NetBSD/sys/dev/i2c/pcf8583.c

502 lines
12 KiB
C

/* $NetBSD: pcf8583.c,v 1.4 2006/03/29 06:41:24 thorpej Exp $ */
/*
* Copyright (c) 2003 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Driver for the Philips PCF8583 Real Time Clock.
*
* This driver is partially derived from Ben Harris's PCF8583 driver
* for NetBSD/acorn26.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/fcntl.h>
#include <sys/uio.h>
#include <sys/conf.h>
#include <sys/event.h>
#include <dev/clock_subr.h>
#include <dev/i2c/i2cvar.h>
#include <dev/i2c/pcf8583reg.h>
#include <dev/i2c/pcf8583var.h>
struct pcfrtc_softc {
struct device sc_dev;
i2c_tag_t sc_tag;
int sc_address;
int sc_open;
struct todr_chip_handle sc_todr;
};
static int pcfrtc_match(struct device *, struct cfdata *, void *);
static void pcfrtc_attach(struct device *, struct device *, void *);
CFATTACH_DECL(pcfrtc, sizeof(struct pcfrtc_softc),
pcfrtc_match, pcfrtc_attach, NULL, NULL);
extern struct cfdriver pcfrtc_cd;
dev_type_open(pcfrtc_open);
dev_type_close(pcfrtc_close);
dev_type_read(pcfrtc_read);
dev_type_write(pcfrtc_write);
const struct cdevsw pcfrtc_cdevsw = {
pcfrtc_open, pcfrtc_close, pcfrtc_read, pcfrtc_write, noioctl,
nostop, notty, nopoll, nommap, nokqfilter
};
static int pcfrtc_clock_read(struct pcfrtc_softc *, struct clock_ymdhms *,
uint8_t *);
static int pcfrtc_clock_write(struct pcfrtc_softc *, struct clock_ymdhms *,
uint8_t);
static int pcfrtc_gettime(struct todr_chip_handle *, volatile struct timeval *);
static int pcfrtc_settime(struct todr_chip_handle *, volatile struct timeval *);
static int pcfrtc_getcal(struct todr_chip_handle *, int *);
static int pcfrtc_setcal(struct todr_chip_handle *, int);
int
pcfrtc_match(struct device *parent, struct cfdata *cf, void *aux)
{
struct i2c_attach_args *ia = aux;
if ((ia->ia_addr & PCF8583_ADDRMASK) == PCF8583_ADDR)
return (1);
return (0);
}
void
pcfrtc_attach(struct device *parent, struct device *self, void *aux)
{
struct pcfrtc_softc *sc = device_private(self);
struct i2c_attach_args *ia = aux;
uint8_t cmdbuf[1], csr;
sc->sc_tag = ia->ia_tag;
sc->sc_address = ia->ia_addr;
aprint_naive(": Real-time Clock/NVRAM\n");
aprint_normal(": PCF8583 Real-time Clock/NVRAM\n");
cmdbuf[0] = PCF8583_REG_CSR;
if (iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
cmdbuf, 1, &csr, 1, 0) != 0) {
aprint_error("%s: unable to read CSR\n", sc->sc_dev.dv_xname);
return;
}
aprint_normal("%s: ", sc->sc_dev.dv_xname);
switch (csr & PCF8583_CSR_FN_MASK) {
case PCF8583_CSR_FN_32768HZ:
aprint_normal(" 32.768 kHz clock");
break;
case PCF8583_CSR_FN_50HZ:
aprint_normal(" 50 Hz clock");
break;
case PCF8583_CSR_FN_EVENT:
aprint_normal(" event counter");
break;
case PCF8583_CSR_FN_TEST:
aprint_normal(" test mode");
break;
}
if (csr & PCF8583_CSR_STOP)
aprint_normal(", stopped");
if (csr & PCF8583_CSR_ALARMENABLE)
aprint_normal(", alarm enabled");
aprint_normal("\n");
sc->sc_open = 0;
sc->sc_todr.cookie = sc;
sc->sc_todr.todr_gettime = pcfrtc_gettime;
sc->sc_todr.todr_settime = pcfrtc_settime;
sc->sc_todr.todr_getcal = pcfrtc_getcal;
sc->sc_todr.todr_setcal = pcfrtc_setcal;
sc->sc_todr.todr_setwen = NULL;
todr_attach(&sc->sc_todr);
}
/*ARGSUSED*/
int
pcfrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
{
struct pcfrtc_softc *sc;
if ((sc = device_lookup(&pcfrtc_cd, minor(dev))) == NULL)
return (ENXIO);
/* XXX: Locking */
if (sc->sc_open)
return (EBUSY);
sc->sc_open = 1;
return (0);
}
/*ARGSUSED*/
int
pcfrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
{
struct pcfrtc_softc *sc;
if ((sc = device_lookup(&pcfrtc_cd, minor(dev))) == NULL)
return (ENXIO);
sc->sc_open = 0;
return (0);
}
/*ARGSUSED*/
int
pcfrtc_read(dev_t dev, struct uio *uio, int flags)
{
struct pcfrtc_softc *sc;
u_int8_t ch, cmdbuf[1];
int a, error;
if ((sc = device_lookup(&pcfrtc_cd, minor(dev))) == NULL)
return (ENXIO);
if (uio->uio_offset >= PCF8583_NVRAM_SIZE)
return (EINVAL);
if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
return (error);
while (uio->uio_resid && uio->uio_offset < PCF8583_NVRAM_SIZE) {
a = (int)uio->uio_offset;
cmdbuf[0] = a + PCF8583_NVRAM_START;
if ((error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
sc->sc_address, cmdbuf, 1,
&ch, 1, 0)) != 0) {
iic_release_bus(sc->sc_tag, 0);
printf("%s: pcfrtc_read: read failed at 0x%x\n",
sc->sc_dev.dv_xname, a);
return (error);
}
if ((error = uiomove(&ch, 1, uio)) != 0) {
iic_release_bus(sc->sc_tag, 0);
return (error);
}
}
iic_release_bus(sc->sc_tag, 0);
return (0);
}
/*ARGSUSED*/
int
pcfrtc_write(dev_t dev, struct uio *uio, int flags)
{
struct pcfrtc_softc *sc;
u_int8_t cmdbuf[2];
int a, error;
if ((sc = device_lookup(&pcfrtc_cd, minor(dev))) == NULL)
return (ENXIO);
if (uio->uio_offset >= PCF8583_NVRAM_SIZE)
return (EINVAL);
if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
return (error);
while (uio->uio_resid && uio->uio_offset < PCF8583_NVRAM_SIZE) {
a = (int)uio->uio_offset;
cmdbuf[0] = a + PCF8583_NVRAM_START;
if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
break;
if ((error = iic_exec(sc->sc_tag,
uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
printf("%s: pcfrtc_write: write failed at 0x%x\n",
sc->sc_dev.dv_xname, a);
return (error);
}
}
iic_release_bus(sc->sc_tag, 0);
return (error);
}
static int
pcfrtc_gettime(struct todr_chip_handle *ch, volatile struct timeval *tv)
{
struct pcfrtc_softc *sc = ch->cookie;
struct clock_ymdhms dt;
uint8_t centi;
if (pcfrtc_clock_read(sc, &dt, &centi) == 0)
return (-1);
tv->tv_sec = clock_ymdhms_to_secs(&dt);
tv->tv_usec = centi * 10000;
return (0);
}
static int
pcfrtc_settime(struct todr_chip_handle *ch, volatile struct timeval *tv)
{
struct pcfrtc_softc *sc = ch->cookie;
struct clock_ymdhms dt;
clock_secs_to_ymdhms(tv->tv_sec, &dt);
if (pcfrtc_clock_write(sc, &dt, tv->tv_usec / 10000) == 0)
return (-1);
return (0);
}
static int
pcfrtc_setcal(struct todr_chip_handle *ch, int cal)
{
return (EOPNOTSUPP);
}
static int
pcfrtc_getcal(struct todr_chip_handle *ch, int *cal)
{
return (EOPNOTSUPP);
}
static const int pcf8583_rtc_offset[] = {
PCF8583_REG_CSR,
PCF8583_REG_CENTI,
PCF8583_REG_SEC,
PCF8583_REG_MIN,
PCF8583_REG_HOUR,
PCF8583_REG_YEARDATE,
PCF8583_REG_WKDYMON,
PCF8583_REG_TIMER,
0xc0, /* NVRAM -- year stored here */
0xc1, /* NVRAM -- century stored here */
};
static int
pcfrtc_clock_read(struct pcfrtc_softc *sc, struct clock_ymdhms *dt,
uint8_t *centi)
{
u_int8_t bcd[10], cmdbuf[1];
int i;
if (iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) {
printf("%s: pcfrtc_clock_read: failed to acquire I2C bus\n",
sc->sc_dev.dv_xname);
return (0);
}
/* Read each timekeeping register in order. */
for (i = 0; i < 10; i++) {
cmdbuf[0] = pcf8583_rtc_offset[i];
if (iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
sc->sc_address, cmdbuf, 1,
&bcd[i], 1, I2C_F_POLL)) {
iic_release_bus(sc->sc_tag, I2C_F_POLL);
printf("%s: pcfrtc_clock_read: failed to read rtc "
"at 0x%x\n", sc->sc_dev.dv_xname,
pcf8583_rtc_offset[i]);
return (0);
}
}
/* Done with I2C */
iic_release_bus(sc->sc_tag, I2C_F_POLL);
/*
* Convert the PCF8583's register values into something useable
*/
*centi = FROMBCD(bcd[PCF8583_REG_CENTI]);
dt->dt_sec = FROMBCD(bcd[PCF8583_REG_SEC]);
dt->dt_min = FROMBCD(bcd[PCF8583_REG_MIN]);
dt->dt_hour = FROMBCD(bcd[PCF8583_REG_HOUR] & PCF8583_HOUR_MASK);
if (bcd[PCF8583_REG_HOUR] & PCF8583_HOUR_12H) {
dt->dt_hour %= 12; /* 12AM -> 0, 12PM -> 12 */
if (bcd[PCF8583_REG_HOUR] & PCF8583_HOUR_PM)
dt->dt_hour += 12;
}
dt->dt_day = FROMBCD(bcd[PCF8583_REG_YEARDATE] & PCF8583_DATE_MASK);
dt->dt_mon = FROMBCD(bcd[PCF8583_REG_WKDYMON] & PCF8583_MON_MASK);
dt->dt_year = bcd[8] + (bcd[9] * 100);
/* Try to notice if the year's rolled over. */
if (bcd[PCF8583_REG_CSR] & PCF8583_CSR_MASK)
printf("%s: cannot check year in mask mode\n",
sc->sc_dev.dv_xname);
else {
while (dt->dt_year % 4 !=
(bcd[PCF8583_REG_YEARDATE] &
PCF8583_YEAR_MASK) >> PCF8583_YEAR_SHIFT)
dt->dt_year++;
}
return (1);
}
static int
pcfrtc_clock_write(struct pcfrtc_softc *sc, struct clock_ymdhms *dt,
uint8_t centi)
{
uint8_t bcd[10], cmdbuf[2];
int i;
/*
* Convert our time representation into something the PCF8583
* can understand.
*/
bcd[PCF8583_REG_CENTI] = centi;
bcd[PCF8583_REG_SEC] = TOBCD(dt->dt_sec);
bcd[PCF8583_REG_MIN] = TOBCD(dt->dt_min);
bcd[PCF8583_REG_HOUR] = TOBCD(dt->dt_hour) & PCF8583_HOUR_MASK;
bcd[PCF8583_REG_YEARDATE] = TOBCD(dt->dt_day) |
((dt->dt_year % 4) << PCF8583_YEAR_SHIFT);
bcd[PCF8583_REG_WKDYMON] = TOBCD(dt->dt_mon) |
((dt->dt_wday % 4) << PCF8583_WKDY_SHIFT);
bcd[8] = dt->dt_year % 100;
bcd[9] = dt->dt_year / 100;
if (iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) {
printf("%s: pcfrtc_clock_write: failed to acquire I2C bus\n",
sc->sc_dev.dv_xname);
return (0);
}
for (i = 1; i < 10; i++) {
cmdbuf[0] = pcf8583_rtc_offset[i];
if (iic_exec(sc->sc_tag,
i != 9 ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
sc->sc_address, cmdbuf, 1,
&bcd[i], 1, I2C_F_POLL)) {
iic_release_bus(sc->sc_tag, I2C_F_POLL);
printf("%s: pcfrtc_clock_write: failed to write rtc "
" at 0x%x\n", sc->sc_dev.dv_xname,
pcf8583_rtc_offset[i]);
return (0);
}
}
iic_release_bus(sc->sc_tag, I2C_F_POLL);
return (1);
}
int
pcfrtc_bootstrap_read(i2c_tag_t tag, int i2caddr, int offset,
u_int8_t *rvp, size_t len)
{
u_int8_t cmdbuf[1];
/*
* NOTE: "offset" is an absolute offset into the PCF8583
* address space, not relative to the NVRAM.
*/
if (len == 0)
return (0);
if (iic_acquire_bus(tag, I2C_F_POLL) != 0)
return (-1);
while (len) {
/* Read a single byte. */
cmdbuf[0] = offset;
if (iic_exec(tag, I2C_OP_READ_WITH_STOP, i2caddr,
cmdbuf, 1, rvp, 1, I2C_F_POLL)) {
iic_release_bus(tag, I2C_F_POLL);
return (-1);
}
len--;
rvp++;
offset++;
}
iic_release_bus(tag, I2C_F_POLL);
return (0);
}
int
pcfrtc_bootstrap_write(i2c_tag_t tag, int i2caddr, int offset,
u_int8_t *rvp, size_t len)
{
u_int8_t cmdbuf[1];
/*
* NOTE: "offset" is an absolute offset into the PCF8583
* address space, not relative to the NVRAM.
*/
if (len == 0)
return (0);
if (iic_acquire_bus(tag, I2C_F_POLL) != 0)
return (-1);
while (len) {
/* Write a single byte. */
cmdbuf[0] = offset;
if (iic_exec(tag, I2C_OP_WRITE_WITH_STOP, i2caddr,
cmdbuf, 1, rvp, 1, I2C_F_POLL)) {
iic_release_bus(tag, I2C_F_POLL);
return (-1);
}
len--;
rvp++;
offset++;
}
iic_release_bus(tag, I2C_F_POLL);
return (0);
}