NetBSD/sys/arch/arm/omap/if_cpsw.c

1546 lines
41 KiB
C

/* $NetBSD: if_cpsw.c,v 1.12 2015/04/16 21:50:35 jmcneill Exp $ */
/*
* Copyright (c) 2013 Jonathan A. Kollasch
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(1, "$NetBSD: if_cpsw.c,v 1.12 2015/04/16 21:50:35 jmcneill Exp $");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/ioctl.h>
#include <sys/intr.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <net/if.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <arch/arm/omap/omap2_obiovar.h>
#include <arch/arm/omap/if_cpswreg.h>
#include <arch/arm/omap/sitara_cmreg.h>
#include <arch/arm/omap/sitara_cm.h>
#define ETHER_ALIGN (roundup2(ETHER_HDR_LEN, sizeof(uint32_t)) - ETHER_HDR_LEN)
#define CPSW_TXFRAGS 16
#define CPSW_CPPI_RAM_SIZE (0x2000)
#define CPSW_CPPI_RAM_TXDESCS_SIZE (CPSW_CPPI_RAM_SIZE/2)
#define CPSW_CPPI_RAM_RXDESCS_SIZE \
(CPSW_CPPI_RAM_SIZE - CPSW_CPPI_RAM_TXDESCS_SIZE)
#define CPSW_CPPI_RAM_TXDESCS_BASE (CPSW_CPPI_RAM_OFFSET + 0x0000)
#define CPSW_CPPI_RAM_RXDESCS_BASE \
(CPSW_CPPI_RAM_OFFSET + CPSW_CPPI_RAM_TXDESCS_SIZE)
#define CPSW_NTXDESCS (CPSW_CPPI_RAM_TXDESCS_SIZE/sizeof(struct cpsw_cpdma_bd))
#define CPSW_NRXDESCS (CPSW_CPPI_RAM_RXDESCS_SIZE/sizeof(struct cpsw_cpdma_bd))
CTASSERT(powerof2(CPSW_NTXDESCS));
CTASSERT(powerof2(CPSW_NRXDESCS));
#define CPSW_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
#define TXDESC_NEXT(x) cpsw_txdesc_adjust((x), 1)
#define TXDESC_PREV(x) cpsw_txdesc_adjust((x), -1)
#define RXDESC_NEXT(x) cpsw_rxdesc_adjust((x), 1)
#define RXDESC_PREV(x) cpsw_rxdesc_adjust((x), -1)
struct cpsw_ring_data {
bus_dmamap_t tx_dm[CPSW_NTXDESCS];
struct mbuf *tx_mb[CPSW_NTXDESCS];
bus_dmamap_t rx_dm[CPSW_NRXDESCS];
struct mbuf *rx_mb[CPSW_NRXDESCS];
};
struct cpsw_softc {
device_t sc_dev;
bus_space_tag_t sc_bst;
bus_space_handle_t sc_bsh;
bus_size_t sc_bss;
bus_dma_tag_t sc_bdt;
bus_space_handle_t sc_bsh_txdescs;
bus_space_handle_t sc_bsh_rxdescs;
bus_addr_t sc_txdescs_pa;
bus_addr_t sc_rxdescs_pa;
struct ethercom sc_ec;
struct mii_data sc_mii;
bool sc_phy_has_1000t;
bool sc_attached;
callout_t sc_tick_ch;
void *sc_ih;
struct cpsw_ring_data *sc_rdp;
volatile u_int sc_txnext;
volatile u_int sc_txhead;
volatile u_int sc_rxhead;
void *sc_rxthih;
void *sc_rxih;
void *sc_txih;
void *sc_miscih;
void *sc_txpad;
bus_dmamap_t sc_txpad_dm;
#define sc_txpad_pa sc_txpad_dm->dm_segs[0].ds_addr
uint8_t sc_enaddr[ETHER_ADDR_LEN];
volatile bool sc_txrun;
volatile bool sc_rxrun;
volatile bool sc_txeoq;
volatile bool sc_rxeoq;
};
static int cpsw_match(device_t, cfdata_t, void *);
static void cpsw_attach(device_t, device_t, void *);
static int cpsw_detach(device_t, int);
static void cpsw_start(struct ifnet *);
static int cpsw_ioctl(struct ifnet *, u_long, void *);
static void cpsw_watchdog(struct ifnet *);
static int cpsw_init(struct ifnet *);
static void cpsw_stop(struct ifnet *, int);
static int cpsw_mii_readreg(device_t, int, int);
static void cpsw_mii_writereg(device_t, int, int, int);
static void cpsw_mii_statchg(struct ifnet *);
static int cpsw_new_rxbuf(struct cpsw_softc * const, const u_int);
static void cpsw_tick(void *);
static int cpsw_rxthintr(void *);
static int cpsw_rxintr(void *);
static int cpsw_txintr(void *);
static int cpsw_miscintr(void *);
/* ALE support */
#define CPSW_MAX_ALE_ENTRIES 1024
static int cpsw_ale_update_addresses(struct cpsw_softc *, int purge);
CFATTACH_DECL_NEW(cpsw, sizeof(struct cpsw_softc),
cpsw_match, cpsw_attach, cpsw_detach, NULL);
#undef KERNHIST
#include <sys/kernhist.h>
KERNHIST_DEFINE(cpswhist);
#ifdef KERNHIST
#define KERNHIST_CALLED_5(NAME, i, j, k, l) \
do { \
_kernhist_call = atomic_inc_uint_nv(&_kernhist_cnt); \
KERNHIST_LOG(NAME, "called! %x %x %x %x", i, j, k, l); \
} while (/*CONSTCOND*/ 0)
#else
#define KERNHIST_CALLED_5(NAME, i, j, k, l)
#endif
static inline u_int
cpsw_txdesc_adjust(u_int x, int y)
{
return (((x) + y) & (CPSW_NTXDESCS - 1));
}
static inline u_int
cpsw_rxdesc_adjust(u_int x, int y)
{
return (((x) + y) & (CPSW_NRXDESCS - 1));
}
static inline uint32_t
cpsw_read_4(struct cpsw_softc * const sc, bus_size_t const offset)
{
return bus_space_read_4(sc->sc_bst, sc->sc_bsh, offset);
}
static inline void
cpsw_write_4(struct cpsw_softc * const sc, bus_size_t const offset,
uint32_t const value)
{
bus_space_write_4(sc->sc_bst, sc->sc_bsh, offset, value);
}
static inline void
cpsw_set_txdesc_next(struct cpsw_softc * const sc, const u_int i, uint32_t n)
{
const bus_size_t o = sizeof(struct cpsw_cpdma_bd) * i + 0;
KERNHIST_FUNC(__func__);
KERNHIST_CALLED_5(cpswhist, sc, i, n, 0);
bus_space_write_4(sc->sc_bst, sc->sc_bsh_txdescs, o, n);
}
static inline void
cpsw_set_rxdesc_next(struct cpsw_softc * const sc, const u_int i, uint32_t n)
{
const bus_size_t o = sizeof(struct cpsw_cpdma_bd) * i + 0;
KERNHIST_FUNC(__func__);
KERNHIST_CALLED_5(cpswhist, sc, i, n, 0);
bus_space_write_4(sc->sc_bst, sc->sc_bsh_rxdescs, o, n);
}
static inline void
cpsw_get_txdesc(struct cpsw_softc * const sc, const u_int i,
struct cpsw_cpdma_bd * const bdp)
{
const bus_size_t o = sizeof(struct cpsw_cpdma_bd) * i;
uint32_t * const dp = bdp->word;
const bus_size_t c = __arraycount(bdp->word);
KERNHIST_FUNC(__func__);
KERNHIST_CALLED_5(cpswhist, sc, i, bdp, 0);
bus_space_read_region_4(sc->sc_bst, sc->sc_bsh_txdescs, o, dp, c);
KERNHIST_LOG(cpswhist, "%08x %08x %08x %08x\n",
dp[0], dp[1], dp[2], dp[3]);
}
static inline void
cpsw_set_txdesc(struct cpsw_softc * const sc, const u_int i,
struct cpsw_cpdma_bd * const bdp)
{
const bus_size_t o = sizeof(struct cpsw_cpdma_bd) * i;
uint32_t * const dp = bdp->word;
const bus_size_t c = __arraycount(bdp->word);
KERNHIST_FUNC(__func__);
KERNHIST_CALLED_5(cpswhist, sc, i, bdp, 0);
KERNHIST_LOG(cpswhist, "%08x %08x %08x %08x\n",
dp[0], dp[1], dp[2], dp[3]);
bus_space_write_region_4(sc->sc_bst, sc->sc_bsh_txdescs, o, dp, c);
}
static inline void
cpsw_get_rxdesc(struct cpsw_softc * const sc, const u_int i,
struct cpsw_cpdma_bd * const bdp)
{
const bus_size_t o = sizeof(struct cpsw_cpdma_bd) * i;
uint32_t * const dp = bdp->word;
const bus_size_t c = __arraycount(bdp->word);
KERNHIST_FUNC(__func__);
KERNHIST_CALLED_5(cpswhist, sc, i, bdp, 0);
bus_space_read_region_4(sc->sc_bst, sc->sc_bsh_rxdescs, o, dp, c);
KERNHIST_LOG(cpswhist, "%08x %08x %08x %08x\n",
dp[0], dp[1], dp[2], dp[3]);
}
static inline void
cpsw_set_rxdesc(struct cpsw_softc * const sc, const u_int i,
struct cpsw_cpdma_bd * const bdp)
{
const bus_size_t o = sizeof(struct cpsw_cpdma_bd) * i;
uint32_t * const dp = bdp->word;
const bus_size_t c = __arraycount(bdp->word);
KERNHIST_FUNC(__func__);
KERNHIST_CALLED_5(cpswhist, sc, i, bdp, 0);
KERNHIST_LOG(cpswhist, "%08x %08x %08x %08x\n",
dp[0], dp[1], dp[2], dp[3]);
bus_space_write_region_4(sc->sc_bst, sc->sc_bsh_rxdescs, o, dp, c);
}
static inline bus_addr_t
cpsw_txdesc_paddr(struct cpsw_softc * const sc, u_int x)
{
KASSERT(x < CPSW_NTXDESCS);
return sc->sc_txdescs_pa + sizeof(struct cpsw_cpdma_bd) * x;
}
static inline bus_addr_t
cpsw_rxdesc_paddr(struct cpsw_softc * const sc, u_int x)
{
KASSERT(x < CPSW_NRXDESCS);
return sc->sc_rxdescs_pa + sizeof(struct cpsw_cpdma_bd) * x;
}
static int
cpsw_match(device_t parent, cfdata_t cf, void *aux)
{
struct obio_attach_args * const oa = aux;
#ifdef TI_AM335X
if (oa->obio_addr == 0x4a100000 && oa->obio_size >= 0x4000)
return 1;
#endif
return 0;
}
static bool
cpsw_phy_has_1000t(struct cpsw_softc * const sc)
{
struct ifmedia_entry *ifm;
TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T)
return true;
}
return false;
}
static int
cpsw_detach(device_t self, int flags)
{
struct cpsw_softc * const sc = device_private(self);
struct ifnet *ifp = &sc->sc_ec.ec_if;
u_int i;
/* Succeed now if there's no work to do. */
if (!sc->sc_attached)
return 0;
sc->sc_attached = false;
/* Stop the interface. Callouts are stopped in it. */
cpsw_stop(ifp, 1);
/* Destroy our callout. */
callout_destroy(&sc->sc_tick_ch);
/* Let go of the interrupts */
intr_disestablish(sc->sc_rxthih);
intr_disestablish(sc->sc_rxih);
intr_disestablish(sc->sc_txih);
intr_disestablish(sc->sc_miscih);
/* Delete all media. */
ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
ether_ifdetach(ifp);
if_detach(ifp);
/* Free the packet padding buffer */
kmem_free(sc->sc_txpad, ETHER_MIN_LEN);
bus_dmamap_destroy(sc->sc_bdt, sc->sc_txpad_dm);
/* Destroy all the descriptors */
for (i = 0; i < CPSW_NTXDESCS; i++)
bus_dmamap_destroy(sc->sc_bdt, sc->sc_rdp->tx_dm[i]);
for (i = 0; i < CPSW_NRXDESCS; i++)
bus_dmamap_destroy(sc->sc_bdt, sc->sc_rdp->rx_dm[i]);
kmem_free(sc->sc_rdp, sizeof(*sc->sc_rdp));
/* Unmap */
bus_space_unmap(sc->sc_bst, sc->sc_bsh, sc->sc_bss);
return 0;
}
static void
cpsw_attach(device_t parent, device_t self, void *aux)
{
struct obio_attach_args * const oa = aux;
struct cpsw_softc * const sc = device_private(self);
prop_dictionary_t dict = device_properties(self);
struct ethercom * const ec = &sc->sc_ec;
struct ifnet * const ifp = &ec->ec_if;
int error;
u_int i;
KERNHIST_INIT(cpswhist, 4096);
sc->sc_dev = self;
aprint_normal(": TI CPSW Ethernet\n");
aprint_naive("\n");
callout_init(&sc->sc_tick_ch, 0);
callout_setfunc(&sc->sc_tick_ch, cpsw_tick, sc);
prop_data_t eaprop = prop_dictionary_get(dict, "mac-address");
if (eaprop == NULL) {
/* grab mac_id0 from AM335x control module */
uint32_t reg_lo, reg_hi;
if (sitara_cm_reg_read_4(OMAP2SCM_MAC_ID0_LO, &reg_lo) == 0 &&
sitara_cm_reg_read_4(OMAP2SCM_MAC_ID0_HI, &reg_hi) == 0) {
sc->sc_enaddr[0] = (reg_hi >> 0) & 0xff;
sc->sc_enaddr[1] = (reg_hi >> 8) & 0xff;
sc->sc_enaddr[2] = (reg_hi >> 16) & 0xff;
sc->sc_enaddr[3] = (reg_hi >> 24) & 0xff;
sc->sc_enaddr[4] = (reg_lo >> 0) & 0xff;
sc->sc_enaddr[5] = (reg_lo >> 8) & 0xff;
} else {
aprint_error_dev(sc->sc_dev,
"using fake station address\n");
/* 'N' happens to have the Local bit set */
sc->sc_enaddr[0] = 'N';
sc->sc_enaddr[1] = 'e';
sc->sc_enaddr[2] = 't';
sc->sc_enaddr[3] = 'B';
sc->sc_enaddr[4] = 'S';
sc->sc_enaddr[5] = 'D';
}
} else {
KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
memcpy(sc->sc_enaddr, prop_data_data_nocopy(eaprop),
ETHER_ADDR_LEN);
}
sc->sc_rxthih = intr_establish(oa->obio_intrbase + CPSW_INTROFF_RXTH,
IPL_VM, IST_LEVEL, cpsw_rxthintr, sc);
sc->sc_rxih = intr_establish(oa->obio_intrbase + CPSW_INTROFF_RX,
IPL_VM, IST_LEVEL, cpsw_rxintr, sc);
sc->sc_txih = intr_establish(oa->obio_intrbase + CPSW_INTROFF_TX,
IPL_VM, IST_LEVEL, cpsw_txintr, sc);
sc->sc_miscih = intr_establish(oa->obio_intrbase + CPSW_INTROFF_MISC,
IPL_VM, IST_LEVEL, cpsw_miscintr, sc);
sc->sc_bst = oa->obio_iot;
sc->sc_bss = oa->obio_size;
sc->sc_bdt = oa->obio_dmat;
error = bus_space_map(sc->sc_bst, oa->obio_addr, oa->obio_size, 0,
&sc->sc_bsh);
if (error) {
aprint_error_dev(sc->sc_dev,
"can't map registers: %d\n", error);
return;
}
sc->sc_txdescs_pa = oa->obio_addr + CPSW_CPPI_RAM_TXDESCS_BASE;
error = bus_space_subregion(sc->sc_bst, sc->sc_bsh,
CPSW_CPPI_RAM_TXDESCS_BASE, CPSW_CPPI_RAM_TXDESCS_SIZE,
&sc->sc_bsh_txdescs);
if (error) {
aprint_error_dev(sc->sc_dev,
"can't subregion tx ring SRAM: %d\n", error);
return;
}
aprint_debug_dev(sc->sc_dev, "txdescs at %p\n",
(void *)sc->sc_bsh_txdescs);
sc->sc_rxdescs_pa = oa->obio_addr + CPSW_CPPI_RAM_RXDESCS_BASE;
error = bus_space_subregion(sc->sc_bst, sc->sc_bsh,
CPSW_CPPI_RAM_RXDESCS_BASE, CPSW_CPPI_RAM_RXDESCS_SIZE,
&sc->sc_bsh_rxdescs);
if (error) {
aprint_error_dev(sc->sc_dev,
"can't subregion rx ring SRAM: %d\n", error);
return;
}
aprint_debug_dev(sc->sc_dev, "rxdescs at %p\n",
(void *)sc->sc_bsh_rxdescs);
sc->sc_rdp = kmem_alloc(sizeof(*sc->sc_rdp), KM_SLEEP);
KASSERT(sc->sc_rdp != NULL);
for (i = 0; i < CPSW_NTXDESCS; i++) {
if ((error = bus_dmamap_create(sc->sc_bdt, MCLBYTES,
CPSW_TXFRAGS, MCLBYTES, 0, 0,
&sc->sc_rdp->tx_dm[i])) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to create tx DMA map: %d\n", error);
}
sc->sc_rdp->tx_mb[i] = NULL;
}
for (i = 0; i < CPSW_NRXDESCS; i++) {
if ((error = bus_dmamap_create(sc->sc_bdt, MCLBYTES, 1,
MCLBYTES, 0, 0, &sc->sc_rdp->rx_dm[i])) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to create rx DMA map: %d\n", error);
}
sc->sc_rdp->rx_mb[i] = NULL;
}
sc->sc_txpad = kmem_zalloc(ETHER_MIN_LEN, KM_SLEEP);
KASSERT(sc->sc_txpad != NULL);
bus_dmamap_create(sc->sc_bdt, ETHER_MIN_LEN, 1, ETHER_MIN_LEN, 0,
BUS_DMA_WAITOK, &sc->sc_txpad_dm);
bus_dmamap_load(sc->sc_bdt, sc->sc_txpad_dm, sc->sc_txpad,
ETHER_MIN_LEN, NULL, BUS_DMA_WAITOK|BUS_DMA_WRITE);
bus_dmamap_sync(sc->sc_bdt, sc->sc_txpad_dm, 0, ETHER_MIN_LEN,
BUS_DMASYNC_PREWRITE);
aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
ether_sprintf(sc->sc_enaddr));
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_capabilities = 0;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_start = cpsw_start;
ifp->if_ioctl = cpsw_ioctl;
ifp->if_init = cpsw_init;
ifp->if_stop = cpsw_stop;
ifp->if_watchdog = cpsw_watchdog;
IFQ_SET_READY(&ifp->if_snd);
cpsw_stop(ifp, 0);
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = cpsw_mii_readreg;
sc->sc_mii.mii_writereg = cpsw_mii_writereg;
sc->sc_mii.mii_statchg = cpsw_mii_statchg;
sc->sc_ec.ec_mii = &sc->sc_mii;
ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
ether_mediastatus);
/* Initialize MDIO */
cpsw_write_4(sc, MDIOCONTROL,
MDIOCTL_ENABLE | MDIOCTL_FAULTENB | MDIOCTL_CLKDIV(0xff));
/* Clear ALE */
cpsw_write_4(sc, CPSW_ALE_CONTROL, ALECTL_CLEAR_TABLE);
mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 0, 0);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
aprint_error_dev(self, "no PHY found!\n");
sc->sc_phy_has_1000t = false;
ifmedia_add(&sc->sc_mii.mii_media,
IFM_ETHER|IFM_MANUAL, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
} else {
sc->sc_phy_has_1000t = cpsw_phy_has_1000t(sc);
if (sc->sc_phy_has_1000t) {
aprint_normal_dev(sc->sc_dev, "1000baseT PHY found. "
"Setting RGMII Mode\n");
/*
* Select the Interface RGMII Mode in the Control
* Module
*/
sitara_cm_reg_write_4(CPSW_GMII_SEL,
GMIISEL_GMII2_SEL(RGMII_MODE) |
GMIISEL_GMII1_SEL(RGMII_MODE));
}
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
}
if_attach(ifp);
ether_ifattach(ifp, sc->sc_enaddr);
/* The attach is successful. */
sc->sc_attached = true;
return;
}
static void
cpsw_start(struct ifnet *ifp)
{
struct cpsw_softc * const sc = ifp->if_softc;
struct cpsw_ring_data * const rdp = sc->sc_rdp;
struct cpsw_cpdma_bd bd;
uint32_t * const dw = bd.word;
struct mbuf *m;
bus_dmamap_t dm;
u_int eopi __diagused = ~0;
u_int seg;
u_int txfree;
int txstart = -1;
int error;
bool pad;
u_int mlen;
KERNHIST_FUNC(__func__);
KERNHIST_CALLED_5(cpswhist, sc, 0, 0, 0);
if (__predict_false((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) !=
IFF_RUNNING)) {
return;
}
if (sc->sc_txnext >= sc->sc_txhead)
txfree = CPSW_NTXDESCS - 1 + sc->sc_txhead - sc->sc_txnext;
else
txfree = sc->sc_txhead - sc->sc_txnext - 1;
KERNHIST_LOG(cpswhist, "start txf %x txh %x txn %x txr %x\n",
txfree, sc->sc_txhead, sc->sc_txnext, sc->sc_txrun);
while (txfree > 0) {
IFQ_POLL(&ifp->if_snd, m);
if (m == NULL)
break;
dm = rdp->tx_dm[sc->sc_txnext];
error = bus_dmamap_load_mbuf(sc->sc_bdt, dm, m, BUS_DMA_NOWAIT);
if (error == EFBIG) {
device_printf(sc->sc_dev, "won't fit\n");
IFQ_DEQUEUE(&ifp->if_snd, m);
m_freem(m);
ifp->if_oerrors++;
continue;
} else if (error != 0) {
device_printf(sc->sc_dev, "error\n");
break;
}
if (dm->dm_nsegs + 1 >= txfree) {
ifp->if_flags |= IFF_OACTIVE;
bus_dmamap_unload(sc->sc_bdt, dm);
break;
}
mlen = m_length(m);
pad = mlen < CPSW_PAD_LEN;
KASSERT(rdp->tx_mb[sc->sc_txnext] == NULL);
rdp->tx_mb[sc->sc_txnext] = m;
IFQ_DEQUEUE(&ifp->if_snd, m);
bus_dmamap_sync(sc->sc_bdt, dm, 0, dm->dm_mapsize,
BUS_DMASYNC_PREWRITE);
if (txstart == -1)
txstart = sc->sc_txnext;
eopi = sc->sc_txnext;
for (seg = 0; seg < dm->dm_nsegs; seg++) {
dw[0] = cpsw_txdesc_paddr(sc,
TXDESC_NEXT(sc->sc_txnext));
dw[1] = dm->dm_segs[seg].ds_addr;
dw[2] = dm->dm_segs[seg].ds_len;
dw[3] = 0;
if (seg == 0)
dw[3] |= CPDMA_BD_SOP | CPDMA_BD_OWNER |
MAX(mlen, CPSW_PAD_LEN);
if ((seg == dm->dm_nsegs - 1) && !pad)
dw[3] |= CPDMA_BD_EOP;
cpsw_set_txdesc(sc, sc->sc_txnext, &bd);
txfree--;
eopi = sc->sc_txnext;
sc->sc_txnext = TXDESC_NEXT(sc->sc_txnext);
}
if (pad) {
dw[0] = cpsw_txdesc_paddr(sc,
TXDESC_NEXT(sc->sc_txnext));
dw[1] = sc->sc_txpad_pa;
dw[2] = CPSW_PAD_LEN - mlen;
dw[3] = CPDMA_BD_EOP;
cpsw_set_txdesc(sc, sc->sc_txnext, &bd);
txfree--;
eopi = sc->sc_txnext;
sc->sc_txnext = TXDESC_NEXT(sc->sc_txnext);
}
bpf_mtap(ifp, m);
}
if (txstart >= 0) {
ifp->if_timer = 5;
/* terminate the new chain */
KASSERT(eopi == TXDESC_PREV(sc->sc_txnext));
cpsw_set_txdesc_next(sc, TXDESC_PREV(sc->sc_txnext), 0);
KERNHIST_LOG(cpswhist, "CP %x HDP %x s %x e %x\n",
cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)),
cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0)), txstart, eopi);
/* link the new chain on */
cpsw_set_txdesc_next(sc, TXDESC_PREV(txstart),
cpsw_txdesc_paddr(sc, txstart));
if (sc->sc_txeoq) {
/* kick the dma engine */
sc->sc_txeoq = false;
cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(0),
cpsw_txdesc_paddr(sc, txstart));
}
}
KERNHIST_LOG(cpswhist, "end txf %x txh %x txn %x txr %x\n",
txfree, sc->sc_txhead, sc->sc_txnext, sc->sc_txrun);
}
static int
cpsw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
const int s = splnet();
int error = 0;
switch (cmd) {
default:
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
error = 0;
}
break;
}
splx(s);
return error;
}
static void
cpsw_watchdog(struct ifnet *ifp)
{
struct cpsw_softc *sc = ifp->if_softc;
device_printf(sc->sc_dev, "device timeout\n");
ifp->if_oerrors++;
cpsw_init(ifp);
cpsw_start(ifp);
}
static int
cpsw_mii_wait(struct cpsw_softc * const sc, int reg)
{
u_int tries;
for(tries = 0; tries < 1000; tries++) {
if ((cpsw_read_4(sc, reg) & __BIT(31)) == 0)
return 0;
delay(1);
}
return ETIMEDOUT;
}
static int
cpsw_mii_readreg(device_t dev, int phy, int reg)
{
struct cpsw_softc * const sc = device_private(dev);
uint32_t v;
if (cpsw_mii_wait(sc, MDIOUSERACCESS0) != 0)
return 0;
cpsw_write_4(sc, MDIOUSERACCESS0, (1 << 31) |
((reg & 0x1F) << 21) | ((phy & 0x1F) << 16));
if (cpsw_mii_wait(sc, MDIOUSERACCESS0) != 0)
return 0;
v = cpsw_read_4(sc, MDIOUSERACCESS0);
if (v & __BIT(29))
return v & 0xffff;
else
return 0;
}
static void
cpsw_mii_writereg(device_t dev, int phy, int reg, int val)
{
struct cpsw_softc * const sc = device_private(dev);
uint32_t v;
KASSERT((val & 0xffff0000UL) == 0);
if (cpsw_mii_wait(sc, MDIOUSERACCESS0) != 0)
goto out;
cpsw_write_4(sc, MDIOUSERACCESS0, (1 << 31) | (1 << 30) |
((reg & 0x1F) << 21) | ((phy & 0x1F) << 16) | val);
if (cpsw_mii_wait(sc, MDIOUSERACCESS0) != 0)
goto out;
v = cpsw_read_4(sc, MDIOUSERACCESS0);
if ((v & __BIT(29)) == 0)
out:
device_printf(sc->sc_dev, "%s error\n", __func__);
}
static void
cpsw_mii_statchg(struct ifnet *ifp)
{
return;
}
static int
cpsw_new_rxbuf(struct cpsw_softc * const sc, const u_int i)
{
struct cpsw_ring_data * const rdp = sc->sc_rdp;
const u_int h = RXDESC_PREV(i);
struct cpsw_cpdma_bd bd;
uint32_t * const dw = bd.word;
struct mbuf *m;
int error = ENOBUFS;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
goto reuse;
}
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
goto reuse;
}
/* We have a new buffer, prepare it for the ring. */
if (rdp->rx_mb[i] != NULL)
bus_dmamap_unload(sc->sc_bdt, rdp->rx_dm[i]);
m->m_len = m->m_pkthdr.len = MCLBYTES;
rdp->rx_mb[i] = m;
error = bus_dmamap_load_mbuf(sc->sc_bdt, rdp->rx_dm[i], rdp->rx_mb[i],
BUS_DMA_READ|BUS_DMA_NOWAIT);
if (error) {
device_printf(sc->sc_dev, "can't load rx DMA map %d: %d\n",
i, error);
}
bus_dmamap_sync(sc->sc_bdt, rdp->rx_dm[i],
0, rdp->rx_dm[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
error = 0;
reuse:
/* (re-)setup the descriptor */
dw[0] = 0;
dw[1] = rdp->rx_dm[i]->dm_segs[0].ds_addr;
dw[2] = MIN(0x7ff, rdp->rx_dm[i]->dm_segs[0].ds_len);
dw[3] = CPDMA_BD_OWNER;
cpsw_set_rxdesc(sc, i, &bd);
/* and link onto ring */
cpsw_set_rxdesc_next(sc, h, cpsw_rxdesc_paddr(sc, i));
return error;
}
static int
cpsw_init(struct ifnet *ifp)
{
struct cpsw_softc * const sc = ifp->if_softc;
struct mii_data * const mii = &sc->sc_mii;
int i;
cpsw_stop(ifp, 0);
sc->sc_txnext = 0;
sc->sc_txhead = 0;
/* Reset wrapper */
cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
while(cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1);
/* Reset SS */
cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
while(cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1);
/* Clear table and enable ALE */
cpsw_write_4(sc, CPSW_ALE_CONTROL,
ALECTL_ENABLE_ALE | ALECTL_CLEAR_TABLE);
/* Reset and init Sliver port 1 and 2 */
for (i = 0; i < CPSW_ETH_PORTS; i++) {
uint32_t macctl;
/* Reset */
cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
while(cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1);
/* Set Slave Mapping */
cpsw_write_4(sc, CPSW_SL_RX_PRI_MAP(i), 0x76543210);
cpsw_write_4(sc, CPSW_PORT_P_TX_PRI_MAP(i+1), 0x33221100);
cpsw_write_4(sc, CPSW_SL_RX_MAXLEN(i), 0x5f2);
/* Set MAC Address */
cpsw_write_4(sc, CPSW_PORT_P_SA_HI(i+1),
sc->sc_enaddr[0] | (sc->sc_enaddr[1] << 8) |
(sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[3] << 24));
cpsw_write_4(sc, CPSW_PORT_P_SA_LO(i+1),
sc->sc_enaddr[4] | (sc->sc_enaddr[5] << 8));
/* Set MACCONTROL for ports 0,1 */
macctl = SLMACCTL_FULLDUPLEX | SLMACCTL_GMII_EN |
SLMACCTL_IFCTL_A;
if (sc->sc_phy_has_1000t)
macctl |= SLMACCTL_GIG;
cpsw_write_4(sc, CPSW_SL_MACCONTROL(i), macctl);
/* Set ALE port to forwarding(3) */
cpsw_write_4(sc, CPSW_ALE_PORTCTL(i+1), 3);
}
/* Set Host Port Mapping */
cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
/* Set ALE port to forwarding(3) */
cpsw_write_4(sc, CPSW_ALE_PORTCTL(0), 3);
/* Initialize addrs */
cpsw_ale_update_addresses(sc, 1);
cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
while(cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1);
for (i = 0; i < 8; i++) {
cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
}
bus_space_set_region_4(sc->sc_bst, sc->sc_bsh_txdescs, 0, 0,
CPSW_CPPI_RAM_TXDESCS_SIZE/4);
sc->sc_txhead = 0;
sc->sc_txnext = 0;
cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
bus_space_set_region_4(sc->sc_bst, sc->sc_bsh_rxdescs, 0, 0,
CPSW_CPPI_RAM_RXDESCS_SIZE/4);
/* Initialize RX Buffer Descriptors */
cpsw_set_rxdesc_next(sc, RXDESC_PREV(0), 0);
for (i = 0; i < CPSW_NRXDESCS; i++) {
cpsw_new_rxbuf(sc, i);
}
sc->sc_rxhead = 0;
/* turn off flow control */
cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
/* align layer 3 header to 32-bit */
cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, ETHER_ALIGN);
/* Clear all interrupt Masks */
cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
/* Enable TX & RX DMA */
cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
/* Enable TX and RX interrupt receive for core 0 */
cpsw_write_4(sc, CPSW_WR_C_TX_EN(0), 1);
cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 1);
cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x1F);
/* Enable host Error Interrupt */
cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 2);
/* Enable interrupts for TX and RX Channel 0 */
cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_SET, 1);
cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET, 1);
/* Ack stalled irqs */
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, CPSW_INTROFF_RXTH);
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, CPSW_INTROFF_RX);
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, CPSW_INTROFF_TX);
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, CPSW_INTROFF_MISC);
/* Initialize MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
cpsw_write_4(sc, MDIOCONTROL,
MDIOCTL_ENABLE | MDIOCTL_FAULTENB | MDIOCTL_CLKDIV(0xff));
mii_mediachg(mii);
/* Write channel 0 RX HDP */
cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(0), cpsw_rxdesc_paddr(sc, 0));
sc->sc_rxrun = true;
sc->sc_rxeoq = false;
sc->sc_txrun = true;
sc->sc_txeoq = true;
callout_schedule(&sc->sc_tick_ch, hz);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
return 0;
}
static void
cpsw_stop(struct ifnet *ifp, int disable)
{
struct cpsw_softc * const sc = ifp->if_softc;
struct cpsw_ring_data * const rdp = sc->sc_rdp;
u_int i;
aprint_debug_dev(sc->sc_dev, "%s: ifp %p disable %d\n", __func__,
ifp, disable);
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
callout_stop(&sc->sc_tick_ch);
mii_down(&sc->sc_mii);
cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 1);
cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 1);
cpsw_write_4(sc, CPSW_WR_C_TX_EN(0), 0x0);
cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0x0);
cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x0);
cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
i = 0;
while ((sc->sc_txrun || sc->sc_rxrun) && i < 10000) {
delay(10);
if ((sc->sc_txrun == true) && cpsw_txintr(sc) == 0)
sc->sc_txrun = false;
if ((sc->sc_rxrun == true) && cpsw_rxintr(sc) == 0)
sc->sc_rxrun = false;
i++;
}
//printf("%s toredown complete in %u\n", __func__, i);
/* Reset wrapper */
cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
while(cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1);
/* Reset SS */
cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
while(cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1);
for (i = 0; i < CPSW_ETH_PORTS; i++) {
cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
while(cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1);
}
/* Reset CPDMA */
cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
while(cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1);
/* Release any queued transmit buffers. */
for (i = 0; i < CPSW_NTXDESCS; i++) {
bus_dmamap_unload(sc->sc_bdt, rdp->tx_dm[i]);
m_freem(rdp->tx_mb[i]);
rdp->tx_mb[i] = NULL;
}
ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
ifp->if_timer = 0;
if (!disable)
return;
for (i = 0; i < CPSW_NRXDESCS; i++) {
bus_dmamap_unload(sc->sc_bdt, rdp->rx_dm[i]);
m_freem(rdp->rx_mb[i]);
rdp->rx_mb[i] = NULL;
}
}
static void
cpsw_tick(void *arg)
{
struct cpsw_softc * const sc = arg;
struct mii_data * const mii = &sc->sc_mii;
const int s = splnet();
mii_tick(mii);
splx(s);
callout_schedule(&sc->sc_tick_ch, hz);
}
static int
cpsw_rxthintr(void *arg)
{
struct cpsw_softc * const sc = arg;
/* this won't deassert the interrupt though */
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, CPSW_INTROFF_RXTH);
return 1;
}
static int
cpsw_rxintr(void *arg)
{
struct cpsw_softc * const sc = arg;
struct ifnet * const ifp = &sc->sc_ec.ec_if;
struct cpsw_ring_data * const rdp = sc->sc_rdp;
struct cpsw_cpdma_bd bd;
const uint32_t * const dw = bd.word;
bus_dmamap_t dm;
struct mbuf *m;
u_int i;
u_int len, off;
KERNHIST_FUNC(__func__);
KERNHIST_CALLED_5(cpswhist, sc, 0, 0, 0);
for (;;) {
KASSERT(sc->sc_rxhead < CPSW_NRXDESCS);
i = sc->sc_rxhead;
KERNHIST_LOG(cpswhist, "rxhead %x CP %x\n", i,
cpsw_read_4(sc, CPSW_CPDMA_RX_CP(0)), 0, 0);
dm = rdp->rx_dm[i];
m = rdp->rx_mb[i];
KASSERT(dm != NULL);
KASSERT(m != NULL);
cpsw_get_rxdesc(sc, i, &bd);
if (ISSET(dw[3], CPDMA_BD_OWNER))
break;
if (ISSET(dw[3], CPDMA_BD_TDOWNCMPLT)) {
sc->sc_rxrun = false;
return 1;
}
if ((dw[3] & (CPDMA_BD_SOP|CPDMA_BD_EOP)) !=
(CPDMA_BD_SOP|CPDMA_BD_EOP)) {
//Debugger();
}
bus_dmamap_sync(sc->sc_bdt, dm, 0, dm->dm_mapsize,
BUS_DMASYNC_POSTREAD);
if (cpsw_new_rxbuf(sc, i) != 0) {
/* drop current packet, reuse buffer for new */
ifp->if_ierrors++;
goto next;
}
off = __SHIFTOUT(dw[2], (uint32_t)__BITS(26, 16));
len = __SHIFTOUT(dw[3], (uint32_t)__BITS(10, 0));
if (ISSET(dw[3], CPDMA_BD_PASSCRC))
len -= ETHER_CRC_LEN;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
m->m_data += off;
ifp->if_ipackets++;
bpf_mtap(ifp, m);
(*ifp->if_input)(ifp, m);
next:
sc->sc_rxhead = RXDESC_NEXT(sc->sc_rxhead);
if (ISSET(dw[3], CPDMA_BD_EOQ)) {
sc->sc_rxeoq = true;
break;
} else {
sc->sc_rxeoq = false;
}
cpsw_write_4(sc, CPSW_CPDMA_RX_CP(0),
cpsw_rxdesc_paddr(sc, i));
}
if (sc->sc_rxeoq) {
device_printf(sc->sc_dev, "rxeoq\n");
//Debugger();
}
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, CPSW_INTROFF_RX);
return 1;
}
static int
cpsw_txintr(void *arg)
{
struct cpsw_softc * const sc = arg;
struct ifnet * const ifp = &sc->sc_ec.ec_if;
struct cpsw_ring_data * const rdp = sc->sc_rdp;
struct cpsw_cpdma_bd bd;
const uint32_t * const dw = bd.word;
bool handled = false;
uint32_t tx0_cp;
u_int cpi;
KERNHIST_FUNC(__func__);
KERNHIST_CALLED_5(cpswhist, sc, 0, 0, 0);
KASSERT(sc->sc_txrun);
KERNHIST_LOG(cpswhist, "before txnext %x txhead %x txrun %x\n",
sc->sc_txnext, sc->sc_txhead, sc->sc_txrun, 0);
tx0_cp = cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0));
if (tx0_cp == 0xfffffffc) {
/* Teardown, ack it */
cpsw_write_4(sc, CPSW_CPDMA_TX_CP(0), 0xfffffffc);
cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(0), 0);
sc->sc_txrun = false;
return 0;
}
for (;;) {
tx0_cp = cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0));
cpi = (tx0_cp - sc->sc_txdescs_pa) / sizeof(struct cpsw_cpdma_bd);
KASSERT(sc->sc_txhead < CPSW_NTXDESCS);
KERNHIST_LOG(cpswhist, "txnext %x txhead %x txrun %x cpi %x\n",
sc->sc_txnext, sc->sc_txhead, sc->sc_txrun, cpi);
cpsw_get_txdesc(sc, sc->sc_txhead, &bd);
if (dw[2] == 0) {
//Debugger();
}
if (ISSET(dw[3], CPDMA_BD_SOP) == 0)
goto next;
if (ISSET(dw[3], CPDMA_BD_OWNER)) {
printf("pwned %x %x %x\n", cpi, sc->sc_txhead,
sc->sc_txnext);
break;
}
if (ISSET(dw[3], CPDMA_BD_TDOWNCMPLT)) {
sc->sc_txrun = false;
return 1;
}
bus_dmamap_sync(sc->sc_bdt, rdp->tx_dm[sc->sc_txhead],
0, rdp->tx_dm[sc->sc_txhead]->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_bdt, rdp->tx_dm[sc->sc_txhead]);
m_freem(rdp->tx_mb[sc->sc_txhead]);
rdp->tx_mb[sc->sc_txhead] = NULL;
ifp->if_opackets++;
handled = true;
ifp->if_flags &= ~IFF_OACTIVE;
next:
if (ISSET(dw[3], CPDMA_BD_EOP) && ISSET(dw[3], CPDMA_BD_EOQ)) {
sc->sc_txeoq = true;
}
if (sc->sc_txhead == cpi) {
cpsw_write_4(sc, CPSW_CPDMA_TX_CP(0),
cpsw_txdesc_paddr(sc, cpi));
sc->sc_txhead = TXDESC_NEXT(sc->sc_txhead);
break;
}
sc->sc_txhead = TXDESC_NEXT(sc->sc_txhead);
if (ISSET(dw[3], CPDMA_BD_EOP) && ISSET(dw[3], CPDMA_BD_EOQ)) {
sc->sc_txeoq = true;
break;
}
}
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, CPSW_INTROFF_TX);
if ((sc->sc_txnext != sc->sc_txhead) && sc->sc_txeoq) {
if (cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0)) == 0) {
sc->sc_txeoq = false;
cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(0),
cpsw_txdesc_paddr(sc, sc->sc_txhead));
}
}
KERNHIST_LOG(cpswhist, "after txnext %x txhead %x txrun %x\n",
sc->sc_txnext, sc->sc_txhead, sc->sc_txrun, 0);
KERNHIST_LOG(cpswhist, "CP %x HDP %x\n",
cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)),
cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0)), 0, 0);
if (handled && sc->sc_txnext == sc->sc_txhead)
ifp->if_timer = 0;
if (handled)
cpsw_start(ifp);
return handled;
}
static int
cpsw_miscintr(void *arg)
{
struct cpsw_softc * const sc = arg;
uint32_t miscstat;
uint32_t dmastat;
uint32_t stat;
miscstat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
device_printf(sc->sc_dev, "%s %x FIRE\n", __func__, miscstat);
#define CPSW_MISC_HOST_PEND __BIT32(2)
#define CPSW_MISC_STAT_PEND __BIT32(3)
if (ISSET(miscstat, CPSW_MISC_HOST_PEND)) {
/* Host Error */
dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
printf("CPSW_CPDMA_DMA_INTSTAT_MASKED %x\n", dmastat);
printf("rxhead %02x\n", sc->sc_rxhead);
stat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
printf("CPSW_CPDMA_DMASTATUS %x\n", stat);
stat = cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0));
printf("CPSW_CPDMA_TX0_HDP %x\n", stat);
stat = cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0));
printf("CPSW_CPDMA_TX0_CP %x\n", stat);
stat = cpsw_read_4(sc, CPSW_CPDMA_RX_HDP(0));
printf("CPSW_CPDMA_RX0_HDP %x\n", stat);
stat = cpsw_read_4(sc, CPSW_CPDMA_RX_CP(0));
printf("CPSW_CPDMA_RX0_CP %x\n", stat);
//Debugger();
cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, dmastat);
dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
printf("CPSW_CPDMA_DMA_INTSTAT_MASKED %x\n", dmastat);
}
cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, CPSW_INTROFF_MISC);
return 1;
}
/*
*
* ALE support routines.
*
*/
static void
cpsw_ale_entry_init(uint32_t *ale_entry)
{
ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
}
static void
cpsw_ale_entry_set_mac(uint32_t *ale_entry, const uint8_t *mac)
{
ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
ale_entry[1] = mac[0] << 8 | mac[1];
}
static void
cpsw_ale_entry_set_bcast_mac(uint32_t *ale_entry)
{
ale_entry[0] = 0xffffffff;
ale_entry[1] = 0x0000ffff;
}
static void
cpsw_ale_entry_set(uint32_t *ale_entry, ale_entry_field_t field, uint32_t val)
{
/* Entry type[61:60] is addr entry(1), Mcast fwd state[63:62] is fw(3)*/
switch (field) {
case ALE_ENTRY_TYPE:
/* [61:60] */
ale_entry[1] |= (val & 0x3) << 28;
break;
case ALE_MCAST_FWD_STATE:
/* [63:62] */
ale_entry[1] |= (val & 0x3) << 30;
break;
case ALE_PORT_MASK:
/* [68:66] */
ale_entry[2] |= (val & 0x7) << 2;
break;
case ALE_PORT_NUMBER:
/* [67:66] */
ale_entry[2] |= (val & 0x3) << 2;
break;
default:
panic("Invalid ALE entry field: %d\n", field);
}
return;
}
static bool
cpsw_ale_entry_mac_match(const uint32_t *ale_entry, const uint8_t *mac)
{
return (((ale_entry[1] >> 8) & 0xff) == mac[0]) &&
(((ale_entry[1] >> 0) & 0xff) == mac[1]) &&
(((ale_entry[0] >>24) & 0xff) == mac[2]) &&
(((ale_entry[0] >>16) & 0xff) == mac[3]) &&
(((ale_entry[0] >> 8) & 0xff) == mac[4]) &&
(((ale_entry[0] >> 0) & 0xff) == mac[5]);
}
static void
cpsw_ale_set_outgoing_mac(struct cpsw_softc *sc, int port, const uint8_t *mac)
{
cpsw_write_4(sc, CPSW_PORT_P_SA_HI(port),
mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
cpsw_write_4(sc, CPSW_PORT_P_SA_LO(port),
mac[5] << 8 | mac[4]);
}
static void
cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
{
cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
}
static void
cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx,
const uint32_t *ale_entry)
{
cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
}
static int
cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
{
int i;
uint32_t ale_entry[3];
/* First two entries are link address and broadcast. */
for (i = 2; i < CPSW_MAX_ALE_ENTRIES; i++) {
cpsw_ale_read_entry(sc, i, ale_entry);
if (((ale_entry[1] >> 28) & 3) == 1 && /* Address entry */
((ale_entry[1] >> 8) & 1) == 1) { /* MCast link addr */
ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
cpsw_ale_write_entry(sc, i, ale_entry);
}
}
return CPSW_MAX_ALE_ENTRIES;
}
static int
cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmask, uint8_t *mac)
{
int free_index = -1, matching_index = -1, i;
uint32_t ale_entry[3];
/* Find a matching entry or a free entry. */
for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
cpsw_ale_read_entry(sc, i, ale_entry);
/* Entry Type[61:60] is 0 for free entry */
if (free_index < 0 && ((ale_entry[1] >> 28) & 3) == 0) {
free_index = i;
}
if (cpsw_ale_entry_mac_match(ale_entry, mac)) {
matching_index = i;
break;
}
}
if (matching_index < 0) {
if (free_index < 0)
return ENOMEM;
i = free_index;
}
cpsw_ale_entry_init(ale_entry);
cpsw_ale_entry_set_mac(ale_entry, mac);
cpsw_ale_entry_set(ale_entry, ALE_ENTRY_TYPE, ALE_TYPE_ADDRESS);
cpsw_ale_entry_set(ale_entry, ALE_MCAST_FWD_STATE, ALE_FWSTATE_FWONLY);
cpsw_ale_entry_set(ale_entry, ALE_PORT_MASK, portmask);
cpsw_ale_write_entry(sc, i, ale_entry);
return 0;
}
static int
cpsw_ale_update_addresses(struct cpsw_softc *sc, int purge)
{
uint8_t *mac = sc->sc_enaddr;
uint32_t ale_entry[3];
int i;
struct ethercom * const ec = &sc->sc_ec;
struct ether_multi *ifma;
cpsw_ale_entry_init(ale_entry);
/* Route incoming packets for our MAC address to Port 0 (host). */
/* For simplicity, keep this entry at table index 0 in the ALE. */
cpsw_ale_entry_set_mac(ale_entry, mac);
cpsw_ale_entry_set(ale_entry, ALE_ENTRY_TYPE, ALE_TYPE_ADDRESS);
cpsw_ale_entry_set(ale_entry, ALE_PORT_NUMBER, 0);
cpsw_ale_write_entry(sc, 0, ale_entry);
/* Set outgoing MAC Address for Ports 1 and 2. */
for (i = CPSW_CPPI_PORTS; i < (CPSW_ETH_PORTS + CPSW_CPPI_PORTS); ++i)
cpsw_ale_set_outgoing_mac(sc, i, mac);
/* Keep the broadcast address at table entry 1. */
cpsw_ale_entry_init(ale_entry);
cpsw_ale_entry_set_bcast_mac(ale_entry);
cpsw_ale_entry_set(ale_entry, ALE_ENTRY_TYPE, ALE_TYPE_ADDRESS);
cpsw_ale_entry_set(ale_entry, ALE_MCAST_FWD_STATE, ALE_FWSTATE_FWONLY);
cpsw_ale_entry_set(ale_entry, ALE_PORT_MASK, ALE_PORT_MASK_ALL);
cpsw_ale_write_entry(sc, 1, ale_entry);
/* SIOCDELMULTI doesn't specify the particular address
being removed, so we have to remove all and rebuild. */
if (purge)
cpsw_ale_remove_all_mc_entries(sc);
/* Set other multicast addrs desired. */
LIST_FOREACH(ifma, &ec->ec_multiaddrs, enm_list) {
cpsw_ale_mc_entry_set(sc, ALE_PORT_MASK_ALL, ifma->enm_addrlo);
}
return 0;
}