{
int error = 0;
/* Done if line_prot isn't changing. */
if (config->line_prot == sc->config.line_prot)
return 0;
if (error = p2p_line_detach(sc))
return error;
/* Change line protocol. */
switch (config->line_prot)
{
case PROT_PPP:
sc->ifp->if_type = IFT_PPP;
sc->config.line_prot = PROT_PPP;
break;
case PROT_C_HDLC:
sc->ifp->if_type = IFT_PTPSERIAL;
sc->config.line_prot = PROT_C_HDLC;
break;
case PROT_FRM_RLY:
sc->ifp->if_type = IFT_FRELAY;
sc->config.line_prot = PROT_FRM_RLY;
break;
default:
case PROT_NONE:
sc->ifp->if_type = IFT_NONE;
sc->config.line_prot = PROT_NONE;
return 0;
}
error = p2p_line_attach(sc, config);
return error;
}
static int
p2p_line_attach(softc_t *sc, struct config *config)
{
int error;
sc->p2p = &sc->p2pcom;
sc->p2p->p2p_proto = 0; /* force p2p_attach to re-init */
if ((error = p2p_attach(sc->p2p))) /* calls bpfattach() */
{
if (sc->config.debug)
printf("%s: p2p_attach(): error %d\n", NAME_UNIT, error);
if (error == EPFNOSUPPORT)
printf("%s: Try 'ifconfig %s linktype ppp|frelay|chdlc'\n",
NAME_UNIT, NAME_UNIT);
sc->config.line_pkg = PKG_NONE; /* not attached to P2P */
return error;
}
sc->p2p->p2p_mdmctl = p2p_mdmctl;
sc->p2p->p2p_getmdm = p2p_getmdm;
sc->config.line_pkg = PKG_P2P;
sc->line = &p2p_line;
return 0;
}
static int
p2p_line_detach(softc_t *sc)
{
int error = 0;
if ((error = p2p_detach(sc->p2p))) /* calls bfpdetach() */
{
if (sc->config.debug)
printf("%s: p2p_detach(): error %d\n", NAME_UNIT, error);
if (error == EBUSY)
printf("%s: Try 'ifconfig %s down -remove'\n",
NAME_UNIT, NAME_UNIT);
sc->config.line_pkg = PKG_P2P; /* still attached to P2P */
return error;
}
ifnet_setup(sc->ifp);
sc->config.line_pkg = PKG_NONE;
sc->config.line_prot = PROT_NONE;
sc->line = NULL;
return error;
}
/* Callout from P2P: */
/* Get the state of DCD (Data Carrier Detect). */
static int /* never fails */
p2p_getmdm(struct p2pcom *p2p, caddr_t result)
{
softc_t *sc = IFP2SC(&p2p->p2p_if);
/* Non-zero isn't good enough; TIOCM_CAR is 0x40. */
*(int *)result = (sc->status.link_state==STATE_UP) ? TIOCM_CAR : 0;
return 0;
}
/* Callout from P2P: */
/* Set the state of DTR (Data Terminal Ready). */
static int /* never fails */
p2p_mdmctl(struct p2pcom *p2p, int flag)
{
softc_t *sc = IFP2SC(&p2p->p2p_if);
set_ready(sc, flag);
return 0;
}
#endif /* P2P */
#if SPPP /* FreeBSD, NetBSD, OpenBSD */
static struct line sppp_line =
{
.watchdog = sppp_line_watchdog,
.ioctl = sppp_line_ioctl,
.input = sppp_line_input,
.output = sppp_line_output,
.open = sppp_line_open,
.attach = sppp_line_attach,
.detach = sppp_line_detach,
};
# ifndef PP_FR
# define PP_FR 0
# endif
# ifndef DLT_C_HDLC
# define DLT_C_HDLC DLT_PPP
# endif
# ifndef DLT_FRELAY
# define DLT_FRELAY DLT_PPP
# endif
static void
sppp_line_watchdog(softc_t *sc)
{
/* Notice when the link comes up. */
if ((sc->last_link_state != STATE_UP) &&
(sc->status.link_state == STATE_UP))
sppp_tls(sc->sppp);
/* Notice when the link goes down. */
if ((sc->last_link_state == STATE_UP) &&
(sc->status.link_state != STATE_UP))
sppp_tlf(sc->sppp);
/* Report current line protocol. */
sc->status.line_pkg = PKG_SPPP;
# if defined(__FreeBSD__)
if (sc->sppp->pp_flags & PP_FR)
sc->status.line_prot = PROT_FRM_RLY;
else if (sc->ifp->if_flags & IFF_LINK2)
# elif defined(__NetBSD__) || defined(__OpenBSD__)
if (sc->sppp->pp_flags & PP_CISCO)
# endif
sc->status.line_prot = PROT_C_HDLC;
else
sc->status.line_prot = PROT_PPP;
/* Report keep-alive status. */
sc->status.keep_alive = sc->sppp->pp_flags & PP_KEEPALIVE;
}
static int
sppp_line_ioctl(softc_t *sc, u_long cmd, caddr_t data)
{
return sppp_ioctl(sc->ifp, cmd, data);
}
static void
sppp_line_input(softc_t *sc, struct mbuf *mbuf)
{
sppp_input(sc->ifp, mbuf);
}
static void
sppp_line_output(softc_t *sc)
{
sc->tx_mbuf = sppp_dequeue(sc->ifp);
}
static int /* never fails */
sppp_line_open(softc_t *sc, struct config *config)
{
/* Refresh the keep_alive flag. */
if (config->keep_alive)
sc->sppp->pp_flags |= PP_KEEPALIVE;
else
sc->sppp->pp_flags &= ~PP_KEEPALIVE;
sc->config.keep_alive = config->keep_alive;
/* Done if line_prot isn't changing. */
if (config->line_prot == sc->config.line_prot)
return 0;
/* Close */
sc->ifp->if_flags &= ~IFF_UP; /* down */
sppp_ioctl(sc->ifp, SIOCSIFFLAGS, NULL);
/* Change line protocol. */
LMC_BPF_DETACH;
switch (config->line_prot)
{
case PROT_PPP:
{
# if defined(__FreeBSD__)
sc->ifp->if_flags &= ~IFF_LINK2;
sc->sppp->pp_flags &= ~PP_FR;
# elif defined(__NetBSD__) || defined(__OpenBSD__)
sc->sppp->pp_flags &= ~PP_CISCO;
# endif
LMC_BPF_ATTACH(DLT_PPP, 4);
sc->config.line_prot = PROT_PPP;
break;
}
default:
case PROT_C_HDLC:
{
# if defined(__FreeBSD__)
sc->ifp->if_flags |= IFF_LINK2;
sc->sppp->pp_flags &= ~PP_FR;
# elif defined(__NetBSD__) || defined(__OpenBSD__)
sc->sppp->pp_flags |= PP_CISCO;
# endif
LMC_BPF_ATTACH(DLT_C_HDLC, 4);
sc->config.line_prot = PROT_C_HDLC;
break;
}
# if defined(__FreeBSD__)
case PROT_FRM_RLY:
{
sc->ifp->if_flags &= ~IFF_LINK2;
sc->sppp->pp_flags |= PP_FR;
sc->sppp->pp_flags |= PP_KEEPALIVE;
sc->config.keep_alive = 1;
LMC_BPF_ATTACH(DLT_FRELAY, 4);
sc->config.line_prot = PROT_FRM_RLY;
break;
}
# endif
} /* switch(config->line_prot) */
/* Open */
sc->ifp->if_flags |= IFF_UP; /* up and not running */
sppp_ioctl(sc->ifp, SIOCSIFFLAGS, NULL);
return 0;
}
static int /* never fails */
sppp_line_attach(softc_t *sc, struct config *config)
{
# if defined(__FreeBSD__)
sc->sppp = sc->ifp->if_l2com;
# else
sc->sppp = &sc->spppcom;
# endif
LMC_BPF_ATTACH(DLT_RAW, 0);
sppp_attach(sc->ifp);
sc->sppp->pp_tls = sppp_tls;
sc->sppp->pp_tlf = sppp_tlf;
config->keep_alive = 1;
sc->config.line_pkg = PKG_SPPP;
sc->line = &sppp_line;
return 0;
}
static int /* never fails */
sppp_line_detach(softc_t *sc)
{
sc->ifp->if_flags &= ~IFF_UP; /* down */
sppp_ioctl(sc->ifp, SIOCSIFFLAGS, NULL); /* close() */
sppp_detach(sc->ifp);
LMC_BPF_DETACH;
ifnet_setup(sc->ifp);
sc->config.line_pkg = PKG_NONE;
sc->config.line_prot = PROT_NONE;
sc->line = NULL;
return 0;
}
/* Callout from SPPP: */
static void
sppp_tls(struct sppp *sppp)
{
/* Calling pp_up/down() required by PPP mode in OpenBSD. */
/* Calling pp_up/down() panics PPP mode in NetBSD. */
/* Calling pp_up/down() breaks Cisco mode in FreeBSD. */
# if defined(__FreeBSD__)
if (!(sppp->pp_mode & IFF_LINK2) && /* not Cisco */
!(sppp->pp_flags & PP_FR)) /* not FrmRly */
# elif defined(__NetBSD__) || defined(__OpenBSD__)
if (!(sppp->pp_flags & PP_CISCO)) /* not Cisco */
# endif
sppp->pp_up(sppp);
}
/* Callout from SPPP: */
static void
sppp_tlf(struct sppp *sppp)
{
/* Calling pp_up/down() required by PPP mode in OpenBSD. */
/* Calling pp_up/down() panics PPP mode in NetBSD. */
/* Calling pp_up/down() breaks Cisco mode in FreeBSD. */
# if defined(__FreeBSD__)
if (!(sppp->pp_mode & IFF_LINK2) && /* not Cisco */
!(sppp->pp_flags & PP_FR)) /* not FrmRly */
# elif defined(__NetBSD__) || defined(__OpenBSD__)
if (!(sppp->pp_flags & PP_CISCO)) /* not Cisco */
# endif
sppp->pp_down(sppp);
}
#endif /* SPPP */
/* RawIP is built into the driver. */
static struct line rawip_line =
{
.watchdog = rawip_line_watchdog,
#if IFNET
.ioctl = rawip_line_ioctl,
.input = rawip_line_input,
.output = rawip_line_output,
#elif NETDEV
.ioctl = rawip_line_ioctl,
.type = rawip_line_type,
.mtu = rawip_line_mtu,
#endif
.open = rawip_line_open,
.attach = rawip_line_attach,
.detach = rawip_line_detach,
};
static void
rawip_line_watchdog(softc_t *sc)
{
#if IFNET
if ((sc->status.link_state == STATE_UP) &&
(sc->ifp->if_flags & IFF_UP))
# if defined(__FreeBSD__)
sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
# else
sc->ifp->if_flags |= IFF_RUNNING;
# endif
if ((sc->status.link_state != STATE_UP) ||
!(sc->ifp->if_flags & IFF_UP))
# if defined(__FreeBSD__)
sc->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
# else
sc->ifp->if_flags &= ~IFF_RUNNING;
# endif
#endif /* IFNET */
/* Report current line protocol. */
sc->status.line_pkg = PKG_RAWIP;
sc->status.line_prot = PROT_IP_HDLC;
}
#if IFNET
static int
rawip_line_ioctl(softc_t *sc, u_long cmd, caddr_t data)
{
return ifnet_raw_ioctl(sc->ifp, cmd, data);
}
static void
rawip_line_input(softc_t *sc, struct mbuf *mbuf)
{
ifnet_raw_input(sc->ifp, mbuf);
}
static void
rawip_line_output(softc_t *sc)
{
IFQ_DEQUEUE(&sc->ifp->if_snd, sc->tx_mbuf);
}
#elif NETDEV
static int
rawip_line_ioctl(softc_t *sc, struct ifreq *ifr, int cmd)
{
if (sc->config.debug)
printk("%s: rawip_line_ioctl; cmd=0x%08x\n", NAME_UNIT, cmd);
return -EINVAL;
}
static int
rawip_line_type(softc_t *sc, struct sk_buff *skb)
{
if (skb->data[0]>>4 == 4)
return htons(ETH_P_IP);
else if (skb->data[0]>>4 == 6)
return htons(ETH_P_IPV6);
else
return htons(ETH_P_HDLC);
}
static int
rawip_line_mtu(softc_t *sc, int mtu)
{
return ((mtu < 72) || (mtu > 65535)) ? -EINVAL : 0;
}
#endif /* IFNET */
static int
rawip_line_open(softc_t *sc, struct config *config)
{
sc->config.line_prot = PROT_IP_HDLC;
return 0;
}
static int
rawip_line_attach(softc_t *sc, struct config *config)
{
#if IFNET
LMC_BPF_ATTACH(DLT_RAW, 0);
#endif
sc->config.line_pkg = PKG_RAWIP;
sc->line = &rawip_line;
return 0;
}
static int
rawip_line_detach(softc_t *sc)
{
#if IFNET
LMC_BPF_DETACH;
ifnet_setup(sc->ifp);
#elif NETDEV
netdev_setup(sc->netdev);
#endif
sc->config.line_pkg = PKG_NONE;
sc->config.line_prot = PROT_NONE;
sc->line = NULL;
return 0;
}
#if IFNET
/* This is only used with rawip_line on a BSD. */
static int /* User context */
ifnet_raw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
softc_t *sc = IFP2SC(ifp);
struct ifreq *ifr = (struct ifreq *) data;
int error = 0;
switch (cmd)
{
case SIOCADDMULTI:
case SIOCDELMULTI:
if (sc->config.debug)
printf("%s: ifnet_raw_ioctl: SIOCADD/DELMULTI\n", NAME_UNIT);
case SIOCAIFADDR:
case SIOCSIFFLAGS:
case SIOCSIFDSTADDR:
break;
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP; /* a Unix tradition */
break;
case SIOCSIFMTU:
if ((ifr->ifr_mtu < 72) || (ifr->ifr_mtu > 65535))
error = EINVAL;
else
ifp->if_mtu = ifr->ifr_mtu;
break;
default:
error = EINVAL;
break;
}
return error;
}
/* Called to give a newly arrived pkt to higher levels. */
/* Called from rxintr_cleanup() with bottom_lock held. */
/* This is only used with rawip_line on a BSD. */
static void
ifnet_raw_input(struct ifnet *ifp, struct mbuf *mbuf)
{
softc_t *sc = IFP2SC(ifp);
struct ifqueue *intrq;
int isr = 0;
intrq = NULL; /* surpress compiler warning */
# if INET
if (mbuf->m_data[0]>>4 == 4)
{
isr = NETISR_IP;
# if !defined(__FreeBSD__)
intrq = &ipintrq;
# endif
}
# endif /* INET */
# if INET6
if (mbuf->m_data[0]>>4 == 6)
{
isr = NETISR_IPV6;
# if !defined(__FreeBSD__)
intrq = &ip6intrq;
# endif
}
# endif /* INET6 */
if (isr)
{
# if defined(__FreeBSD__)
netisr_dispatch(isr, mbuf);
# else
if (!IF_QFULL(intrq))
{
/* ifnet_raw_input() ENQUEUES in a hard interrupt. */
/* ip_input() DEQUEUES in a soft interrupt. */
/* Some BSD QUEUE routines are not interrupt-safe. */
DISABLE_INTR; /* noop in FreeBSD */
IF_ENQUEUE(intrq, mbuf);
ENABLE_INTR; /* noop in FreeBSD */
schednetisr(isr); /* wake up the network code */
}
else /* intrq is full */
{
m_freem(mbuf);
sc->status.cntrs.idrops++;
if (sc->config.debug)
printf("%s: ifnet_raw_input: rx pkt dropped: intrq full\n", NAME_UNIT);
}
# endif /* __FreeBSD__ */
}
else /* isr is zero */
{
m_freem(mbuf);
sc->status.cntrs.idrops++;
if (sc->config.debug)
printf("%s: ifnet_raw_input: rx pkt dropped: not IPv4 or IPv6\n", NAME_UNIT);
}
}
/* sppp and p2p replace this with their own proc.
* This is only used with rawip_line on a BSD.
* This procedure is very similar to ng_rcvdata().
*/
static int /* User context */
ifnet_raw_output(struct ifnet *ifp, struct mbuf *m,
struct sockaddr *dst, struct rtentry *rt)
{
softc_t *sc = IFP2SC(ifp);
int error = 0;
/* Fail if the link is down. */
if (sc->status.link_state != STATE_UP)
{
m_freem(m);
sc->status.cntrs.odrops++;
if (sc->config.debug)
printf("%s: ifnet_raw_output: tx pkt dropped: link down\n", NAME_UNIT);
return ENETDOWN;
}
/* ifnet_raw_output() ENQUEUEs in a syscall or soft_irq. */
/* txintr_setup() DEQUEUEs in a hard interrupt. */
/* Some BSD QUEUE routines are not interrupt-safe. */
{
DISABLE_INTR; /* noop in FreeBSD */
#if defined(__FreeBSD__)
IFQ_ENQUEUE(&ifp->if_snd, m, error);
#else
IFQ_ENQUEUE(&ifp->if_snd, m, NULL, error);
#endif
ENABLE_INTR; /* noop in FreeBSD */
}
if (error)
{
sc->status.cntrs.odrops++;
if (sc->config.debug)
printf("%s: ifnet_raw_output: tx pkt dropped: IFQ_ENQUEUE(): error %d\n",
NAME_UNIT, error);
}
else
user_interrupt(sc, 0); /* start the transmitter */
return error;
}
static int /* User context */
ifnet_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
softc_t *sc = IFP2SC(ifp);
struct ifreq *ifr = (struct ifreq *) data;
int error = 0;
TOP_LOCK;
switch (cmd)
{
/* Catch the IOCTLs used by lmcconfig. */
case LMCIOCGSTAT:
case LMCIOCGCFG:
case LMCIOCSCFG:
case LMCIOCREAD:
case LMCIOCWRITE:
case LMCIOCTL:
error = lmc_ioctl(sc, cmd, data);
break;
# if defined(__FreeBSD__) || defined(__NetBSD__)
case SIOCSIFCAP:
# if DEVICE_POLLING
if ((ifr->ifr_reqcap & IFCAP_POLLING) &&
!(ifp->if_capenable & IFCAP_POLLING) &&
!(error = ether_poll_register(bsd_poll, ifp)))
{ /* enable polling */
WRITE_CSR(TLP_INT_ENBL, TLP_INT_DISABLE);
ifp->if_capenable |= IFCAP_POLLING;
}
else if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
(ifp->if_capenable & IFCAP_POLLING) &&
!(error = ether_poll_deregister(ifp)))
{ /* disable polling */
ifp->if_capenable &= ~IFCAP_POLLING;
WRITE_CSR(TLP_INT_ENBL, TLP_INT_TXRX);
}
else
error = EINVAL;
# endif /* DEVICE_POLLING */
break;
# endif /* FreeBSD || NetBSD */
case SIOCSIFMEDIA: /* calls ifmedia_change() */
case SIOCGIFMEDIA: /* calls ifmedia_status() */
error = ifmedia_ioctl(ifp, ifr, &sc->ifm, cmd);
break;
# if defined(__OpenBSD__)
case SIOCSIFTIMESLOT:
if (sc->status.card_type == LMC_CSID_T1E1)
{
struct config config = sc->config;
if ((error = copyin(ifr->ifr_data, &config.time_slots,
sizeof sc->config.time_slots))) break;
sc->card->attach(sc, &config);
}
else
error = EINVAL;
break;
case SIOCGIFTIMESLOT:
if (sc->status.card_type == LMC_CSID_T1E1)
error = copyout(&sc->status.time_slots, ifr->ifr_data,
sizeof sc->status.time_slots);
else
error = EINVAL;
break;
# endif /* OpenBSD */
/* Pass the rest to the line protocol. */
default:
if (sc->line)
error = sc->line->ioctl(sc, cmd, data);
else
error = ENOSYS;
break;
}
TOP_UNLOCK;
if (error && sc->config.debug)
printf("%s: ifnet_ioctl: op=IO%s%s len=%3lu grp='%c' num=%3lu err=%d\n",
NAME_UNIT, cmd&IOC_IN ? "W":"", cmd&IOC_OUT ? "R":"",
IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xFF, error);
return error;
}
static void /* User context */
ifnet_start(struct ifnet *ifp)
{
softc_t *sc = IFP2SC(ifp);
/* Start the transmitter; incoming pkts are NOT processed. */
user_interrupt(sc, 0);
}
/* Called from a soft_irq once a second. */
static void
ifnet_watchdog(struct ifnet *ifp)
{
softc_t *sc = IFP2SC(ifp);
struct cntrs *cntrs = &sc->status.cntrs;
lmc_watchdog(sc); /* updates link_state */
# if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
if (sc->status.link_state == STATE_UP)
ifp->if_link_state = LINK_STATE_UP;
else
ifp->if_link_state = LINK_STATE_DOWN;
# endif
/* Copy statistics from sc to ifp. */
ifp->if_baudrate = sc->status.tx_speed;
ifp->if_ibytes = cntrs->ibytes;
ifp->if_obytes = cntrs->obytes;
ifp->if_ipackets = cntrs->ipackets;
ifp->if_opackets = cntrs->opackets;
ifp->if_ierrors = cntrs->ierrors;
ifp->if_oerrors = cntrs->oerrors;
ifp->if_iqdrops = cntrs->idrops;
/* If the interface debug flag is set, set the driver debug flag. */
if (sc->ifp->if_flags & IFF_DEBUG)
sc->config.debug = 1;
/* Call this procedure again after one second. */
ifp->if_timer = 1;
}
static void
ifmedia_setup(softc_t *sc)
{
/* Initialize ifmedia mechanism. */
ifmedia_init(&sc->ifm, IFM_OMASK | IFM_GMASK | IFM_IMASK,
ifmedia_change, ifmedia_status);
# if defined(__OpenBSD__)
if (sc->status.card_type == LMC_CSID_T3)
{
ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_T3, 0, NULL);
ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_T3_M13, 0, NULL);
ifmedia_set(&sc->ifm, IFM_TDM | IFM_TDM_T3);
}
else if (sc->status.card_type == LMC_CSID_T1E1)
{
ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_T1, 0, NULL);
ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_T1_AMI, 0, NULL);
ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_E1, 0, NULL);
ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_E1_G704, 0, NULL);
ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_E1_G704_CRC4, 0, NULL);
ifmedia_set(&sc->ifm, IFM_TDM | IFM_TDM_T1);
}
else
{
ifmedia_add(&sc->ifm, IFM_TDM | IFM_NONE, 0, NULL);
ifmedia_set(&sc->ifm, IFM_TDM | IFM_NONE);
}
# else /* FreeBSD, NetBSD, BSD/OS */
ifmedia_add(&sc->ifm, IFM_ETHER | IFM_NONE, 0, NULL);
ifmedia_set(&sc->ifm, IFM_ETHER | IFM_NONE);
# endif /* OpenBSD */
}
/* SIOCSIFMEDIA: User context. */
static int
ifmedia_change(struct ifnet *ifp)
{
softc_t *sc = IFP2SC(ifp);
struct config config = sc->config;
int media = sc->ifm.ifm_media;
int error;
# if defined(__OpenBSD__)
/* ifconfig lmc0 media t1 */
if (sc->status.card_type == LMC_CSID_T3)
{
if ((media & IFM_TMASK) == IFM_TDM_T3)
config.format = CFG_FORMAT_T3CPAR;
else if ((media & IFM_TMASK) == IFM_TDM_T3_M13)
config.format = CFG_FORMAT_T3M13;
}
else if (sc->status.card_type == LMC_CSID_T1E1)
{
if ((media & IFM_TMASK) == IFM_TDM_T1)
config.format = CFG_FORMAT_T1ESF;
else if ((media & IFM_TMASK) == IFM_TDM_T1_AMI)
config.format = CFG_FORMAT_T1SF;
else if ((media & IFM_TMASK) == IFM_TDM_E1)
config.format = CFG_FORMAT_E1NONE;
else if ((media & IFM_TMASK) == IFM_TDM_E1_G704)
config.format = CFG_FORMAT_E1FAS;
else if ((media & IFM_TMASK) == IFM_TDM_E1_G704_CRC4)
config.format = CFG_FORMAT_E1FASCRC;
}
/* ifconfig lmc0 mediaopt hdlc-crc16 */
if (media & IFM_TDM_HDLC_CRC16)
config.line_prot = PROT_C_HDLC;
/* ifconfig lmc0 mediaopt ppp */
if (media & IFM_TDM_PPP)
config.line_prot = PROT_PPP;
/* ifconfig lmc0 mediaopt framerelay-ansi */
if (media & IFM_TDM_FR_ANSI)
config.line_prot = PROT_FRM_RLY;
/* ifconfig lmc0 mediaopt master */
if ((media & IFM_TDM_MASTER) &&
(sc->status.card_type == LMC_CSID_T1E1))
config.tx_clk_src = CFG_CLKMUX_INT; /* xtal */
else
config.tx_clk_src = CFG_CLKMUX_RT; /* loop */
# endif /* OpenBSD */
/* ifconfig lmc0 mediaopt loopback */
if (media & IFM_LOOP)
config.loop_back = CFG_LOOP_TULIP;
else
config.loop_back = CFG_LOOP_NONE;
error = line_open(sc, &config);
tulip_loop(sc, &config);
sc->card->attach(sc, &config);
return error;
}
/* SIOCGIFMEDIA: User context. */
static void
ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
softc_t *sc = IFP2SC(ifp);
ifmr->ifm_status = IFM_AVALID;
if (sc->status.link_state == STATE_UP)
ifmr->ifm_status |= IFM_ACTIVE;
if (sc->config.loop_back != CFG_LOOP_NONE)
ifmr->ifm_active |= IFM_LOOP;
# if defined(__OpenBSD__)
if (sc->status.line_prot == PROT_C_HDLC)
ifmr->ifm_active |= IFM_TDM_HDLC_CRC16;
if (sc->status.line_prot == PROT_PPP)
ifmr->ifm_active |= IFM_TDM_PPP;
if (sc->status.line_prot == PROT_FRM_RLY)
ifmr->ifm_active |= IFM_TDM_FR_ANSI;
if (sc->config.tx_clk_src == CFG_CLKMUX_INT)
ifmr->ifm_active |= IFM_TDM_MASTER;
# endif /* OpenBSD */
}
/* This setup is for RawIP; SPPP and P2P change many items. */
/* Note the similarity to linux's netdev_setup(). */
static void
ifnet_setup(struct ifnet *ifp)
{
ifp->if_flags = IFF_POINTOPOINT;
ifp->if_flags |= IFF_SIMPLEX;
ifp->if_flags |= IFF_NOARP;
# if defined(__FreeBSD__) || defined(__NetBSD__)
ifp->if_input = ifnet_raw_input;
# endif
ifp->if_output = ifnet_raw_output;
ifp->if_start = ifnet_start;
ifp->if_ioctl = ifnet_ioctl;
ifp->if_watchdog = ifnet_watchdog;
ifp->if_timer = 1;
ifp->if_type = IFT_PTPSERIAL;
ifp->if_addrlen = 0;
ifp->if_hdrlen = 0;
ifp->if_mtu = MAX_DESC_LEN;
}
/* Attach the ifnet kernel interface. */
/* Kernel (boot) or User (syscall) context. */
static int
ifnet_attach(softc_t *sc)
{
# if defined(__FreeBSD__)
sc->ifp = if_alloc(SPPP ? IFT_PPP : IFT_OTHER);
if (sc->ifp == NULL) return ENOMEM;
# elif SPPP
sc->ifp = &sc->spppcom.pp_if;
# elif P2P
sc->ifp = &sc->p2pcom.p2p_if;
# else
sc->ifp = &sc->ifnet;
# endif
sc->ifp->if_softc = sc;
ifnet_setup(sc->ifp);
# if defined(__FreeBSD__) || defined(__OpenBSD__)
sc->ifp->if_capabilities |= IFCAP_JUMBO_MTU;
# endif
# if DEVICE_POLLING
sc->ifp->if_capabilities |= IFCAP_POLLING;
# endif
/* Every OS does it differently! */
# if defined(__FreeBSD__)
sc->ifp->if_dname = device_get_name(sc->dev);
sc->ifp->if_dunit = device_get_unit(sc->dev);
strlcpy(sc->ifp->if_xname, device_get_nameunit(sc->dev), IFNAMSIZ);
# elif defined(__NetBSD__)
strcpy(sc->ifp->if_xname, sc->dev.dv_xname);
# elif defined(__OpenBSD__)
bcopy(sc->dev.dv_xname, sc->ifp->if_xname, IFNAMSIZ);
# elif defined(__bsdi__)
sc->ifp->if_name = sc->dev.dv_cfdata->cf_driver->cd_name;
sc->ifp->if_unit = sc->dev.dv_unit;
# endif
IFQ_SET_MAXLEN(&sc->ifp->if_snd, SNDQ_MAXLEN);
IFQ_SET_READY(&sc->ifp->if_snd);
if_attach(sc->ifp);
# if defined(__NetBSD__) || defined(__OpenBSD__)
if_alloc_sadl(sc->ifp);
# endif
ifmedia_setup(sc);
return 0;
}
/* Detach the ifnet kernel interface. */
/* Kernel (boot) or User (syscall) context. */
static void
ifnet_detach(softc_t *sc)
{
# if defined(__FreeBSD__)
ifmedia_removeall(&sc->ifm);
# elif defined(__NetBSD__) || defined(__OpenBSD__)
ifmedia_delete_instance(&sc->ifm, IFM_INST_ANY);
# endif
# if DEVICE_POLLING
if (sc->ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(sc->ifp);
# endif
IFQ_PURGE(&sc->ifp->if_snd);
# if defined(__NetBSD__) || defined(__OpenBSD__)
if_free_sadl(sc->ifp);
# endif
if_detach(sc->ifp);
# if defined(__FreeBSD__)
if_free_type(sc->ifp, SPPP ? IFT_PPP : IFT_OTHER);
# endif
}
#endif /* IFNET */
#if NETDEV
/* This net_device method is called when IFF_UP goes true. */
static int /* User context */
netdev_open(struct net_device *netdev)
{
softc_t *sc = NETDEV2SC(netdev);
WRITE_CSR(TLP_INT_ENBL, TLP_INT_TXRX);
netif_start_queue(sc->netdev);
netif_carrier_on(sc->netdev);
set_ready(sc, 1);
return 0;
}
/* This net_device method is called when IFF_UP goes false. */
static int /* User context */
netdev_stop(struct net_device *netdev)
{
softc_t *sc = NETDEV2SC(netdev);
set_ready(sc, 0);
netif_carrier_off(sc->netdev);
netif_stop_queue(sc->netdev);
WRITE_CSR(TLP_INT_ENBL, TLP_INT_DISABLE);
return 0;
}
/* This net_device method hands outgoing packets to the transmitter. */
/* With txintr_setup(), it implements output flow control. */
/* Kernel (boot) or User (syscall) context. */
static int
netdev_start(struct sk_buff *skb, struct net_device *netdev)
{
softc_t *sc = NETDEV2SC(netdev);
if (sc->tx_skb == NULL)
{
/* Put this skb where the transmitter will see it. */
sc->tx_skb = skb;
/* Start the transmitter; incoming pkts are NOT processed. */
user_interrupt(sc, 0);
/* If the txintr didn't take skb, call netif_stop_queue(). */
/* Later, txintr_setup() calls netif_wake_queue(). */
if (sc->tx_skb) netif_stop_queue(netdev);
return 0;
}
/* This shouldn't happen; skb is NOT consumed. */
if (netif_queue_stopped(netdev))
printk("%s: dev->start() called with queue stopped\n", NAME_UNIT);
else
netif_stop_queue(netdev);
return 1;
}
# if NAPI
/* This net_device method services the card without interrupts. */
/* With rxintr_cleanup(), it implements input flow control. */
static int /* Kernel (soft_irq) context */
netdev_poll(struct net_device *netdev, int *budget)
{
softc_t *sc = NETDEV2SC(netdev);
int received;
/* Allow processing up to netdev->quota incoming packets. */
/* This is the ONLY time lmc_interrupt() may process rx pkts. */
/* Otherwise (sc->quota == 0) and rxintr_cleanup() is a NOOP. */
sc->quota = netdev->quota;
/* Handle the card interrupt with kernel ints enabled. */
/* Process rx pkts (and tx pkts, too). */
/* Card interrupts are disabled. */
lmc_interrupt(sc, 0);
/* Report number of rx packets processed. */
received = netdev->quota - sc->quota;
netdev->quota -= received;
*budget -= received;
/* If quota prevented processing all rx pkts, leave rx ints disabled. */
if (sc->quota == 0) /* this is off by one...but harmless */
{
WRITE_CSR(TLP_INT_ENBL, TLP_INT_TX);
return 1; /* more pkts to handle -- reschedule */
}
sc->quota = 0; /* disable rx pkt processing by rxintr_cleanup() */
netif_rx_complete(netdev); /* remove from poll list */
/* Enable card interrupts. */
WRITE_CSR(TLP_INT_ENBL, TLP_INT_TXRX);
return 0; /* all pkts handled -- success */
}
# endif /* NAPI */
/* This net_device method handles IOCTL syscalls. */
static int /* User context */
netdev_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
softc_t *sc = NETDEV2SC(netdev);
int error = 0;
TOP_LOCK;
if ((cmd >= SIOCDEVPRIVATE) && (cmd <= SIOCDEVPRIVATE+15))
{
struct iohdr *iohdr = (struct iohdr *)ifr;
u_int16_t direction = iohdr->direction;
u_int16_t length = iohdr->length;
char *user_addr = (char *)iohdr->iohdr;
char *kern_addr = NULL;
if (iohdr->cookie != NGM_LMC_COOKIE)
error = -EINVAL;
/* Emulate a BSD-style IOCTL syscall. */
if (!error)
error = (kern_addr = kmalloc(length, GFP_KERNEL)) ? 0: -ENOMEM;
if (!error && (direction & DIR_IOW))
error = copy_from_user(kern_addr, user_addr, length);
if (!error)
error = -lmc_ioctl(sc, (unsigned long)cmd, kern_addr);
if (!error && (direction & DIR_IOR))
error = copy_to_user(user_addr, kern_addr, length);
kfree(kern_addr);
}
else if (sc->line)
error = sc->line->ioctl(sc, ifr, cmd);
else
error = -ENOSYS;
# if GEN_HDLC
/* If generic-HDLC is present but not the currently-attached
* line_pkg, call hdlc_ioctl() anyway because line_prot must
* be set using SIOCWANDEV or hdlc_open() will fail.
*/
if (sc->line != &gen_hdlc_line)
hdlc_ioctl(sc->netdev, ifr, cmd); /* ignore error result */
# endif
TOP_UNLOCK;
if (error && sc->config.debug)
printk("%s: netdev_ioctl; cmd=0x%08x error=%d\n",
NAME_UNIT, cmd, error);
return error;
}
/* This net_device method sets the Maximum Tranmit Unit. */
/* This driver does not limit MTU; line_pkgs and line_prots do. */
static int
netdev_mtu(struct net_device *netdev, int mtu)
{
softc_t *sc = NETDEV2SC(netdev);
int error = 0;
if (sc->line)
error = sc->line->mtu(sc, mtu);
else
error = -ENOSYS;
if (!error)
netdev->mtu = mtu;
return error;
}
/* This net_device method restarts the transmitter if it hangs. */
static void /* Kernel (soft_irq) context */
netdev_timeout(struct net_device *netdev)
{
softc_t *sc = NETDEV2SC(netdev);
/* Start the transmitter; incoming packets are NOT processed. */
user_interrupt(sc, 1);
}
/* This net_device method returns a pointer to device statistics. */
static struct net_device_stats * /* User context */
netdev_stats(struct net_device *netdev)
{
softc_t *sc = NETDEV2SC(netdev);
# if GEN_HDLC
return &sc->hdlcdev->stats;
# else
return &sc->netdev_stats;
# endif
}
/* Called from a soft_irq once a second. */
static void
netdev_watchdog(unsigned long softc)
{
softc_t *sc = (softc_t *)softc;
struct cntrs *cntrs = &sc->status.cntrs;
struct net_device_stats *stats = netdev_stats(sc->netdev);
lmc_watchdog(sc); /* updates link_state */
/* Notice when the link comes up. */
if ((sc->last_link_state != STATE_UP) &&
(sc->status.link_state == STATE_UP))
{
netif_wake_queue(sc->netdev);
netif_carrier_on(sc->netdev);
}
/* Notice when the link goes down. */
if ((sc->last_link_state == STATE_UP) &&
(sc->status.link_state != STATE_UP))
{
netif_stop_queue(sc->netdev);
netif_carrier_off(sc->netdev);
}
/* Copy statistics from sc to netdev. */
stats->rx_bytes = cntrs->ibytes;
stats->tx_bytes = cntrs->obytes;
stats->rx_packets = cntrs->ipackets;
stats->tx_packets = cntrs->opackets;
stats->rx_errors = cntrs->ierrors;
stats->tx_errors = cntrs->oerrors;
stats->rx_dropped = cntrs->idrops;
stats->rx_missed_errors = cntrs->missed;
stats->tx_dropped = cntrs->odrops;
stats->rx_fifo_errors = cntrs->fifo_over;
stats->rx_over_errors = cntrs->overruns;
stats->tx_fifo_errors = cntrs->fifo_under;
/*stats->tx_under_errors = cntrs=>underruns; */
/* If the interface debug flag is set, set the driver debug flag. */
if (sc->netdev->flags & IFF_DEBUG)
sc->config.debug = 1;
/* Call this procedure again after one second. */
sc->wd_timer.expires = jiffies + HZ -8; /* -8 is a FUDGE factor */
add_timer(&sc->wd_timer);
}
/* This setup is for RawIP; Generic-HDLC changes many items. */
/* Note the similarity to BSD's ifnet_setup(). */
static void
netdev_setup(struct net_device *netdev)
{
netdev->flags = IFF_POINTOPOINT;
netdev->flags |= IFF_SIMPLEX;
netdev->flags |= IFF_NOARP;
netdev->open = netdev_open;
netdev->stop = netdev_stop;
netdev->hard_start_xmit = netdev_start;
# if NAPI
netdev->poll = netdev_poll;
# endif
netdev->rebuild_header = NULL;
netdev->hard_header = NULL;
netdev->do_ioctl = netdev_ioctl;
netdev->change_mtu = netdev_mtu;
netdev->tx_timeout = netdev_timeout;
netdev->get_stats = netdev_stats;
netdev->watchdog_timeo = 1 * HZ;
netdev->mtu = MAX_DESC_LEN;
netdev->type = ARPHRD_HDLC;
netdev->hard_header_len = 16;
netdev->addr_len = 0;
netdev->weight = 32; /* sc->rxring.num_descs; */
netdev->tx_queue_len = SNDQ_MAXLEN;
/* The receiver generates frag-lists for packets >4032 bytes. */
/* The transmitter accepts scatter/gather lists and frag-lists. */
/* However Linux linearizes outgoing packets since our hardware */
/* doesn't compute soft checksums. All that work for nothing! */
/*netdev->features |= NETIF_F_SG; */
/*netdev->features |= NETIF_F_FRAGLIST; */
}
/* Attach the netdevice kernel interface. */
/* Kernel (boot) or User (syscall) context. */
static int
netdev_attach(softc_t *sc)
{
int error;
# if GEN_HDLC /* generic-hdlc line protocol pkg configured */
/* Allocate space for the HDLC network device struct. */
/* Allocating a netdev and attaching to generic-HDLC should be separate. */
if ((sc->netdev = alloc_hdlcdev(sc)) == NULL)
{
printk("%s: netdev_attach: alloc_hdlcdev() failed\n", DEVICE_NAME);
return -ENOMEM;
}
/* HACK: make the private eco-net pointer -> struct softc. */
sc->netdev->ec_ptr = sc;
/* Initialize the basic network device struct. */
/* This clobbers some netdev stuff set by alloc_hdlcdev(). */
/* Our get_stats() and change_mtu() do the right thing. */
netdev_setup(sc->netdev);
/* Initialize the HDLC extension to the network device. */
sc->hdlcdev = sc->netdev->priv;
sc->hdlcdev->attach = gen_hdlc_card_params;
sc->hdlcdev->xmit = netdev_start; /* the REAL hard_start_xmit() */
if ((error = register_hdlc_device(sc->netdev)))
{
printk("%s: register_hdlc_device(): error %d\n", DEVICE_NAME, error);
free_netdev(sc->netdev);
return error;
}
# else
/* Allocate and initialize the basic network device struct. */
if ((sc->netdev = alloc_netdev(0, DEVICE_NAME"%d", netdev_setup)) == NULL)
{
printk("%s: netdev_attach: alloc_netdev() failed\n", DEVICE_NAME);
return -ENOMEM;
}
/* HACK: make the private eco-net pointer -> struct softc. */
sc->netdev->ec_ptr = sc;
if ((error = register_netdev(sc->netdev)))
{
printk("%s: register_netdev(): error %d\n", DEVICE_NAME, error);
free_netdev(sc->netdev);
return error;
}
# endif /* GEN_HDLC */
/* Cross-link pcidev and netdev. */
SET_MODULE_OWNER(sc->netdev);
SET_NETDEV_DEV(sc->netdev, &sc->pcidev->dev);
sc->netdev->mem_end = pci_resource_end(sc->pcidev, 1);
sc->netdev->mem_start = pci_resource_start(sc->pcidev, 1);
sc->netdev->base_addr = pci_resource_start(sc->pcidev, 0);
sc->netdev->irq = sc->pcidev->irq;
/* Arrange to call netdev_watchdog() once a second. */
init_timer(&sc->wd_timer);
sc->wd_timer.expires = jiffies + HZ; /* now plus one second */
sc->wd_timer.function = &netdev_watchdog;
sc->wd_timer.data = (unsigned long) sc;
add_timer(&sc->wd_timer);
return 0; /* success */
}
/* Detach the netdevice kernel interface. */
/* Kernel (boot) or User (syscall) context. */
static void
netdev_detach(softc_t *sc)
{
if (sc->pcidev == NULL) return;
if (sc->netdev == NULL) return;
netdev_stop(sc->netdev); /* check for not inited */
del_timer(&sc->wd_timer);
# if GEN_HDLC
unregister_hdlc_device(sc->netdev);
# else
unregister_netdev(sc->netdev);
# endif
free_netdev(sc->netdev);
}
#endif /* NETDEV */
#if NETGRAPH
/* These next two macros should be added to netgraph */
# define NG_TYPE_REF(type) atomic_add_int(&(type)->refs, 1)
# define NG_TYPE_UNREF(type) \
do { \
if ((type)->refs == 1) \
ng_rmtype(type); \
else \
atomic_subtract_int(&(type)->refs, 1); \
} while (0)
/* It is an error to construct new copies of this Netgraph node. */
/* All instances are constructed by ng_attach and are persistent. */
static int ng_constructor(node_p node)
{ return EINVAL; }
/* Incoming Netgraph control message. */
static int
ng_rcvmsg(node_p node, item_p item, hook_p lasthook)
{
struct ng_mesg *msg;
struct ng_mesg *resp = NULL;
softc_t *sc = NG_NODE_PRIVATE(node);
int error = 0;
NGI_GET_MSG(item, msg);
if (msg->header.typecookie == NGM_LMC_COOKIE)
{
switch (msg->header.cmd)
{
case LMCIOCGSTAT:
case LMCIOCGCFG:
case LMCIOCSCFG:
case LMCIOCREAD:
case LMCIOCWRITE:
case LMCIOCTL:
{
/* Call the core ioctl procedure. */
error = lmc_ioctl(sc, msg->header.cmd, msg->data);
if (msg->header.cmd & IOC_OUT)
{ /* synchronous response */
NG_MKRESPONSE(resp, msg, sizeof(struct ng_mesg) +
IOCPARM_LEN(msg->header.cmd), M_NOWAIT);
if (resp == NULL)
error = ENOMEM;
else
memcpy(resp->data, msg->data, IOCPARM_LEN(msg->header.cmd));
}
break;
}
default:
error = EINVAL;
break;
}
}
else if ((msg->header.typecookie == NGM_GENERIC_COOKIE) &&
(msg->header.cmd == NGM_TEXT_STATUS))
{ /* synchronous response */
NG_MKRESPONSE(resp, msg, sizeof(struct ng_mesg) +
NG_TEXTRESPONSE, M_NOWAIT);
if (resp == NULL)
error = ENOMEM;
else
{
char *s = resp->data;
sprintf(s, "Card type = <%s>\n"
"This driver considers the link to be %s.\n"
"Use lmcconfig to configure this interface.\n",
sc->dev_desc, (sc->status.link_state==STATE_UP) ? "UP" : "DOWN");
resp->header.arglen = strlen(s) +1;
}
}
else
error = EINVAL;
/* Netgraph should be able to read and write these
* parameters with text-format control messages:
* SSI HSSI T1E1 T3
* crc crc crc crc
* loop loop loop loop
* clksrc clksrc
* dte dte format format
* synth synth cablen cablen
* cable timeslot scram
* gain
* pulse
* lbo
* Someday I'll implement this...
*/
/* Handle synchronous response. */
NG_RESPOND_MSG(error, node, item, resp);
NG_FREE_MSG(msg);
return error;
}
/* This is a persistent netgraph node. */
static int
ng_shutdown(node_p node)
{
/* unless told to really die, bounce back to life */
if ((node->nd_flags & NG_REALLY_DIE)==0)
node->nd_flags &= ~NG_INVALID; /* bounce back to life */
return 0;
}
/* ng_disconnect is the opposite of this procedure. */
static int
ng_newhook(node_p node, hook_p hook, const char *name)
{
softc_t *sc = NG_NODE_PRIVATE(node);
/* Hook name must be 'rawdata'. */
if (strncmp(name, "rawdata", 7)) return EINVAL;
/* Is netgraph the current package? */
if (sc->line != &netgraph_line) return EBUSY;
/* Is our hook connected? */
if (sc->ng_hook) return EBUSY;
/* Accept the hook. */
sc->ng_hook = hook;
return 0;
}
/* Both ends have accepted their hooks and the links have been made. */
/* This is the last chance to reject the connection request. */
static int
ng_connect(hook_p hook)
{
/* Probably not at splnet, force outward queueing. */
NG_HOOK_FORCE_QUEUE(NG_HOOK_PEER(hook));
return 0; /* always accept */
}
/* Receive data in mbufs from another Netgraph node.
* Transmit an mbuf-chain on the communication link.
* This procedure is very similar to ifnet_raw_output().
*/
static int /* User context */
ng_rcvdata(hook_p hook, item_p item)
{
softc_t *sc = NG_NODE_PRIVATE(NG_HOOK_NODE(hook));
int error = 0;
struct mbuf *m;
meta_p meta = NULL;
NGI_GET_M(item, m);
NGI_GET_META(item, meta);
NG_FREE_ITEM(item);
NG_FREE_META(meta);
/* Fail if the link is down. */
if (sc->status.link_state != STATE_UP)
{
m_freem(m);
sc->status.cntrs.odrops++;
if (sc->config.debug)
printf("%s: ng_rcvdata: tx pkt dropped: link down\n", NAME_UNIT);
return ENETDOWN;
}
/* ng_rcvdata() ENQUEUEs in a syscall or soft_irq. */
/* txintr_setup() DEQUEUEs in a hard interrupt. */
/* Some BSD QUEUE routines are not interrupt-safe. */
{
DISABLE_INTR; /* noop in FreeBSD */
# if defined(__FreeBSD__)
if (meta==NULL)
IFQ_ENQUEUE(&sc->ng_sndq, m, error);
else
IFQ_ENQUEUE(&sc->ng_fastq, m, error);
# else
if (meta==NULL)
IFQ_ENQUEUE(&sc->ng_sndq, m, NULL, error);
else
IFQ_ENQUEUE(&sc->ng_fastq, m, NULL, error);
# endif
ENABLE_INTR; /* noop in FreeBSD */
}
if (error)
{
sc->status.cntrs.odrops++;
if (sc->config.debug)
printf("%s: ng_rcvdata: tx pkt dropped: IFQ_ENQUEUE(): error %d\n",
NAME_UNIT, error);
}
else
user_interrupt(sc, 0); /* start the transmitter */
return error;
}
/* ng_newhook is the opposite of this procedure, not */
/* ng_connect, as you might expect from the names. */
static int
ng_disconnect(hook_p hook)
{
softc_t *sc = NG_NODE_PRIVATE(NG_HOOK_NODE(hook));
/* Disconnect the hook. */
sc->ng_hook = NULL;
return 0;
}
static
struct ng_type ng_type =
{
.version = NG_ABI_VERSION,
.name = NG_LMC_NODE_TYPE,
.mod_event = NULL,
.constructor = ng_constructor,
.rcvmsg = ng_rcvmsg,
.close = NULL,
.shutdown = ng_shutdown,
.newhook = ng_newhook,
.findhook = NULL,
.connect = ng_connect,
.rcvdata = ng_rcvdata,
.disconnect = ng_disconnect,
};
/* Called from a soft_irq once a second. */
static void
ng_watchdog(void *arg)
{
softc_t *sc = arg;
/* Call the core watchdog procedure. */
lmc_watchdog(sc);
/* Call this procedure again after one second. */
callout_reset(&sc->ng_callout, hz, ng_watchdog, sc);
}
/* Attach the Netgraph kernel interface. */
/* This is effectively ng_constructor. */
/* Kernel (boot) or User (syscall) context. */
static int
ng_attach(softc_t *sc)
{
int error;
/* If this node type is not known to Netgraph then register it. */
if (ng_findtype(ng_type.name) == NULL)
{
if ((error = ng_newtype(&ng_type)))
{
printf("%s: ng_newtype(): error %d\n", NAME_UNIT, error);
return error;
}
}
else
NG_TYPE_REF(&ng_type);
/* Call the superclass node constructor. */
if ((error = ng_make_node_common(&ng_type, &sc->ng_node)))
{
NG_TYPE_UNREF(&ng_type);
printf("%s: ng_make_node_common(): error %d\n", NAME_UNIT, error);
return error;
}
/* Associate a name with this netgraph node. */
if ((error = ng_name_node(sc->ng_node, NAME_UNIT)))
{
NG_NODE_UNREF(sc->ng_node);
NG_TYPE_UNREF(&ng_type);
printf("%s: ng_name_node(): error %d\n", NAME_UNIT, error);
return error;
}
/* Initialize the send queue mutexes. */
mtx_init(&sc->ng_sndq.ifq_mtx, NAME_UNIT, "ng sndq", MTX_DEF);
mtx_init(&sc->ng_fastq.ifq_mtx, NAME_UNIT, "ng fastq", MTX_DEF);
/* Put a backpointer to softc in the netgraph node. */
NG_NODE_SET_PRIVATE(sc->ng_node, sc);
/* ALTQ output queue initialization. */
IFQ_SET_MAXLEN(&sc->ng_fastq, SNDQ_MAXLEN);
IFQ_SET_READY(&sc->ng_fastq);
IFQ_SET_MAXLEN(&sc->ng_sndq, SNDQ_MAXLEN);
IFQ_SET_READY(&sc->ng_sndq);
/* If ifnet is present, it will call watchdog. */
/* Otherwise, arrange to call watchdog here. */
if (IFNET==0)
{
/* Arrange to call ng_watchdog() once a second. */
callout_init(&sc->ng_callout, 0);
callout_reset(&sc->ng_callout, hz, ng_watchdog, sc);
}
return 0;
}
/* Detach the Netgraph kernel interface. */
/* Kernel (boot) or User (syscall) context. */
static void
ng_detach(softc_t *sc)
{
if (IFNET==0)
callout_stop(&sc->ng_callout);
IFQ_PURGE(&sc->ng_fastq);
IFQ_PURGE(&sc->ng_sndq);
mtx_destroy(&sc->ng_sndq.ifq_mtx);
mtx_destroy(&sc->ng_fastq.ifq_mtx);
ng_rmnode_self(sc->ng_node); /* free hook */
NG_NODE_UNREF(sc->ng_node); /* free node */
NG_TYPE_UNREF(&ng_type);
}
#endif /* NETGRAPH */
#if BSD
/* There are TWO VERSIONS of interrupt/DMA code: Linux & BSD.
* Handling Linux and the BSDs with CPP directives would
* make the code unreadable, so there are two versions.
* Conceptually, the two versions do the same thing and
* lmc_interrupt() doesn't know they are different.
*
* We are "standing on the head of a pin" in these routines.
* Tulip CSRs can be accessed, but nothing else is interrupt-safe!
* Do NOT access: MII, GPIO, SROM, BIOSROM, XILINX, SYNTH, or DAC.
*/
/* Initialize a DMA descriptor ring. */
/* Kernel (boot) or User (syscall) context. */
static int /* BSD version */
create_ring(softc_t *sc, struct desc_ring *ring, int num_descs)
{
struct dma_desc *descs;
int size_descs = sizeof(struct dma_desc)*num_descs;
int i, error = 0;
/* The DMA descriptor array must not cross a page boundary. */
if (size_descs > PAGE_SIZE)
{
printf("%s: DMA descriptor array > PAGE_SIZE (%d)\n", NAME_UNIT,
(u_int)PAGE_SIZE);
return EINVAL;
}
# if defined(__FreeBSD__)
/* Create a DMA tag for descriptors and buffers. */
if ((error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE, 2, PAGE_SIZE, BUS_DMA_ALLOCNOW,
NULL, NULL, &ring->tag)))
{
printf("%s: bus_dma_tag_create(): error %d\n", NAME_UNIT, error);
return error;
}
/* Allocate wired physical memory for DMA descriptor array */
/* and map physical address to kernel virtual address. */
if ((error = bus_dmamem_alloc(ring->tag, (void**)&ring->first,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->map)))
{
printf("%s: bus_dmamem_alloc(): error %d\n", NAME_UNIT, error);
return error;
}
descs = ring->first;
/* Map kernel virtual address to PCI address for DMA descriptor array. */
if ((error = bus_dmamap_load(ring->tag, ring->map, descs, size_descs,
fbsd_dmamap_load, ring, 0)))
{
printf("%s: bus_dmamap_load(): error %d\n", NAME_UNIT, error);
return error;
}
ring->dma_addr = ring->segs[0].ds_addr;
/* Allocate dmamaps for each DMA descriptor. */
for (i=0; i<num_descs; i++)
if ((error = bus_dmamap_create(ring->tag, 0, &descs[i].map)))
{
printf("%s: bus_dmamap_create(): error %d\n", NAME_UNIT, error);
return error;
}
# elif defined(__NetBSD__) || defined(__OpenBSD__)
/* Use the DMA tag passed to attach() for descriptors and buffers. */
ring->tag = sc->pa_dmat;
/* Allocate wired physical memory for DMA descriptor array. */
if ((error = bus_dmamem_alloc(ring->tag, size_descs, PAGE_SIZE, 0,
ring->segs, 1, &ring->nsegs, BUS_DMA_NOWAIT)))
{
printf("%s: bus_dmamem_alloc(): error %d\n", NAME_UNIT, error);
return error;
}
/* Map physical address to kernel virtual address. */
if ((error = bus_dmamem_map(ring->tag, ring->segs, ring->nsegs,
size_descs, (caddr_t *)&ring->first, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)))
{
printf("%s: bus_dmamem_map(): error %d\n", NAME_UNIT, error);
return error;
}
descs = ring->first; /* suppress compiler warning about aliasing */
memset(descs, 0, size_descs);
/* Allocate dmamap for PCI access to DMA descriptor array. */
if ((error = bus_dmamap_create(ring->tag, size_descs, 1,
size_descs, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ring->map)))
{
printf("%s: bus_dmamap_create(): error %d\n", NAME_UNIT, error);
return error;
}
/* Map kernel virtual address to PCI address for DMA descriptor array. */
if ((error = bus_dmamap_load(ring->tag, ring->map, descs, size_descs,
0, BUS_DMA_NOWAIT)))
{
printf("%s: bus_dmamap_load(): error %d\n", NAME_UNIT, error);
return error;
}
ring->dma_addr = ring->map->dm_segs[0].ds_addr;
/* Allocate dmamaps for each DMA descriptor. */
for (i=0; i<num_descs; i++)
if ((error = bus_dmamap_create(ring->tag, MAX_DESC_LEN, 2,
MAX_CHUNK_LEN, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &descs[i].map)))
{
printf("%s: bus_dmamap_create(): error %d\n", NAME_UNIT, error);
return error;
}
# elif defined(__bsdi__)
/* Allocate wired physical memory for DMA descriptor array. */
if ((ring->first = malloc(size_descs, M_DEVBUF, M_NOWAIT)) == NULL)
{
printf("%s: malloc() failed for DMA descriptor array\n", NAME_UNIT);
return ENOMEM;
}
descs = ring->first;
memset(descs, 0, size_descs);
/* Map kernel virtual address to PCI address for DMA descriptor array. */
ring->dma_addr = vtophys(descs); /* Relax! BSD/OS only. */
# endif
ring->read = descs;
ring->write = descs;
ring->first = descs;
ring->last = descs + num_descs -1;
ring->last->control = TLP_DCTL_END_RING;
ring->num_descs = num_descs;
ring->size_descs = size_descs;
ring->head = NULL;
ring->tail = NULL;
return 0;
}
/* Destroy a DMA descriptor ring */
/* Kernel (boot) or User (syscall) context. */
static void /* BSD version */
destroy_ring(softc_t *sc, struct desc_ring *ring)
{
struct dma_desc *desc;
struct mbuf *m;
/* Free queued mbufs. */
while ((m = mbuf_dequeue(ring)))
m_freem(m);
/* TX may have one pkt that is not on any queue. */
if (sc->tx_mbuf)
{
m_freem(sc->tx_mbuf);
sc->tx_mbuf = NULL;
}
/* Unmap active DMA descriptors. */
while (ring->read != ring->write)
{
bus_dmamap_unload(ring->tag, ring->read->map);
if (ring->read++ == ring->last) ring->read = ring->first;
}
# if defined(__FreeBSD__)
/* Free the dmamaps of all DMA descriptors. */
for (desc=ring->first; desc!=ring->last+1; desc++)
if (desc->map)
bus_dmamap_destroy(ring->tag, desc->map);
/* Unmap PCI address for DMA descriptor array. */
if (ring->dma_addr)
bus_dmamap_unload(ring->tag, ring->map);
/* Free kernel memory for DMA descriptor array. */
if (ring->first)
bus_dmamem_free(ring->tag, ring->first, ring->map);
/* Free the DMA tag created for this ring. */
if (ring->tag)
bus_dma_tag_destroy(ring->tag);
# elif defined(__NetBSD__) || defined(__OpenBSD__)
/* Free the dmamaps of all DMA descriptors. */
for (desc=ring->first; desc!=ring->last+1; desc++)
if (desc->map)
bus_dmamap_destroy(ring->tag, desc->map);
/* Unmap PCI address for DMA descriptor array. */
if (ring->dma_addr)
bus_dmamap_unload(ring->tag, ring->map);
/* Free dmamap for DMA descriptor array. */
if (ring->map)
bus_dmamap_destroy(ring->tag, ring->map);
/* Unmap kernel address for DMA descriptor array. */
if (ring->first)
bus_dmamem_unmap(ring->tag, (caddr_t)ring->first, ring->size_descs);
/* Free kernel memory for DMA descriptor array. */
if (ring->segs[0].ds_addr)
bus_dmamem_free(ring->tag, ring->segs, ring->nsegs);
# elif defined(__bsdi__)
/* Free kernel memory for DMA descriptor array. */
if (ring->first)
free(ring->first, M_DEVBUF);
# endif
}
/* Singly-linked tail-queues hold mbufs with active DMA.
* For RX, single mbuf clusters; for TX, mbuf chains are queued.
* NB: mbufs are linked through their m_nextpkt field.
* Callers must hold sc->bottom_lock; not otherwise locked.
*/
/* Put an mbuf (chain) on the tail of the descriptor ring queue. */
static void /* BSD version */
mbuf_enqueue(struct desc_ring *ring, struct mbuf *m)
{
m->m_nextpkt = NULL;
if (ring->tail == NULL)
ring->head = m;
else
ring->tail->m_nextpkt = m;
ring->tail = m;
}
/* Get an mbuf (chain) from the head of the descriptor ring queue. */
static struct mbuf* /* BSD version */
mbuf_dequeue(struct desc_ring *ring)
{
struct mbuf *m = ring->head;
if (m)
if ((ring->head = m->m_nextpkt) == NULL)
ring->tail = NULL;
return m;
}
/* Clean up after a packet has been received. */
static int /* BSD version */
rxintr_cleanup(softc_t *sc)
{
struct desc_ring *ring = &sc->rxring;
struct dma_desc *first_desc, *last_desc;
struct mbuf *first_mbuf=NULL, *last_mbuf=NULL;
struct mbuf *new_mbuf;
int pkt_len, desc_len;
/* Input packet flow control (livelock prevention): */
/* Give pkts to higher levels only if quota is > 0. */
if (sc->quota <= 0) return 0;
/* This looks complicated, but remember: typically packets up */
/* to 2048 bytes long fit in one mbuf and use one descriptor. */
first_desc = last_desc = ring->read;
/* ASSERTION: If there is a descriptor in the ring and the hardware has */
/* finished with it, then that descriptor will have RX_FIRST_DESC set. */
if ((ring->read != ring->write) && /* descriptor ring not empty */
!(ring->read->status & TLP_DSTS_OWNER) && /* hardware done */
!(ring->read->status & TLP_DSTS_RX_FIRST_DESC)) /* should be set */
panic("%s: rxintr_cleanup: rx-first-descriptor not set.\n", NAME_UNIT);
/* First decide if a complete packet has arrived. */
/* Run down DMA descriptors looking for one marked "last". */
/* Bail out if an active descriptor is encountered. */
/* Accumulate most significant bits of packet length. */
pkt_len = 0;
for (;;)
{
if (last_desc == ring->write) return 0; /* no more descs */
if (last_desc->status & TLP_DSTS_OWNER) return 0; /* still active */
if (last_desc->status & TLP_DSTS_RX_LAST_DESC) break; /* end of packet */
pkt_len += last_desc->length1 + last_desc->length2; /* entire desc filled */
if (last_desc++->control & TLP_DCTL_END_RING) last_desc = ring->first; /* ring wrap */
}
/* A complete packet has arrived; how long is it? */
/* H/w ref man shows RX pkt length as a 14-bit field. */
/* An experiment found that only the 12 LSBs work. */
if (((last_desc->status>>16)&0xFFF) == 0) pkt_len += 4096; /* carry-bit */
pkt_len = (pkt_len & 0xF000) + ((last_desc->status>>16) & 0x0FFF);
/* Subtract the CRC length unless doing so would underflow. */
if (pkt_len >= sc->config.crc_len) pkt_len -= sc->config.crc_len;
/* Run down DMA descriptors again doing the following:
* 1) put pkt info in pkthdr of first mbuf,
* 2) link mbufs,
* 3) set mbuf lengths.
*/
first_desc = ring->read;
do
{
/* Read a DMA descriptor from the ring. */
last_desc = ring->read;
/* Advance the ring read pointer. */
if (ring->read++ == ring->last) ring->read = ring->first;
/* Dequeue the corresponding cluster mbuf. */
new_mbuf = mbuf_dequeue(ring);
if (new_mbuf == NULL)
panic("%s: rxintr_cleanup: expected an mbuf\n", NAME_UNIT);
desc_len = last_desc->length1 + last_desc->length2;
/* If bouncing, copy bounce buf to mbuf. */
DMA_SYNC(last_desc->map, desc_len, BUS_DMASYNC_POSTREAD);
/* Unmap kernel virtual address to PCI address. */
bus_dmamap_unload(ring->tag, last_desc->map);
/* 1) Put pkt info in pkthdr of first mbuf. */
if (last_desc == first_desc)
{
first_mbuf = new_mbuf;
first_mbuf->m_pkthdr.len = pkt_len; /* total pkt length */
# if IFNET
first_mbuf->m_pkthdr.rcvif = sc->ifp; /* how it got here */
# else
first_mbuf->m_pkthdr.rcvif = NULL;
# endif
}
else /* 2) link mbufs. */
{
last_mbuf->m_next = new_mbuf;
/* M_PKTHDR should be set in the first mbuf only. */
new_mbuf->m_flags &= ~M_PKTHDR;
}
last_mbuf = new_mbuf;
/* 3) Set mbuf lengths. */
new_mbuf->m_len = (pkt_len >= desc_len) ? desc_len : pkt_len;
pkt_len -= new_mbuf->m_len;
} while ((last_desc->status & TLP_DSTS_RX_LAST_DESC)==0);
/* Decide whether to accept or to drop this packet. */
/* RxHDLC sets MIIERR for bad CRC, abort and partial byte at pkt end. */
if (!(last_desc->status & TLP_DSTS_RX_BAD) &&
(sc->status.link_state == STATE_UP) &&
(first_mbuf->m_pkthdr.len > 0))
{
/* Optimization: copy a small pkt into a small mbuf. */
if (first_mbuf->m_pkthdr.len <= COPY_BREAK)
{
MGETHDR(new_mbuf, M_DONTWAIT, MT_DATA);
if (new_mbuf)
{
new_mbuf->m_pkthdr.rcvif = first_mbuf->m_pkthdr.rcvif;
new_mbuf->m_pkthdr.len = first_mbuf->m_pkthdr.len;
new_mbuf->m_len = first_mbuf->m_len;
memcpy(new_mbuf->m_data, first_mbuf->m_data,
first_mbuf->m_pkthdr.len);
m_freem(first_mbuf);
first_mbuf = new_mbuf;
}
}
/* Include CRC and one flag byte in input byte count. */
sc->status.cntrs.ibytes += first_mbuf->m_pkthdr.len + sc->config.crc_len +1;
sc->status.cntrs.ipackets++;
/* Berkeley Packet Filter */
LMC_BPF_MTAP(first_mbuf);
/* Give this good packet to the network stacks. */
sc->quota--;
if (sc->line)
sc->line->input(sc, first_mbuf);
else
{
m_freem(first_mbuf);
sc->status.cntrs.idrops++;
}
}
else if (sc->status.link_state != STATE_UP)
{
/* If the link is down, this packet is probably noise. */
m_freem(first_mbuf);
sc->status.cntrs.idrops++;
if (sc->config.debug)
printf("%s: rxintr_cleanup: rx pkt dropped: link down\n", NAME_UNIT);
}
else /* Log and drop this bad packet. */
{
if (sc->config.debug)
printf("%s: RX bad pkt; len=%d %s%s%s%s\n",
NAME_UNIT, first_mbuf->m_pkthdr.len,
(last_desc->status & TLP_DSTS_RX_MII_ERR) ? " miierr" : "",
(last_desc->status & TLP_DSTS_RX_DRIBBLE) ? " dribble" : "",
(last_desc->status & TLP_DSTS_RX_DESC_ERR) ? " descerr" : "",
(last_desc->status & TLP_DSTS_RX_OVERRUN) ? " overrun" : "");
if (last_desc->status & TLP_DSTS_RX_OVERRUN)
sc->status.cntrs.fifo_over++;
else
sc->status.cntrs.ierrors++;
m_freem(first_mbuf);
}
return 1; /* did something */
}
/* Setup (prepare) to receive a packet. */
/* Try to keep the RX descriptor ring full of empty buffers. */
static int /* BSD version */
rxintr_setup(softc_t *sc)
{
struct desc_ring *ring = &sc->rxring;
struct dma_desc *desc;
struct mbuf *m;
int desc_len;
int error;
/* Ring is full if (wrap(write+1)==read) */
if (((ring->write == ring->last) ? ring->first : ring->write+1) == ring->read)
return 0; /* ring is full; nothing to do */
/* Allocate a small mbuf and attach an mbuf cluster. */
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
{
sc->status.cntrs.rxbuf++;
if (sc->config.debug)
printf("%s: rxintr_setup: MGETHDR() failed\n", NAME_UNIT);
return 0;
}
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT)==0)
{
m_freem(m);
sc->status.cntrs.rxbuf++;
if (sc->config.debug)
printf("%s: rxintr_setup: MCLGET() failed\n", NAME_UNIT);
return 0;
}
/* Queue the mbuf for later processing by rxintr_cleanup. */
mbuf_enqueue(ring, m);
/* Write a DMA descriptor into the ring. */
/* Hardware won't see it until the OWNER bit is set. */
desc = ring->write;
/* Advance the ring write pointer. */
if (ring->write++ == ring->last) ring->write = ring->first;
desc_len = (MCLBYTES < MAX_DESC_LEN) ? MCLBYTES : MAX_DESC_LEN;
/* Map kernel virtual address to PCI address. */
if ((error = DMA_LOAD(desc->map, m->m_data, desc_len)))
printf("%s: bus_dmamap_load(rx): error %d\n", NAME_UNIT, error);
/* Invalidate the cache for this mbuf. */
DMA_SYNC(desc->map, desc_len, BUS_DMASYNC_PREREAD);
/* Set up the DMA descriptor. */
# if defined(__FreeBSD__)
desc->address1 = ring->segs[0].ds_addr;
# elif defined(__NetBSD__) || defined(__OpenBSD__)
desc->address1 = desc->map->dm_segs[0].ds_addr;
# elif defined(__bsdi__)
desc->address1 = vtophys(m->m_data); /* Relax! BSD/OS only. */
# endif
desc->length1 = desc_len>>1;
desc->address2 = desc->address1 + desc->length1;
desc->length2 = desc_len>>1;
/* Before setting the OWNER bit, flush the cache (memory barrier). */
DMA_SYNC(ring->map, ring->size_descs, BUS_DMASYNC_PREWRITE);
/* Commit the DMA descriptor to the hardware. */
desc->status = TLP_DSTS_OWNER;
/* Notify the receiver that there is another buffer available. */
WRITE_CSR(TLP_RX_POLL, 1);
return 1; /* did something */
}
/* Clean up after a packet has been transmitted. */
/* Free the mbuf chain and update the DMA descriptor ring. */
static int /* BSD version */
txintr_cleanup(softc_t *sc)
{
struct desc_ring *ring = &sc->txring;
struct dma_desc *desc;
while ((ring->read != ring->write) && /* while ring is not empty */
!(ring->read->status & TLP_DSTS_OWNER))
{
/* Read a DMA descriptor from the ring. */
desc = ring->read;
/* Advance the ring read pointer. */
if (ring->read++ == ring->last) ring->read = ring->first;
/* This is a no-op on most architectures. */
DMA_SYNC(desc->map, desc->length1 + desc->length2, BUS_DMASYNC_POSTWRITE);
/* Unmap kernel virtual address to PCI address. */
bus_dmamap_unload(ring->tag, desc->map);
/* If this descriptor is the last segment of a packet, */
/* then dequeue and free the corresponding mbuf chain. */
if (desc->control & TLP_DCTL_TX_LAST_SEG)
{
struct mbuf *m;
if ((m = mbuf_dequeue(ring)) == NULL)
panic("%s: txintr_cleanup: expected an mbuf\n", NAME_UNIT);
/* The only bad TX status is fifo underrun. */
if (desc->status & TLP_DSTS_TX_UNDERRUN)
{
if (sc->config.debug)
printf("%s: txintr_cleanup: tx fifo underrun\n", NAME_UNIT);
sc->status.cntrs.fifo_under++;
sc->status.cntrs.oerrors++;
}
else
{
/* Include CRC and one flag byte in output byte count. */
sc->status.cntrs.obytes += m->m_pkthdr.len + sc->config.crc_len +1;
sc->status.cntrs.opackets++;
/* Berkeley Packet Filter */
LMC_BPF_MTAP(m);
}
m_freem(m);
return 1; /* did something */
}
}
return 0;
}
/* Build DMA descriptors for a transmit packet mbuf chain. */
static int /* 0=success; 1=error */ /* BSD version */
txintr_setup_mbuf(softc_t *sc, struct mbuf *m)
{
struct desc_ring *ring = &sc->txring;
struct dma_desc *desc;
unsigned int desc_len;
/* build DMA descriptors for a chain of mbufs. */
while (m)
{
char *data = m->m_data;
int length = m->m_len; /* zero length mbufs happen! */
/* Build DMA descriptors for one mbuf. */
while (length > 0)
{
int error;
/* Ring is full if (wrap(write+1)==read) */
if (((ring->temp==ring->last) ? ring->first : ring->temp+1) == ring->read)
{ /* Not enough DMA descriptors; try later. */
for (; ring->temp!=ring->write;
ring->temp = (ring->temp==ring->first)? ring->last : ring->temp-1)
bus_dmamap_unload(ring->tag, ring->temp->map);
sc->status.cntrs.txdma++; /* IFF_OACTIVE? */
return 1;
}
/* Provisionally, write a descriptor into the ring. */
/* But don't change the REAL ring write pointer. */
/* Hardware won't see it until the OWNER bit is set. */
desc = ring->temp;
/* Advance the temporary ring write pointer. */
if (ring->temp++ == ring->last) ring->temp = ring->first;
/* Clear all control bits except the END_RING bit. */
desc->control &= TLP_DCTL_END_RING;
/* Don't pad short packets up to 64 bytes. */
desc->control |= TLP_DCTL_TX_NO_PAD;
/* Use Tulip's CRC-32 generator, if appropriate. */
if (sc->config.crc_len != CFG_CRC_32)
desc->control |= TLP_DCTL_TX_NO_CRC;
/* Set the OWNER bit, except in the first descriptor. */
if (desc != ring->write)
desc->status = TLP_DSTS_OWNER;
desc_len = (length > MAX_CHUNK_LEN) ? MAX_CHUNK_LEN : length;
/* Map kernel virtual address to PCI address. */
if ((error = DMA_LOAD(desc->map, data, desc_len)))
printf("%s: bus_dmamap_load(tx): error %d\n", NAME_UNIT, error);
/* Flush the cache and if bouncing, copy mbuf to bounce buf. */
DMA_SYNC(desc->map, desc_len, BUS_DMASYNC_PREWRITE);
/* Prevent wild fetches if mapping fails (nsegs==0). */
desc->length1 = desc->length2 = 0;
desc->address1 = desc->address2 = 0;
# if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
{
# if defined(__FreeBSD__)
bus_dma_segment_t *segs = ring->segs;
int nsegs = ring->nsegs;
# elif defined(__NetBSD__) || defined(__OpenBSD__)
bus_dma_segment_t *segs = desc->map->dm_segs;
int nsegs = desc->map->dm_nsegs;
# endif
if (nsegs >= 1)
{
desc->address1 = segs[0].ds_addr;
desc->length1 = segs[0].ds_len;
}
if (nsegs == 2)
{
desc->address2 = segs[1].ds_addr;
desc->length2 = segs[1].ds_len;
}
}
# elif defined(__bsdi__)
desc->address1 = vtophys(data); /* Relax! BSD/OS only. */
desc->length1 = desc_len;
# endif
data += desc_len;
length -= desc_len;
} /* while (length > 0) */
m = m->m_next;
} /* while (m) */
return 0; /* success */
}
/* Setup (prepare) to transmit a packet. */
/* Select a packet, build DMA descriptors and give packet to hardware. */
/* If DMA descriptors run out, abandon the attempt and return 0. */
static int /* BSD version */
txintr_setup(softc_t *sc)
{
struct desc_ring *ring = &sc->txring;
struct dma_desc *first_desc, *last_desc;
/* Protect against half-up links: Don't transmit */
/* if the receiver can't hear the far end. */
if (sc->status.link_state != STATE_UP) return 0;
/* Pick a packet to transmit. */
if ((sc->tx_mbuf == NULL) && sc->line)
sc->line->output(sc);
if (sc->tx_mbuf == NULL) return 0; /* no pkt to transmit */
/* Build DMA descriptors for an outgoing mbuf chain. */
ring->temp = ring->write; /* temporary ring write pointer */
if (txintr_setup_mbuf(sc, sc->tx_mbuf)) return 0;
/* Enqueue the mbuf; txintr_cleanup will free it. */
mbuf_enqueue(ring, sc->tx_mbuf);
/* The transmitter has room for another packet. */
sc->tx_mbuf = NULL;
/* Set first & last segment bits. */
/* last_desc is the desc BEFORE the one pointed to by ring->temp. */
first_desc = ring->write;
first_desc->control |= TLP_DCTL_TX_FIRST_SEG;
last_desc = (ring->temp==ring->first)? ring->last : ring->temp-1;
last_desc->control |= TLP_DCTL_TX_LAST_SEG;
/* Interrupt at end-of-transmission? Why bother the poor computer! */
/* last_desc->control |= TLP_DCTL_TX_INTERRUPT; */
/* Make sure the OWNER bit is not set in the next descriptor. */
/* The OWNER bit may have been set if a previous call aborted. */
ring->temp->status = 0;
/* Commit the DMA descriptors to the software. */
ring->write = ring->temp;
/* Before setting the OWNER bit, flush the cache (memory barrier). */
DMA_SYNC(ring->map, ring->size_descs, BUS_DMASYNC_PREWRITE);
/* Commit the DMA descriptors to the hardware. */
first_desc->status = TLP_DSTS_OWNER;
/* Notify the transmitter that there is another packet to send. */
WRITE_CSR(TLP_TX_POLL, 1);
return 1; /* did something */
}
/* The kernel calls this when a hardware interrupt happens. */
static intr_return_t
bsd_interrupt(void *arg)
{
softc_t *sc = arg;
# if DEVICE_POLLING
if (sc->ifp->if_capenable & IFCAP_POLLING)
return IRQ_NONE;
# endif
/* Ever called when card interrupts are disabled? */
if ((READ_CSR(TLP_INT_ENBL) & TLP_INT_TXRX)==0)
sc->status.cntrs.spare1++;
/* Cut losses early if this is not our interrupt. */
if ((READ_CSR(TLP_STATUS) & TLP_INT_TXRX)==0)
return IRQ_NONE;
/* Disable card interrupts. */
WRITE_CSR(TLP_INT_ENBL, TLP_INT_DISABLE);
sc->quota = sc->rxring.num_descs; /* input flow NOT controlled */
lmc_interrupt(sc, 0); /* don't check status */
/* Enable card interrupts. */
WRITE_CSR(TLP_INT_ENBL, TLP_INT_TXRX);
return IRQ_HANDLED;
}
#endif /* BSD */
# if DEVICE_POLLING
/* This procedure services the card without interrupts. */
/* With rxintr_cleanup(), it implements input flow control. */
static void
bsd_poll(struct ifnet *ifp, enum poll_cmd cmd, int quota)
{
softc_t *sc = IFP2SC(ifp);
/* Cut losses early if this is not our interrupt. */
if ((READ_CSR(TLP_STATUS) & TLP_INT_TXRX)==0)
return;
sc->quota = quota; /* input flow IS controlled */
lmc_interrupt(sc, (cmd==POLL_AND_CHECK_STATUS));
}
# endif /* DEVICE_POLLING */
# if defined(__FreeBSD__)
static void /* Callout from bus_dmamap_load() */
fbsd_dmamap_load(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct desc_ring *ring = arg;
ring->nsegs = error ? 0 : nsegs;
ring->segs[0] = segs[0];
ring->segs[1] = segs[1];
}
# endif
#if defined(__linux__)
/* There are TWO VERSIONS of interrupt/DMA code: Linux & BSD.
* Handling Linux and the BSDs with CPP directives would
* make the code unreadable, so there are two versions.
* Conceptually, the two versions do the same thing and
* lmc_interrupt() doesn't know they are different.
*
* We are "standing on the head of a pin" in these routines.
* Tulip CSRs can be accessed, but nothing else is interrupt-safe!
* Do NOT access: MII, GPIO, SROM, BIOSROM, XILINX, SYNTH, or DAC.
*/
/* Initialize a DMA descriptor ring. */
/* Kernel (boot) or User (syscall) context. */
static int /* Linux version */
create_ring(softc_t *sc, struct desc_ring *ring, int num_descs)
{
struct dma_desc *descs;
int size_descs = sizeof(struct dma_desc)*num_descs;
/* Allocate and map memory for DMA descriptor array. */
if ((descs = pci_alloc_consistent(sc->pcidev, size_descs,
&ring->dma_addr)) == NULL)
{
printk("%s: pci_alloc_consistent() failed\n", NAME_UNIT);
return -ENOMEM;
}
memset(descs, 0, size_descs);
ring->read = descs;
ring->write = descs;
ring->first = descs;
ring->last = descs + num_descs -1;
ring->last->control = TLP_DCTL_END_RING;
ring->num_descs = num_descs;
ring->size_descs = size_descs;
ring->head = NULL;
ring->tail = NULL;
return 0;
}
/* Destroy a DMA descriptor ring */
/* Kernel (boot) or User (syscall) context. */
static void /* Linux version */
destroy_ring(softc_t *sc, struct desc_ring *ring)
{
struct sk_buff *skb;
/* Free queued skbuffs. */
while ((skb = skbuff_dequeue(ring)))
dev_kfree_skb(skb);
/* TX may have one pkt that is not on any queue. */
if (sc->tx_skb)
{
dev_kfree_skb(sc->tx_skb);
sc->tx_skb = NULL;
}
if (ring->first)
{
/* Unmap active DMA descriptors. */
while (ring->read != ring->write)
{
pci_unmap_single(sc->pcidev, ring->read->address1,
ring->read->length1 + ring->read->length2, PCI_DMA_BIDIRECTIONAL);
if (ring->read++ == ring->last) ring->read = ring->first;
}
/* Unmap and free memory for DMA descriptor array. */
pci_free_consistent(sc->pcidev, ring->size_descs, ring->first,
ring->dma_addr);
}
}
/* Singly-linked tail-queues hold sk_buffs with active DMA.
* skbuffs are linked through their sk_buff.next field.
* Callers must hold sc->bottom_lock; not otherwise locked.
*/
/* Put an skbuff on the tail of the descriptor ring queue. */
static void /* Linux version */
skbuff_enqueue(struct desc_ring *ring, struct sk_buff *skb)
{
skb->next = NULL;
if (ring->tail == NULL)
ring->head = skb;
else
ring->tail->next = skb;
ring->tail = skb;
}
/* Get an skbuff from the head of the descriptor ring queue. */
static struct sk_buff* /* Linux version */
skbuff_dequeue(struct desc_ring *ring)
{
struct sk_buff *skb = ring->head;
if (skb)
if ((ring->head = skb->next) == NULL)
ring->tail = NULL;
return skb;
}
static int /* Linux version */
rxintr_cleanup(softc_t *sc)
{
struct desc_ring *ring = &sc->rxring;
struct dma_desc *first_desc, *last_desc;
struct sk_buff *first_skb=NULL, *last_skb=NULL;
struct sk_buff *new_skb;
int pkt_len, desc_len;
/* Input packet flow control (livelock prevention): */
/* Give pkts to higher levels only if quota is > 0. */
if (sc->quota <= 0) return 0;
/* This looks complicated, but remember: packets up to 4032 */
/* bytes long fit in one skbuff and use one DMA descriptor. */
first_desc = last_desc = ring->read;
/* ASSERTION: If there is a descriptor in the ring and the hardware has */
/* finished with it, then that descriptor will have RX_FIRST_DESC set. */
if ((ring->read != ring->write) && /* descriptor ring not empty */
!(ring->read->status & TLP_DSTS_OWNER) && /* hardware done */
!(ring->read->status & TLP_DSTS_RX_FIRST_DESC)) /* should be set */
panic("%s: rxintr_cleanup: rx-first-descriptor not set.\n", NAME_UNIT);
/* First decide if a complete packet has arrived. */
/* Run down DMA descriptors looking for one marked "last". */
/* Bail out if an active descriptor is encountered. */
/* Accumulate most significant bits of packet length. */
pkt_len = 0;
for (;;)
{
if (last_desc == ring->write) return 0; /* no more descs */
if (last_desc->status & TLP_DSTS_OWNER) return 0; /* still active */
if (last_desc->status & TLP_DSTS_RX_LAST_DESC) break; /* end of packet */
pkt_len += last_desc->length1 + last_desc->length2; /* entire desc filled */
if (last_desc++->control & TLP_DCTL_END_RING) last_desc = ring->first; /* ring wrap */
}
/* A complete packet has arrived; how long is it? */
/* H/w ref man shows RX pkt length as a 14-bit field. */
/* An experiment found that only the 12 LSBs work. */
if (((last_desc->status>>16)&0xFFF) == 0) pkt_len += 4096; /* carry-bit */
pkt_len = (pkt_len & 0xF000) + ((last_desc->status>>16) & 0x0FFF);
/* Subtract the CRC length unless doing so would underflow. */
if (pkt_len >= sc->config.crc_len) pkt_len -= sc->config.crc_len;
/* Run down DMA descriptors again doing the following:
* 1) put pkt info in hdr of first skbuff.
* 2) put additional skbuffs on frag_list.
* 3) set skbuff lengths.
*/
first_desc = ring->read;
do
{
/* Read a DMA descriptor from the ring. */
last_desc = ring->read;
/* Advance the ring read pointer. */
if (ring->read++ == ring->last) ring->read = ring->first;
/* Dequeue the corresponding skbuff. */
new_skb = skbuff_dequeue(ring);
if (new_skb == NULL)
panic("%s: rxintr_cleanup: expected an skbuff\n", NAME_UNIT);
desc_len = last_desc->length1 + last_desc->length2;
/* Unmap kernel virtual addresss to PCI address. */
pci_unmap_single(sc->pcidev, last_desc->address1,
desc_len, PCI_DMA_FROMDEVICE);
/* Set skbuff length. */
skb_put(new_skb, (pkt_len >= desc_len) ? desc_len : pkt_len);
pkt_len -= new_skb->len;
/* 1) Put pkt info in hdr of first skbuff. */
if (last_desc == first_desc)
{
first_skb = new_skb;
if (sc->line)
first_skb->protocol = sc->line->type(sc, first_skb);
else
first_skb->protocol = htons(ETH_P_HDLC);
first_skb->mac.raw = first_skb->data;
first_skb->dev = sc->netdev;
sc->netdev->last_rx = jiffies;
}
else /* 2) link skbuffs. */
{
/* Put this skbuff on the frag_list of the first skbuff. */
new_skb->next = NULL;
if (skb_shinfo(first_skb)->frag_list == NULL)
skb_shinfo(first_skb)->frag_list = new_skb;
else
last_skb->next = new_skb;
/* 3) set skbuff lengths. */
first_skb->len += new_skb->len;
first_skb->data_len += new_skb->len;
}
last_skb = new_skb;
} while ((last_desc->status & TLP_DSTS_RX_LAST_DESC)==0);
/* Decide whether to accept or to drop this packet. */
/* RxHDLC sets MIIERR for bad CRC, abort and partial byte at pkt end. */
if (!(last_desc->status & TLP_DSTS_RX_BAD) &&
(sc->status.link_state == STATE_UP) &&
(first_skb->len > 0))
{
/* Optimization: copy a small pkt into a small skbuff. */
if (first_skb->len <= COPY_BREAK)
if ((new_skb = skb_copy(first_skb, GFP_ATOMIC)))
{
dev_kfree_skb_any(first_skb);
first_skb = new_skb;
}
/* Include CRC and one flag byte in input byte count. */
sc->status.cntrs.ibytes += first_skb->len + sc->config.crc_len +1;
sc->status.cntrs.ipackets++;
/* Give this good packet to the network stacks. */
sc->quota--;
# if NAPI
netif_receive_skb(first_skb);
# else
netif_rx(first_skb);
# endif
}
else if (sc->status.link_state != STATE_UP)
{
/* If the link is down, this packet is probably noise. */
dev_kfree_skb_any(first_skb);
sc->status.cntrs.idrops++;
if (sc->config.debug)
printk("%s: rxintr_cleanup: rx pkt dropped: link down\n", NAME_UNIT);
}
else /* Log and drop this bad packet. */
{
if (sc->config.debug)
printk("%s: RX bad pkt; len=%d %s%s%s%s\n",
NAME_UNIT, first_skb->len,
(last_desc->status & TLP_DSTS_RX_MII_ERR) ? " miierr" : "",
(last_desc->status & TLP_DSTS_RX_DRIBBLE) ? " dribble" : "",
(last_desc->status & TLP_DSTS_RX_DESC_ERR) ? " descerr" : "",
(last_desc->status & TLP_DSTS_RX_OVERRUN) ? " overrun" : "");
if (last_desc->status & TLP_DSTS_RX_OVERRUN)
sc->status.cntrs.fifo_over++;
else
sc->status.cntrs.ierrors++;
dev_kfree_skb_any(first_skb);
}
return 1; /* did something */
}
/* Setup (prepare) to receive a packet. */
/* Try to keep the RX descriptor ring full of empty buffers. */
static int /* Linux version */
rxintr_setup(softc_t *sc)
{
struct desc_ring *ring = &sc->rxring;
struct dma_desc *desc;
struct sk_buff *skb;
u_int32_t dma_addr;
/* Ring is full if (wrap(write+1)==read) */
if (((ring->write == ring->last) ? ring->first : ring->write+1) == ring->read)
return 0; /* ring is full; nothing to do */
/* Allocate an skbuff. */
if ((skb = dev_alloc_skb(MAX_DESC_LEN)) == NULL)
{
sc->status.cntrs.rxbuf++;
if (sc->config.debug)
printk("%s: rxintr_setup: dev_alloc_skb() failed\n", NAME_UNIT);
return 0;
}
skb->dev = sc->netdev;
/* Queue the skbuff for later processing by rxintr_cleanup. */
skbuff_enqueue(ring, skb);
/* Write a DMA descriptor into the ring. */
/* Hardware won't see it until the OWNER bit is set. */
desc = ring->write;
/* Advance the ring write pointer. */
if (ring->write++ == ring->last) ring->write = ring->first;
/* Map kernel virtual addresses to PCI addresses. */
dma_addr = pci_map_single(sc->pcidev, skb->data,
MAX_DESC_LEN, PCI_DMA_FROMDEVICE);
/* Set up the DMA descriptor. */
desc->address1 = dma_addr;
desc->length1 = MAX_CHUNK_LEN;
desc->address2 = desc->address1 + desc->length1;
desc->length2 = MAX_CHUNK_LEN;
/* Before setting the OWNER bit, flush the cache (memory barrier). */
wmb(); /* write memory barrier */
/* Commit the DMA descriptor to the hardware. */
desc->status = TLP_DSTS_OWNER;
/* Notify the receiver that there is another buffer available. */
WRITE_CSR(TLP_RX_POLL, 1);
return 1; /* did something */
}
/* Clean up after a packet has been transmitted. */
/* Free the sk_buff and update the DMA descriptor ring. */
static int /* Linux version */
txintr_cleanup(softc_t *sc)
{
struct desc_ring *ring = &sc->txring;
struct dma_desc *desc;
while ((ring->read != ring->write) && /* ring is not empty */
!(ring->read->status & TLP_DSTS_OWNER))
{
/* Read a DMA descriptor from the ring. */
desc = ring->read;
/* Advance the ring read pointer. */
if (ring->read++ == ring->last) ring->read = ring->first;
/* Unmap kernel virtual address to PCI address. */
pci_unmap_single(sc->pcidev, desc->address1,
desc->length1 + desc->length2, PCI_DMA_TODEVICE);
/* If this descriptor is the last segment of a packet, */
/* then dequeue and free the corresponding skbuff. */
if (desc->control & TLP_DCTL_TX_LAST_SEG)
{
struct sk_buff *skb;
if ((skb = skbuff_dequeue(ring)) == NULL)
panic("%s: txintr_cleanup: expected an sk_buff\n", NAME_UNIT);
/* The only bad TX status is fifo underrun. */
if (desc->status & TLP_DSTS_TX_UNDERRUN)
{
if (sc->config.debug)
printk("%s: txintr_cleanup: tx fifo underrun\n", NAME_UNIT);
sc->status.cntrs.fifo_under++;
sc->status.cntrs.oerrors++;
}
else
{
/* Include CRC and one flag byte in output byte count. */
sc->status.cntrs.obytes += skb->len + sc->config.crc_len +1;
sc->status.cntrs.opackets++;
}
dev_kfree_skb_any(skb);
return 1; /* did something */
}
}
return 0;
}
/* Build DMA descriptors for a tranmit packet fragment, */
/* Assertion: fragment is contiguous in physical memory. */
static int /* 0=success; 1=error */ /* linux version */
txintr_setup_frag(softc_t *sc, char *data, int length)
{
struct desc_ring *ring = &sc->txring;
struct dma_desc *desc;
unsigned int desc_len;
u_int32_t dma_addr;
while (length > 0)
{
/* Ring is full if (wrap(write+1)==read) */
if (((ring->temp==ring->last) ? ring->first : ring->temp+1) == ring->read)
{ /* Not enough DMA descriptors; try later. */
for (; ring->temp!=ring->write;
ring->temp = (ring->temp==ring->first)? ring->last : ring->temp-1)
pci_unmap_single(sc->pcidev, ring->temp->address1,
ring->temp->length1 + ring->temp->length2, PCI_DMA_FROMDEVICE);
sc->status.cntrs.txdma++;
return 1;
}
/* Provisionally, write a DMA descriptor into the ring. */
/* But don't change the REAL ring write pointer. */
/* Hardware won't see it until the OWNER bit is set. */
desc = ring->temp;
/* Advance the temporary ring write pointer. */
if (ring->temp++ == ring->last) ring->temp = ring->first;
/* Clear all control bits except the END_RING bit. */
desc->control &= TLP_DCTL_END_RING;
/* Don't pad short packets up to 64 bytes */
desc->control |= TLP_DCTL_TX_NO_PAD;
/* Use Tulip's CRC-32 generator, if appropriate. */
if (sc->config.crc_len != CFG_CRC_32)
desc->control |= TLP_DCTL_TX_NO_CRC;
/* Set the OWNER bit, except in the first descriptor. */
if (desc != ring->write)
desc->status = TLP_DSTS_OWNER;
desc_len = (length >= MAX_DESC_LEN) ? MAX_DESC_LEN : length;
/* Map kernel virtual address to PCI address. */
dma_addr = pci_map_single(sc->pcidev, data, desc_len, PCI_DMA_TODEVICE);
/* If it will fit in one chunk, do so, otherwise split it. */
if (desc_len <= MAX_CHUNK_LEN)
{
desc->address1 = dma_addr;
desc->length1 = desc_len;
desc->address2 = 0;
desc->length2 = 0;
}
else
{
desc->address1 = dma_addr;
desc->length1 = desc_len>>1;
desc->address2 = desc->address1 + desc->length1;
desc->length2 = desc_len>>1;
if (desc_len & 1) desc->length2++;
}
data += desc_len;
length -= desc_len;
} /* while (length > 0) */
return 0; /* success */
}
/* NB: this procedure is recursive! */
static int /* 0=success; 1=error */
txintr_setup_skb(softc_t *sc, struct sk_buff *skb)
{
struct sk_buff *list;
int i;
/* First, handle the data in the skbuff itself. */
if (txintr_setup_frag(sc, skb->data, skb_headlen(skb)))
return 1;
/* Next, handle the VM pages in the Scatter/Gather list. */
if (skb_shinfo(skb)->nr_frags)
for (i=0; i<skb_shinfo(skb)->nr_frags; i++)
{
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
if (txintr_setup_frag(sc, page_address(frag->page) +
frag->page_offset, frag->size))
return 1;
}
/* Finally, handle the skbuffs in the frag_list. */
if ((list = skb_shinfo(skb)->frag_list))
for (; list; list=list->next)
if (txintr_setup_skb(sc, list)) /* recursive! */
return 1;
return 0;
}
/* Setup (prepare) to transmit a packet. */
/* Select a packet, build DMA descriptors and give packet to hardware. */
/* If DMA descriptors run out, abandon the attempt and return 0. */
static int /* Linux version */
txintr_setup(softc_t *sc)
{
struct desc_ring *ring = &sc->txring;
struct dma_desc *first_desc, *last_desc;
/* Protect against half-up links: Don't transmit */
/* if the receiver can't hear the far end. */
if (sc->status.link_state != STATE_UP) return 0;
/* Pick a packet to transmit. */
/* netdev_start() puts packets in sc->tx_skb. */
if (sc->tx_skb == NULL)
{
/* netdev_start() calls netif_stop_queue() sometimes. */
if (netif_queue_stopped(sc->netdev))
netif_wake_queue(sc->netdev);
return 0; /* no pkt to transmit */
}
/* Build DMA descriptors for an outgoing skbuff. */
ring->temp = ring->write; /* temporary ring write pointer */
if (txintr_setup_skb(sc, sc->tx_skb)) return 0;
/* Enqueue the skbuff; txintr_cleanup will free it. */
skbuff_enqueue(ring, sc->tx_skb);
/* The transmitter has room for another packet. */
sc->tx_skb = NULL;
/* Set first & last segment bits. */
/* last_desc is the desc BEFORE the one pointed to by ring->temp. */
first_desc = ring->write;
first_desc->control |= TLP_DCTL_TX_FIRST_SEG;
last_desc = (ring->temp==ring->first)? ring->last : ring->temp-1;
last_desc->control |= TLP_DCTL_TX_LAST_SEG;
/* Interrupt at end-of-transmission? Why bother the poor computer! */
/* last_desc->control |= TLP_DCTL_TX_INTERRUPT; */
/* Make sure the OWNER bit is not set in the next descriptor. */
/* The OWNER bit may have been set if a previous call aborted. */
ring->temp->status = 0;
/* Commit the DMA descriptors to the software. */
ring->write = ring->temp;
/* Before setting the OWNER bit, flush the cache (memory barrier). */
wmb(); /* write memory barrier */
/* Commit the DMA descriptors to the hardware. */
first_desc->status = TLP_DSTS_OWNER;
/* Notify the transmitter that there is another packet to send. */
WRITE_CSR(TLP_TX_POLL, 1);
sc->netdev->trans_start = jiffies;
return 1; /* did something */
}
/* The kernel calls this when a hardware interrupt happens. */
static irqreturn_t
linux_interrupt(int irq, void *arg, struct pt_regs *regs)
{
softc_t *sc = arg;
/* Ever called when card interrupts are disabled? */
if ((READ_CSR(TLP_INT_ENBL) & TLP_INT_TXRX)==0)
sc->status.cntrs.spare1++;
/* Cut losses early if this is not our interrupt. */
if ((READ_CSR(TLP_STATUS) & TLP_INT_TXRX)==0)
return IRQ_NONE;
/* Disable card interrupts. */
WRITE_CSR(TLP_INT_ENBL, TLP_INT_DISABLE);
# if NAPI
/* Handle the card interrupt with the dev->poll method. */
if (netif_rx_schedule_prep(sc->netdev))
__netif_rx_schedule(sc->netdev); /* add to poll list */
else
printk("%s: interrupt while on poll list\n", NAME_UNIT);
# else
sc->quota = sc->rxring.num_descs; /* input flow NOT controlled */
lmc_interrupt(sc, 0); /* don't check status */
/* Enable card interrupts. */
WRITE_CSR(TLP_INT_ENBL, TLP_INT_TXRX);
# endif /* NAPI */
return IRQ_HANDLED;
}
#endif /* __linux__ */
/* Open the line package */
/* Kernel (boot) or User (syscall) context. */
static int
line_open(softc_t *sc, struct config *config)
{
int error = 0;
if (sc->line)
error = sc->line->open(sc, config);
else
error = BSD ? ENOSYS : -ENOSYS;
return error;
}
/* Attach line protocol package. */
/* Kernel (boot) or User (syscall) context. */
static int
line_attach(softc_t *sc, struct config *config)
{
int error = 0;
struct line *line = NULL;
/* Done if line_pkg isn't changing. */
if (sc->config.line_pkg == config->line_pkg)
return 0;
/* Detach the current line_pkg. */
if (sc->line && ((error = sc->line->detach(sc))))
return error;
switch (config->line_pkg)
{
case PKG_RAWIP:
line = &rawip_line;
break;
#if SPPP
case PKG_SPPP:
line = &sppp_line;
break;
#endif
#if P2P
case PKG_P2P:
line = &p2p_line;
break;
#endif
#if GEN_HDLC
case PKG_GEN_HDLC:
line = &gen_hdlc_line;
break;
#endif
#if SYNC_PPP
case PKG_SYNC_PPP:
line = &sync_ppp_line;
break;
#endif
#if NETGRAPH
case PKG_NETGRAPH:
line = &netgraph_line;
break;
#endif
default:
line = NULL;
break;
}
if (line)
error = line->attach(sc, config);
else
error = BSD ? ENOSYS : -ENOSYS;
return error;
}
/* This is the core ioctl procedure.
* It handles IOCTLs from lmcconfig(8).
* It must not run when card watchdogs run.
* Kernel (soft_irq) or User (syscall) context.
*/
static int
lmc_ioctl(softc_t *sc, u_long cmd, caddr_t data)
{
struct iohdr *iohdr = (struct iohdr *) data;
struct ioctl *ioctl = (struct ioctl *) data;
struct status *status = (struct status *) data;
struct config *config = (struct config *) data;
int error = 0;
/* All structs start with a string and a cookie. */
if (iohdr->cookie != NGM_LMC_COOKIE)
return EINVAL;
switch (cmd)
{
case LMCIOCGSTAT:
{
*status = sc->status;
iohdr->cookie = NGM_LMC_COOKIE;
break;
}
case LMCIOCGCFG:
{
*config = sc->config;
iohdr->cookie = NGM_LMC_COOKIE;
break;
}
case LMCIOCSCFG:
{
if ((error = CHECK_CAP)) break;
if ((error = line_attach(sc, config)));
else error = line_open(sc, config);
tulip_loop(sc, config);
sc->card->attach(sc, config);
sc->config.debug = config->debug;
break;
}
case LMCIOCREAD:
{
if (ioctl->cmd == IOCTL_RW_PCI)
{
if (ioctl->address > 252) { error = EFAULT; break; }
ioctl->data = READ_PCI_CFG(sc, ioctl->address);
}
else if (ioctl->cmd == IOCTL_RW_CSR)
{
if (ioctl->address > 15) { error = EFAULT; break; }
ioctl->data = READ_CSR(ioctl->address*TLP_CSR_STRIDE);
}
else if (ioctl->cmd == IOCTL_RW_SROM)
{
if (ioctl->address > 63) { error = EFAULT; break; }
ioctl->data = srom_read(sc, ioctl->address);
}
else if (ioctl->cmd == IOCTL_RW_BIOS)
ioctl->data = bios_read(sc, ioctl->address);
else if (ioctl->cmd == IOCTL_RW_MII)
ioctl->data = mii_read(sc, ioctl->address);
else if (ioctl->cmd == IOCTL_RW_FRAME)
ioctl->data = framer_read(sc, ioctl->address);
else
error = EINVAL;
break;
}
case LMCIOCWRITE:
{
if ((error = CHECK_CAP)) break;
if (ioctl->cmd == IOCTL_RW_PCI)
{
if (ioctl->address > 252) { error = EFAULT; break; }
WRITE_PCI_CFG(sc, ioctl->address, ioctl->data);
}
else if (ioctl->cmd == IOCTL_RW_CSR)
{
if (ioctl->address > 15) { error = EFAULT; break; }
WRITE_CSR(ioctl->address*TLP_CSR_STRIDE, ioctl->data);
}
else if (ioctl->cmd == IOCTL_RW_SROM)
{
if (ioctl->address > 63) { error = EFAULT; break; }
srom_write(sc, ioctl->address, ioctl->data); /* can sleep */
}
else if (ioctl->cmd == IOCTL_RW_BIOS)
{
if (ioctl->address == 0) bios_erase(sc);
bios_write(sc, ioctl->address, ioctl->data); /* can sleep */
}
else if (ioctl->cmd == IOCTL_RW_MII)
mii_write(sc, ioctl->address, ioctl->data);
else if (ioctl->cmd == IOCTL_RW_FRAME)
framer_write(sc, ioctl->address, ioctl->data);
else if (ioctl->cmd == IOCTL_WO_SYNTH)
synth_write(sc, (struct synth *)&ioctl->data);
else if (ioctl->cmd == IOCTL_WO_DAC)
{
dac_write(sc, 0x9002); /* set Vref = 2.048 volts */
dac_write(sc, ioctl->data & 0xFFF);
}
else
error = EINVAL;
break;
}
case LMCIOCTL:
{
if ((error = CHECK_CAP)) break;
if (ioctl->cmd == IOCTL_XILINX_RESET)
{
xilinx_reset(sc);
sc->card->attach(sc, &sc->config);
}
else if (ioctl->cmd == IOCTL_XILINX_ROM)
{
xilinx_load_from_rom(sc);
sc->card->attach(sc, &sc->config);
}
else if (ioctl->cmd == IOCTL_XILINX_FILE)
{
error = xilinx_load_from_file(sc, ioctl->ucode, ioctl->data);
if (error) xilinx_load_from_rom(sc); /* try the rom */
sc->card->attach(sc, &sc->config);
}
else if (ioctl->cmd == IOCTL_RESET_CNTRS)
reset_cntrs(sc);
else
error = sc->card->ioctl(sc, ioctl);
break;
}
default:
error = EINVAL;
break;
}
return error;
}
/* This is the core watchdog procedure.
* ioctl syscalls and card watchdog routines must be interlocked.
* Called by ng_watchdog(), ifnet_watchdog() and netdev_watchdog().
*/
static void /* Kernel (soft_irq) context */
lmc_watchdog(softc_t *sc)
{
/* Read and restart the Tulip timer. */
u_int32_t tx_speed = READ_CSR(TLP_TIMER);
WRITE_CSR(TLP_TIMER, 0xFFFF);
/* Measure MII clock using a timer in the Tulip chip.
* This timer counts transmitter bits divided by 4096.
* Since this is called once a second the math is easy.
* This is only correct when the link is NOT sending pkts.
* On a fully-loaded link, answer will be HALF actual rate.
* Clock rate during pkt is HALF clk rate between pkts.
* Measuring clock rate really measures link utilization!
*/
sc->status.tx_speed = (0xFFFF - (tx_speed & 0xFFFF)) << 12;
/* Call the card-specific watchdog routine. */
if (TOP_TRYLOCK) /* interlock with ioctls */
{
/* remember link_state before updating it */
sc->last_link_state = sc->status.link_state;
/* update status.link_state */
sc->card->watchdog(sc);
/* Increment a counter which tells user-land */
/* observers that SNMP state has been updated. */
sc->status.ticks++;
TOP_UNLOCK;
}
else
sc->status.cntrs.lck_watch++;
/* Kernel date/time can take up to 5 seconds to start running. */
if ((sc->status.ticks > 3) && /* h/w should be stable by now */
(sc->status.cntrs.reset_time.tv_sec < 1000))
{
microtime(&sc->status.cntrs.reset_time);
if (sc->status.cntrs.reset_time.tv_sec > 1000)
reset_cntrs(sc);
}
/* Call the line_pkg-specific watchdog routine. */
if (sc->line)
sc->line->watchdog(sc);
/* In case an interrupt gets lost... */
user_interrupt(sc, 1);
}
/* Administrative status of the driver (UP or DOWN) has changed.
* A card-specific action is taken:
* HSSI: drop TA.
* (T3: send T3 idle ckt signal. )
* SSI: drop RTS, DTR and DCD
* (T1: disable line interface tx; )
*/
static void
set_ready(softc_t *sc, int status)
{
struct ioctl ioctl;
ioctl.cmd = IOCTL_SET_STATUS;
ioctl.data = status;
sc->card->ioctl(sc, &ioctl);
}
static void
reset_cntrs(softc_t *sc)
{
memset(&sc->status.cntrs, 0, sizeof(struct cntrs));
microtime(&sc->status.cntrs.reset_time);
}
/* Kernel (soft_irq) or User (syscall) context. */
static void
user_interrupt(softc_t *sc, int check_status)
{
DISABLE_INTR; /* noop in FreeBSD and Linux */
lmc_interrupt(sc, check_status);
ENABLE_INTR; /* noop in FreeBSD and Linux */
}
static void
lmc_interrupt(void *arg, int check_status)
{
softc_t *sc = arg;
int activity;
/* If any CPU is inside this critical section, then */
/* other CPUs should go away without doing anything. */
if (BOTTOM_TRYLOCK == 0)
{
sc->status.cntrs.lck_intr++;
return;
}
/* Clear pending card interrupts. */
WRITE_CSR(TLP_STATUS, READ_CSR(TLP_STATUS));
/* In Linux, pci_alloc_consistent() means DMA descriptors */
/* don't need explicit syncing. */
#if BSD
{
struct desc_ring *ring = &sc->txring;
DMA_SYNC(sc->txring.map, sc->txring.size_descs,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
ring = &sc->rxring;
DMA_SYNC(sc->rxring.map, sc->rxring.size_descs,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
}
#endif
/* This is the main loop for interrupt processing. */
/* Loop until activity does not increment. */
do
{
activity = txintr_cleanup(sc);
activity += txintr_setup(sc);
activity += rxintr_cleanup(sc);
activity += rxintr_setup(sc);
} while (activity);
#if BSD
{
struct desc_ring *ring = &sc->txring;
DMA_SYNC(sc->txring.map, sc->txring.size_descs,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
ring = &sc->rxring;
DMA_SYNC(sc->rxring.map, sc->rxring.size_descs,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
#endif
/* As the interrupt is dismissed, check for four unusual events. */
if (check_status) check_intr_status(sc);
BOTTOM_UNLOCK;
}
/* Check for four unusual events:
* 1) fatal PCI bus errors - some are recoverable
* 2) transmitter FIFO underruns - increase fifo threshold
* 3) receiver FIFO overruns - clear potential hangup
* 4) no receive descs or bufs - count missed packets
*/
static void
check_intr_status(softc_t *sc)
{
u_int32_t status, cfcs, op_mode;
u_int32_t missed, overruns;
/* 1) A fatal bus error causes a Tulip to stop initiating bus cycles.
* Module unload/load or boot are the only fixes for Parity Errors.
* Master and Target Aborts can be cleared and life may continue.
*/
status = READ_CSR(TLP_STATUS);
if (status & TLP_STAT_FATAL_ERROR)
{
u_int32_t fatal = (status & TLP_STAT_FATAL_BITS)>>TLP_STAT_FATAL_SHIFT;
printf("%s: FATAL PCI BUS ERROR: %s%s%s%s\n", NAME_UNIT,
(fatal == 0) ? "PARITY ERROR" : "",
(fatal == 1) ? "MASTER ABORT" : "",
(fatal == 2) ? "TARGET ABORT" : "",
(fatal >= 3) ? "RESERVED (?)" : "");
cfcs = READ_PCI_CFG(sc, TLP_CFCS); /* try to clear it */
cfcs &= ~(TLP_CFCS_MSTR_ABORT | TLP_CFCS_TARG_ABORT);
WRITE_PCI_CFG(sc, TLP_CFCS, cfcs);
}
/* 2) If the transmitter fifo underruns, increase the transmit fifo
* threshold: the number of bytes required to be in the fifo
* before starting the transmitter (cost: increased tx delay).
* The TX_FSM must be stopped to change this parameter.
*/
if (status & TLP_STAT_TX_UNDERRUN)
{
op_mode = READ_CSR(TLP_OP_MODE);
/* enable store-and-forward mode if tx_threshold tops out? */
if ((op_mode & TLP_OP_TX_THRESH) < TLP_OP_TX_THRESH)
{
op_mode += 0x4000; /* increment TX_THRESH field; can't overflow */
WRITE_CSR(TLP_OP_MODE, op_mode & ~TLP_OP_TX_RUN);
/* Wait for the TX FSM to stop; it might be processing a pkt. */
while (READ_CSR(TLP_STATUS) & TLP_STAT_TX_FSM); /* XXX HANG */
WRITE_CSR(TLP_OP_MODE, op_mode); /* restart tx */
if (sc->config.debug)
printf("%s: tx fifo underrun; threshold now %d bytes\n",
NAME_UNIT, 128<<((op_mode>>TLP_OP_TR_SHIFT)&3));
sc->status.cntrs.underruns++;
}
}
/* 3) Errata memo from Digital Equipment Corp warns that 21140A
* receivers through rev 2.2 can hang if the fifo overruns.
* Recommended fix: stop and start the RX FSM after an overrun.
*/
missed = READ_CSR(TLP_MISSED);
if ((overruns = ((missed & TLP_MISS_OVERRUN)>>TLP_OVERRUN_SHIFT)))
{
if ((READ_PCI_CFG(sc, TLP_CFRV) & 0xFF) <= 0x22)
{
op_mode = READ_CSR(TLP_OP_MODE);
WRITE_CSR(TLP_OP_MODE, op_mode & ~TLP_OP_RX_RUN);
/* Wait for the RX FSM to stop; it might be processing a pkt. */
while (READ_CSR(TLP_STATUS) & TLP_STAT_RX_FSM); /* XXX HANG */
WRITE_CSR(TLP_OP_MODE, op_mode); /* restart rx */
}
if (sc->config.debug)
printf("%s: rx fifo overruns=%d\n", NAME_UNIT, overruns);
sc->status.cntrs.overruns += overruns;
}
/* 4) When the receiver is enabled and a packet arrives, but no DMA
* descriptor is available, the packet is counted as 'missed'.
* The receiver should never miss packets; warn if it happens.
*/
if ((missed = (missed & TLP_MISS_MISSED)))
{
if (sc->config.debug)
printf("%s: rx missed %d pkts\n", NAME_UNIT, missed);
sc->status.cntrs.missed += missed;
}
}
/* Initialize the top half of the driver. */
/* Kernel (boot) or User (syscall) context. */
static int
lmc_attach(softc_t *sc, const char *intrstr)
{
int error = 0;
struct config config;
/* Attach the Tulip PCI bus interface. */
if ((error = tulip_attach(sc))) return error;
#if 0
/* Reset the Xilinx Field Programmable Gate Array. */
xilinx_reset(sc); /* side effect: turns on all four LEDs */
#endif
/* Attach framers, line interfaces, etc. on the card. */
sc->card->attach(sc, NULL); /* changes sc->config */
#if 0
/* Reset the FIFOs between Gate array and Tulip chip. */
mii16_set_bits(sc, MII16_FIFO);
mii16_clr_bits(sc, MII16_FIFO);
#endif
#if IFNET
/* Attach the ifnet kernel interface. */
if ((error = ifnet_attach(sc))) return error;
#endif
#if NETDEV
/* Attach the netdevice kernel interface. */
if ((error = netdev_attach(sc))) return error;
#endif
/* Attach a line package and line protocol. */
config = sc->config;
config.line_pkg = PKG_RAWIP;
line_attach(sc, &config);
config.line_prot = PROT_IP_HDLC;
line_open(sc, &config);
/* Print driver information once only. */
if (driver_announced++ == 0)
{
printf("%s: LMC driver version %d/%d/%d, Options",
NAME_UNIT, VER_YEAR, VER_MONTH, VER_DAY);
if (ALTQ) printf(" ALTQ");
if (NBPFILTER) printf(" BPF");
if (NAPI) printf(" NAPI");
if (DEVICE_POLLING) printf(" POLL");
if (P2P) printf(" P2P");
if (SPPP) printf(" SPPP");
if (GEN_HDLC) printf(" GEN_HDLC");
if (SYNC_PPP) printf(" SYNC_PPP");
if (NETGRAPH) printf(" NETGRAPH");
printf(".\n");
}
/* Print obscure card information. */
if (BOOT_VERBOSE)
{
int i;
u_int32_t cfrv = READ_PCI_CFG(sc, TLP_CFRV);
u_int16_t mii3 = mii_read(sc, 3);
u_int16_t srom[3];
u_int8_t *ieee = (u_int8_t *)srom;
printf("%s", NAME_UNIT);
printf(": PCI rev %d.%d", (cfrv>>4) & 0xF, cfrv & 0xF);
printf(", MII rev %d.%d", (mii3>>4) & 0xF, mii3 & 0xF);
for (i=0; i<3; i++) srom[i] = srom_read(sc, 10+i);
printf(", IEEE addr %02x:%02x:%02x:%02x:%02x:%02x",
ieee[0], ieee[1], ieee[2], ieee[3], ieee[4], ieee[5]);
sc->card->ident(sc);
printf(" %s\n", intrstr);
}
/* BSDs enable card interrupts and appear "ready" here. */
/* Linux does this in netdev_open(). */
#if BSD
set_ready(sc, 1);
WRITE_CSR(TLP_INT_ENBL, TLP_INT_TXRX);
#endif
return 0;
}
/* Kernel (boot) or User (syscall) context. */
static void
lmc_detach(softc_t *sc)
{
/* Disable card interrupts and appear "not ready". */
set_ready(sc, 0);
WRITE_CSR(TLP_INT_ENBL, TLP_INT_DISABLE);
/* Detach the line protocol package. */
if (sc->line)
sc->line->detach(sc);
#if IFNET
/* Detach the ifnet kernel interface. */
ifnet_detach(sc);
#endif
#if NETDEV
/* Detach the netdevice kernel interface. */
netdev_detach(sc);
#endif
/* Detach framers, line interfaces, etc. on the card. */
sc->card->detach(sc);
/* Detach the Tulip PCI bus interface. */
tulip_detach(sc);
}
/* Loop back through the TULIP Ethernet chip; (no CRC).
* Data sheet says stop DMA before changing OPMODE register.
* But that's not as simple as it sounds; works anyway.
*/
static void
tulip_loop(softc_t *sc, struct config *config)
{
/* Check for enabling loopback thru Tulip chip. */
if ((sc->config.loop_back != CFG_LOOP_TULIP) &&
(config->loop_back == CFG_LOOP_TULIP))
{
u_int32_t op_mode = READ_CSR(TLP_OP_MODE);
op_mode |= TLP_OP_INT_LOOP;
WRITE_CSR(TLP_OP_MODE, op_mode);
config->crc_len = CFG_CRC_0;
}
/* Check for disabling loopback thru Tulip chip. */
if ((sc->config.loop_back == CFG_LOOP_TULIP) &&
(config->loop_back != CFG_LOOP_TULIP))
{
u_int32_t op_mode = READ_CSR(TLP_OP_MODE);
op_mode &= ~TLP_OP_LOOP_MODE;
WRITE_CSR(TLP_OP_MODE, op_mode);
config->crc_len = CFG_CRC_16;
}
sc->config.loop_back = config->loop_back;
}
/* Attach the Tulip PCI bus interface.
* Allocate DMA descriptors and enable DMA.
* Returns 0 on success; error code on failure.
* Kernel (boot) or User (syscall) context.
*/
static int
tulip_attach(softc_t *sc)
{
int num_rx_descs, error = 0;
u_int32_t bus_pbl, bus_cal, op_tr;
u_int32_t cfdd, cfcs, cflt, csid, cfit;
/* Make sure the COMMAND bits are reasonable. */
cfcs = READ_PCI_CFG(sc, TLP_CFCS);
cfcs &= ~TLP_CFCS_MWI_ENABLE;
cfcs |= TLP_CFCS_BUS_MASTER;
cfcs |= TLP_CFCS_MEM_ENABLE;
cfcs |= TLP_CFCS_IO_ENABLE;
cfcs |= TLP_CFCS_PAR_ERROR;
cfcs |= TLP_CFCS_SYS_ERROR;
WRITE_PCI_CFG(sc, TLP_CFCS, cfcs);
/* Set the LATENCY TIMER to the recommended value, */
/* and make sure the CACHE LINE SIZE is reasonable. */
cfit = READ_PCI_CFG(sc, TLP_CFIT);
cflt = READ_PCI_CFG(sc, TLP_CFLT);
cflt &= ~TLP_CFLT_LATENCY;
cflt |= (cfit & TLP_CFIT_MAX_LAT)>>16;
/* "prgmbl burst length" and "cache alignment" used below. */
switch(cflt & TLP_CFLT_CACHE)
{
case 8: /* 8 bytes per cache line */
{ bus_pbl = 32; bus_cal = 1; break; }
case 16:
{ bus_pbl = 32; bus_cal = 2; break; }
case 32:
{ bus_pbl = 32; bus_cal = 3; break; }
default:
{
bus_pbl = 32; bus_cal = 1;
cflt &= ~TLP_CFLT_CACHE;
cflt |= 8;
break;
}
}
WRITE_PCI_CFG(sc, TLP_CFLT, cflt);
/* Make sure SNOOZE and SLEEP modes are disabled. */
cfdd = READ_PCI_CFG(sc, TLP_CFDD);
cfdd &= ~TLP_CFDD_SLEEP;
cfdd &= ~TLP_CFDD_SNOOZE;
WRITE_PCI_CFG(sc, TLP_CFDD, cfdd);
DELAY(11*1000); /* Tulip wakes up in 10 ms max */
/* Software Reset the Tulip chip; stops DMA and Interrupts. */
/* This does not change the PCI config regs just set above. */
WRITE_CSR(TLP_BUS_MODE, TLP_BUS_RESET); /* self-clearing */
DELAY(5); /* Tulip is dead for 50 PCI cycles after reset. */
/* Initialize the PCI busmode register. */
/* The PCI bus cycle type "Memory Write and Invalidate" does NOT */
/* work cleanly in any version of the 21140A, so don't enable it! */
WRITE_CSR(TLP_BUS_MODE,
(bus_cal ? TLP_BUS_READ_LINE : 0) |
(bus_cal ? TLP_BUS_READ_MULT : 0) |
(bus_pbl<<TLP_BUS_PBL_SHIFT) |
(bus_cal<<TLP_BUS_CAL_SHIFT) |
((BYTE_ORDER == BIG_ENDIAN) ? TLP_BUS_DESC_BIGEND : 0) |
((BYTE_ORDER == BIG_ENDIAN) ? TLP_BUS_DATA_BIGEND : 0) |
TLP_BUS_DSL_VAL |
TLP_BUS_ARB);
/* Pick number of RX descriptors and TX fifo threshold. */
/* tx_threshold in bytes: 0=128, 1=256, 2=512, 3=1024 */
csid = READ_PCI_CFG(sc, TLP_CSID);
switch(csid)
{
case LMC_CSID_HSSI: /* 52 Mb/s */
case LMC_CSID_HSSIc: /* 52 Mb/s */
case LMC_CSID_T3: /* 45 Mb/s */
{ num_rx_descs = 48; op_tr = 2; break; }
case LMC_CSID_SSI: /* 10 Mb/s */
{ num_rx_descs = 32; op_tr = 1; break; }
case LMC_CSID_T1E1: /* 2 Mb/s */
{ num_rx_descs = 16; op_tr = 0; break; }
default:
{ num_rx_descs = 16; op_tr = 0; break; }
}
/* Create DMA descriptors and initialize list head registers. */
if ((error = create_ring(sc, &sc->txring, NUM_TX_DESCS))) return error;
WRITE_CSR(TLP_TX_LIST, sc->txring.dma_addr);
if ((error = create_ring(sc, &sc->rxring, num_rx_descs))) return error;
WRITE_CSR(TLP_RX_LIST, sc->rxring.dma_addr);
/* Initialize the operating mode register. */
WRITE_CSR(TLP_OP_MODE, TLP_OP_INIT | (op_tr<<TLP_OP_TR_SHIFT));
/* Read the missed frame register (result ignored) to zero it. */
error = READ_CSR( TLP_MISSED); /* error is used as a bit-dump */
/* Disable rx watchdog and tx jabber features. */
WRITE_CSR(TLP_WDOG, TLP_WDOG_INIT);
return 0;
}
/* Detach the Tulip PCI bus interface. */
/* Disable DMA and free DMA descriptors. */
/* Kernel (boot) or User (syscall) context. */
static void
tulip_detach(void *arg)
{
softc_t *sc = arg;
/* Software reset the Tulip chip; stops DMA and Interrupts. */
WRITE_CSR(TLP_BUS_MODE, TLP_BUS_RESET); /* self-clearing */
DELAY(5); /* Tulip is dead for 50 PCI cycles after reset. */
/* Disconnect from the PCI bus except for config cycles. */
/* Hmmm; Linux syslogs a warning that IO and MEM are disabled. */
WRITE_PCI_CFG(sc, TLP_CFCS, TLP_CFCS_MEM_ENABLE | TLP_CFCS_IO_ENABLE);
/* Free the DMA descriptor rings. */
destroy_ring(sc, &sc->txring);
destroy_ring(sc, &sc->rxring);
}
#if defined(__FreeBSD__)
/* This is the I/O configuration interface for FreeBSD */
/* Looking for a DEC 21140A chip on any Lan Media Corp card. */
/* Kernel (boot) or User (syscall) context. */
static int
fbsd_probe(device_t dev)
{
u_int32_t cfid = pci_read_config(dev, TLP_CFID, 4);
u_int32_t csid = pci_read_config(dev, TLP_CSID, 4);
if (cfid != TLP_CFID_TULIP) return ENXIO;
switch (csid)
{
case LMC_CSID_HSSI:
case LMC_CSID_HSSIc:
device_set_desc(dev, HSSI_DESC);
break;
case LMC_CSID_T3:
device_set_desc(dev, T3_DESC);
break;
case LMC_CSID_SSI:
device_set_desc(dev, SSI_DESC);
break;
case LMC_CSID_T1E1:
device_set_desc(dev, T1E1_DESC);
break;
default:
return ENXIO;
}
return 0;
}
/* FreeBSD bottom-half initialization. */
/* Kernel (boot) or User (syscall) context. */
static int
fbsd_attach(device_t dev)
{
softc_t *sc = device_get_softc(dev);
int error;
/* for READ/WRITE_PCI_CFG() */
sc->dev = dev;
/* What kind of card are we driving? */
switch (READ_PCI_CFG(sc, TLP_CSID))
{
case LMC_CSID_HSSI:
case LMC_CSID_HSSIc:
sc->dev_desc = HSSI_DESC;
sc->card = &hssi_card;
break;
case LMC_CSID_T3:
sc->dev_desc = T3_DESC;
sc->card = &t3_card;
break;
case LMC_CSID_SSI:
sc->dev_desc = SSI_DESC;
sc->card = &ssi_card;
break;
case LMC_CSID_T1E1:
sc->dev_desc = T1E1_DESC;
sc->card = &t1_card;
break;
}
/* Allocate PCI memory or IO resources to access the Tulip chip CSRs. */
# if IOREF_CSR
sc->csr_res_id = TLP_CBIO;
sc->csr_res_type = SYS_RES_IOPORT;
# else
sc->csr_res_id = TLP_CBMA;
sc->csr_res_type = SYS_RES_MEMORY;
# endif
sc->csr_res = bus_alloc_resource(dev, sc->csr_res_type, &sc->csr_res_id,
0, ~0, 1, RF_ACTIVE);
if (sc->csr_res == NULL)
{
printf("%s: bus_alloc_resource(csr) failed\n", NAME_UNIT);
return ENXIO;
}
sc->csr_tag = rman_get_bustag(sc->csr_res);
sc->csr_handle = rman_get_bushandle(sc->csr_res);
/* Allocate PCI interrupt resources for the card. */
sc->irq_res_id = 0;
sc->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irq_res_id,
0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
if (sc->irq_res == NULL)
{
printf("%s: bus_alloc_resource(irq) failed\n", NAME_UNIT);
fbsd_detach(dev);
return ENXIO;
}
if ((error = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE,
bsd_interrupt, sc, &sc->irq_cookie)))
{
printf("%s: bus_setup_intr(): error %d\n", NAME_UNIT, error);
fbsd_detach(dev);
return error;
}
/* Initialize the top-half and bottom-half locks. */
mtx_init(&sc->top_mtx, NAME_UNIT, "top-half lock", MTX_DEF);
mtx_init(&sc->bottom_mtx, NAME_UNIT, "bottom-half lock", MTX_DEF);
/* Initialize the top half of the driver. */
if ((error = lmc_attach(sc, ""))) fbsd_detach(dev);
return error;
}
/* Kernel (boot) or User (syscall) context. */
static int
fbsd_detach(device_t dev)
{
softc_t *sc = device_get_softc(dev);
/* Detach from the bus and the kernel. */
lmc_detach(sc);
/* Release resources. */
if (sc->irq_cookie)
bus_teardown_intr(dev, sc->irq_res, sc->irq_cookie);
if (sc->irq_res)
bus_release_resource(dev, SYS_RES_IRQ, sc->irq_res_id, sc->irq_res);
if (sc->csr_res)
bus_release_resource(dev, sc->csr_res_type, sc->csr_res_id, sc->csr_res);
mtx_destroy(&sc->top_mtx);
mtx_destroy(&sc->bottom_mtx);
return 0;
}
static void
fbsd_shutdown(device_t dev)
{
tulip_detach(device_get_softc(dev));
}
static device_method_t methods[] =
{
DEVMETHOD(device_probe, fbsd_probe),
DEVMETHOD(device_attach, fbsd_attach),
DEVMETHOD(device_detach, fbsd_detach),
DEVMETHOD(device_shutdown, fbsd_shutdown),
/* This driver does not suspend and resume. */
{ 0, 0 }
};
static driver_t driver =
{
.name = DEVICE_NAME,
.methods = methods,
.size = sizeof(softc_t),
};
static devclass_t devclass;
DRIVER_MODULE(if_lmc, pci, driver, devclass, 0, 0);
MODULE_VERSION(if_lmc, 2);
MODULE_DEPEND(if_lmc, pci, 1, 1, 1);
# if NETGRAPH
MODULE_DEPEND(if_lmc, netgraph, NG_ABI_VERSION, NG_ABI_VERSION, NG_ABI_VERSION);
# endif
# if SPPP
MODULE_DEPEND(if_lmc, sppp, 1, 1, 1);
# endif
#endif /* __FreeBSD__ */
#if defined(__NetBSD__)
/* This is the I/O configuration interface for NetBSD. */
/* Looking for a DEC 21140A chip on any Lan Media Corp card. */
/* Kernel (boot) or User (syscall) context. */
static int
nbsd_match(struct device *parent, struct cfdata *match, void *aux)
{
struct pci_attach_args *pa = aux;
u_int32_t cfid = pci_conf_read(pa->pa_pc, pa->pa_tag, TLP_CFID);
u_int32_t csid = pci_conf_read(pa->pa_pc, pa->pa_tag, TLP_CSID);
if (cfid != TLP_CFID_TULIP) return 0;
switch (csid)
{
case LMC_CSID_HSSI:
case LMC_CSID_HSSIc:
case LMC_CSID_T3:
case LMC_CSID_SSI:
case LMC_CSID_T1E1:
return 100;
default:
return 0;
}
}
/* NetBSD bottom-half initialization. */
/* Kernel (boot) or User (syscall) context. */
static void
nbsd_attach(struct device *parent, struct device *self, void *aux)
{
softc_t *sc = (softc_t *)self; /* device is first in softc */
struct pci_attach_args *pa = aux;
const char *intrstr;
bus_addr_t csr_addr;
int error;
/* for READ/WRITE_PCI_CFG() */
sc->pa_pc = pa->pa_pc;
sc->pa_tag = pa->pa_tag;
sc->pa_dmat = pa->pa_dmat;
/* What kind of card are we driving? */
switch (READ_PCI_CFG(sc, TLP_CSID))
{
case LMC_CSID_HSSI:
case LMC_CSID_HSSIc:
sc->dev_desc = HSSI_DESC;
sc->card = &hssi_card;
break;
case LMC_CSID_T3:
sc->dev_desc = T3_DESC;
sc->card = &t3_card;
break;
case LMC_CSID_SSI:
sc->dev_desc = SSI_DESC;
sc->card = &ssi_card;
break;
case LMC_CSID_T1E1:
sc->dev_desc = T1E1_DESC;
sc->card = &t1_card;
break;
}
printf(": %s\n", sc->dev_desc);
/* Allocate PCI resources to access the Tulip chip CSRs. */
# if IOREF_CSR
csr_addr = (bus_addr_t)READ_PCI_CFG(sc, TLP_CBIO) & -2;
sc->csr_tag = pa->pa_iot; /* bus_space tag for IO refs */
# else
csr_addr = (bus_addr_t)READ_PCI_CFG(sc, TLP_CBMA);
sc->csr_tag = pa->pa_memt; /* bus_space tag for MEM refs */
# endif
if ((error = bus_space_map(sc->csr_tag, csr_addr,
TLP_CSR_SIZE, 0, &sc->csr_handle)))
{
printf("%s: bus_space_map(): error %d\n", NAME_UNIT, error);
return;
}
/* Allocate PCI interrupt resources. */
if ((error = pci_intr_map(pa, &sc->intr_handle)))
{
printf("%s: pci_intr_map(): error %d\n", NAME_UNIT, error);
nbsd_detach(self, 0);
return;
}
sc->irq_cookie = pci_intr_establish(pa->pa_pc, sc->intr_handle,
IPL_NET, bsd_interrupt, sc);
if (sc->irq_cookie == NULL)
{
printf("%s: pci_intr_establish() failed\n", NAME_UNIT);
nbsd_detach(self, 0);
return;
}
intrstr = pci_intr_string(pa->pa_pc, sc->intr_handle);
/* Install a shutdown hook. */
sc->sdh_cookie = shutdownhook_establish(tulip_detach, sc);
if (sc->sdh_cookie == NULL)
{
printf("%s: shutdown_hook_establish() failed\n", NAME_UNIT);
nbsd_detach(self, 0);
return;
}
/* Initialize the top-half and bottom-half locks. */
simple_lock_init(&sc->top_lock);
simple_lock_init(&sc->bottom_lock);
/* Initialize the top half of the driver. */
if ((error = lmc_attach(sc, intrstr))) nbsd_detach(self, 0);
}
/* Kernel (boot) or User (syscall) context. */
static int
nbsd_detach(struct device *self, int flags)
{
softc_t *sc = (softc_t *)self; /* device is first in softc */
/* Detach from the bus and the kernel. */
lmc_detach(sc);
/* Release resources. */
if (sc->sdh_cookie)
shutdownhook_disestablish(sc->sdh_cookie);
if (sc->irq_cookie)
pci_intr_disestablish(sc->pa_pc, sc->irq_cookie);
if (sc->csr_handle)
bus_space_unmap(sc->csr_tag, sc->csr_handle, TLP_CSR_SIZE);
return 0;
}
#ifdef _LKM
static CFDRIVER_DECL(lmc, DV_IFNET, NULL); /* lmc_cd */
static struct cfdriver *cfdrivers[] = { &lmc_cd, NULL };
#endif
CFATTACH_DECL(lmc, sizeof(softc_t), /* lmc_ca */
nbsd_match, nbsd_attach, nbsd_detach, NULL);
static struct cfattach *cfattachs[] = { &lmc_ca, NULL };
static const struct cfattachlkminit cfattachinit[] =
{ { DEVICE_NAME, cfattachs }, { NULL } };
#ifdef _LKM
static int pci_locators[] = { -1, -1 }; /* device, function */
static const struct cfparent pci_parent = { "pci", "pci", DVUNIT_ANY };
static struct cfdata cfdatas[] =
{ { DEVICE_NAME, DEVICE_NAME, 0, FSTATE_STAR,
pci_locators, 0, &pci_parent }, { NULL } };
MOD_DRV("if_"DEVICE_NAME, cfdrivers, cfattachinit, cfdatas);
int if_lmc_lkmentry(struct lkm_table *lkmtp, int cmd, int ver)
{ LKM_DISPATCH(lkmtp, cmd, NULL, lkm_nofunc, lkm_nofunc, lkm_nofunc); }
#endif
#endif /* __NetBSD__ */
#if defined(__OpenBSD__)
/* This is the I/O configuration interface for OpenBSD. */
/* Looking for a DEC 21140A chip on any Lan Media Corp card. */
/* Kernel (boot) or User (syscall) context. */
static int
obsd_match(struct device *parent, void *match, void *aux)
{
struct pci_attach_args *pa = aux;
u_int32_t cfid = pci_conf_read(pa->pa_pc, pa->pa_tag, TLP_CFID);
u_int32_t csid = pci_conf_read(pa->pa_pc, pa->pa_tag, TLP_CSID);
if (cfid != TLP_CFID_TULIP) return 0;
switch (csid)
{
case LMC_CSID_HSSI:
case LMC_CSID_HSSIc:
case LMC_CSID_T3:
case LMC_CSID_SSI:
case LMC_CSID_T1E1:
return 100; /* match better than other 21140 drivers */
default:
return 0;
}
}
/* OpenBSD bottom-half initialization. */
/* Kernel (boot) or User (syscall) context. */
static void
obsd_attach(struct device *parent, struct device *self, void *aux)
{
softc_t *sc = (softc_t *)self; /* device is first in softc */
struct pci_attach_args *pa = aux;
const char *intrstr;
bus_addr_t csr_addr;
int error;
/* for READ/WRITE_PCI_CFG() */
sc->pa_pc = pa->pa_pc;
sc->pa_tag = pa->pa_tag;
sc->pa_dmat = pa->pa_dmat;
/* What kind of card are we driving? */
switch (READ_PCI_CFG(sc, TLP_CSID))
{
case LMC_CSID_HSSI:
case LMC_CSID_HSSIc:
sc->dev_desc = HSSI_DESC;
sc->card = &hssi_card;
break;
case LMC_CSID_T3:
sc->dev_desc = T3_DESC;
sc->card = &t3_card;
break;
case LMC_CSID_SSI:
sc->dev_desc = SSI_DESC;
sc->card = &ssi_card;
break;
case LMC_CSID_T1E1:
sc->dev_desc = T1E1_DESC;
sc->card = &t1_card;
break;
default:
return;
}
printf(": %s\n", sc->dev_desc);
/* Allocate PCI resources to access the Tulip chip CSRs. */
# if IOREF_CSR
csr_addr = (bus_addr_t)READ_PCI_CFG(sc, TLP_CBIO) & -2;
sc->csr_tag = pa->pa_iot; /* bus_space tag for IO refs */
# else
csr_addr = (bus_addr_t)READ_PCI_CFG(sc, TLP_CBMA);
sc->csr_tag = pa->pa_memt; /* bus_space tag for MEM refs */
# endif
if ((error = bus_space_map(sc->csr_tag, csr_addr,
TLP_CSR_SIZE, 0, &sc->csr_handle)))
{
printf("%s: bus_space_map(): error %d\n", NAME_UNIT, error);
return;
}
/* Allocate PCI interrupt resources. */
if ((error = pci_intr_map(pa, &sc->intr_handle)))
{
printf("%s: pci_intr_map(): error %d\n", NAME_UNIT, error);
obsd_detach(self, 0);
return;
}
sc->irq_cookie = pci_intr_establish(pa->pa_pc, sc->intr_handle,
IPL_NET, bsd_interrupt, sc, self->dv_xname);
if (sc->irq_cookie == NULL)
{
printf("%s: pci_intr_establish() failed\n", NAME_UNIT);
obsd_detach(self, 0);
return;
}
intrstr = pci_intr_string(pa->pa_pc, sc->intr_handle);
/* Install a shutdown hook. */
sc->sdh_cookie = shutdownhook_establish(tulip_detach, sc);
if (sc->sdh_cookie == NULL)
{
printf("%s: shutdown_hook_establish() failed\n", NAME_UNIT);
obsd_detach(self, 0);
return;
}
/* Initialize the top-half and bottom-half locks. */
simple_lock_init(&sc->top_lock);
simple_lock_init(&sc->bottom_lock);
/* Initialize the top half of the driver. */
if ((error = lmc_attach(sc, intrstr))) obsd_detach(self, 0);
}
/* Kernel (boot) or User (syscall) context. */
static int
obsd_detach(struct device *self, int flags)
{
softc_t *sc = (softc_t *)self; /* device is first in softc */
/* Detach from the bus and the kernel. */
lmc_detach(sc);
/* Release resources. */
if (sc->sdh_cookie)
shutdownhook_disestablish(sc->sdh_cookie);
if (sc->irq_cookie)
pci_intr_disestablish(sc->pa_pc, sc->irq_cookie);
if (sc->csr_handle)
bus_space_unmap(sc->csr_tag, sc->csr_handle, TLP_CSR_SIZE);
return 0;
}
struct cfattach lmc_ca =
{
.ca_devsize = sizeof(softc_t),
.ca_match = obsd_match,
.ca_attach = obsd_attach,
.ca_detach = obsd_detach,
.ca_activate = NULL,
};
struct cfdriver lmc_cd =
{
.cd_name = DEVICE_NAME,
.cd_devs = NULL,
.cd_class = DV_IFNET,
.cd_indirect = 0,
.cd_ndevs = 0,
};
/* cfdata is declared static, unseen outside this module. */
/* It is used for LKM; config builds its own in ioconf.c. */
static struct cfdata lmc_cfdata =
{
.cf_attach = &lmc_ca,
.cf_driver = &lmc_cd,
.cf_unit = 0,
.cf_fstate = FSTATE_STAR,
};
static struct lkm_any _module =
{
.lkm_name = "if_"DEVICE_NAME,
.lkm_type = LM_MISC,
.lkm_offset = 0,
.lkm_ver = LKM_VERSION,
};
/* From /sys/dev/pci/pci.c (no public prototype). */
int pciprint(void *, const char *);
/* struct cfdriver for pci bus; lmc cards are all pci devices. */
extern struct cfdriver pci_cd;
/* XXX This has only been tested on the i386 architecture. */
/* XXX To do this right, need struct pcibus_attach_args. */
/* XXX struct pcibus_attach_args exists only while booting. */
/* LKM finds this by appending "_lkmentry" to filename "if_lmc"(.o). */
int if_lmc_lkmentry(struct lkm_table *lkmtp, int cmd, int ver)
{
int i, error = 0;
if (ver != LKM_VERSION) return EINVAL;
switch (cmd)
{
case LKM_E_LOAD:
{
lkmtp->private.lkm_any = &_module;
for (i=0; i<pci_cd.cd_ndevs; i++)
{ /* for each pci bus... */
int devnum, maxdevs;
struct pci_attach_args pa;
struct device *parent = pci_cd.cd_devs[i];
/* This is ugly: only way to get pci_chipset_tag. */
struct pci_sc { struct device dev; pci_chipset_tag_t pc; };
struct pci_sc *pci_sc = pci_cd.cd_devs[i];
if (parent == NULL) continue; /* no pci bus */
pa.pa_pc = pci_sc->pc;
pa.pa_iot = 0; /* XXX arch_BUS_SPACE_IO */
pa.pa_memt = 1; /* XXX arch_BUS_SPACE_MEM; */
pa.pa_dmat = &pci_bus_dma_tag;
pa.pa_bus = parent->dv_unit;
pa.pa_function = 0; /* DEC-21140A has function 0 only */
maxdevs = pci_bus_maxdevs(pa.pa_pc, pa.pa_bus);
for (devnum=0; devnum<maxdevs; devnum++)
{ /* for each pci device... */
pcireg_t intr;
pa.pa_device = devnum;
pa.pa_tag = pci_make_tag (pa.pa_pc, pa.pa_bus, pa.pa_device, 0);
pa.pa_id = pci_conf_read(pa.pa_pc, pa.pa_tag, PCI_ID_REG);
if (PCI_VENDOR(pa.pa_id) == 0xFFFF) continue;
if (PCI_VENDOR(pa.pa_id) == 0) continue;
pa.pa_class = pci_conf_read(pa.pa_pc, pa.pa_tag, PCI_CLASS_REG);
/* XXX i386 only; need struct pcibus_attach_args to swizzle */
pa.pa_intrswiz = 0;
pa.pa_intrtag = pa.pa_tag;
intr = pci_conf_read(pa.pa_pc, pa.pa_tag, PCI_INTERRUPT_REG);
pa.pa_intrpin = ((PCI_INTERRUPT_PIN(intr) -1) % 4) +1;
pa.pa_intrline = PCI_INTERRUPT_LINE(intr);
if (obsd_match(parent, &lmc_cfdata, &pa))
config_attach(parent, &lmc_cfdata, &pa, pciprint);
/* config_attach doesn't return on failure; it calls panic. */
}
}
break;
}
case LKM_E_UNLOAD:
{
for (i=lmc_cd.cd_ndevs-1; i>=0; i--)
{
struct device *dev = lmc_cd.cd_devs[i];
if (dev == NULL) continue;
if ((error = config_detach(dev, 0)))
printf("%s: config_detach(): error %d\n",
dev->dv_xname, error);
}
break;
}
case LKM_E_STAT:
break;
}
return error;
}
#endif /* __OpenBSD__ */
#if defined(__bsdi__)
/* This is the I/O configuration interface for BSD/OS. */
/* Looking for a DEC 21140A chip on any Lan Media Corp card. */
/* Kernel (boot) or User (syscall) context. */
static int
bsdi_match(pci_devaddr_t *pa)
{
u_int32_t cfid = pci_inl(pa, TLP_CFID);
u_int32_t csid = pci_inl(pa, TLP_CSID);
if (cfid != TLP_CFID_TULIP) return 0;
switch (csid)
{
case LMC_CSID_HSSI:
case LMC_CSID_HSSIc:
case LMC_CSID_T3:
case LMC_CSID_SSI:
case LMC_CSID_T1E1:
return 1;
default:
return 0;
}
}
static int /* Kernel (boot) context */
bsdi_probe(struct device *parent, struct cfdata *cf, void *aux)
{
struct isa_attach_args *ia = aux;
pci_devaddr_t *pa = NULL;
pci_devres_t res;
/* This must be a PCI bus. */
if (ia->ia_bustype != BUS_PCI) return 0;
/* Scan PCI bus for our boards. */
if ((pa = pci_scan(bsdi_match)) == NULL) return 0;
/* Scan config space for IO and MEM base registers and IRQ info. */
pci_getres(pa, &res, 1, ia);
/* Pass matching PCI addr (bus+device+function) in ia_aux. */
ia->ia_aux = (void *)pa;
return 1;
}
/* BSD/OS bottom-half initialization. */
static void /* Kernel (boot) context */
bsdi_attach(struct device *parent, struct device *self, void *aux)
{
softc_t *sc = (softc_t *)self; /* device is first in softc */
struct isa_attach_args *ia = aux;
pci_devaddr_t *pa = ia->ia_aux;
int error;
/* for READ/WRITE_PCI_CFG() */
sc->cfgbase = *pa; /* bus+device+function */
/* What kind of card are we driving? */
switch (READ_PCI_CFG(sc, TLP_CSID))
{
case LMC_CSID_HSSI:
case LMC_CSID_HSSIc:
sc->dev_desc = HSSI_DESC;
sc->card = &hssi_card;
break;
case LMC_CSID_T3:
sc->dev_desc = T3_DESC;
sc->card = &t3_card;
break;
case LMC_CSID_SSI:
sc->dev_desc = SSI_DESC;
sc->card = &ssi_card;
break;
case LMC_CSID_T1E1:
sc->dev_desc = T1E1_DESC;
sc->card = &t1_card;
break;
default:
return;
}
printf(": %s\n", sc->dev_desc);
/* Allocate PCI memory or IO resources to access the Tulip chip CSRs. */
sc->csr_iobase = ia->ia_iobase;
sc->csr_membase = (u_int32_t *)mapphys((vm_offset_t)ia->ia_maddr, TLP_CSR_SIZE);
/* Attach to the PCI bus. */
isa_establish(&sc->id, &sc->dev);
/* Allocate PCI interrupt resources for the card. */
sc->ih.ih_fun = bsd_interrupt;
sc->ih.ih_arg = sc;
intr_establish(ia->ia_irq, &sc->ih, DV_NET);
/* Install a shutdown hook. */
sc->ats.func = tulip_detach;
sc->ats.arg = sc;
atshutdown(&sc->ats, ATSH_ADD);
/* Initialize the top-half and bottom-half locks. */
simple_lock_init(&sc->top_lock);
simple_lock_init(&sc->bottom_lock);
/* Initialize the top half of the driver. */
if ((error = lmc_attach(sc, ""))) lmc_detach(sc);
}
struct cfdriver lmccd =
{
.cd_devs = NULL,
.cd_name = DEVICE_NAME,
.cd_match = bsdi_probe,
.cd_attach = bsdi_attach,
.cd_class = DV_IFNET,
.cd_devsize = sizeof(softc_t),
};
#endif /* __bsdi__ */
#if defined(__linux__)
/* This is the I/O configuration interface for Linux. */
/* This pci_driver method is called during boot or module-load. */
/* Looking for a DEC 21140A chip on any Lan Media Corp card. */
/* Kernel (boot) or User (syscall) context. */
static int __init
linux_probe(struct pci_dev *pcidev, const struct pci_device_id *id)
{
u_int32_t cfid;
u_int32_t csid;
pci_read_config_dword(pcidev, TLP_CFID, &cfid);
pci_read_config_dword(pcidev, TLP_CSID, &csid);
if (cfid != TLP_CFID_TULIP) return -ENXIO;
switch (csid)
{
case LMC_CSID_HSSI:
case LMC_CSID_HSSIc:
case LMC_CSID_T3:
case LMC_CSID_SSI:
case LMC_CSID_T1E1:
break;
default:
return -ENXIO;
}
/* Factor this task the way BSDs do. */
return linux_attach(pcidev);
}
/* Linux bottom-half initialization. */
/* Kernel (boot) or User (syscall) context. */
static int __init
linux_attach(struct pci_dev *pcidev)
{
softc_t *sc;
int error;
/* Allocate the software context, softc, also known as sc. */
if ((sc = kmalloc(sizeof(softc_t), GFP_KERNEL)) == NULL)
{
printk("%s: kmalloc() failed\n", DEVICE_NAME);
return -ENOMEM;
}
memset(sc, 0, sizeof(softc_t));
/* for linux_remove() */
pci_set_drvdata(pcidev, sc);
/* for READ/WRITE_PCI_CFG() */
sc->pcidev = pcidev;
/* What kind of card are we driving? */
switch (READ_PCI_CFG(sc, TLP_CSID))
{
case LMC_CSID_HSSI:
case LMC_CSID_HSSIc:
sc->dev_desc = HSSI_DESC;
sc->card = &hssi_card;
break;
case LMC_CSID_T3:
sc->dev_desc = T3_DESC;
sc->card = &t3_card;
break;
case LMC_CSID_SSI:
sc->dev_desc = SSI_DESC;
sc->card = &ssi_card;
break;
case LMC_CSID_T1E1:
sc->dev_desc = T1E1_DESC;
sc->card = &t1_card;
break;
default: /* shouldn't happen! */
kfree(sc);
return -ENXIO;
}
/* Declare that these cards use 32-bit single-address PCI cycles. */
if ((error = pci_set_dma_mask(pcidev, DMA_32BIT_MASK)))
{
printk("%s: pci_set_dma_mask(): error %d\n", DEVICE_NAME, error);
linux_remove(pcidev);
return error;
}
pci_set_consistent_dma_mask(pcidev, DMA_32BIT_MASK); /* can't fail */
/* Allocate PCI resources to access the Tulip chip CSRs. */
if ((error = pci_request_regions(pcidev, DEVICE_NAME)))
{
printk("%s: pci_request_regions(): error %d\n", DEVICE_NAME, error);
linux_remove(pcidev);
return error;
}
sc->csr_iobase = pci_resource_start(pcidev, 0);
/* Setup to reference Tulip CSRs as uncached memory. */
if ((sc->csr_membase = ioremap_nocache(pci_resource_start(pcidev, 1),
TLP_CSR_SIZE)) == NULL)
{
printk("%s: ioremap_nocache() failed\n", DEVICE_NAME);
linux_remove(pcidev);
return -EFAULT;
}
/* Set cfcs.master, enabling busmaster DMA; check bus latency value. */
pci_set_master(pcidev);
/* Set cfcs.io and cfcs.mem; set pcidev->irq based on cfit.int. */
if ((error = pci_enable_device(pcidev)))
{
printk("%s: pci_enable_device(): error %d\n", DEVICE_NAME, error);
linux_remove(pcidev);
return error;
}
/* Allocate PCI interrupt resources for the card. */
if ((error = request_irq(pcidev->irq, &linux_interrupt, SA_SHIRQ,
DEVICE_NAME, sc)))
{
printk("%s: request_irq(): error %d\n", DEVICE_NAME, error);
linux_remove(pcidev);
return error;
}
/* Initialize the top-half and bottom-half locks. */
/* Top_lock must be initialized before lmc_attach() is called. */
init_MUTEX(&sc->top_lock);
spin_lock_init(&sc->bottom_lock);
/* Install module parameter. */
sc->config.debug = debug;
/* Initialize the top half of the driver. */
/* The NAME_UNIT macro works after lmc_attach. */
/* Use DEVICE_NAME before this. */
if ((error = lmc_attach(sc, "")))
linux_remove(sc->pcidev);
else
{
/* Describe the hardware. */
printk("%s: <%s> at pci %s irq %d\n", NAME_UNIT,
sc->dev_desc, pci_name(pcidev), pcidev->irq);
if (BOOT_VERBOSE)
printk("%s: io 0x%04lx/9 mem 0x%08lx/25 rom 0x%08lx/14\n", NAME_UNIT,
pci_resource_start(pcidev, 0), pci_resource_start(pcidev, 1),
pci_resource_start(pcidev, 6));
}
return error;
}
/* This pci_driver method is called during shutdown or module-unload. */
/* Kernel (boot) or User (syscall) context. */
static void __exit /* This is detach() in BSD parlance. */
linux_remove(struct pci_dev *pcidev)
{
softc_t *sc = pci_get_drvdata(pcidev);
/* Detach from the bus and the kernel. */
lmc_detach(sc);
/* Release resources. */
free_irq(pcidev->irq, sc);
if (sc->csr_membase)
iounmap(sc->csr_membase);
if (pci_resource_start(pcidev, 0))
pci_release_regions(pcidev);
pci_disable_device(pcidev);
kfree(sc);
}
static u_int32_t
READ_PCI_CFG(softc_t *sc, u_int32_t addr)
{
u_int32_t data;
pci_read_config_dword(sc->pcidev, addr, &data);
return data;
}
/* This pci driver knows how to drive these devices: */
static __initdata struct pci_device_id pci_device_id_tbl[] =
{
/* Looking for a DEC 21140A chip on any Lan Media Corp card. */
{ 0x1011, 0x0009, 0x1376, PCI_ANY_ID, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0 }
};
MODULE_DEVICE_TABLE(pci, pci_device_id_tbl);
static struct pci_driver pci_driver =
{
.name = DEVICE_NAME,
.id_table = pci_device_id_tbl,
.probe = linux_probe,
.remove = __devexit_p(linux_remove),
/* This driver does not suspend and resume. */
};
/* This ultimately calls our pci_driver.probe() method. */
static int __init linux_modload(void)
{ return pci_module_init(&pci_driver); }
module_init(linux_modload);
/* This ultimately calls our pci_driver.remove() method. */
static void __exit linux_modunload(void)
{ pci_unregister_driver(&pci_driver); }
module_exit(linux_modunload);
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Extra messages during operation");
module_param(verbose, int, 0);
MODULE_PARM_DESC(verbose, "Extra messages during startup");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("Device driver for LMC Wide-Area Network cards");
MODULE_AUTHOR("David Boggs <boggs@boggs.palo-alto.ca.us>");
#endif /* __linux__ */