NetBSD/sys/dev/ieee1394/fwohci.c
2013-10-16 17:40:55 +00:00

3039 lines
80 KiB
C

/* $NetBSD: fwohci.c,v 1.136 2013/10/16 17:40:55 christos Exp $ */
/*-
* Copyright (c) 2003 Hidetoshi Shimokawa
* Copyright (c) 1998-2002 Katsushi Kobayashi and Hidetoshi Shimokawa
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the acknowledgement as bellow:
*
* This product includes software developed by K. Kobayashi and H. Shimokawa
*
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: src/sys/dev/firewire/fwohci.c,v 1.98 2009/02/13 17:44:07 sbruno Exp $
*
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: fwohci.c,v 1.136 2013/10/16 17:40:55 christos Exp $");
#include <sys/param.h>
#include <sys/atomic.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/errno.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/select.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <dev/ieee1394/firewire.h>
#include <dev/ieee1394/firewirereg.h>
#include <dev/ieee1394/fwdma.h>
#include <dev/ieee1394/fwohcireg.h>
#include <dev/ieee1394/fwohcivar.h>
#include <dev/ieee1394/firewire_phy.h>
#include "ioconf.h"
#undef OHCI_DEBUG
static int nocyclemaster = 0;
int firewire_phydma_enable = 1;
/*
* Setup sysctl(3) MIB, hw.fwohci.*
*
* TBD condition CTLFLAG_PERMANENT on being a module or not
*/
SYSCTL_SETUP(sysctl_fwohci, "sysctl fwohci(4) subtree setup")
{
int rc, fwohci_node_num;
const struct sysctlnode *node;
if ((rc = sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
goto err;
}
if ((rc = sysctl_createv(clog, 0, NULL, &node,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "fwohci",
SYSCTL_DESCR("fwohci controls"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
goto err;
}
fwohci_node_num = node->sysctl_num;
/* fwohci no cyclemaster flag */
if ((rc = sysctl_createv(clog, 0, NULL, &node,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
"nocyclemaster", SYSCTL_DESCR("Do not send cycle start packets"),
NULL, 0, &nocyclemaster,
0, CTL_HW, fwohci_node_num, CTL_CREATE, CTL_EOL)) != 0) {
goto err;
}
/* fwohci physical request DMA enable */
if ((rc = sysctl_createv(clog, 0, NULL, &node,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, "phydma_enable",
SYSCTL_DESCR("Allow physical request DMA from firewire"),
NULL, 0, &firewire_phydma_enable,
0, CTL_HW, fwohci_node_num, CTL_CREATE, CTL_EOL)) != 0) {
goto err;
}
return;
err:
aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
}
static const char * const dbcode[16] = {
"OUTM", "OUTL", "INPM", "INPL", "STOR", "LOAD", "NOP ", "STOP",
"", "", "", "", "", "", "", ""
};
static const char * const dbkey[8] = {
"ST0", "ST1", "ST2", "ST3", "UNDEF", "REG", "SYS", "DEV"
};
static const char * const dbcond[4] = { "NEV", "C=1", "C=0", "ALL" };
static const char * const fwohcicode[32] = {
"No stat", "Undef", "long", "miss Ack err",
"FIFO underrun","FIFO overrun", "desc err", "data read err",
"data write err","bus reset", "timeout", "tcode err",
"Undef", "Undef", "unknown event","flushed",
"Undef", "ack complete", "ack pend", "Undef",
"ack busy_X", "ack busy_A", "ack busy_B", "Undef",
"Undef", "Undef", "Undef", "ack tardy",
"Undef", "ack data_err", "ack type_err", ""
};
#define MAX_SPEED 3
extern const char *fw_linkspeed[];
static uint32_t const tagbit[4] = { 1 << 28, 1 << 29, 1 << 30, 1 << 31 };
static const struct tcode_info tinfo[] = {
/* hdr_len block flag valid_response */
/* 0 WREQQ */ { 16, FWTI_REQ | FWTI_TLABEL, FWTCODE_WRES },
/* 1 WREQB */ { 16, FWTI_REQ | FWTI_TLABEL | FWTI_BLOCK_ASY, FWTCODE_WRES },
/* 2 WRES */ { 12, FWTI_RES, 0xff },
/* 3 XXX */ { 0, 0, 0xff },
/* 4 RREQQ */ { 12, FWTI_REQ | FWTI_TLABEL, FWTCODE_RRESQ },
/* 5 RREQB */ { 16, FWTI_REQ | FWTI_TLABEL, FWTCODE_RRESB },
/* 6 RRESQ */ { 16, FWTI_RES, 0xff },
/* 7 RRESB */ { 16, FWTI_RES | FWTI_BLOCK_ASY, 0xff },
/* 8 CYCS */ { 0, 0, 0xff },
/* 9 LREQ */ { 16, FWTI_REQ | FWTI_TLABEL | FWTI_BLOCK_ASY, FWTCODE_LRES },
/* a STREAM */ { 4, FWTI_REQ | FWTI_BLOCK_STR, 0xff },
/* b LRES */ { 16, FWTI_RES | FWTI_BLOCK_ASY, 0xff },
/* c XXX */ { 0, 0, 0xff },
/* d XXX */ { 0, 0, 0xff },
/* e PHY */ { 12, FWTI_REQ, 0xff },
/* f XXX */ { 0, 0, 0xff }
};
#define OHCI_WRITE_SIGMASK 0xffff0000
#define OHCI_READ_SIGMASK 0xffff0000
int fwohci_print(void *, const char *);
static int fwohci_ioctl(dev_t, u_long, void *, int, struct lwp *);
static uint32_t fwohci_cyctimer(struct firewire_comm *);
static uint32_t fwohci_set_bus_manager(struct firewire_comm *, u_int);
static void fwohci_ibr(struct firewire_comm *);
static int fwohci_irx_enable(struct firewire_comm *, int);
static int fwohci_irx_disable(struct firewire_comm *, int);
static int fwohci_itxbuf_enable(struct firewire_comm *, int);
static int fwohci_itx_disable(struct firewire_comm *, int);
static void fwohci_timeout(struct firewire_comm *fc);
#if BYTE_ORDER == BIG_ENDIAN
static void fwohci_irx_post(struct firewire_comm *, uint32_t *);
#endif
static void fwohci_set_intr(struct firewire_comm *, int);
static uint32_t fwphy_rddata(struct fwohci_softc *, uint32_t);
static uint32_t fwphy_wrdata(struct fwohci_softc *, uint32_t, uint32_t);
static int fwohci_probe_phy(struct fwohci_softc *);
static void fwohci_reset(struct fwohci_softc *);
static void fwohci_execute_db(struct fwohcidb_tr *, bus_dmamap_t);
static void fwohci_start(struct fwohci_softc *, struct fwohci_dbch *);
static void fwohci_start_atq(struct firewire_comm *);
static void fwohci_start_ats(struct firewire_comm *);
static void fwohci_txd(struct fwohci_softc *, struct fwohci_dbch *);
static void fwohci_db_free(struct fwohci_softc *, struct fwohci_dbch *);
static void fwohci_db_init(struct fwohci_softc *, struct fwohci_dbch *);
static int fwohci_rx_enable(struct fwohci_softc *, struct fwohci_dbch *);
static int fwohci_tx_enable(struct fwohci_softc *, struct fwohci_dbch *);
static int fwohci_next_cycle(struct fwohci_softc *, int);
#ifdef OHCI_DEBUG
static void fwohci_dump_intr(struct fwohci_softc *, uint32_t);
#endif
static void fwohci_intr_core(struct fwohci_softc *, uint32_t);
static void fwohci_intr_dma(struct fwohci_softc *, uint32_t);
static void fwohci_task_sid(struct fwohci_softc *);
static void fwohci_task_dma(struct fwohci_softc *);
static void fwohci_tbuf_update(struct fwohci_softc *, int);
static void fwohci_rbuf_update(struct fwohci_softc *, int);
static void dump_dma(struct fwohci_softc *, uint32_t);
static void dump_db(struct fwohci_softc *, uint32_t);
static void print_db(struct fwohcidb_tr *, struct fwohcidb *, uint32_t,
uint32_t);
static void fwohci_txbufdb(struct fwohci_softc *, int, struct fw_bulkxfer *);
static int fwohci_add_tx_buf(struct fwohci_dbch *, struct fwohcidb_tr *, int);
static int fwohci_add_rx_buf(struct fwohci_dbch *, struct fwohcidb_tr *, int,
struct fwdma_alloc *);
static int fwohci_arcv_swap(struct fw_pkt *, int);
static int fwohci_get_plen(struct fwohci_softc *, struct fwohci_dbch *,
struct fw_pkt *);
static void fwohci_arcv_free_buf(struct fwohci_softc *, struct fwohci_dbch *,
struct fwohcidb_tr *, int);
static void fwohci_arcv(struct fwohci_softc *, struct fwohci_dbch *);
/*
* memory allocated for DMA programs
*/
#define DMA_PROG_ALLOC (8 * PAGE_SIZE)
#define NDB FWMAXQUEUE
#define OHCI_VERSION 0x000
#define OHCI_ATRETRY 0x008
#define OHCI_CROMHDR 0x018
#define OHCI_BUS_OPT 0x020
#define OHCI_BUSIRMC (1 << 31)
#define OHCI_BUSCMC (1 << 30)
#define OHCI_BUSISC (1 << 29)
#define OHCI_BUSBMC (1 << 28)
#define OHCI_BUSPMC (1 << 27)
#define OHCI_BUSFNC \
(OHCI_BUSIRMC | OHCI_BUSCMC | OHCI_BUSISC | OHCI_BUSBMC | OHCI_BUSPMC)
#define OHCI_EUID_HI 0x024
#define OHCI_EUID_LO 0x028
#define OHCI_CROMPTR 0x034
#define OHCI_HCCCTL 0x050
#define OHCI_HCCCTLCLR 0x054
#define OHCI_AREQHI 0x100
#define OHCI_AREQHICLR 0x104
#define OHCI_AREQLO 0x108
#define OHCI_AREQLOCLR 0x10c
#define OHCI_PREQHI 0x110
#define OHCI_PREQHICLR 0x114
#define OHCI_PREQLO 0x118
#define OHCI_PREQLOCLR 0x11c
#define OHCI_PREQUPPER 0x120
#define OHCI_SID_BUF 0x064
#define OHCI_SID_CNT 0x068
#define OHCI_SID_ERR (1 << 31)
#define OHCI_SID_CNT_MASK 0xffc
#define OHCI_IT_STAT 0x090
#define OHCI_IT_STATCLR 0x094
#define OHCI_IT_MASK 0x098
#define OHCI_IT_MASKCLR 0x09c
#define OHCI_IR_STAT 0x0a0
#define OHCI_IR_STATCLR 0x0a4
#define OHCI_IR_MASK 0x0a8
#define OHCI_IR_MASKCLR 0x0ac
#define OHCI_LNKCTL 0x0e0
#define OHCI_LNKCTLCLR 0x0e4
#define OHCI_PHYACCESS 0x0ec
#define OHCI_CYCLETIMER 0x0f0
#define OHCI_DMACTL(off) (off)
#define OHCI_DMACTLCLR(off) (off + 0x04)
#define OHCI_DMACMD(off) (off + 0x0c)
#define OHCI_DMAMATCH(off) (off + 0x10)
#define OHCI_ATQOFF 0x180
#define OHCI_ATQCTL OHCI_ATQOFF
#define OHCI_ATQCTLCLR (OHCI_ATQOFF + 0x04)
#define OHCI_ATQCMD (OHCI_ATQOFF + 0x0c)
#define OHCI_ATQMATCH (OHCI_ATQOFF + 0x10)
#define OHCI_ATSOFF 0x1a0
#define OHCI_ATSCTL OHCI_ATSOFF
#define OHCI_ATSCTLCLR (OHCI_ATSOFF + 0x04)
#define OHCI_ATSCMD (OHCI_ATSOFF + 0x0c)
#define OHCI_ATSMATCH (OHCI_ATSOFF + 0x10)
#define OHCI_ARQOFF 0x1c0
#define OHCI_ARQCTL OHCI_ARQOFF
#define OHCI_ARQCTLCLR (OHCI_ARQOFF + 0x04)
#define OHCI_ARQCMD (OHCI_ARQOFF + 0x0c)
#define OHCI_ARQMATCH (OHCI_ARQOFF + 0x10)
#define OHCI_ARSOFF 0x1e0
#define OHCI_ARSCTL OHCI_ARSOFF
#define OHCI_ARSCTLCLR (OHCI_ARSOFF + 0x04)
#define OHCI_ARSCMD (OHCI_ARSOFF + 0x0c)
#define OHCI_ARSMATCH (OHCI_ARSOFF + 0x10)
#define OHCI_ITOFF(CH) (0x200 + 0x10 * (CH))
#define OHCI_ITCTL(CH) (OHCI_ITOFF(CH))
#define OHCI_ITCTLCLR(CH) (OHCI_ITOFF(CH) + 0x04)
#define OHCI_ITCMD(CH) (OHCI_ITOFF(CH) + 0x0c)
#define OHCI_IROFF(CH) (0x400 + 0x20 * (CH))
#define OHCI_IRCTL(CH) (OHCI_IROFF(CH))
#define OHCI_IRCTLCLR(CH) (OHCI_IROFF(CH) + 0x04)
#define OHCI_IRCMD(CH) (OHCI_IROFF(CH) + 0x0c)
#define OHCI_IRMATCH(CH) (OHCI_IROFF(CH) + 0x10)
#define ATRQ_CH 0
#define ATRS_CH 1
#define ARRQ_CH 2
#define ARRS_CH 3
#define ITX_CH 4
#define IRX_CH 36
/*
* Call fwohci_init before fwohci_attach to initialize the kernel's
* data structures well enough that fwohci_detach won't crash, even if
* fwohci_attach fails.
*/
void
fwohci_init(struct fwohci_softc *sc)
{
sc->fc.arq = &sc->arrq.xferq;
sc->fc.ars = &sc->arrs.xferq;
sc->fc.atq = &sc->atrq.xferq;
sc->fc.ats = &sc->atrs.xferq;
sc->arrq.xferq.psize = roundup2(FWPMAX_S400, PAGE_SIZE);
sc->arrs.xferq.psize = roundup2(FWPMAX_S400, PAGE_SIZE);
sc->atrq.xferq.psize = roundup2(FWPMAX_S400, PAGE_SIZE);
sc->atrs.xferq.psize = roundup2(FWPMAX_S400, PAGE_SIZE);
sc->arrq.xferq.start = NULL;
sc->arrs.xferq.start = NULL;
sc->atrq.xferq.start = fwohci_start_atq;
sc->atrs.xferq.start = fwohci_start_ats;
sc->arrq.xferq.buf = NULL;
sc->arrs.xferq.buf = NULL;
sc->atrq.xferq.buf = NULL;
sc->atrs.xferq.buf = NULL;
sc->arrq.xferq.dmach = -1;
sc->arrs.xferq.dmach = -1;
sc->atrq.xferq.dmach = -1;
sc->atrs.xferq.dmach = -1;
sc->arrq.ndesc = 1;
sc->arrs.ndesc = 1;
sc->atrq.ndesc = 8; /* equal to maximum of mbuf chains */
sc->atrs.ndesc = 2;
sc->arrq.ndb = NDB;
sc->arrs.ndb = NDB / 2;
sc->atrq.ndb = NDB;
sc->atrs.ndb = NDB / 2;
sc->arrq.off = OHCI_ARQOFF;
sc->arrs.off = OHCI_ARSOFF;
sc->atrq.off = OHCI_ATQOFF;
sc->atrs.off = OHCI_ATSOFF;
sc->fc.tcode = tinfo;
sc->fc.cyctimer = fwohci_cyctimer;
sc->fc.ibr = fwohci_ibr;
sc->fc.set_bmr = fwohci_set_bus_manager;
sc->fc.ioctl = fwohci_ioctl;
sc->fc.irx_enable = fwohci_irx_enable;
sc->fc.irx_disable = fwohci_irx_disable;
sc->fc.itx_enable = fwohci_itxbuf_enable;
sc->fc.itx_disable = fwohci_itx_disable;
sc->fc.timeout = fwohci_timeout;
sc->fc.set_intr = fwohci_set_intr;
#if BYTE_ORDER == BIG_ENDIAN
sc->fc.irx_post = fwohci_irx_post;
#else
sc->fc.irx_post = NULL;
#endif
sc->fc.itx_post = NULL;
sc->intmask = sc->irstat = sc->itstat = 0;
fw_init(&sc->fc);
}
/*
* Call fwohci_attach after fwohci_init to initialize the hardware and
* attach children.
*/
int
fwohci_attach(struct fwohci_softc *sc)
{
uint32_t reg;
uint8_t ui[8];
int i, mver;
/* OHCI version */
reg = OREAD(sc, OHCI_VERSION);
mver = (reg >> 16) & 0xff;
aprint_normal_dev(sc->fc.dev, "OHCI version %x.%x (ROM=%d)\n",
mver, reg & 0xff, (reg >> 24) & 1);
if (mver < 1 || mver > 9) {
aprint_error_dev(sc->fc.dev, "invalid OHCI version\n");
return ENXIO;
}
/* Available Isochronous DMA channel probe */
OWRITE(sc, OHCI_IT_MASK, 0xffffffff);
OWRITE(sc, OHCI_IR_MASK, 0xffffffff);
reg = OREAD(sc, OHCI_IT_MASK) & OREAD(sc, OHCI_IR_MASK);
OWRITE(sc, OHCI_IT_MASKCLR, 0xffffffff);
OWRITE(sc, OHCI_IR_MASKCLR, 0xffffffff);
for (i = 0; i < 0x20; i++)
if ((reg & (1 << i)) == 0)
break;
sc->fc.nisodma = i;
aprint_normal_dev(sc->fc.dev, "No. of Isochronous channels is %d.\n",
i);
if (i == 0)
return ENXIO;
for (i = 0; i < sc->fc.nisodma; i++) {
sc->fc.it[i] = &sc->it[i].xferq;
sc->fc.ir[i] = &sc->ir[i].xferq;
sc->it[i].xferq.dmach = i;
sc->ir[i].xferq.dmach = i;
sc->it[i].ndb = 0;
sc->ir[i].ndb = 0;
sc->it[i].off = OHCI_ITOFF(i);
sc->ir[i].off = OHCI_IROFF(i);
}
sc->fc.config_rom = fwdma_alloc_setup(sc->fc.dev, sc->fc.dmat,
CROMSIZE, &sc->crom_dma, CROMSIZE, BUS_DMA_NOWAIT);
if (sc->fc.config_rom == NULL) {
aprint_error_dev(sc->fc.dev, "config_rom alloc failed.\n");
return ENOMEM;
}
#if 0
memset(sc->fc.config_rom, 0, CROMSIZE);
sc->fc.config_rom[1] = 0x31333934;
sc->fc.config_rom[2] = 0xf000a002;
sc->fc.config_rom[3] = OREAD(sc, OHCI_EUID_HI);
sc->fc.config_rom[4] = OREAD(sc, OHCI_EUID_LO);
sc->fc.config_rom[5] = 0;
sc->fc.config_rom[0] = (4 << 24) | (5 << 16);
sc->fc.config_rom[0] |= fw_crc16(&sc->fc.config_rom[1], 5*4);
#endif
/* SID recieve buffer must align 2^11 */
#define OHCI_SIDSIZE (1 << 11)
sc->sid_buf = fwdma_alloc_setup(sc->fc.dev, sc->fc.dmat, OHCI_SIDSIZE,
&sc->sid_dma, OHCI_SIDSIZE, BUS_DMA_NOWAIT);
if (sc->sid_buf == NULL) {
aprint_error_dev(sc->fc.dev, "sid_buf alloc failed.");
return ENOMEM;
}
fwdma_alloc_setup(sc->fc.dev, sc->fc.dmat, sizeof(uint32_t),
&sc->dummy_dma, sizeof(uint32_t), BUS_DMA_NOWAIT);
if (sc->dummy_dma.v_addr == NULL) {
aprint_error_dev(sc->fc.dev, "dummy_dma alloc failed.");
return ENOMEM;
}
fwohci_db_init(sc, &sc->arrq);
if ((sc->arrq.flags & FWOHCI_DBCH_INIT) == 0)
return ENOMEM;
fwohci_db_init(sc, &sc->arrs);
if ((sc->arrs.flags & FWOHCI_DBCH_INIT) == 0)
return ENOMEM;
fwohci_db_init(sc, &sc->atrq);
if ((sc->atrq.flags & FWOHCI_DBCH_INIT) == 0)
return ENOMEM;
fwohci_db_init(sc, &sc->atrs);
if ((sc->atrs.flags & FWOHCI_DBCH_INIT) == 0)
return ENOMEM;
sc->fc.eui.hi = OREAD(sc, FWOHCIGUID_H);
sc->fc.eui.lo = OREAD(sc, FWOHCIGUID_L);
for (i = 0; i < 8; i++)
ui[i] = FW_EUI64_BYTE(&sc->fc.eui, i);
aprint_normal_dev(sc->fc.dev,
"EUI64 %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
ui[0], ui[1], ui[2], ui[3], ui[4], ui[5], ui[6], ui[7]);
fwohci_reset(sc);
sc->fc.bdev =
config_found(sc->fc.dev, __UNCONST("ieee1394if"), fwohci_print);
return 0;
}
int
fwohci_detach(struct fwohci_softc *sc, int flags)
{
int i, rv;
if (sc->fc.bdev != NULL) {
rv = config_detach(sc->fc.bdev, flags);
if (rv)
return rv;
}
if (sc->sid_buf != NULL)
fwdma_free(sc->sid_dma.dma_tag, sc->sid_dma.dma_map,
sc->sid_dma.v_addr);
if (sc->fc.config_rom != NULL)
fwdma_free(sc->crom_dma.dma_tag, sc->crom_dma.dma_map,
sc->crom_dma.v_addr);
fwohci_db_free(sc, &sc->arrq);
fwohci_db_free(sc, &sc->arrs);
fwohci_db_free(sc, &sc->atrq);
fwohci_db_free(sc, &sc->atrs);
for (i = 0; i < sc->fc.nisodma; i++) {
fwohci_db_free(sc, &sc->it[i]);
fwohci_db_free(sc, &sc->ir[i]);
}
fw_destroy(&sc->fc);
return 0;
}
int
fwohci_intr(void *arg)
{
struct fwohci_softc *sc = (struct fwohci_softc *)arg;
uint32_t stat, irstat, itstat;
if (!device_is_active(sc->fc.dev))
return 0;
if (!(sc->intmask & OHCI_INT_EN))
/* polling mode? */
return 0;
stat = OREAD(sc, FWOHCI_INTSTAT);
if (stat == 0xffffffff) {
aprint_error_dev(sc->fc.dev, "device physically ejected?\n");
return 0;
}
if (stat)
OWRITE(sc, FWOHCI_INTSTATCLR, stat & ~OHCI_INT_PHY_BUS_R);
stat &= sc->intmask;
if (stat == 0)
return 0;
atomic_swap_32(&sc->intstat, stat);
if (stat & OHCI_INT_DMA_IR) {
irstat = OREAD(sc, OHCI_IR_STAT);
OWRITE(sc, OHCI_IR_STATCLR, irstat);
atomic_swap_32(&sc->irstat, irstat);
}
if (stat & OHCI_INT_DMA_IT) {
itstat = OREAD(sc, OHCI_IT_STAT);
OWRITE(sc, OHCI_IT_STATCLR, itstat);
atomic_swap_32(&sc->itstat, itstat);
}
fwohci_intr_core(sc, stat);
return 1;
}
int
fwohci_resume(struct fwohci_softc *sc)
{
struct fw_xferq *ir;
struct fw_bulkxfer *chunk;
int i;
extern int firewire_resume(struct firewire_comm *);
fwohci_reset(sc);
/* XXX resume isochronous receive automatically. (how about TX?) */
for (i = 0; i < sc->fc.nisodma; i++) {
ir = &sc->ir[i].xferq;
if ((ir->flag & FWXFERQ_RUNNING) != 0) {
aprint_normal_dev(sc->fc.dev,
"resume iso receive ch: %d\n", i);
ir->flag &= ~FWXFERQ_RUNNING;
/* requeue stdma to stfree */
while ((chunk = STAILQ_FIRST(&ir->stdma)) != NULL) {
STAILQ_REMOVE_HEAD(&ir->stdma, link);
STAILQ_INSERT_TAIL(&ir->stfree, chunk, link);
}
sc->fc.irx_enable(&sc->fc, i);
}
}
firewire_resume(&sc->fc);
sc->fc.ibr(&sc->fc);
return 0;
}
int
fwohci_stop(struct fwohci_softc *sc)
{
u_int i;
fwohci_set_intr(&sc->fc, 0);
/* Now stopping all DMA channel */
OWRITE(sc, OHCI_ARQCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ARSCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN);
for (i = 0; i < sc->fc.nisodma; i++) {
OWRITE(sc, OHCI_IRCTLCLR(i), OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ITCTLCLR(i), OHCI_CNTL_DMA_RUN);
}
#if 0 /* Let dcons(4) be accessed */
/* Stop interrupt */
OWRITE(sc, FWOHCI_INTMASKCLR,
OHCI_INT_EN |
OHCI_INT_ERR |
OHCI_INT_PHY_SID |
OHCI_INT_PHY_INT |
OHCI_INT_DMA_ATRQ |
OHCI_INT_DMA_ATRS |
OHCI_INT_DMA_PRRQ |
OHCI_INT_DMA_PRRS |
OHCI_INT_DMA_ARRQ |
OHCI_INT_DMA_ARRS |
OHCI_INT_PHY_BUS_R);
/* FLUSH FIFO and reset Transmitter/Reciever */
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_RESET);
#endif
/* XXX Link down? Bus reset? */
return 0;
}
static int
fwohci_ioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *td)
{
struct fwohci_softc *sc;
struct fw_reg_req_t *reg = (struct fw_reg_req_t *)data;
uint32_t *dmach = (uint32_t *)data;
int err = 0;
sc = device_lookup_private(&fwohci_cd, DEV2UNIT(dev));
if (sc == NULL)
return ENXIO;
if (!data)
return EINVAL;
switch (cmd) {
case FWOHCI_WRREG:
#define OHCI_MAX_REG 0x800
if (reg->addr <= OHCI_MAX_REG) {
OWRITE(sc, reg->addr, reg->data);
reg->data = OREAD(sc, reg->addr);
} else
err = EINVAL;
break;
case FWOHCI_RDREG:
if (reg->addr <= OHCI_MAX_REG)
reg->data = OREAD(sc, reg->addr);
else
err = EINVAL;
break;
/* Read DMA descriptors for debug */
case DUMPDMA:
if (*dmach <= OHCI_MAX_DMA_CH) {
dump_dma(sc, *dmach);
dump_db(sc, *dmach);
} else
err = EINVAL;
break;
/* Read/Write Phy registers */
#define OHCI_MAX_PHY_REG 0xf
case FWOHCI_RDPHYREG:
if (reg->addr <= OHCI_MAX_PHY_REG)
reg->data = fwphy_rddata(sc, reg->addr);
else
err = EINVAL;
break;
case FWOHCI_WRPHYREG:
if (reg->addr <= OHCI_MAX_PHY_REG)
reg->data = fwphy_wrdata(sc, reg->addr, reg->data);
else
err = EINVAL;
break;
default:
err = EINVAL;
break;
}
return err;
}
int
fwohci_print(void *aux, const char *pnp)
{
struct fw_attach_args *fwa = (struct fw_attach_args *)aux;
if (pnp)
aprint_normal("%s at %s", fwa->name, pnp);
return UNCONF;
}
static uint32_t
fwohci_cyctimer(struct firewire_comm *fc)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
return OREAD(sc, OHCI_CYCLETIMER);
}
static uint32_t
fwohci_set_bus_manager(struct firewire_comm *fc, u_int node)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
uint32_t bm;
int i;
#define OHCI_CSR_DATA 0x0c
#define OHCI_CSR_COMP 0x10
#define OHCI_CSR_CONT 0x14
#define OHCI_BUS_MANAGER_ID 0
OWRITE(sc, OHCI_CSR_DATA, node);
OWRITE(sc, OHCI_CSR_COMP, 0x3f);
OWRITE(sc, OHCI_CSR_CONT, OHCI_BUS_MANAGER_ID);
for (i = 0; !(OREAD(sc, OHCI_CSR_CONT) & (1<<31)) && (i < 1000); i++)
DELAY(10);
bm = OREAD(sc, OHCI_CSR_DATA);
if ((bm & 0x3f) == 0x3f)
bm = node;
if (firewire_debug)
printf("fw_set_bus_manager: %d->%d (loop=%d)\n", bm, node, i);
return bm;
}
static void
fwohci_ibr(struct firewire_comm *fc)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
uint32_t fun;
aprint_normal_dev(fc->dev, "Initiate bus reset\n");
/*
* Make sure our cached values from the config rom are
* initialised.
*/
OWRITE(sc, OHCI_CROMHDR, ntohl(sc->fc.config_rom[0]));
OWRITE(sc, OHCI_BUS_OPT, ntohl(sc->fc.config_rom[2]));
/*
* Set root hold-off bit so that non cyclemaster capable node
* shouldn't became the root node.
*/
#if 1
fun = fwphy_rddata(sc, FW_PHY_IBR_REG);
fun |= FW_PHY_IBR | FW_PHY_RHB;
fun = fwphy_wrdata(sc, FW_PHY_IBR_REG, fun);
#else /* Short bus reset */
fun = fwphy_rddata(sc, FW_PHY_ISBR_REG);
fun |= FW_PHY_ISBR | FW_PHY_RHB;
fun = fwphy_wrdata(sc, FW_PHY_ISBR_REG, fun);
#endif
}
static int
fwohci_irx_enable(struct firewire_comm *fc, int dmach)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
struct fwohci_dbch *dbch;
struct fwohcidb_tr *db_tr;
struct fw_bulkxfer *first, *prev, *chunk, *txfer;
struct fw_xferq *ir;
uint32_t stat;
unsigned short tag, ich;
int err = 0, ldesc;
dbch = &sc->ir[dmach];
ir = &dbch->xferq;
if ((ir->flag & FWXFERQ_RUNNING) == 0) {
tag = (ir->flag >> 6) & 3;
ich = ir->flag & 0x3f;
OWRITE(sc, OHCI_IRMATCH(dmach), tagbit[tag] | ich);
ir->queued = 0;
dbch->ndb = ir->bnpacket * ir->bnchunk;
dbch->ndesc = 2;
fwohci_db_init(sc, dbch);
if ((dbch->flags & FWOHCI_DBCH_INIT) == 0)
return ENOMEM;
err = fwohci_rx_enable(sc, dbch);
if (err)
return err;
}
first = STAILQ_FIRST(&ir->stfree);
if (first == NULL) {
aprint_error_dev(fc->dev, "IR DMA no free chunk\n");
return 0;
}
ldesc = dbch->ndesc - 1;
prev = NULL;
STAILQ_FOREACH(txfer, &ir->stdma, link)
prev = txfer;
while ((chunk = STAILQ_FIRST(&ir->stfree)) != NULL) {
struct fwohcidb *db;
if (chunk->mbuf != NULL) {
db_tr = (struct fwohcidb_tr *)(chunk->start);
db_tr->dbcnt = 1;
err = bus_dmamap_load_mbuf(fc->dmat, db_tr->dma_map,
chunk->mbuf, BUS_DMA_NOWAIT);
if (err == 0)
fwohci_execute_db(db_tr, db_tr->dma_map);
else
aprint_error_dev(fc->dev,
"mbuf load failed: %d\n", err);
FWOHCI_DMA_SET(db_tr->db[1].db.desc.cmd,
OHCI_UPDATE |
OHCI_INPUT_LAST |
OHCI_INTERRUPT_ALWAYS |
OHCI_BRANCH_ALWAYS);
}
db = ((struct fwohcidb_tr *)(chunk->end))->db;
FWOHCI_DMA_WRITE(db[ldesc].db.desc.res, 0);
FWOHCI_DMA_CLEAR(db[ldesc].db.desc.depend, 0xf);
if (prev != NULL) {
db = ((struct fwohcidb_tr *)(prev->end))->db;
FWOHCI_DMA_SET(db[ldesc].db.desc.depend, dbch->ndesc);
}
STAILQ_REMOVE_HEAD(&ir->stfree, link);
STAILQ_INSERT_TAIL(&ir->stdma, chunk, link);
prev = chunk;
}
fwdma_sync_multiseg_all(dbch->am,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
stat = OREAD(sc, OHCI_IRCTL(dmach));
if (stat & OHCI_CNTL_DMA_ACTIVE)
return 0;
if (stat & OHCI_CNTL_DMA_RUN) {
OWRITE(sc, OHCI_IRCTLCLR(dmach), OHCI_CNTL_DMA_RUN);
aprint_error_dev(fc->dev, "IR DMA overrun (0x%08x)\n", stat);
}
if (firewire_debug)
printf("start IR DMA 0x%x\n", stat);
OWRITE(sc, OHCI_IR_MASKCLR, 1 << dmach);
OWRITE(sc, OHCI_IR_STATCLR, 1 << dmach);
OWRITE(sc, OHCI_IR_MASK, 1 << dmach);
OWRITE(sc, OHCI_IRCTLCLR(dmach), 0xf0000000);
OWRITE(sc, OHCI_IRCTL(dmach), OHCI_CNTL_ISOHDR);
OWRITE(sc, OHCI_IRCMD(dmach),
((struct fwohcidb_tr *)(first->start))->bus_addr | dbch->ndesc);
OWRITE(sc, OHCI_IRCTL(dmach), OHCI_CNTL_DMA_RUN);
OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_DMA_IR);
#if 0
dump_db(sc, IRX_CH + dmach);
#endif
return err;
}
static int
fwohci_irx_disable(struct firewire_comm *fc, int dmach)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
OWRITE(sc, OHCI_IRCTLCLR(dmach), OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_IR_MASKCLR, 1 << dmach);
OWRITE(sc, OHCI_IR_STATCLR, 1 << dmach);
/* XXX we cannot free buffers until the DMA really stops */
kpause("fwirxd", true, hz, NULL);
fwohci_db_free(sc, &sc->ir[dmach]);
sc->ir[dmach].xferq.flag &= ~FWXFERQ_RUNNING;
return 0;
}
static int
fwohci_itxbuf_enable(struct firewire_comm *fc, int dmach)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
struct fwohci_dbch *dbch;
struct fw_bulkxfer *first, *chunk, *prev, *txfer;
struct fw_xferq *it;
uint32_t stat;
int cycle_match, cycle_now, ldesc, err = 0;
dbch = &sc->it[dmach];
it = &dbch->xferq;
if ((dbch->flags & FWOHCI_DBCH_INIT) == 0) {
dbch->ndb = it->bnpacket * it->bnchunk;
dbch->ndesc = 3;
fwohci_db_init(sc, dbch);
if ((dbch->flags & FWOHCI_DBCH_INIT) == 0)
return ENOMEM;
err = fwohci_tx_enable(sc, dbch);
if (err)
return err;
}
ldesc = dbch->ndesc - 1;
prev = NULL;
STAILQ_FOREACH(txfer, &it->stdma, link)
prev = txfer;
while ((chunk = STAILQ_FIRST(&it->stvalid)) != NULL) {
struct fwohcidb *db;
fwdma_sync_multiseg(it->buf, chunk->poffset, it->bnpacket,
BUS_DMASYNC_PREWRITE);
fwohci_txbufdb(sc, dmach, chunk);
if (prev != NULL) {
db = ((struct fwohcidb_tr *)(prev->end))->db;
#if 0 /* XXX necessary? */
FWOHCI_DMA_SET(db[ldesc].db.desc.cmd,
OHCI_BRANCH_ALWAYS);
#endif
#if 0 /* if bulkxfer->npacket changes */
db[ldesc].db.desc.depend = db[0].db.desc.depend =
((struct fwohcidb_tr *)(chunk->start))->bus_addr |
dbch->ndesc;
#else
FWOHCI_DMA_SET(db[0].db.desc.depend, dbch->ndesc);
FWOHCI_DMA_SET(db[ldesc].db.desc.depend, dbch->ndesc);
#endif
}
STAILQ_REMOVE_HEAD(&it->stvalid, link);
STAILQ_INSERT_TAIL(&it->stdma, chunk, link);
prev = chunk;
}
fwdma_sync_multiseg_all(dbch->am,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
stat = OREAD(sc, OHCI_ITCTL(dmach));
if (firewire_debug && (stat & OHCI_CNTL_CYCMATCH_S))
printf("stat 0x%x\n", stat);
if (stat & (OHCI_CNTL_DMA_ACTIVE | OHCI_CNTL_CYCMATCH_S))
return 0;
#if 0
OWRITE(sc, OHCI_ITCTLCLR(dmach), OHCI_CNTL_DMA_RUN);
#endif
OWRITE(sc, OHCI_IT_MASKCLR, 1 << dmach);
OWRITE(sc, OHCI_IT_STATCLR, 1 << dmach);
OWRITE(sc, OHCI_IT_MASK, 1 << dmach);
OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_DMA_IT);
first = STAILQ_FIRST(&it->stdma);
OWRITE(sc, OHCI_ITCMD(dmach),
((struct fwohcidb_tr *)(first->start))->bus_addr | dbch->ndesc);
if (firewire_debug > 1) {
printf("fwohci_itxbuf_enable: kick 0x%08x\n", stat);
#if 1
dump_dma(sc, ITX_CH + dmach);
#endif
}
if ((stat & OHCI_CNTL_DMA_RUN) == 0) {
#if 1
/* Don't start until all chunks are buffered */
if (STAILQ_FIRST(&it->stfree) != NULL)
goto out;
#endif
#if 1
/* Clear cycle match counter bits */
OWRITE(sc, OHCI_ITCTLCLR(dmach), 0xffff0000);
/* 2bit second + 13bit cycle */
cycle_now = (fc->cyctimer(fc) >> 12) & 0x7fff;
cycle_match = fwohci_next_cycle(sc, cycle_now);
OWRITE(sc, OHCI_ITCTL(dmach),
OHCI_CNTL_CYCMATCH_S | (cycle_match << 16) |
OHCI_CNTL_DMA_RUN);
#else
OWRITE(sc, OHCI_ITCTL(dmach), OHCI_CNTL_DMA_RUN);
#endif
if (firewire_debug > 1) {
printf("cycle_match: 0x%04x->0x%04x\n",
cycle_now, cycle_match);
dump_dma(sc, ITX_CH + dmach);
dump_db(sc, ITX_CH + dmach);
}
} else if ((stat & OHCI_CNTL_CYCMATCH_S) == 0) {
aprint_error_dev(fc->dev, "IT DMA underrun (0x%08x)\n", stat);
OWRITE(sc, OHCI_ITCTL(dmach), OHCI_CNTL_DMA_WAKE);
}
out:
return err;
}
static int
fwohci_itx_disable(struct firewire_comm *fc, int dmach)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
OWRITE(sc, OHCI_ITCTLCLR(dmach),
OHCI_CNTL_DMA_RUN | OHCI_CNTL_CYCMATCH_S);
OWRITE(sc, OHCI_IT_MASKCLR, 1 << dmach);
OWRITE(sc, OHCI_IT_STATCLR, 1 << dmach);
/* XXX we cannot free buffers until the DMA really stops */
kpause("fwitxd", true, hz, NULL);
fwohci_db_free(sc, &sc->it[dmach]);
sc->it[dmach].xferq.flag &= ~FWXFERQ_RUNNING;
return 0;
}
static void
fwohci_timeout(struct firewire_comm *fc)
{
#if 0
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
#endif
/* nothing? */
}
#if BYTE_ORDER == BIG_ENDIAN
static void
fwohci_irx_post (struct firewire_comm *fc, uint32_t *qld)
{
qld[0] = FWOHCI_DMA_READ(qld[0]);
return;
}
#endif
static void
fwohci_set_intr(struct firewire_comm *fc, int enable)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
if (firewire_debug)
printf("fwohci_set_intr: %d\n", enable);
if (enable) {
sc->intmask |= OHCI_INT_EN;
OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_EN);
} else {
sc->intmask &= ~OHCI_INT_EN;
OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_EN);
}
}
/*
* Communication with PHY device
*/
/* XXX need lock for phy access */
static uint32_t
fwphy_rddata(struct fwohci_softc *sc, u_int addr)
{
uint32_t fun, stat;
u_int i, retry = 0;
addr &= 0xf;
#define MAX_RETRY 100
again:
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_REG_FAIL);
fun = PHYDEV_RDCMD | (addr << PHYDEV_REGADDR);
OWRITE(sc, OHCI_PHYACCESS, fun);
for (i = 0; i < MAX_RETRY; i++) {
fun = OREAD(sc, OHCI_PHYACCESS);
if ((fun & PHYDEV_RDCMD) == 0 && (fun & PHYDEV_RDDONE) != 0)
break;
DELAY(100);
}
if (i >= MAX_RETRY) {
if (firewire_debug)
printf("phy read failed(1).\n");
if (++retry < MAX_RETRY) {
DELAY(100);
goto again;
}
}
/* Make sure that SCLK is started */
stat = OREAD(sc, FWOHCI_INTSTAT);
if ((stat & OHCI_INT_REG_FAIL) != 0 ||
((fun >> PHYDEV_REGADDR) & 0xf) != addr) {
if (firewire_debug)
printf("phy read failed(2).\n");
if (++retry < MAX_RETRY) {
DELAY(100);
goto again;
}
}
if (firewire_debug || retry >= MAX_RETRY)
aprint_error_dev(sc->fc.dev,
"fwphy_rddata: 0x%x loop=%d, retry=%d\n",
addr, i, retry);
#undef MAX_RETRY
return (fun >> PHYDEV_RDDATA) & 0xff;
}
static uint32_t
fwphy_wrdata(struct fwohci_softc *sc, uint32_t addr, uint32_t data)
{
uint32_t fun;
addr &= 0xf;
data &= 0xff;
fun =
(PHYDEV_WRCMD | (addr << PHYDEV_REGADDR) | (data << PHYDEV_WRDATA));
OWRITE(sc, OHCI_PHYACCESS, fun);
DELAY(100);
return fwphy_rddata(sc, addr);
}
static int
fwohci_probe_phy(struct fwohci_softc *sc)
{
uint32_t reg, reg2;
int e1394a = 1;
/*
* probe PHY parameters
* 0. to prove PHY version, whether compliance of 1394a.
* 1. to probe maximum speed supported by the PHY and
* number of port supported by core-logic.
* It is not actually available port on your PC .
*/
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_LPS);
DELAY(500);
reg = fwphy_rddata(sc, FW_PHY_SPD_REG);
if ((reg >> 5) != 7) {
sc->fc.mode &= ~FWPHYASYST;
sc->fc.nport = reg & FW_PHY_NP;
sc->fc.speed = reg & FW_PHY_SPD >> 6;
if (sc->fc.speed > MAX_SPEED) {
aprint_error_dev(sc->fc.dev,
"invalid speed %d (fixed to %d).\n",
sc->fc.speed, MAX_SPEED);
sc->fc.speed = MAX_SPEED;
}
aprint_normal_dev(sc->fc.dev, "Phy 1394 only %s, %d ports.\n",
fw_linkspeed[sc->fc.speed], sc->fc.nport);
} else {
reg2 = fwphy_rddata(sc, FW_PHY_ESPD_REG);
sc->fc.mode |= FWPHYASYST;
sc->fc.nport = reg & FW_PHY_NP;
sc->fc.speed = (reg2 & FW_PHY_ESPD) >> 5;
if (sc->fc.speed > MAX_SPEED) {
aprint_error_dev(sc->fc.dev,
"invalid speed %d (fixed to %d).\n",
sc->fc.speed, MAX_SPEED);
sc->fc.speed = MAX_SPEED;
}
aprint_normal_dev(sc->fc.dev,
"Phy 1394a available %s, %d ports.\n",
fw_linkspeed[sc->fc.speed], sc->fc.nport);
/* check programPhyEnable */
reg2 = fwphy_rddata(sc, 5);
#if 0
if (e1394a && (OREAD(sc, OHCI_HCCCTL) & OHCI_HCC_PRPHY)) {
#else /* XXX force to enable 1394a */
if (e1394a) {
#endif
if (firewire_debug)
printf("Enable 1394a Enhancements\n");
/* enable EAA EMC */
reg2 |= 0x03;
/* set aPhyEnhanceEnable */
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_PHYEN);
OWRITE(sc, OHCI_HCCCTLCLR, OHCI_HCC_PRPHY);
}
#if 0
else {
/* for safe */
reg2 &= ~0x83;
}
#endif
reg2 = fwphy_wrdata(sc, 5, reg2);
}
reg = fwphy_rddata(sc, FW_PHY_SPD_REG);
if ((reg >> 5) == 7) {
reg = fwphy_rddata(sc, 4);
reg |= 1 << 6;
fwphy_wrdata(sc, 4, reg);
reg = fwphy_rddata(sc, 4);
}
return 0;
}
static void
fwohci_reset(struct fwohci_softc *sc)
{
struct fwohcidb_tr *db_tr;
uint32_t reg, reg2;
int i, max_rec, speed;
/* Disable interrupts */
OWRITE(sc, FWOHCI_INTMASKCLR, ~0);
/* Now stopping all DMA channels */
OWRITE(sc, OHCI_ARQCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ARSCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_IR_MASKCLR, ~0);
for (i = 0; i < sc->fc.nisodma; i++) {
OWRITE(sc, OHCI_IRCTLCLR(i), OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ITCTLCLR(i), OHCI_CNTL_DMA_RUN);
}
/* FLUSH FIFO and reset Transmitter/Reciever */
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_RESET);
if (firewire_debug)
printf("resetting OHCI...");
i = 0;
while (OREAD(sc, OHCI_HCCCTL) & OHCI_HCC_RESET) {
if (i++ > 100)
break;
DELAY(1000);
}
if (firewire_debug)
printf("done (loop=%d)\n", i);
/* Probe phy */
fwohci_probe_phy(sc);
/* Probe link */
reg = OREAD(sc, OHCI_BUS_OPT);
reg2 = reg | OHCI_BUSFNC;
max_rec = (reg & 0x0000f000) >> 12;
speed = (reg & 0x00000007);
aprint_normal_dev(sc->fc.dev, "Link %s, max_rec %d bytes.\n",
fw_linkspeed[speed], MAXREC(max_rec));
/* XXX fix max_rec */
sc->fc.maxrec = sc->fc.speed + 8;
if (max_rec != sc->fc.maxrec) {
reg2 = (reg2 & 0xffff0fff) | (sc->fc.maxrec << 12);
aprint_normal_dev(sc->fc.dev, "max_rec %d -> %d\n",
MAXREC(max_rec), MAXREC(sc->fc.maxrec));
}
if (firewire_debug)
printf("BUS_OPT 0x%x -> 0x%x\n", reg, reg2);
OWRITE(sc, OHCI_BUS_OPT, reg2);
/* Initialize registers */
OWRITE(sc, OHCI_CROMHDR, sc->fc.config_rom[0]);
OWRITE(sc, OHCI_CROMPTR, sc->crom_dma.bus_addr);
OWRITE(sc, OHCI_HCCCTLCLR, OHCI_HCC_BIGEND);
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_POSTWR);
OWRITE(sc, OHCI_SID_BUF, sc->sid_dma.bus_addr);
OWRITE(sc, OHCI_LNKCTL, OHCI_CNTL_SID);
/* Enable link */
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_LINKEN);
/* Force to start async RX DMA */
sc->arrq.xferq.flag &= ~FWXFERQ_RUNNING;
sc->arrs.xferq.flag &= ~FWXFERQ_RUNNING;
fwohci_rx_enable(sc, &sc->arrq);
fwohci_rx_enable(sc, &sc->arrs);
/* Initialize async TX */
OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN | OHCI_CNTL_DMA_DEAD);
OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN | OHCI_CNTL_DMA_DEAD);
/* AT Retries */
OWRITE(sc, FWOHCI_RETRY,
/* CycleLimit PhyRespRetries ATRespRetries ATReqRetries */
(0xffff << 16) | (0x0f << 8) | (0x0f << 4) | 0x0f);
sc->atrq.top = STAILQ_FIRST(&sc->atrq.db_trq);
sc->atrs.top = STAILQ_FIRST(&sc->atrs.db_trq);
sc->atrq.bottom = sc->atrq.top;
sc->atrs.bottom = sc->atrs.top;
for (i = 0, db_tr = sc->atrq.top; i < sc->atrq.ndb;
i++, db_tr = STAILQ_NEXT(db_tr, link))
db_tr->xfer = NULL;
for (i = 0, db_tr = sc->atrs.top; i < sc->atrs.ndb;
i++, db_tr = STAILQ_NEXT(db_tr, link))
db_tr->xfer = NULL;
/* Enable interrupts */
sc->intmask = (OHCI_INT_ERR | OHCI_INT_PHY_SID
| OHCI_INT_DMA_ATRQ | OHCI_INT_DMA_ATRS
| OHCI_INT_DMA_PRRQ | OHCI_INT_DMA_PRRS
| OHCI_INT_PHY_BUS_R | OHCI_INT_PW_ERR);
sc->intmask |= OHCI_INT_DMA_IR | OHCI_INT_DMA_IT;
sc->intmask |= OHCI_INT_CYC_LOST | OHCI_INT_PHY_INT;
OWRITE(sc, FWOHCI_INTMASK, sc->intmask);
fwohci_set_intr(&sc->fc, 1);
}
#define LAST_DB(dbtr) \
&dbtr->db[(dbtr->dbcnt > 2) ? (dbtr->dbcnt - 1) : 0];
static void
fwohci_execute_db(struct fwohcidb_tr *db_tr, bus_dmamap_t dmamap)
{
struct fwohcidb *db;
bus_dma_segment_t *s;
int i;
db = &db_tr->db[db_tr->dbcnt];
for (i = 0; i < dmamap->dm_nsegs; i++) {
s = &dmamap->dm_segs[i];
FWOHCI_DMA_WRITE(db->db.desc.addr, s->ds_addr);
FWOHCI_DMA_WRITE(db->db.desc.cmd, s->ds_len);
FWOHCI_DMA_WRITE(db->db.desc.res, 0);
db++;
db_tr->dbcnt++;
}
}
static void
fwohci_start(struct fwohci_softc *sc, struct fwohci_dbch *dbch)
{
struct fw_xfer *xfer;
struct fw_pkt *fp;
struct fwohci_txpkthdr *ohcifp;
struct fwohcidb_tr *db_tr, *kick;
struct fwohcidb *db;
uint32_t *ld;
int tcode, hdr_len, pl_off, fsegment = -1, i;
const struct tcode_info *info;
static int maxdesc = 0;
KASSERT(mutex_owned(&dbch->xferq.q_mtx));
#if DIAGNOSTIC
if (dbch->off != OHCI_ATQOFF &&
dbch->off != OHCI_ATSOFF)
panic("not async tx");
#endif
if (dbch->flags & FWOHCI_DBCH_FULL)
return;
db_tr = dbch->top;
kick = db_tr;
if (dbch->pdb_tr != NULL) {
kick = dbch->pdb_tr;
fwdma_sync_multiseg(dbch->am, kick->idx, kick->idx,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
}
txloop:
xfer = STAILQ_FIRST(&dbch->xferq.q);
if (xfer == NULL)
goto kick;
#if 0
if (dbch->xferq.queued == 0)
aprint_error_dev(sc->fc.dev, "TX queue empty\n");
#endif
STAILQ_REMOVE_HEAD(&dbch->xferq.q, link);
db_tr->xfer = xfer;
xfer->flag = FWXF_START;
fp = &xfer->send.hdr;
tcode = fp->mode.common.tcode;
ohcifp = (struct fwohci_txpkthdr *) db_tr->db[1].db.immed;
info = &tinfo[tcode];
hdr_len = pl_off = info->hdr_len;
ld = ohcifp->mode.ld;
ld[0] = ld[1] = ld[2] = ld[3] = 0;
for (i = 0; i < pl_off / 4; i++)
ld[i] = fp->mode.ld[i];
ohcifp->mode.common.spd = xfer->send.spd & 0x7;
if (tcode == FWTCODE_STREAM) {
hdr_len = 8;
ohcifp->mode.stream.len = fp->mode.stream.len;
} else if (tcode == FWTCODE_PHY) {
hdr_len = 12;
ld[1] = fp->mode.ld[1];
ld[2] = fp->mode.ld[2];
ohcifp->mode.common.spd = 0;
ohcifp->mode.common.tcode = FWOHCITCODE_PHY;
} else {
ohcifp->mode.asycomm.dst = fp->mode.hdr.dst;
ohcifp->mode.asycomm.srcbus = OHCI_ASYSRCBUS;
ohcifp->mode.asycomm.tlrt |= FWRETRY_X;
}
db = db_tr->db;
FWOHCI_DMA_WRITE(db->db.desc.cmd,
OHCI_OUTPUT_MORE | OHCI_KEY_ST2 | hdr_len);
FWOHCI_DMA_WRITE(db->db.desc.addr, 0);
FWOHCI_DMA_WRITE(db->db.desc.res, 0);
/* Specify bound timer of asy. responce */
if (dbch->off != OHCI_ATSOFF)
FWOHCI_DMA_WRITE(db->db.desc.res,
(OREAD(sc, OHCI_CYCLETIMER) >> 12) + (1 << 13));
#if BYTE_ORDER == BIG_ENDIAN
if (tcode == FWTCODE_WREQQ || tcode == FWTCODE_RRESQ)
hdr_len = 12;
for (i = 0; i < hdr_len / 4; i++)
FWOHCI_DMA_WRITE(ld[i], ld[i]);
#endif
again:
db_tr->dbcnt = 2;
db = &db_tr->db[db_tr->dbcnt];
if (xfer->send.pay_len > 0) {
int err;
/* handle payload */
if (xfer->mbuf == NULL)
err = bus_dmamap_load(sc->fc.dmat, db_tr->dma_map,
xfer->send.payload, xfer->send.pay_len, NULL,
BUS_DMA_WAITOK);
else {
/* XXX we can handle only 6 (=8-2) mbuf chains */
err = bus_dmamap_load_mbuf(sc->fc.dmat, db_tr->dma_map,
xfer->mbuf, BUS_DMA_WAITOK);
if (err == EFBIG) {
struct mbuf *m0;
if (firewire_debug)
printf("EFBIG.\n");
m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m0 != NULL) {
m_copydata(xfer->mbuf, 0,
xfer->mbuf->m_pkthdr.len,
mtod(m0, void *));
m0->m_len = m0->m_pkthdr.len =
xfer->mbuf->m_pkthdr.len;
m_freem(xfer->mbuf);
xfer->mbuf = m0;
goto again;
}
aprint_error_dev(sc->fc.dev,
"m_getcl failed.\n");
}
}
if (!err)
fwohci_execute_db(db_tr, db_tr->dma_map);
else
aprint_error_dev(sc->fc.dev,
"dmamap_load: err=%d\n", err);
bus_dmamap_sync(sc->fc.dmat, db_tr->dma_map,
0, db_tr->dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
#if 0 /* OHCI_OUTPUT_MODE == 0 */
for (i = 2; i < db_tr->dbcnt; i++)
FWOHCI_DMA_SET(db_tr->db[i].db.desc.cmd,
OHCI_OUTPUT_MORE);
#endif
}
if (maxdesc < db_tr->dbcnt) {
maxdesc = db_tr->dbcnt;
if (firewire_debug)
printf("maxdesc: %d\n", maxdesc);
}
/* last db */
db = LAST_DB(db_tr);
FWOHCI_DMA_SET(db->db.desc.cmd,
OHCI_OUTPUT_LAST | OHCI_INTERRUPT_ALWAYS | OHCI_BRANCH_ALWAYS);
FWOHCI_DMA_WRITE(db->db.desc.depend,
STAILQ_NEXT(db_tr, link)->bus_addr);
if (fsegment == -1)
fsegment = db_tr->dbcnt;
if (dbch->pdb_tr != NULL) {
db = LAST_DB(dbch->pdb_tr);
FWOHCI_DMA_SET(db->db.desc.depend, db_tr->dbcnt);
}
dbch->xferq.queued++;
dbch->pdb_tr = db_tr;
db_tr = STAILQ_NEXT(db_tr, link);
if (db_tr != dbch->bottom)
goto txloop;
else {
aprint_error_dev(sc->fc.dev, "fwohci_start: lack of db_trq\n");
dbch->flags |= FWOHCI_DBCH_FULL;
}
kick:
/* kick asy q */
fwdma_sync_multiseg(dbch->am, kick->idx, dbch->pdb_tr->idx,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (dbch->xferq.flag & FWXFERQ_RUNNING)
OWRITE(sc, OHCI_DMACTL(dbch->off), OHCI_CNTL_DMA_WAKE);
else {
if (firewire_debug)
printf("start AT DMA status=%x\n",
OREAD(sc, OHCI_DMACTL(dbch->off)));
OWRITE(sc, OHCI_DMACMD(dbch->off),
dbch->top->bus_addr | fsegment);
OWRITE(sc, OHCI_DMACTL(dbch->off), OHCI_CNTL_DMA_RUN);
dbch->xferq.flag |= FWXFERQ_RUNNING;
}
dbch->top = db_tr;
return;
}
static void
fwohci_start_atq(struct firewire_comm *fc)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
struct fwohci_dbch *dbch = &sc->atrq;
mutex_enter(&dbch->xferq.q_mtx);
fwohci_start(sc, dbch);
mutex_exit(&dbch->xferq.q_mtx);
return;
}
static void
fwohci_start_ats(struct firewire_comm *fc)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
struct fwohci_dbch *dbch = &sc->atrs;
mutex_enter(&dbch->xferq.q_mtx);
fwohci_start(sc, dbch);
mutex_exit(&dbch->xferq.q_mtx);
return;
}
static void
fwohci_txd(struct fwohci_softc *sc, struct fwohci_dbch *dbch)
{
struct firewire_comm *fc = &sc->fc;
struct fwohcidb_tr *tr;
struct fwohcidb *db;
struct fw_xfer *xfer;
u_int stat, status;
int packets = 0, ch, err = 0;
#if DIAGNOSTIC
if (dbch->off != OHCI_ATQOFF &&
dbch->off != OHCI_ATSOFF)
panic("not async tx");
#endif
if (dbch->off == OHCI_ATQOFF)
ch = ATRQ_CH;
else /* OHCI_ATSOFF */
ch = ATRS_CH;
mutex_enter(&dbch->xferq.q_mtx);
tr = dbch->bottom;
while (dbch->xferq.queued > 0) {
fwdma_sync_multiseg(dbch->am, tr->idx, tr->idx,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
db = LAST_DB(tr);
status = FWOHCI_DMA_READ(db->db.desc.res) >> OHCI_STATUS_SHIFT;
if (!(status & OHCI_CNTL_DMA_ACTIVE))
if (fc->status != FWBUSINIT)
goto out;
if (tr->xfer->send.pay_len > 0) {
bus_dmamap_sync(fc->dmat, tr->dma_map,
0, tr->dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(fc->dmat, tr->dma_map);
}
#if 1
if (firewire_debug > 1)
dump_db(sc, ch);
#endif
if (status & OHCI_CNTL_DMA_DEAD) {
/* Stop DMA */
OWRITE(sc, OHCI_DMACTLCLR(dbch->off),
OHCI_CNTL_DMA_RUN);
aprint_error_dev(fc->dev, "force reset AT FIFO\n");
OWRITE(sc, OHCI_HCCCTLCLR, OHCI_HCC_LINKEN);
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_LPS | OHCI_HCC_LINKEN);
OWRITE(sc, OHCI_DMACTLCLR(dbch->off),
OHCI_CNTL_DMA_RUN);
}
stat = status & FWOHCIEV_MASK;
switch(stat) {
case FWOHCIEV_ACKPEND:
/* FALLTHROUGH */
case FWOHCIEV_ACKCOMPL:
err = 0;
break;
case FWOHCIEV_ACKBSA:
case FWOHCIEV_ACKBSB:
case FWOHCIEV_ACKBSX:
aprint_error_dev(fc->dev, "txd err=%2x %s\n", stat,
fwohcicode[stat]);
err = EBUSY;
break;
case FWOHCIEV_FLUSHED:
case FWOHCIEV_ACKTARD:
aprint_error_dev(fc->dev, "txd err=%2x %s\n", stat,
fwohcicode[stat]);
err = EAGAIN;
break;
case FWOHCIEV_MISSACK:
case FWOHCIEV_UNDRRUN:
case FWOHCIEV_OVRRUN:
case FWOHCIEV_DESCERR:
case FWOHCIEV_DTRDERR:
case FWOHCIEV_TIMEOUT:
case FWOHCIEV_TCODERR:
case FWOHCIEV_UNKNOWN:
case FWOHCIEV_ACKDERR:
case FWOHCIEV_ACKTERR:
default:
aprint_error_dev(fc->dev, "txd err=%2x %s\n", stat,
fwohcicode[stat]);
err = EINVAL;
break;
}
dbch->xferq.queued--;
dbch->bottom = STAILQ_NEXT(tr, link);
if (tr->xfer != NULL) {
xfer = tr->xfer;
tr->xfer = NULL;
mutex_exit(&dbch->xferq.q_mtx);
if (xfer->flag & FWXF_RCVD) {
#if 0
if (firewire_debug)
printf("already rcvd\n");
#endif
fw_xfer_done(xfer);
} else {
microtime(&xfer->tv);
xfer->flag = FWXF_SENT;
if (err == EBUSY) {
xfer->flag = FWXF_BUSY;
xfer->resp = err;
xfer->recv.pay_len = 0;
fw_xfer_done(xfer);
} else if (stat != FWOHCIEV_ACKPEND) {
if (stat != FWOHCIEV_ACKCOMPL)
xfer->flag = FWXF_SENTERR;
xfer->resp = err;
xfer->recv.pay_len = 0;
fw_xfer_done(xfer);
}
}
mutex_enter(&dbch->xferq.q_mtx);
/*
* The watchdog timer takes care of split
* transcation timeout for ACKPEND case.
*/
} else
aprint_error_dev(fc->dev, "this shouldn't happen\n");
packets++;
if (dbch->bottom == dbch->top) {
/* we reaches the end of context program */
if (firewire_debug && dbch->xferq.queued > 0)
printf("queued > 0\n");
break;
}
tr = dbch->bottom;
}
out:
if (dbch->xferq.queued > 0 || packets > 0)
fwdma_sync_multiseg(dbch->am, tr->idx, tr->idx,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if ((dbch->flags & FWOHCI_DBCH_FULL) && packets > 0) {
aprint_normal_dev(fc->dev, "make free slot\n");
dbch->flags &= ~FWOHCI_DBCH_FULL;
fwohci_start(sc, dbch);
}
mutex_exit(&dbch->xferq.q_mtx);
}
static void
fwohci_db_free(struct fwohci_softc *sc, struct fwohci_dbch *dbch)
{
struct fwohcidb_tr *db_tr, *last;
if ((dbch->flags & FWOHCI_DBCH_INIT) == 0)
return;
for (last = db_tr = STAILQ_FIRST(&dbch->db_trq); db_tr != last;
db_tr = STAILQ_NEXT(db_tr, link)) {
bus_dmamap_destroy(sc->fc.dmat, db_tr->dma_map);
if ((dbch->xferq.flag & FWXFERQ_EXTBUF) == 0 &&
db_tr->buf != NULL) {
fwdma_free(sc->fc.dmat, db_tr->dma_map, db_tr->buf);
db_tr->buf = NULL;
}
}
dbch->ndb = 0;
db_tr = STAILQ_FIRST(&dbch->db_trq);
fwdma_free_multiseg(dbch->am);
free(db_tr, M_FW);
STAILQ_INIT(&dbch->db_trq);
dbch->flags &= ~FWOHCI_DBCH_INIT;
seldestroy(&dbch->xferq.rsel);
}
static void
fwohci_db_init(struct fwohci_softc *sc, struct fwohci_dbch *dbch)
{
struct firewire_comm *fc = &sc->fc;
struct fwohcidb_tr *db_tr, *lastq, *tmpq;
int idb;
const int db_tr_sz = sizeof(struct fwohcidb_tr) * dbch->ndb;
if ((dbch->flags & FWOHCI_DBCH_INIT) != 0)
goto out;
/* allocate DB entries and attach one to each DMA channels */
/* DB entry must start at 16 bytes bounary. */
STAILQ_INIT(&dbch->db_trq);
db_tr = (struct fwohcidb_tr *)malloc(db_tr_sz, M_FW, M_WAITOK | M_ZERO);
if (db_tr == NULL) {
aprint_error_dev(fc->dev, "malloc(1) failed\n");
return;
}
#define DB_SIZE(x) (sizeof(struct fwohcidb) * (x)->ndesc)
dbch->am = fwdma_malloc_multiseg(fc, DB_SIZE(dbch), DB_SIZE(dbch),
#if 0
dbch->ndb, BUS_DMA_WAITOK);
#else /* Ooops, debugging now... */
dbch->ndb, BUS_DMA_WAITOK |
(dbch->off == OHCI_ARQOFF || dbch->off == OHCI_ARSOFF) ?
BUS_DMA_COHERENT : 0);
#endif
if (dbch->am == NULL) {
aprint_error_dev(fc->dev, "fwdma_malloc_multiseg failed\n");
free(db_tr, M_FW);
return;
}
/* Attach DB to DMA ch. */
for (idb = 0; idb < dbch->ndb; idb++) {
db_tr->idx = idb;
db_tr->dbcnt = 0;
db_tr->db = (struct fwohcidb *)fwdma_v_addr(dbch->am, idb);
db_tr->bus_addr = fwdma_bus_addr(dbch->am, idb);
/* create dmamap for buffers */
#define MAX_REQCOUNT 0xffff
if (bus_dmamap_create(fc->dmat, dbch->xferq.psize,
dbch->ndesc > 3 ? dbch->ndesc - 2 : 1, MAX_REQCOUNT, 0,
0, &db_tr->dma_map) != 0) {
aprint_error_dev(fc->dev, "bus_dmamap_create failed\n");
dbch->flags = FWOHCI_DBCH_INIT; /* XXX fake */
fwohci_db_free(sc, dbch);
return;
}
if (dbch->off == OHCI_ARQOFF ||
dbch->off == OHCI_ARSOFF) {
db_tr->buf = fwdma_malloc(fc->dev, fc->dmat,
&db_tr->dma_map, dbch->xferq.psize, 1,
BUS_DMA_NOWAIT);
if (db_tr->buf == NULL) {
aprint_error_dev(fc->dev,
"fwdma_malloc failed\n");
dbch->flags = FWOHCI_DBCH_INIT; /* XXX fake */
fwohci_db_free(sc, dbch);
return;
}
}
STAILQ_INSERT_TAIL(&dbch->db_trq, db_tr, link);
if (dbch->xferq.flag & FWXFERQ_EXTBUF) {
struct fw_bulkxfer *bulkxfer =
&dbch->xferq.bulkxfer[idb / dbch->xferq.bnpacket];
if (idb % dbch->xferq.bnpacket == 0)
bulkxfer->start = (void *)db_tr;
if ((idb + 1) % dbch->xferq.bnpacket == 0)
bulkxfer->end = (void *)db_tr;
}
db_tr++;
}
lastq = NULL;
STAILQ_FOREACH(tmpq, &dbch->db_trq, link)
lastq = tmpq;
lastq->link.stqe_next = STAILQ_FIRST(&dbch->db_trq);
out:
dbch->xferq.queued = 0;
dbch->pdb_tr = NULL;
dbch->top = STAILQ_FIRST(&dbch->db_trq);
dbch->bottom = dbch->top;
dbch->flags = FWOHCI_DBCH_INIT;
selinit(&dbch->xferq.rsel);
}
static int
fwohci_tx_enable(struct fwohci_softc *sc, struct fwohci_dbch *dbch)
{
int err = 0;
int idb, z, i, dmach = 0, ldesc;
struct fwohcidb_tr *db_tr;
struct fwohcidb *db;
if (!(dbch->xferq.flag & FWXFERQ_EXTBUF)) {
err = EINVAL;
return err;
}
z = dbch->ndesc;
for (dmach = 0; dmach < sc->fc.nisodma; dmach++)
if (dbch->off == sc->it[dmach].off)
break;
if (dmach == sc->fc.nisodma) {
err = EINVAL;
return err;
}
if (dbch->xferq.flag & FWXFERQ_RUNNING)
return err;
dbch->xferq.flag |= FWXFERQ_RUNNING;
for (i = 0, dbch->bottom = dbch->top; i < dbch->ndb - 1; i++)
dbch->bottom = STAILQ_NEXT(dbch->bottom, link);
db_tr = dbch->top;
for (idb = 0; idb < dbch->ndb; idb++) {
fwohci_add_tx_buf(dbch, db_tr, idb);
if (STAILQ_NEXT(db_tr, link) == NULL)
break;
db = db_tr->db;
ldesc = db_tr->dbcnt - 1;
FWOHCI_DMA_WRITE(db[0].db.desc.depend,
STAILQ_NEXT(db_tr, link)->bus_addr | z);
db[ldesc].db.desc.depend = db[0].db.desc.depend;
if (dbch->xferq.flag & FWXFERQ_EXTBUF) {
if (((idb + 1) % dbch->xferq.bnpacket) == 0) {
FWOHCI_DMA_SET(db[ldesc].db.desc.cmd,
OHCI_INTERRUPT_ALWAYS);
/* OHCI 1.1 and above */
FWOHCI_DMA_SET(db[0].db.desc.cmd,
OHCI_INTERRUPT_ALWAYS);
}
}
db_tr = STAILQ_NEXT(db_tr, link);
}
FWOHCI_DMA_CLEAR(
dbch->bottom->db[dbch->bottom->dbcnt - 1].db.desc.depend, 0xf);
return err;
}
static int
fwohci_rx_enable(struct fwohci_softc *sc, struct fwohci_dbch *dbch)
{
struct fwohcidb_tr *db_tr;
struct fwohcidb *db;
int idb, z, i, ldesc, err = 0;
z = dbch->ndesc;
if (dbch->xferq.flag & FWXFERQ_STREAM) {
if (dbch->xferq.flag & FWXFERQ_RUNNING)
return err;
} else
if (dbch->xferq.flag & FWXFERQ_RUNNING) {
err = EBUSY;
return err;
}
dbch->xferq.flag |= FWXFERQ_RUNNING;
dbch->top = STAILQ_FIRST(&dbch->db_trq);
for (i = 0, dbch->bottom = dbch->top; i < dbch->ndb - 1; i++)
dbch->bottom = STAILQ_NEXT(dbch->bottom, link);
db_tr = dbch->top;
if (db_tr->dbcnt != 0)
goto run;
for (idb = 0; idb < dbch->ndb; idb++) {
if (dbch->off == OHCI_ARQOFF ||
dbch->off == OHCI_ARSOFF)
bus_dmamap_sync(sc->fc.dmat, db_tr->dma_map,
0, db_tr->dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
fwohci_add_rx_buf(dbch, db_tr, idb, &sc->dummy_dma);
if (STAILQ_NEXT(db_tr, link) == NULL)
break;
db = db_tr->db;
ldesc = db_tr->dbcnt - 1;
FWOHCI_DMA_WRITE(db[ldesc].db.desc.depend,
STAILQ_NEXT(db_tr, link)->bus_addr | z);
if (dbch->xferq.flag & FWXFERQ_EXTBUF) {
if (((idb + 1) % dbch->xferq.bnpacket) == 0) {
FWOHCI_DMA_SET(db[ldesc].db.desc.cmd,
OHCI_INTERRUPT_ALWAYS);
FWOHCI_DMA_CLEAR(db[ldesc].db.desc.depend, 0xf);
}
}
db_tr = STAILQ_NEXT(db_tr, link);
}
FWOHCI_DMA_CLEAR(dbch->bottom->db[db_tr->dbcnt - 1].db.desc.depend,
0xf);
dbch->buf_offset = 0;
run:
fwdma_sync_multiseg_all(dbch->am,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (!(dbch->xferq.flag & FWXFERQ_STREAM)) {
OWRITE(sc, OHCI_DMACMD(dbch->off), dbch->top->bus_addr | z);
OWRITE(sc, OHCI_DMACTL(dbch->off), OHCI_CNTL_DMA_RUN);
}
return err;
}
static int
fwohci_next_cycle(struct fwohci_softc *sc, int cycle_now)
{
int sec, cycle, cycle_match;
cycle = cycle_now & 0x1fff;
sec = cycle_now >> 13;
#define CYCLE_MOD 0x10
#if 1
#define CYCLE_DELAY 8 /* min delay to start DMA */
#else
#define CYCLE_DELAY 7000 /* min delay to start DMA */
#endif
cycle = cycle + CYCLE_DELAY;
if (cycle >= 8000) {
sec++;
cycle -= 8000;
}
cycle = roundup2(cycle, CYCLE_MOD);
if (cycle >= 8000) {
sec++;
if (cycle == 8000)
cycle = 0;
else
cycle = CYCLE_MOD;
}
cycle_match = ((sec << 13) | cycle) & 0x7ffff;
return cycle_match;
}
#ifdef OHCI_DEBUG
static void
fwohci_dump_intr(struct fwohci_softc *sc, uint32_t stat)
{
if (stat & OREAD(sc, FWOHCI_INTMASK))
print("%s: INTERRUPT"
" < %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s>"
" 0x%08x, 0x%08x\n",
device_xname(fc->dev),
stat & OHCI_INT_EN ? "DMA_EN ":"",
stat & OHCI_INT_PHY_REG ? "PHY_REG ":"",
stat & OHCI_INT_CYC_LONG ? "CYC_LONG ":"",
stat & OHCI_INT_ERR ? "INT_ERR ":"",
stat & OHCI_INT_CYC_ERR ? "CYC_ERR ":"",
stat & OHCI_INT_CYC_LOST ? "CYC_LOST ":"",
stat & OHCI_INT_CYC_64SECOND ? "CYC_64SECOND ":"",
stat & OHCI_INT_CYC_START ? "CYC_START ":"",
stat & OHCI_INT_PHY_INT ? "PHY_INT ":"",
stat & OHCI_INT_PHY_BUS_R ? "BUS_RESET ":"",
stat & OHCI_INT_PHY_SID ? "SID ":"",
stat & OHCI_INT_LR_ERR ? "DMA_LR_ERR ":"",
stat & OHCI_INT_PW_ERR ? "DMA_PW_ERR ":"",
stat & OHCI_INT_DMA_IR ? "DMA_IR ":"",
stat & OHCI_INT_DMA_IT ? "DMA_IT " :"",
stat & OHCI_INT_DMA_PRRS ? "DMA_PRRS " :"",
stat & OHCI_INT_DMA_PRRQ ? "DMA_PRRQ " :"",
stat & OHCI_INT_DMA_ARRS ? "DMA_ARRS " :"",
stat & OHCI_INT_DMA_ARRQ ? "DMA_ARRQ " :"",
stat & OHCI_INT_DMA_ATRS ? "DMA_ATRS " :"",
stat & OHCI_INT_DMA_ATRQ ? "DMA_ATRQ " :"",
stat, OREAD(sc, FWOHCI_INTMASK)
);
}
#endif
static void
fwohci_intr_core(struct fwohci_softc *sc, uint32_t stat)
{
struct firewire_comm *fc = &sc->fc;
uint32_t node_id, plen;
if ((stat & OHCI_INT_PHY_BUS_R) && (fc->status != FWBUSRESET)) {
fc->status = FWBUSRESET;
/* Disable bus reset interrupt until sid recv. */
OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_PHY_BUS_R);
aprint_normal_dev(fc->dev, "BUS reset\n");
OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_CYC_LOST);
OWRITE(sc, OHCI_LNKCTLCLR, OHCI_CNTL_CYCSRC);
OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN);
sc->atrq.xferq.flag &= ~FWXFERQ_RUNNING;
OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN);
sc->atrs.xferq.flag &= ~FWXFERQ_RUNNING;
fw_busreset(&sc->fc, FWBUSRESET);
OWRITE(sc, OHCI_CROMHDR, ntohl(sc->fc.config_rom[0]));
OWRITE(sc, OHCI_BUS_OPT, ntohl(sc->fc.config_rom[2]));
}
if (stat & OHCI_INT_PHY_SID) {
/* Enable bus reset interrupt */
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_PHY_BUS_R);
OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_PHY_BUS_R);
/* Allow async. request to us */
OWRITE(sc, OHCI_AREQHI, 1 << 31);
if (firewire_phydma_enable) {
/* allow from all nodes */
OWRITE(sc, OHCI_PREQHI, 0x7fffffff);
OWRITE(sc, OHCI_PREQLO, 0xffffffff);
/* 0 to 4GB region */
OWRITE(sc, OHCI_PREQUPPER, 0x10000);
}
/* Set ATRetries register */
OWRITE(sc, OHCI_ATRETRY, 1<<(13+16) | 0xfff);
/*
* Checking whether the node is root or not. If root, turn on
* cycle master.
*/
node_id = OREAD(sc, FWOHCI_NODEID);
plen = OREAD(sc, OHCI_SID_CNT);
fc->nodeid = node_id & 0x3f;
aprint_normal_dev(fc->dev, "node_id=0x%08x, gen=%d, ",
node_id, (plen >> 16) & 0xff);
if (!(node_id & OHCI_NODE_VALID)) {
aprint_error_dev(fc->dev, "Bus reset failure\n");
goto sidout;
}
/* cycle timer */
sc->cycle_lost = 0;
OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_CYC_LOST);
if ((node_id & OHCI_NODE_ROOT) && !nocyclemaster) {
aprint_normal("CYCLEMASTER mode\n");
OWRITE(sc, OHCI_LNKCTL,
OHCI_CNTL_CYCMTR | OHCI_CNTL_CYCTIMER);
} else {
aprint_normal("non CYCLEMASTER mode\n");
OWRITE(sc, OHCI_LNKCTLCLR, OHCI_CNTL_CYCMTR);
OWRITE(sc, OHCI_LNKCTL, OHCI_CNTL_CYCTIMER);
}
fc->status = FWBUSINIT;
fwohci_task_sid(sc);
}
sidout:
if ((stat & ~(OHCI_INT_PHY_BUS_R | OHCI_INT_PHY_SID)))
fwohci_task_dma(sc);
}
static void
fwohci_intr_dma(struct fwohci_softc *sc, uint32_t stat)
{
struct firewire_comm *fc = &sc->fc;
uint32_t irstat, itstat;
u_int i;
if (stat & OHCI_INT_DMA_IR) {
irstat = atomic_swap_32(&sc->irstat, 0);
for (i = 0; i < fc->nisodma; i++)
if ((irstat & (1 << i)) != 0) {
struct fwohci_dbch *dbch = &sc->ir[i];
if ((dbch->xferq.flag & FWXFERQ_OPEN) == 0) {
aprint_error_dev(fc->dev,
"dma(%d) not active\n", i);
continue;
}
fwohci_rbuf_update(sc, i);
}
}
if (stat & OHCI_INT_DMA_IT) {
itstat = atomic_swap_32(&sc->itstat, 0);
for (i = 0; i < fc->nisodma; i++)
if ((itstat & (1 << i)) != 0)
fwohci_tbuf_update(sc, i);
}
if (stat & OHCI_INT_DMA_PRRS) {
#if 0
dump_dma(sc, ARRS_CH);
dump_db(sc, ARRS_CH);
#endif
fwohci_arcv(sc, &sc->arrs);
}
if (stat & OHCI_INT_DMA_PRRQ) {
#if 0
dump_dma(sc, ARRQ_CH);
dump_db(sc, ARRQ_CH);
#endif
fwohci_arcv(sc, &sc->arrq);
}
if (stat & OHCI_INT_CYC_LOST) {
if (sc->cycle_lost >= 0)
sc->cycle_lost++;
if (sc->cycle_lost > 10) {
sc->cycle_lost = -1;
#if 0
OWRITE(sc, OHCI_LNKCTLCLR, OHCI_CNTL_CYCTIMER);
#endif
OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_CYC_LOST);
aprint_error_dev(fc->dev, "too many cycle lost, "
"no cycle master present?\n");
}
}
if (stat & OHCI_INT_DMA_ATRQ)
fwohci_txd(sc, &(sc->atrq));
if (stat & OHCI_INT_DMA_ATRS)
fwohci_txd(sc, &(sc->atrs));
if (stat & OHCI_INT_PW_ERR)
aprint_error_dev(fc->dev, "posted write error\n");
if (stat & OHCI_INT_ERR)
aprint_error_dev(fc->dev, "unrecoverable error\n");
if (stat & OHCI_INT_PHY_INT)
aprint_normal_dev(fc->dev, "phy int\n");
return;
}
static void
fwohci_task_sid(struct fwohci_softc *sc)
{
struct firewire_comm *fc = &sc->fc;
uint32_t *buf;
int i, plen;
plen = OREAD(sc, OHCI_SID_CNT);
if (plen & OHCI_SID_ERR) {
aprint_error_dev(fc->dev, "SID Error\n");
return;
}
plen &= OHCI_SID_CNT_MASK;
if (plen < 4 || plen > OHCI_SIDSIZE) {
aprint_error_dev(fc->dev, "invalid SID len = %d\n", plen);
return;
}
plen -= 4; /* chop control info */
buf = (uint32_t *)malloc(OHCI_SIDSIZE, M_FW, M_NOWAIT);
if (buf == NULL) {
aprint_error_dev(fc->dev, "malloc failed\n");
return;
}
for (i = 0; i < plen / 4; i++)
buf[i] = FWOHCI_DMA_READ(sc->sid_buf[i + 1]);
#if 1 /* XXX needed?? */
/* pending all pre-bus_reset packets */
fwohci_txd(sc, &sc->atrq);
fwohci_txd(sc, &sc->atrs);
fwohci_arcv(sc, &sc->arrs);
fwohci_arcv(sc, &sc->arrq);
fw_drain_txq(fc);
#endif
fw_sidrcv(fc, buf, plen);
free(buf, M_FW);
}
static void
fwohci_task_dma(struct fwohci_softc *sc)
{
uint32_t stat;
again:
stat = atomic_swap_32(&sc->intstat, 0);
if (stat)
fwohci_intr_dma(sc, stat);
else
return;
goto again;
}
static void
fwohci_tbuf_update(struct fwohci_softc *sc, int dmach)
{
struct firewire_comm *fc = &sc->fc;
struct fwohcidb *db;
struct fw_bulkxfer *chunk;
struct fw_xferq *it;
uint32_t stat;
#if 0
uint32_t count;
#endif
int w = 0, ldesc;
it = fc->it[dmach];
ldesc = sc->it[dmach].ndesc - 1;
mutex_enter(&fc->fc_mtx);
fwdma_sync_multiseg_all(sc->it[dmach].am, BUS_DMASYNC_POSTREAD);
if (firewire_debug)
dump_db(sc, ITX_CH + dmach);
while ((chunk = STAILQ_FIRST(&it->stdma)) != NULL) {
db = ((struct fwohcidb_tr *)(chunk->end))->db;
stat =
FWOHCI_DMA_READ(db[ldesc].db.desc.res) >> OHCI_STATUS_SHIFT;
db = ((struct fwohcidb_tr *)(chunk->start))->db;
/* timestamp */
#if 0
count =
FWOHCI_DMA_READ(db[ldesc].db.desc.res) & OHCI_COUNT_MASK;
#else
(void)FWOHCI_DMA_READ(db[ldesc].db.desc.res);
#endif
if (stat == 0)
break;
STAILQ_REMOVE_HEAD(&it->stdma, link);
switch (stat & FWOHCIEV_MASK) {
case FWOHCIEV_ACKCOMPL:
#if 0
printf("0x%08x\n", count);
#endif
break;
default:
aprint_error_dev(fc->dev,
"Isochronous transmit err %02x(%s)\n",
stat, fwohcicode[stat & 0x1f]);
}
STAILQ_INSERT_TAIL(&it->stfree, chunk, link);
w++;
}
mutex_exit(&fc->fc_mtx);
if (w)
wakeup(it);
}
static void
fwohci_rbuf_update(struct fwohci_softc *sc, int dmach)
{
struct firewire_comm *fc = &sc->fc;
struct fwohcidb_tr *db_tr;
struct fw_bulkxfer *chunk;
struct fw_xferq *ir;
uint32_t stat;
int w = 0, ldesc;
ir = fc->ir[dmach];
ldesc = sc->ir[dmach].ndesc - 1;
#if 0
dump_db(sc, dmach);
#endif
if ((ir->flag & FWXFERQ_HANDLER) == 0)
mutex_enter(&fc->fc_mtx);
fwdma_sync_multiseg_all(sc->ir[dmach].am, BUS_DMASYNC_POSTREAD);
while ((chunk = STAILQ_FIRST(&ir->stdma)) != NULL) {
db_tr = (struct fwohcidb_tr *)chunk->end;
stat = FWOHCI_DMA_READ(db_tr->db[ldesc].db.desc.res) >>
OHCI_STATUS_SHIFT;
if (stat == 0)
break;
if (chunk->mbuf != NULL) {
bus_dmamap_sync(fc->dmat, db_tr->dma_map, 0,
db_tr->dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fc->dmat, db_tr->dma_map);
} else if (ir->buf != NULL)
fwdma_sync_multiseg(ir->buf, chunk->poffset,
ir->bnpacket, BUS_DMASYNC_POSTREAD);
else
/* XXX */
aprint_error_dev(fc->dev,
"fwohci_rbuf_update: this shouldn't happend\n");
STAILQ_REMOVE_HEAD(&ir->stdma, link);
STAILQ_INSERT_TAIL(&ir->stvalid, chunk, link);
switch (stat & FWOHCIEV_MASK) {
case FWOHCIEV_ACKCOMPL:
chunk->resp = 0;
break;
default:
chunk->resp = EINVAL;
aprint_error_dev(fc->dev,
"Isochronous receive err %02x(%s)\n",
stat, fwohcicode[stat & 0x1f]);
}
w++;
}
if ((ir->flag & FWXFERQ_HANDLER) == 0)
mutex_exit(&fc->fc_mtx);
if (w == 0)
return;
if (ir->flag & FWXFERQ_HANDLER)
ir->hand(ir);
else
wakeup(ir);
}
static void
dump_dma(struct fwohci_softc *sc, uint32_t ch)
{
struct fwohci_dbch *dbch;
uint32_t cntl, stat, cmd, match;
if (ch == ATRQ_CH)
dbch = &sc->atrq;
else if (ch == ATRS_CH)
dbch = &sc->atrs;
else if (ch == ARRQ_CH)
dbch = &sc->arrq;
else if (ch == ARRS_CH)
dbch = &sc->arrs;
else if (ch < IRX_CH)
dbch = &sc->it[ch - ITX_CH];
else
dbch = &sc->ir[ch - IRX_CH];
cntl = stat = OREAD(sc, dbch->off);
cmd = OREAD(sc, dbch->off + 0xc);
match = OREAD(sc, dbch->off + 0x10);
aprint_normal_dev(sc->fc.dev,
"ch %1x cntl:0x%08x cmd:0x%08x match:0x%08x\n",
ch,
cntl,
cmd,
match);
stat &= 0xffff;
if (stat)
aprint_normal_dev(sc->fc.dev, "dma %d ch:%s%s%s%s%s%s %s(%x)\n",
ch,
stat & OHCI_CNTL_DMA_RUN ? "RUN," : "",
stat & OHCI_CNTL_DMA_WAKE ? "WAKE," : "",
stat & OHCI_CNTL_DMA_DEAD ? "DEAD," : "",
stat & OHCI_CNTL_DMA_ACTIVE ? "ACTIVE," : "",
stat & OHCI_CNTL_DMA_BT ? "BRANCH," : "",
stat & OHCI_CNTL_DMA_BAD ? "BADDMA," : "",
fwohcicode[stat & 0x1f],
stat & 0x1f
);
else
aprint_normal_dev(sc->fc.dev, "dma %d ch: Nostat\n", ch);
}
static void
dump_db(struct fwohci_softc *sc, uint32_t ch)
{
struct fwohci_dbch *dbch;
struct fwohcidb_tr *cp = NULL, *pp;
struct fwohcidb *curr = NULL;
#if 0
struct fwohcidb_tr *np = NULL;
struct fwohcidb *prev, *next = NULL;
#endif
int idb, jdb;
uint32_t cmd;
if (ch == ATRQ_CH)
dbch = &sc->atrq;
else if (ch == ATRS_CH)
dbch = &sc->atrs;
else if (ch == ARRQ_CH)
dbch = &sc->arrq;
else if (ch == ARRS_CH)
dbch = &sc->arrs;
else if (ch < IRX_CH)
dbch = &sc->it[ch - ITX_CH];
else
dbch = &sc->ir[ch - IRX_CH];
cmd = OREAD(sc, dbch->off + 0xc);
if (dbch->ndb == 0) {
aprint_error_dev(sc->fc.dev, "No DB is attached ch=%d\n", ch);
return;
}
pp = dbch->top;
#if 0
prev = pp->db;
#endif
for (idb = 0; idb < dbch->ndb; idb++) {
cp = STAILQ_NEXT(pp, link);
if (cp == NULL) {
curr = NULL;
goto outdb;
}
#if 0
np = STAILQ_NEXT(cp, link);
#endif
for (jdb = 0; jdb < dbch->ndesc; jdb++)
if ((cmd & 0xfffffff0) == cp->bus_addr) {
curr = cp->db;
#if 0
if (np != NULL)
next = np->db;
else
next = NULL;
#endif
goto outdb;
}
pp = STAILQ_NEXT(pp, link);
if (pp == NULL) {
curr = NULL;
goto outdb;
}
#if 0
prev = pp->db;
#endif
}
outdb:
if (curr != NULL) {
#if 0
aprint_normal("Prev DB %d\n", ch);
print_db(pp, prev, ch, dbch->ndesc);
#endif
aprint_normal("Current DB %d\n", ch);
print_db(cp, curr, ch, dbch->ndesc);
#if 0
aprint_normal("Next DB %d\n", ch);
print_db(np, next, ch, dbch->ndesc);
#endif
} else
aprint_error("dbdump err ch = %d cmd = 0x%08x\n", ch, cmd);
return;
}
static void
print_db(struct fwohcidb_tr *db_tr, struct fwohcidb *db, uint32_t ch,
uint32_t hogemax)
{
fwohcireg_t stat;
int i, key;
uint32_t cmd, res;
if (db == NULL) {
aprint_error("No Descriptor is found\n");
return;
}
aprint_normal("ch = %d\n%8s %s %s %s %s %4s %8s %8s %4s:%4s\n",
ch,
"Current",
"OP ",
"KEY",
"INT",
"BR ",
"len",
"Addr",
"Depend",
"Stat",
"Cnt");
for (i = 0; i <= hogemax; i++) {
cmd = FWOHCI_DMA_READ(db[i].db.desc.cmd);
res = FWOHCI_DMA_READ(db[i].db.desc.res);
key = cmd & OHCI_KEY_MASK;
stat = res >> OHCI_STATUS_SHIFT;
aprint_normal("%08jx %s %s %s %s %5d %08x %08x %04x:%04x",
(uintmax_t)db_tr->bus_addr,
dbcode[(cmd >> 28) & 0xf],
dbkey[(cmd >> 24) & 0x7],
dbcond[(cmd >> 20) & 0x3],
dbcond[(cmd >> 18) & 0x3],
cmd & OHCI_COUNT_MASK,
FWOHCI_DMA_READ(db[i].db.desc.addr),
FWOHCI_DMA_READ(db[i].db.desc.depend),
stat,
res & OHCI_COUNT_MASK);
if (stat & 0xff00)
aprint_normal(" %s%s%s%s%s%s %s(%x)\n",
stat & OHCI_CNTL_DMA_RUN ? "RUN," : "",
stat & OHCI_CNTL_DMA_WAKE ? "WAKE," : "",
stat & OHCI_CNTL_DMA_DEAD ? "DEAD," : "",
stat & OHCI_CNTL_DMA_ACTIVE ? "ACTIVE," : "",
stat & OHCI_CNTL_DMA_BT ? "BRANCH," : "",
stat & OHCI_CNTL_DMA_BAD ? "BADDMA," : "",
fwohcicode[stat & 0x1f],
stat & 0x1f
);
else
aprint_normal(" Nostat\n");
if (key == OHCI_KEY_ST2)
aprint_normal("0x%08x 0x%08x 0x%08x 0x%08x\n",
FWOHCI_DMA_READ(db[i+1].db.immed[0]),
FWOHCI_DMA_READ(db[i+1].db.immed[1]),
FWOHCI_DMA_READ(db[i+1].db.immed[2]),
FWOHCI_DMA_READ(db[i+1].db.immed[3]));
if (key == OHCI_KEY_DEVICE)
return;
if ((cmd & OHCI_BRANCH_MASK) == OHCI_BRANCH_ALWAYS)
return;
if ((cmd & OHCI_CMD_MASK) == OHCI_OUTPUT_LAST)
return;
if ((cmd & OHCI_CMD_MASK) == OHCI_INPUT_LAST)
return;
if (key == OHCI_KEY_ST2)
i++;
}
return;
}
static void
fwohci_txbufdb(struct fwohci_softc *sc, int dmach, struct fw_bulkxfer *bulkxfer)
{
struct fwohcidb_tr *db_tr /*, *fdb_tr */;
struct fwohci_dbch *dbch;
struct fwohcidb *db;
struct fw_pkt *fp;
struct fwohci_txpkthdr *ohcifp;
unsigned short chtag;
int idb;
KASSERT(mutex_owner(&sc->fc.fc_mtx));
dbch = &sc->it[dmach];
chtag = sc->it[dmach].xferq.flag & 0xff;
db_tr = (struct fwohcidb_tr *)(bulkxfer->start);
/*
fdb_tr = (struct fwohcidb_tr *)(bulkxfer->end);
aprint_normal(sc->fc.dev, "DB %08x %08x %08x\n", bulkxfer, db_tr->bus_addr, fdb_tr->bus_addr);
*/
for (idb = 0; idb < dbch->xferq.bnpacket; idb++) {
db = db_tr->db;
fp = (struct fw_pkt *)db_tr->buf;
ohcifp = (struct fwohci_txpkthdr *) db[1].db.immed;
ohcifp->mode.ld[0] = fp->mode.ld[0];
ohcifp->mode.common.spd = 0 & 0x7;
ohcifp->mode.stream.len = fp->mode.stream.len;
ohcifp->mode.stream.chtag = chtag;
ohcifp->mode.stream.tcode = 0xa;
#if BYTE_ORDER == BIG_ENDIAN
FWOHCI_DMA_WRITE(db[1].db.immed[0], db[1].db.immed[0]);
FWOHCI_DMA_WRITE(db[1].db.immed[1], db[1].db.immed[1]);
#endif
FWOHCI_DMA_CLEAR(db[2].db.desc.cmd, OHCI_COUNT_MASK);
FWOHCI_DMA_SET(db[2].db.desc.cmd, fp->mode.stream.len);
FWOHCI_DMA_WRITE(db[2].db.desc.res, 0);
#if 0 /* if bulkxfer->npackets changes */
db[2].db.desc.cmd =
OHCI_OUTPUT_LAST | OHCI_UPDATE | OHCI_BRANCH_ALWAYS;
db[0].db.desc.depend = db[dbch->ndesc - 1].db.desc.depend =
STAILQ_NEXT(db_tr, link)->bus_addr | dbch->ndesc;
#else
FWOHCI_DMA_SET(db[0].db.desc.depend, dbch->ndesc);
FWOHCI_DMA_SET(db[dbch->ndesc - 1].db.desc.depend, dbch->ndesc);
#endif
bulkxfer->end = (void *)db_tr;
db_tr = STAILQ_NEXT(db_tr, link);
}
db = ((struct fwohcidb_tr *)bulkxfer->end)->db;
FWOHCI_DMA_CLEAR(db[0].db.desc.depend, 0xf);
FWOHCI_DMA_CLEAR(db[dbch->ndesc - 1].db.desc.depend, 0xf);
#if 0 /* if bulkxfer->npackets changes */
db[dbch->ndesc - 1].db.desc.control |= OHCI_INTERRUPT_ALWAYS;
/* OHCI 1.1 and above */
db[0].db.desc.control |= OHCI_INTERRUPT_ALWAYS;
#endif
/*
db_tr = (struct fwohcidb_tr *)bulkxfer->start;
fdb_tr = (struct fwohcidb_tr *)bulkxfer->end;
aprint_normal(sc->fc.dev, "DB %08x %3d %08x %08x\n", bulkxfer, bulkxfer->npacket, db_tr->bus_addr, fdb_tr->bus_addr);
*/
return;
}
static int
fwohci_add_tx_buf(struct fwohci_dbch *dbch, struct fwohcidb_tr *db_tr,
int poffset)
{
struct fwohcidb *db = db_tr->db;
struct fw_xferq *it;
int err = 0;
it = &dbch->xferq;
if (it->buf == 0) {
err = EINVAL;
return err;
}
db_tr->buf = fwdma_v_addr(it->buf, poffset);
db_tr->dbcnt = 3;
FWOHCI_DMA_WRITE(db[0].db.desc.cmd,
OHCI_OUTPUT_MORE | OHCI_KEY_ST2 | 8);
FWOHCI_DMA_WRITE(db[0].db.desc.addr, 0);
memset((void *)db[1].db.immed, 0, sizeof(db[1].db.immed));
FWOHCI_DMA_WRITE(db[2].db.desc.addr,
fwdma_bus_addr(it->buf, poffset) + sizeof(uint32_t));
FWOHCI_DMA_WRITE(db[2].db.desc.cmd,
OHCI_OUTPUT_LAST | OHCI_UPDATE | OHCI_BRANCH_ALWAYS);
#if 1
FWOHCI_DMA_WRITE(db[0].db.desc.res, 0);
FWOHCI_DMA_WRITE(db[2].db.desc.res, 0);
#endif
return 0;
}
int
fwohci_add_rx_buf(struct fwohci_dbch *dbch, struct fwohcidb_tr *db_tr,
int poffset, struct fwdma_alloc *dummy_dma)
{
struct fwohcidb *db = db_tr->db;
struct fw_xferq *rq;
int i, ldesc;
bus_addr_t dbuf[2];
int dsiz[2];
rq = &dbch->xferq;
if (rq->buf == NULL && (dbch->xferq.flag & FWXFERQ_EXTBUF) == 0) {
/* async */
db_tr->dbcnt = 1;
dsiz[0] = rq->psize;
dbuf[0] = db_tr->dma_map->dm_segs[0].ds_addr;
} else {
/* isoc */
db_tr->dbcnt = 0;
dsiz[db_tr->dbcnt] = sizeof(uint32_t);
dbuf[db_tr->dbcnt++] = dummy_dma->bus_addr;
dsiz[db_tr->dbcnt] = rq->psize;
if (rq->buf != NULL) {
db_tr->buf = fwdma_v_addr(rq->buf, poffset);
dbuf[db_tr->dbcnt] = fwdma_bus_addr(rq->buf, poffset);
}
db_tr->dbcnt++;
}
for (i = 0; i < db_tr->dbcnt; i++) {
FWOHCI_DMA_WRITE(db[i].db.desc.addr, dbuf[i]);
FWOHCI_DMA_WRITE(db[i].db.desc.cmd, OHCI_INPUT_MORE | dsiz[i]);
if (rq->flag & FWXFERQ_STREAM)
FWOHCI_DMA_SET(db[i].db.desc.cmd, OHCI_UPDATE);
FWOHCI_DMA_WRITE(db[i].db.desc.res, dsiz[i]);
}
ldesc = db_tr->dbcnt - 1;
if (rq->flag & FWXFERQ_STREAM)
FWOHCI_DMA_SET(db[ldesc].db.desc.cmd, OHCI_INPUT_LAST);
FWOHCI_DMA_SET(db[ldesc].db.desc.cmd, OHCI_BRANCH_ALWAYS);
return 0;
}
static int
fwohci_arcv_swap(struct fw_pkt *fp, int len)
{
struct fw_pkt *fp0;
uint32_t ld0;
int hlen;
#if BYTE_ORDER == BIG_ENDIAN
int slen, i;
#endif
ld0 = FWOHCI_DMA_READ(fp->mode.ld[0]);
#if 0
printf("ld0: x%08x\n", ld0);
#endif
fp0 = (struct fw_pkt *)&ld0;
/* determine length to swap */
switch (fp0->mode.common.tcode) {
case FWTCODE_WRES:
case FWTCODE_RREQQ:
case FWTCODE_WREQQ:
case FWTCODE_RRESQ:
case FWOHCITCODE_PHY:
#if BYTE_ORDER == BIG_ENDIAN
slen = 12;
#endif
break;
case FWTCODE_RREQB:
case FWTCODE_WREQB:
case FWTCODE_LREQ:
case FWTCODE_RRESB:
case FWTCODE_LRES:
#if BYTE_ORDER == BIG_ENDIAN
slen = 16;
#endif
break;
default:
aprint_error("Unknown tcode %d\n", fp0->mode.common.tcode);
return 0;
}
hlen = tinfo[fp0->mode.common.tcode].hdr_len;
if (hlen > len) {
if (firewire_debug)
printf("splitted header\n");
return len - hlen;
}
#if BYTE_ORDER == BIG_ENDIAN
for (i = 0; i < slen / 4; i++)
fp->mode.ld[i] = FWOHCI_DMA_READ(fp->mode.ld[i]);
#endif
return hlen;
}
static int
fwohci_get_plen(struct fwohci_softc *sc, struct fwohci_dbch *dbch,
struct fw_pkt *fp)
{
const struct tcode_info *info;
int r;
info = &tinfo[fp->mode.common.tcode];
r = info->hdr_len + sizeof(uint32_t);
if (info->flag & FWTI_BLOCK_ASY)
r += roundup2(fp->mode.wreqb.len, sizeof(uint32_t));
if (r == sizeof(uint32_t)) {
/* XXX */
aprint_error_dev(sc->fc.dev, "Unknown tcode %d\n",
fp->mode.common.tcode);
return -1;
}
if (r > dbch->xferq.psize) {
aprint_error_dev(sc->fc.dev, "Invalid packet length %d\n", r);
return -1;
/* panic ? */
}
return r;
}
static void
fwohci_arcv_free_buf(struct fwohci_softc *sc, struct fwohci_dbch *dbch,
struct fwohcidb_tr *db_tr, int wake)
{
struct fwohcidb *db = db_tr->db;
struct fwohcidb_tr *bdb_tr = dbch->bottom;
FWOHCI_DMA_CLEAR(db->db.desc.depend, 0xf);
FWOHCI_DMA_WRITE(db->db.desc.res, dbch->xferq.psize);
fwdma_sync_multiseg(dbch->am, bdb_tr->idx, bdb_tr->idx,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
FWOHCI_DMA_SET(bdb_tr->db[0].db.desc.depend, dbch->ndesc);
fwdma_sync_multiseg(dbch->am, bdb_tr->idx, db_tr->idx,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
dbch->bottom = db_tr;
if (wake)
OWRITE(sc, OHCI_DMACTL(dbch->off), OHCI_CNTL_DMA_WAKE);
}
static void
fwohci_arcv(struct fwohci_softc *sc, struct fwohci_dbch *dbch)
{
struct fwohcidb_tr *db_tr;
struct fw_pkt pktbuf, *fp;
struct iovec vec[2];
bus_addr_t m;
bus_size_t n;
u_int spd;
uint32_t stat, status, event;
uint8_t *ld;
int nvec, resCount, len, plen, hlen, offset;
const int psize = dbch->xferq.psize;
#if DIAGNOSTIC
if (dbch->off != OHCI_ARQOFF &&
dbch->off != OHCI_ARSOFF)
panic("not async rx");
#endif
mutex_enter(&dbch->xferq.q_mtx);
db_tr = dbch->top;
/* XXX we cannot handle a packet which lies in more than two buf */
fwdma_sync_multiseg(dbch->am, db_tr->idx, db_tr->idx,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
status = FWOHCI_DMA_READ(db_tr->db[0].db.desc.res) >> OHCI_STATUS_SHIFT;
resCount = FWOHCI_DMA_READ(db_tr->db[0].db.desc.res) & OHCI_COUNT_MASK;
while (status & OHCI_CNTL_DMA_ACTIVE) {
#if 0
if (dbch->off == OHCI_ARQOFF)
aprint_normal_dev(sc->fc.dev,
"buf 0x%08x, status 0x%04x, resCount 0x%04x\n",
db_tr->bus_addr, status, resCount);
#endif
n = 0;
len = psize - resCount;
ld = (uint8_t *)db_tr->buf;
if (dbch->pdb_tr == NULL) {
len -= dbch->buf_offset;
ld += dbch->buf_offset;
m = dbch->buf_offset;
} else
m = 0;
if (len > 0)
bus_dmamap_sync(sc->fc.dmat, db_tr->dma_map,
m, len, BUS_DMASYNC_POSTREAD);
while (len > 0) {
if (dbch->pdb_tr != NULL) {
/* we have a fragment in previous buffer */
int rlen = 0;
void *buf;
if (dbch->buf_offset < 0) {
/* splitted in header, pull up */
char *p;
rlen -= dbch->buf_offset;
buf = (char *)dbch->pdb_tr->buf +
psize - rlen;
KASSERT(rlen <= sizeof(pktbuf));
p = (char *)&pktbuf;
memcpy(p, buf, rlen);
p += rlen;
/* this must be too long but harmless */
rlen = sizeof(pktbuf) - rlen;
memcpy(p, db_tr->buf, rlen);
ld += rlen;
len -= rlen;
hlen = fwohci_arcv_swap(&pktbuf,
sizeof(pktbuf));
if (hlen <= 0) {
aprint_error_dev(sc->fc.dev,
"hlen should be positive.");
goto err;
}
offset = sizeof(pktbuf);
vec[0].iov_base = (char *)&pktbuf;
vec[0].iov_len = offset;
} else {
/* splitted in payload */
buf = (char *)dbch->pdb_tr->buf +
dbch->buf_offset;
rlen = psize - dbch->buf_offset;
if (firewire_debug)
printf("rlen=%d, offset=%d\n",
rlen, dbch->buf_offset);
offset = rlen;
vec[0].iov_base = buf;
vec[0].iov_len = rlen;
}
fp = (struct fw_pkt *)vec[0].iov_base;
nvec = 1;
} else {
/* no fragment in previous buffer */
fp = (struct fw_pkt *)ld;
hlen = fwohci_arcv_swap(fp, len);
if (hlen == 0)
goto err;
if (hlen < 0) {
dbch->pdb_tr = db_tr;
dbch->buf_offset -= psize;
/* sanity check */
if (resCount != 0) {
aprint_error_dev(sc->fc.dev,
"resCount=%d hlen=%d\n",
resCount, hlen);
goto err;
}
goto out;
}
offset = 0;
nvec = 0;
}
plen = fwohci_get_plen(sc, dbch, fp) - offset;
if (plen < 0) {
/*
* minimum header size + trailer =
* sizeof(fw_pkt) so this shouldn't happens
*/
aprint_error_dev(sc->fc.dev,
"plen(%d) is negative! offset=%d\n",
plen, offset);
goto err;
}
if (plen > 0) {
len -= plen;
if (len < 0) {
dbch->pdb_tr = db_tr;
if (firewire_debug)
printf("splitted payload\n");
/* sanity check */
if (resCount != 0) {
aprint_error_dev(sc->fc.dev,
"resCount=%d plen=%d"
" len=%d\n",
resCount, plen, len);
goto err;
}
goto out;
}
vec[nvec].iov_base = ld;
vec[nvec].iov_len = plen;
nvec++;
ld += plen;
}
if (nvec == 0)
aprint_error_dev(sc->fc.dev, "nvec == 0\n");
/* DMA result-code will be written at the tail of packet */
stat = FWOHCI_DMA_READ(*(uint32_t *)(ld -
sizeof(struct fwohci_trailer)));
#if 0
aprint_normal("plen: %d, stat %x\n", plen, stat);
#endif
spd = (stat >> 21) & 0x3;
event = (stat >> 16) & 0x1f;
switch (event) {
case FWOHCIEV_ACKPEND:
#if 0
aprint_normal(sc->fc.dev,
"ack pending tcode=0x%x..\n",
fp->mode.common.tcode);
#endif
/* fall through */
case FWOHCIEV_ACKCOMPL:
{
struct fw_rcv_buf rb;
vec[nvec - 1].iov_len -=
sizeof(struct fwohci_trailer);
if (vec[nvec - 1].iov_len == 0)
nvec--;
rb.fc = &sc->fc;
rb.vec = vec;
rb.nvec = nvec;
rb.spd = spd;
fw_rcv(&rb);
break;
}
case FWOHCIEV_BUSRST:
if ((sc->fc.status != FWBUSRESET) &&
(sc->fc.status != FWBUSINIT))
aprint_error_dev(sc->fc.dev,
"got BUSRST packet!?\n");
break;
default:
aprint_error_dev(sc->fc.dev,
"Async DMA Receive error err=%02x %s"
" plen=%d offset=%d len=%d status=0x%08x"
" tcode=0x%x, stat=0x%08x\n",
event, fwohcicode[event], plen,
(int)(ld - (uint8_t *)db_tr->buf - plen),
len, OREAD(sc, OHCI_DMACTL(dbch->off)),
fp->mode.common.tcode, stat);
#if 1 /* XXX */
goto err;
#endif
break;
}
if (dbch->pdb_tr != NULL) {
if (dbch->buf_offset < 0)
bus_dmamap_sync(sc->fc.dmat,
dbch->pdb_tr->dma_map,
psize + dbch->buf_offset,
0 - dbch->buf_offset,
BUS_DMASYNC_PREREAD);
else
bus_dmamap_sync(sc->fc.dmat,
dbch->pdb_tr->dma_map,
dbch->buf_offset,
psize - dbch->buf_offset,
BUS_DMASYNC_PREREAD);
fwohci_arcv_free_buf(sc, dbch, dbch->pdb_tr, 1);
dbch->pdb_tr = NULL;
}
dbch->buf_offset = ld - (uint8_t *)db_tr->buf;
n += (plen + offset);
}
out:
if (n > 0)
bus_dmamap_sync(sc->fc.dmat, db_tr->dma_map, m, n,
BUS_DMASYNC_PREREAD);
if (resCount != 0) {
dbch->buf_offset = psize - resCount;
break;
}
/* done on this buffer */
if (dbch->pdb_tr == NULL) {
fwohci_arcv_free_buf(sc, dbch, db_tr, 1);
dbch->buf_offset = 0;
} else
if (dbch->pdb_tr != db_tr)
aprint_error_dev(sc->fc.dev,
"pdb_tr != db_tr\n");
dbch->top = STAILQ_NEXT(db_tr, link);
db_tr = dbch->top;
fwdma_sync_multiseg(dbch->am, db_tr->idx, db_tr->idx,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
status = FWOHCI_DMA_READ(db_tr->db[0].db.desc.res) >>
OHCI_STATUS_SHIFT;
resCount = FWOHCI_DMA_READ(db_tr->db[0].db.desc.res)
& OHCI_COUNT_MASK;
/* XXX check buffer overrun */
/* XXX make sure DMA is not dead */
}
fwdma_sync_multiseg(dbch->am, db_tr->idx, db_tr->idx,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
mutex_exit(&dbch->xferq.q_mtx);
return;
err:
aprint_error_dev(sc->fc.dev, "AR DMA status=%x, ",
OREAD(sc, OHCI_DMACTL(dbch->off)));
if (dbch->pdb_tr != NULL) {
if (dbch->buf_offset < 0)
bus_dmamap_sync(sc->fc.dmat, dbch->pdb_tr->dma_map,
psize + dbch->buf_offset, 0 - dbch->buf_offset,
BUS_DMASYNC_PREREAD);
else
bus_dmamap_sync(sc->fc.dmat, dbch->pdb_tr->dma_map,
dbch->buf_offset, psize - dbch->buf_offset,
BUS_DMASYNC_PREREAD);
fwohci_arcv_free_buf(sc, dbch, dbch->pdb_tr, 1);
dbch->pdb_tr = NULL;
}
/* skip until resCount != 0 */
aprint_error(" skip buffer");
while (resCount == 0) {
aprint_error(" #");
fwohci_arcv_free_buf(sc, dbch, db_tr, 0);
db_tr = STAILQ_NEXT(db_tr, link);
resCount = FWOHCI_DMA_READ(db_tr->db[0].db.desc.res)
& OHCI_COUNT_MASK;
}
aprint_error(" done\n");
dbch->top = db_tr;
dbch->buf_offset = psize - resCount;
OWRITE(sc, OHCI_DMACTL(dbch->off), OHCI_CNTL_DMA_WAKE);
fwdma_sync_multiseg(dbch->am, db_tr->idx, db_tr->idx,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->fc.dmat, db_tr->dma_map,
0, db_tr->dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
mutex_exit(&dbch->xferq.q_mtx);
}