414b788837
from the tsleep()'s (they probably shouldn't have been there in the first place!). Making parity re-writing and copybacks interruptable will require re-designing how a few things are done (e.g. how memory is freed for structures shipped off to routines that run asynchronously relative to the calling routine). Fix a few other tsleep's while we're at it.
992 lines
30 KiB
C
992 lines
30 KiB
C
/* $NetBSD: rf_dagfuncs.c,v 1.4 1999/03/14 21:53:31 oster Exp $ */
|
|
/*
|
|
* Copyright (c) 1995 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Author: Mark Holland, William V. Courtright II
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
/*
|
|
* dagfuncs.c -- DAG node execution routines
|
|
*
|
|
* Rules:
|
|
* 1. Every DAG execution function must eventually cause node->status to
|
|
* get set to "good" or "bad", and "FinishNode" to be called. In the
|
|
* case of nodes that complete immediately (xor, NullNodeFunc, etc),
|
|
* the node execution function can do these two things directly. In
|
|
* the case of nodes that have to wait for some event (a disk read to
|
|
* complete, a lock to be released, etc) to occur before they can
|
|
* complete, this is typically achieved by having whatever module
|
|
* is doing the operation call GenericWakeupFunc upon completion.
|
|
* 2. DAG execution functions should check the status in the DAG header
|
|
* and NOP out their operations if the status is not "enable". However,
|
|
* execution functions that release resources must be sure to release
|
|
* them even when they NOP out the function that would use them.
|
|
* Functions that acquire resources should go ahead and acquire them
|
|
* even when they NOP, so that a downstream release node will not have
|
|
* to check to find out whether or not the acquire was suppressed.
|
|
*/
|
|
|
|
#include <sys/ioctl.h>
|
|
#include <sys/param.h>
|
|
|
|
#include "rf_archs.h"
|
|
#include "rf_raid.h"
|
|
#include "rf_dag.h"
|
|
#include "rf_layout.h"
|
|
#include "rf_etimer.h"
|
|
#include "rf_acctrace.h"
|
|
#include "rf_diskqueue.h"
|
|
#include "rf_dagfuncs.h"
|
|
#include "rf_general.h"
|
|
#include "rf_engine.h"
|
|
#include "rf_dagutils.h"
|
|
|
|
#include "rf_kintf.h"
|
|
|
|
#if RF_INCLUDE_PARITYLOGGING > 0
|
|
#include "rf_paritylog.h"
|
|
#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
|
|
|
|
int (*rf_DiskReadFunc) (RF_DagNode_t *);
|
|
int (*rf_DiskWriteFunc) (RF_DagNode_t *);
|
|
int (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
|
|
int (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
|
|
int (*rf_DiskUnlockFunc) (RF_DagNode_t *);
|
|
int (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
|
|
int (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
|
|
int (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
|
|
int (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
|
|
|
|
/*****************************************************************************************
|
|
* main (only) configuration routine for this module
|
|
****************************************************************************************/
|
|
int
|
|
rf_ConfigureDAGFuncs(listp)
|
|
RF_ShutdownList_t **listp;
|
|
{
|
|
RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
|
|
rf_DiskReadFunc = rf_DiskReadFuncForThreads;
|
|
rf_DiskReadUndoFunc = rf_DiskUndoFunc;
|
|
rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
|
|
rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
|
|
rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
|
|
rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
|
|
rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
|
|
rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
|
|
rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
|
|
return (0);
|
|
}
|
|
|
|
|
|
|
|
/*****************************************************************************************
|
|
* the execution function associated with a terminate node
|
|
****************************************************************************************/
|
|
int
|
|
rf_TerminateFunc(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
|
|
node->status = rf_good;
|
|
return (rf_FinishNode(node, RF_THREAD_CONTEXT));
|
|
}
|
|
|
|
int
|
|
rf_TerminateUndoFunc(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*****************************************************************************************
|
|
* execution functions associated with a mirror node
|
|
*
|
|
* parameters:
|
|
*
|
|
* 0 - physical disk addres of data
|
|
* 1 - buffer for holding read data
|
|
* 2 - parity stripe ID
|
|
* 3 - flags
|
|
* 4 - physical disk address of mirror (parity)
|
|
*
|
|
****************************************************************************************/
|
|
|
|
int
|
|
rf_DiskReadMirrorIdleFunc(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
/* select the mirror copy with the shortest queue and fill in node
|
|
* parameters with physical disk address */
|
|
|
|
rf_SelectMirrorDiskIdle(node);
|
|
return (rf_DiskReadFunc(node));
|
|
}
|
|
|
|
int
|
|
rf_DiskReadMirrorPartitionFunc(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
/* select the mirror copy with the shortest queue and fill in node
|
|
* parameters with physical disk address */
|
|
|
|
rf_SelectMirrorDiskPartition(node);
|
|
return (rf_DiskReadFunc(node));
|
|
}
|
|
|
|
int
|
|
rf_DiskReadMirrorUndoFunc(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
|
|
|
|
#if RF_INCLUDE_PARITYLOGGING > 0
|
|
/*****************************************************************************************
|
|
* the execution function associated with a parity log update node
|
|
****************************************************************************************/
|
|
int
|
|
rf_ParityLogUpdateFunc(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
|
|
caddr_t buf = (caddr_t) node->params[1].p;
|
|
RF_ParityLogData_t *logData;
|
|
RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
|
|
RF_Etimer_t timer;
|
|
|
|
if (node->dagHdr->status == rf_enable) {
|
|
RF_ETIMER_START(timer);
|
|
logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
|
|
(RF_Raid_t *) (node->dagHdr->raidPtr),
|
|
node->wakeFunc, (void *) node,
|
|
node->dagHdr->tracerec, timer);
|
|
if (logData)
|
|
rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
|
|
else {
|
|
RF_ETIMER_STOP(timer);
|
|
RF_ETIMER_EVAL(timer);
|
|
tracerec->plog_us += RF_ETIMER_VAL_US(timer);
|
|
(node->wakeFunc) (node, ENOMEM);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*****************************************************************************************
|
|
* the execution function associated with a parity log overwrite node
|
|
****************************************************************************************/
|
|
int
|
|
rf_ParityLogOverwriteFunc(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
|
|
caddr_t buf = (caddr_t) node->params[1].p;
|
|
RF_ParityLogData_t *logData;
|
|
RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
|
|
RF_Etimer_t timer;
|
|
|
|
if (node->dagHdr->status == rf_enable) {
|
|
RF_ETIMER_START(timer);
|
|
logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr),
|
|
node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
|
|
if (logData)
|
|
rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
|
|
else {
|
|
RF_ETIMER_STOP(timer);
|
|
RF_ETIMER_EVAL(timer);
|
|
tracerec->plog_us += RF_ETIMER_VAL_US(timer);
|
|
(node->wakeFunc) (node, ENOMEM);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
#else /* RF_INCLUDE_PARITYLOGGING > 0 */
|
|
|
|
int
|
|
rf_ParityLogUpdateFunc(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
return (0);
|
|
}
|
|
int
|
|
rf_ParityLogOverwriteFunc(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
return (0);
|
|
}
|
|
#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
|
|
|
|
int
|
|
rf_ParityLogUpdateUndoFunc(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
rf_ParityLogOverwriteUndoFunc(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
return (0);
|
|
}
|
|
/*****************************************************************************************
|
|
* the execution function associated with a NOP node
|
|
****************************************************************************************/
|
|
int
|
|
rf_NullNodeFunc(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
node->status = rf_good;
|
|
return (rf_FinishNode(node, RF_THREAD_CONTEXT));
|
|
}
|
|
|
|
int
|
|
rf_NullNodeUndoFunc(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
node->status = rf_undone;
|
|
return (rf_FinishNode(node, RF_THREAD_CONTEXT));
|
|
}
|
|
|
|
|
|
/*****************************************************************************************
|
|
* the execution function associated with a disk-read node
|
|
****************************************************************************************/
|
|
int
|
|
rf_DiskReadFuncForThreads(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
RF_DiskQueueData_t *req;
|
|
RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
|
|
caddr_t buf = (caddr_t) node->params[1].p;
|
|
RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
|
|
unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
|
|
unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
|
|
unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
|
|
unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
|
|
RF_DiskQueueDataFlags_t flags = 0;
|
|
RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
|
|
RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
|
|
void *b_proc = NULL;
|
|
#if RF_BACKWARD > 0
|
|
caddr_t undoBuf;
|
|
#endif
|
|
|
|
if (node->dagHdr->bp)
|
|
b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
|
|
|
|
RF_ASSERT(!(lock && unlock));
|
|
flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
|
|
flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
|
|
#if RF_BACKWARD > 0
|
|
/* allocate and zero the undo buffer. this is equivalent to copying
|
|
* the original buffer's contents to the undo buffer prior to
|
|
* performing the disk read. XXX hardcoded 512 bytes per sector! */
|
|
if (node->dagHdr->allocList == NULL)
|
|
rf_MakeAllocList(node->dagHdr->allocList);
|
|
RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
|
|
#endif /* RF_BACKWARD > 0 */
|
|
req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
|
|
buf, parityStripeID, which_ru,
|
|
(int (*) (void *, int)) node->wakeFunc,
|
|
node, NULL, node->dagHdr->tracerec,
|
|
(void *) (node->dagHdr->raidPtr), flags, b_proc);
|
|
if (!req) {
|
|
(node->wakeFunc) (node, ENOMEM);
|
|
} else {
|
|
node->dagFuncData = (void *) req;
|
|
rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*****************************************************************************************
|
|
* the execution function associated with a disk-write node
|
|
****************************************************************************************/
|
|
int
|
|
rf_DiskWriteFuncForThreads(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
RF_DiskQueueData_t *req;
|
|
RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
|
|
caddr_t buf = (caddr_t) node->params[1].p;
|
|
RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
|
|
unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
|
|
unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
|
|
unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
|
|
unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
|
|
RF_DiskQueueDataFlags_t flags = 0;
|
|
RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
|
|
RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
|
|
void *b_proc = NULL;
|
|
#if RF_BACKWARD > 0
|
|
caddr_t undoBuf;
|
|
#endif
|
|
|
|
if (node->dagHdr->bp)
|
|
b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
|
|
|
|
#if RF_BACKWARD > 0
|
|
/* This area is used only for backward error recovery experiments
|
|
* First, schedule allocate a buffer and schedule a pre-read of the
|
|
* disk After the pre-read, proceed with the normal disk write */
|
|
if (node->status == rf_bwd2) {
|
|
/* just finished undo logging, now perform real function */
|
|
node->status = rf_fired;
|
|
RF_ASSERT(!(lock && unlock));
|
|
flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
|
|
flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
|
|
req = rf_CreateDiskQueueData(iotype,
|
|
pda->startSector, pda->numSector, buf, parityStripeID, which_ru,
|
|
node->wakeFunc, (void *) node, NULL, node->dagHdr->tracerec,
|
|
(void *) (node->dagHdr->raidPtr), flags, b_proc);
|
|
|
|
if (!req) {
|
|
(node->wakeFunc) (node, ENOMEM);
|
|
} else {
|
|
node->dagFuncData = (void *) req;
|
|
rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
|
|
}
|
|
} else {
|
|
/* node status should be rf_fired */
|
|
/* schedule a disk pre-read */
|
|
node->status = rf_bwd1;
|
|
RF_ASSERT(!(lock && unlock));
|
|
flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
|
|
flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
|
|
if (node->dagHdr->allocList == NULL)
|
|
rf_MakeAllocList(node->dagHdr->allocList);
|
|
RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
|
|
req = rf_CreateDiskQueueData(RF_IO_TYPE_READ,
|
|
pda->startSector, pda->numSector, undoBuf, parityStripeID, which_ru,
|
|
node->wakeFunc, (void *) node, NULL, node->dagHdr->tracerec,
|
|
(void *) (node->dagHdr->raidPtr), flags, b_proc);
|
|
|
|
if (!req) {
|
|
(node->wakeFunc) (node, ENOMEM);
|
|
} else {
|
|
node->dagFuncData = (void *) req;
|
|
rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
|
|
}
|
|
}
|
|
return (0);
|
|
#endif /* RF_BACKWARD > 0 */
|
|
|
|
/* normal processing (rollaway or forward recovery) begins here */
|
|
RF_ASSERT(!(lock && unlock));
|
|
flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
|
|
flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
|
|
req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
|
|
buf, parityStripeID, which_ru,
|
|
(int (*) (void *, int)) node->wakeFunc,
|
|
(void *) node, NULL,
|
|
node->dagHdr->tracerec,
|
|
(void *) (node->dagHdr->raidPtr),
|
|
flags, b_proc);
|
|
|
|
if (!req) {
|
|
(node->wakeFunc) (node, ENOMEM);
|
|
} else {
|
|
node->dagFuncData = (void *) req;
|
|
rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
/*****************************************************************************************
|
|
* the undo function for disk nodes
|
|
* Note: this is not a proper undo of a write node, only locks are released.
|
|
* old data is not restored to disk!
|
|
****************************************************************************************/
|
|
int
|
|
rf_DiskUndoFunc(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
RF_DiskQueueData_t *req;
|
|
RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
|
|
RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
|
|
|
|
req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
|
|
0L, 0, NULL, 0L, 0,
|
|
(int (*) (void *, int)) node->wakeFunc,
|
|
(void *) node,
|
|
NULL, node->dagHdr->tracerec,
|
|
(void *) (node->dagHdr->raidPtr),
|
|
RF_UNLOCK_DISK_QUEUE, NULL);
|
|
if (!req)
|
|
(node->wakeFunc) (node, ENOMEM);
|
|
else {
|
|
node->dagFuncData = (void *) req;
|
|
rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
/*****************************************************************************************
|
|
* the execution function associated with an "unlock disk queue" node
|
|
****************************************************************************************/
|
|
int
|
|
rf_DiskUnlockFuncForThreads(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
RF_DiskQueueData_t *req;
|
|
RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
|
|
RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
|
|
|
|
req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
|
|
0L, 0, NULL, 0L, 0,
|
|
(int (*) (void *, int)) node->wakeFunc,
|
|
(void *) node,
|
|
NULL, node->dagHdr->tracerec,
|
|
(void *) (node->dagHdr->raidPtr),
|
|
RF_UNLOCK_DISK_QUEUE, NULL);
|
|
if (!req)
|
|
(node->wakeFunc) (node, ENOMEM);
|
|
else {
|
|
node->dagFuncData = (void *) req;
|
|
rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
/*****************************************************************************************
|
|
* Callback routine for DiskRead and DiskWrite nodes. When the disk op completes,
|
|
* the routine is called to set the node status and inform the execution engine that
|
|
* the node has fired.
|
|
****************************************************************************************/
|
|
int
|
|
rf_GenericWakeupFunc(node, status)
|
|
RF_DagNode_t *node;
|
|
int status;
|
|
{
|
|
switch (node->status) {
|
|
case rf_bwd1:
|
|
node->status = rf_bwd2;
|
|
if (node->dagFuncData)
|
|
rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
|
|
return (rf_DiskWriteFuncForThreads(node));
|
|
break;
|
|
case rf_fired:
|
|
if (status)
|
|
node->status = rf_bad;
|
|
else
|
|
node->status = rf_good;
|
|
break;
|
|
case rf_recover:
|
|
/* probably should never reach this case */
|
|
if (status)
|
|
node->status = rf_panic;
|
|
else
|
|
node->status = rf_undone;
|
|
break;
|
|
default:
|
|
printf("rf_GenericWakeupFunc:");
|
|
printf("node->status is %d,", node->status);
|
|
printf("status is %d \n", status);
|
|
RF_PANIC();
|
|
break;
|
|
}
|
|
if (node->dagFuncData)
|
|
rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
|
|
return (rf_FinishNode(node, RF_INTR_CONTEXT));
|
|
}
|
|
|
|
|
|
/*****************************************************************************************
|
|
* there are three distinct types of xor nodes
|
|
* A "regular xor" is used in the fault-free case where the access spans a complete
|
|
* stripe unit. It assumes that the result buffer is one full stripe unit in size,
|
|
* and uses the stripe-unit-offset values that it computes from the PDAs to determine
|
|
* where within the stripe unit to XOR each argument buffer.
|
|
*
|
|
* A "simple xor" is used in the fault-free case where the access touches only a portion
|
|
* of one (or two, in some cases) stripe unit(s). It assumes that all the argument
|
|
* buffers are of the same size and have the same stripe unit offset.
|
|
*
|
|
* A "recovery xor" is used in the degraded-mode case. It's similar to the regular
|
|
* xor function except that it takes the failed PDA as an additional parameter, and
|
|
* uses it to determine what portions of the argument buffers need to be xor'd into
|
|
* the result buffer, and where in the result buffer they should go.
|
|
****************************************************************************************/
|
|
|
|
/* xor the params together and store the result in the result field.
|
|
* assume the result field points to a buffer that is the size of one SU,
|
|
* and use the pda params to determine where within the buffer to XOR
|
|
* the input buffers.
|
|
*/
|
|
int
|
|
rf_RegularXorFunc(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
|
|
RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
|
|
RF_Etimer_t timer;
|
|
int i, retcode;
|
|
#if RF_BACKWARD > 0
|
|
RF_PhysDiskAddr_t *pda;
|
|
caddr_t undoBuf;
|
|
#endif
|
|
|
|
retcode = 0;
|
|
if (node->dagHdr->status == rf_enable) {
|
|
/* don't do the XOR if the input is the same as the output */
|
|
RF_ETIMER_START(timer);
|
|
for (i = 0; i < node->numParams - 1; i += 2)
|
|
if (node->params[i + 1].p != node->results[0]) {
|
|
#if RF_BACKWARD > 0
|
|
/* This section mimics undo logging for
|
|
* backward error recovery experiments b
|
|
* allocating and initializing a buffer XXX
|
|
* 512 byte sector size is hard coded! */
|
|
pda = node->params[i].p;
|
|
if (node->dagHdr->allocList == NULL)
|
|
rf_MakeAllocList(node->dagHdr->allocList);
|
|
RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
|
|
#endif /* RF_BACKWARD > 0 */
|
|
retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
|
|
(char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp);
|
|
}
|
|
RF_ETIMER_STOP(timer);
|
|
RF_ETIMER_EVAL(timer);
|
|
tracerec->xor_us += RF_ETIMER_VAL_US(timer);
|
|
}
|
|
return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
|
|
* explicitly since no
|
|
* I/O in this node */
|
|
}
|
|
/* xor the inputs into the result buffer, ignoring placement issues */
|
|
int
|
|
rf_SimpleXorFunc(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
|
|
int i, retcode = 0;
|
|
RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
|
|
RF_Etimer_t timer;
|
|
#if RF_BACKWARD > 0
|
|
RF_PhysDiskAddr_t *pda;
|
|
caddr_t undoBuf;
|
|
#endif
|
|
|
|
if (node->dagHdr->status == rf_enable) {
|
|
RF_ETIMER_START(timer);
|
|
/* don't do the XOR if the input is the same as the output */
|
|
for (i = 0; i < node->numParams - 1; i += 2)
|
|
if (node->params[i + 1].p != node->results[0]) {
|
|
#if RF_BACKWARD > 0
|
|
/* This section mimics undo logging for
|
|
* backward error recovery experiments b
|
|
* allocating and initializing a buffer XXX
|
|
* 512 byte sector size is hard coded! */
|
|
pda = node->params[i].p;
|
|
if (node->dagHdr->allocList == NULL)
|
|
rf_MakeAllocList(node->dagHdr->allocList);
|
|
RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
|
|
#endif /* RF_BACKWARD > 0 */
|
|
retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
|
|
rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector),
|
|
(struct buf *) node->dagHdr->bp);
|
|
}
|
|
RF_ETIMER_STOP(timer);
|
|
RF_ETIMER_EVAL(timer);
|
|
tracerec->xor_us += RF_ETIMER_VAL_US(timer);
|
|
}
|
|
return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
|
|
* explicitly since no
|
|
* I/O in this node */
|
|
}
|
|
/* this xor is used by the degraded-mode dag functions to recover lost data.
|
|
* the second-to-last parameter is the PDA for the failed portion of the access.
|
|
* the code here looks at this PDA and assumes that the xor target buffer is
|
|
* equal in size to the number of sectors in the failed PDA. It then uses
|
|
* the other PDAs in the parameter list to determine where within the target
|
|
* buffer the corresponding data should be xored.
|
|
*/
|
|
int
|
|
rf_RecoveryXorFunc(node)
|
|
RF_DagNode_t *node;
|
|
{
|
|
RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
|
|
RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
|
|
RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
|
|
int i, retcode = 0;
|
|
RF_PhysDiskAddr_t *pda;
|
|
int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
|
|
char *srcbuf, *destbuf;
|
|
RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
|
|
RF_Etimer_t timer;
|
|
#if RF_BACKWARD > 0
|
|
caddr_t undoBuf;
|
|
#endif
|
|
|
|
if (node->dagHdr->status == rf_enable) {
|
|
RF_ETIMER_START(timer);
|
|
for (i = 0; i < node->numParams - 2; i += 2)
|
|
if (node->params[i + 1].p != node->results[0]) {
|
|
pda = (RF_PhysDiskAddr_t *) node->params[i].p;
|
|
#if RF_BACKWARD > 0
|
|
/* This section mimics undo logging for
|
|
* backward error recovery experiments b
|
|
* allocating and initializing a buffer XXX
|
|
* 512 byte sector size is hard coded! */
|
|
if (node->dagHdr->allocList == NULL)
|
|
rf_MakeAllocList(node->dagHdr->allocList);
|
|
RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
|
|
#endif /* RF_BACKWARD > 0 */
|
|
srcbuf = (char *) node->params[i + 1].p;
|
|
suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
|
|
destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
|
|
retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp);
|
|
}
|
|
RF_ETIMER_STOP(timer);
|
|
RF_ETIMER_EVAL(timer);
|
|
tracerec->xor_us += RF_ETIMER_VAL_US(timer);
|
|
}
|
|
return (rf_GenericWakeupFunc(node, retcode));
|
|
}
|
|
/*****************************************************************************************
|
|
* The next three functions are utilities used by the above xor-execution functions.
|
|
****************************************************************************************/
|
|
|
|
|
|
/*
|
|
* this is just a glorified buffer xor. targbuf points to a buffer that is one full stripe unit
|
|
* in size. srcbuf points to a buffer that may be less than 1 SU, but never more. When the
|
|
* access described by pda is one SU in size (which by implication means it's SU-aligned),
|
|
* all that happens is (targbuf) <- (srcbuf ^ targbuf). When the access is less than one
|
|
* SU in size the XOR occurs on only the portion of targbuf identified in the pda.
|
|
*/
|
|
|
|
int
|
|
rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp)
|
|
RF_Raid_t *raidPtr;
|
|
RF_PhysDiskAddr_t *pda;
|
|
char *srcbuf;
|
|
char *targbuf;
|
|
void *bp;
|
|
{
|
|
char *targptr;
|
|
int sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
|
|
int SUOffset = pda->startSector % sectPerSU;
|
|
int length, retcode = 0;
|
|
|
|
RF_ASSERT(pda->numSector <= sectPerSU);
|
|
|
|
targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
|
|
length = rf_RaidAddressToByte(raidPtr, pda->numSector);
|
|
retcode = rf_bxor(srcbuf, targptr, length, bp);
|
|
return (retcode);
|
|
}
|
|
/* it really should be the case that the buffer pointers (returned by malloc)
|
|
* are aligned to the natural word size of the machine, so this is the only
|
|
* case we optimize for. The length should always be a multiple of the sector
|
|
* size, so there should be no problem with leftover bytes at the end.
|
|
*/
|
|
int
|
|
rf_bxor(src, dest, len, bp)
|
|
char *src;
|
|
char *dest;
|
|
int len;
|
|
void *bp;
|
|
{
|
|
unsigned mask = sizeof(long) - 1, retcode = 0;
|
|
|
|
if (!(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len & mask)) {
|
|
retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len >> RF_LONGSHIFT, bp);
|
|
} else {
|
|
RF_ASSERT(0);
|
|
}
|
|
return (retcode);
|
|
}
|
|
/* map a user buffer into kernel space, if necessary */
|
|
#define REMAP_VA(_bp,x,y) (y) = (x)
|
|
|
|
/* When XORing in kernel mode, we need to map each user page to kernel space before we can access it.
|
|
* We don't want to assume anything about which input buffers are in kernel/user
|
|
* space, nor about their alignment, so in each loop we compute the maximum number
|
|
* of bytes that we can xor without crossing any page boundaries, and do only this many
|
|
* bytes before the next remap.
|
|
*/
|
|
int
|
|
rf_longword_bxor(src, dest, len, bp)
|
|
register unsigned long *src;
|
|
register unsigned long *dest;
|
|
int len; /* longwords */
|
|
void *bp;
|
|
{
|
|
register unsigned long *end = src + len;
|
|
register unsigned long d0, d1, d2, d3, s0, s1, s2, s3; /* temps */
|
|
register unsigned long *pg_src, *pg_dest; /* per-page source/dest
|
|
* pointers */
|
|
int longs_this_time;/* # longwords to xor in the current iteration */
|
|
|
|
REMAP_VA(bp, src, pg_src);
|
|
REMAP_VA(bp, dest, pg_dest);
|
|
if (!pg_src || !pg_dest)
|
|
return (EFAULT);
|
|
|
|
while (len >= 4) {
|
|
longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT); /* note len in longwords */
|
|
src += longs_this_time;
|
|
dest += longs_this_time;
|
|
len -= longs_this_time;
|
|
while (longs_this_time >= 4) {
|
|
d0 = pg_dest[0];
|
|
d1 = pg_dest[1];
|
|
d2 = pg_dest[2];
|
|
d3 = pg_dest[3];
|
|
s0 = pg_src[0];
|
|
s1 = pg_src[1];
|
|
s2 = pg_src[2];
|
|
s3 = pg_src[3];
|
|
pg_dest[0] = d0 ^ s0;
|
|
pg_dest[1] = d1 ^ s1;
|
|
pg_dest[2] = d2 ^ s2;
|
|
pg_dest[3] = d3 ^ s3;
|
|
pg_src += 4;
|
|
pg_dest += 4;
|
|
longs_this_time -= 4;
|
|
}
|
|
while (longs_this_time > 0) { /* cannot cross any page
|
|
* boundaries here */
|
|
*pg_dest++ ^= *pg_src++;
|
|
longs_this_time--;
|
|
}
|
|
|
|
/* either we're done, or we've reached a page boundary on one
|
|
* (or possibly both) of the pointers */
|
|
if (len) {
|
|
if (RF_PAGE_ALIGNED(src))
|
|
REMAP_VA(bp, src, pg_src);
|
|
if (RF_PAGE_ALIGNED(dest))
|
|
REMAP_VA(bp, dest, pg_dest);
|
|
if (!pg_src || !pg_dest)
|
|
return (EFAULT);
|
|
}
|
|
}
|
|
while (src < end) {
|
|
*pg_dest++ ^= *pg_src++;
|
|
src++;
|
|
dest++;
|
|
len--;
|
|
if (RF_PAGE_ALIGNED(src))
|
|
REMAP_VA(bp, src, pg_src);
|
|
if (RF_PAGE_ALIGNED(dest))
|
|
REMAP_VA(bp, dest, pg_dest);
|
|
}
|
|
RF_ASSERT(len == 0);
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
dst = a ^ b ^ c;
|
|
a may equal dst
|
|
see comment above longword_bxor
|
|
*/
|
|
int
|
|
rf_longword_bxor3(dst, a, b, c, len, bp)
|
|
register unsigned long *dst;
|
|
register unsigned long *a;
|
|
register unsigned long *b;
|
|
register unsigned long *c;
|
|
int len; /* length in longwords */
|
|
void *bp;
|
|
{
|
|
unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
|
|
register unsigned long *pg_a, *pg_b, *pg_c, *pg_dst; /* per-page source/dest
|
|
* pointers */
|
|
int longs_this_time;/* # longs to xor in the current iteration */
|
|
char dst_is_a = 0;
|
|
|
|
REMAP_VA(bp, a, pg_a);
|
|
REMAP_VA(bp, b, pg_b);
|
|
REMAP_VA(bp, c, pg_c);
|
|
if (a == dst) {
|
|
pg_dst = pg_a;
|
|
dst_is_a = 1;
|
|
} else {
|
|
REMAP_VA(bp, dst, pg_dst);
|
|
}
|
|
|
|
/* align dest to cache line. Can't cross a pg boundary on dst here. */
|
|
while ((((unsigned long) pg_dst) & 0x1f)) {
|
|
*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
|
|
dst++;
|
|
a++;
|
|
b++;
|
|
c++;
|
|
if (RF_PAGE_ALIGNED(a)) {
|
|
REMAP_VA(bp, a, pg_a);
|
|
if (!pg_a)
|
|
return (EFAULT);
|
|
}
|
|
if (RF_PAGE_ALIGNED(b)) {
|
|
REMAP_VA(bp, a, pg_b);
|
|
if (!pg_b)
|
|
return (EFAULT);
|
|
}
|
|
if (RF_PAGE_ALIGNED(c)) {
|
|
REMAP_VA(bp, a, pg_c);
|
|
if (!pg_c)
|
|
return (EFAULT);
|
|
}
|
|
len--;
|
|
}
|
|
|
|
while (len > 4) {
|
|
longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
|
|
a += longs_this_time;
|
|
b += longs_this_time;
|
|
c += longs_this_time;
|
|
dst += longs_this_time;
|
|
len -= longs_this_time;
|
|
while (longs_this_time >= 4) {
|
|
a0 = pg_a[0];
|
|
longs_this_time -= 4;
|
|
|
|
a1 = pg_a[1];
|
|
a2 = pg_a[2];
|
|
|
|
a3 = pg_a[3];
|
|
pg_a += 4;
|
|
|
|
b0 = pg_b[0];
|
|
b1 = pg_b[1];
|
|
|
|
b2 = pg_b[2];
|
|
b3 = pg_b[3];
|
|
/* start dual issue */
|
|
a0 ^= b0;
|
|
b0 = pg_c[0];
|
|
|
|
pg_b += 4;
|
|
a1 ^= b1;
|
|
|
|
a2 ^= b2;
|
|
a3 ^= b3;
|
|
|
|
b1 = pg_c[1];
|
|
a0 ^= b0;
|
|
|
|
b2 = pg_c[2];
|
|
a1 ^= b1;
|
|
|
|
b3 = pg_c[3];
|
|
a2 ^= b2;
|
|
|
|
pg_dst[0] = a0;
|
|
a3 ^= b3;
|
|
pg_dst[1] = a1;
|
|
pg_c += 4;
|
|
pg_dst[2] = a2;
|
|
pg_dst[3] = a3;
|
|
pg_dst += 4;
|
|
}
|
|
while (longs_this_time > 0) { /* cannot cross any page
|
|
* boundaries here */
|
|
*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
|
|
longs_this_time--;
|
|
}
|
|
|
|
if (len) {
|
|
if (RF_PAGE_ALIGNED(a)) {
|
|
REMAP_VA(bp, a, pg_a);
|
|
if (!pg_a)
|
|
return (EFAULT);
|
|
if (dst_is_a)
|
|
pg_dst = pg_a;
|
|
}
|
|
if (RF_PAGE_ALIGNED(b)) {
|
|
REMAP_VA(bp, b, pg_b);
|
|
if (!pg_b)
|
|
return (EFAULT);
|
|
}
|
|
if (RF_PAGE_ALIGNED(c)) {
|
|
REMAP_VA(bp, c, pg_c);
|
|
if (!pg_c)
|
|
return (EFAULT);
|
|
}
|
|
if (!dst_is_a)
|
|
if (RF_PAGE_ALIGNED(dst)) {
|
|
REMAP_VA(bp, dst, pg_dst);
|
|
if (!pg_dst)
|
|
return (EFAULT);
|
|
}
|
|
}
|
|
}
|
|
while (len) {
|
|
*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
|
|
dst++;
|
|
a++;
|
|
b++;
|
|
c++;
|
|
if (RF_PAGE_ALIGNED(a)) {
|
|
REMAP_VA(bp, a, pg_a);
|
|
if (!pg_a)
|
|
return (EFAULT);
|
|
if (dst_is_a)
|
|
pg_dst = pg_a;
|
|
}
|
|
if (RF_PAGE_ALIGNED(b)) {
|
|
REMAP_VA(bp, b, pg_b);
|
|
if (!pg_b)
|
|
return (EFAULT);
|
|
}
|
|
if (RF_PAGE_ALIGNED(c)) {
|
|
REMAP_VA(bp, c, pg_c);
|
|
if (!pg_c)
|
|
return (EFAULT);
|
|
}
|
|
if (!dst_is_a)
|
|
if (RF_PAGE_ALIGNED(dst)) {
|
|
REMAP_VA(bp, dst, pg_dst);
|
|
if (!pg_dst)
|
|
return (EFAULT);
|
|
}
|
|
len--;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
rf_bxor3(dst, a, b, c, len, bp)
|
|
register unsigned char *dst;
|
|
register unsigned char *a;
|
|
register unsigned char *b;
|
|
register unsigned char *c;
|
|
unsigned long len;
|
|
void *bp;
|
|
{
|
|
RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
|
|
|
|
return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
|
|
(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
|
|
}
|