NetBSD/lib/libkvm/kvm_proc.c
2004-05-12 17:20:01 +00:00

1280 lines
32 KiB
C

/* $NetBSD: kvm_proc.c,v 1.58 2004/05/12 17:20:01 toshii Exp $ */
/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1989, 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software developed by the Computer Systems
* Engineering group at Lawrence Berkeley Laboratory under DARPA contract
* BG 91-66 and contributed to Berkeley.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#if defined(LIBC_SCCS) && !defined(lint)
#if 0
static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
#else
__RCSID("$NetBSD: kvm_proc.c,v 1.58 2004/05/12 17:20:01 toshii Exp $");
#endif
#endif /* LIBC_SCCS and not lint */
/*
* Proc traversal interface for kvm. ps and w are (probably) the exclusive
* users of this code, so we've factored it out into a separate module.
* Thus, we keep this grunge out of the other kvm applications (i.e.,
* most other applications are interested only in open/close/read/nlist).
*/
#include <sys/param.h>
#include <sys/user.h>
#include <sys/lwp.h>
#include <sys/proc.h>
#include <sys/exec.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/tty.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <unistd.h>
#include <nlist.h>
#include <kvm.h>
#include <uvm/uvm_extern.h>
#include <uvm/uvm_amap.h>
#include <sys/sysctl.h>
#include <limits.h>
#include <db.h>
#include <paths.h>
#include "kvm_private.h"
/*
* Common info from kinfo_proc and kinfo_proc2 used by helper routines.
*/
struct miniproc {
struct vmspace *p_vmspace;
char p_stat;
struct proc *p_paddr;
pid_t p_pid;
};
/*
* Convert from struct proc and kinfo_proc{,2} to miniproc.
*/
#define PTOMINI(kp, p) \
do { \
(p)->p_stat = (kp)->p_stat; \
(p)->p_pid = (kp)->p_pid; \
(p)->p_paddr = NULL; \
(p)->p_vmspace = (kp)->p_vmspace; \
} while (/*CONSTCOND*/0);
#define KPTOMINI(kp, p) \
do { \
(p)->p_stat = (kp)->kp_proc.p_stat; \
(p)->p_pid = (kp)->kp_proc.p_pid; \
(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
} while (/*CONSTCOND*/0);
#define KP2TOMINI(kp, p) \
do { \
(p)->p_stat = (kp)->p_stat; \
(p)->p_pid = (kp)->p_pid; \
(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
} while (/*CONSTCOND*/0);
#define KREAD(kd, addr, obj) \
(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
/* XXX: What uses these two functions? */
char *_kvm_uread __P((kvm_t *, const struct proc *, u_long,
u_long *));
ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
size_t));
static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
u_long *));
static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
char *, size_t));
static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
int));
static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int,
void (*)(struct ps_strings *, u_long *, int *)));
static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int));
static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
struct kinfo_proc *, int));
static int proc_verify __P((kvm_t *, u_long, const struct miniproc *));
static void ps_str_a __P((struct ps_strings *, u_long *, int *));
static void ps_str_e __P((struct ps_strings *, u_long *, int *));
static char *
_kvm_ureadm(kd, p, va, cnt)
kvm_t *kd;
const struct miniproc *p;
u_long va;
u_long *cnt;
{
int true = 1;
u_long addr, head;
u_long offset;
struct vm_map_entry vme;
struct vm_amap amap;
struct vm_anon *anonp, anon;
struct vm_page pg;
u_long slot;
if (kd->swapspc == NULL) {
kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
if (kd->swapspc == NULL)
return (NULL);
}
/*
* Look through the address map for the memory object
* that corresponds to the given virtual address.
* The header just has the entire valid range.
*/
head = (u_long)&p->p_vmspace->vm_map.header;
addr = head;
while (true) {
if (KREAD(kd, addr, &vme))
return (NULL);
if (va >= vme.start && va < vme.end &&
vme.aref.ar_amap != NULL)
break;
addr = (u_long)vme.next;
if (addr == head)
return (NULL);
}
/*
* we found the map entry, now to find the object...
*/
if (vme.aref.ar_amap == NULL)
return (NULL);
addr = (u_long)vme.aref.ar_amap;
if (KREAD(kd, addr, &amap))
return (NULL);
offset = va - vme.start;
slot = offset / kd->nbpg + vme.aref.ar_pageoff;
/* sanity-check slot number */
if (slot > amap.am_nslot)
return (NULL);
addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
if (KREAD(kd, addr, &anonp))
return (NULL);
addr = (u_long)anonp;
if (KREAD(kd, addr, &anon))
return (NULL);
addr = (u_long)anon.u.an_page;
if (addr) {
if (KREAD(kd, addr, &pg))
return (NULL);
if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
(off_t)pg.phys_addr) != kd->nbpg)
return (NULL);
} else {
if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
(off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
return (NULL);
}
/* Found the page. */
offset %= kd->nbpg;
*cnt = kd->nbpg - offset;
return (&kd->swapspc[(size_t)offset]);
}
char *
_kvm_uread(kd, p, va, cnt)
kvm_t *kd;
const struct proc *p;
u_long va;
u_long *cnt;
{
struct miniproc mp;
PTOMINI(p, &mp);
return (_kvm_ureadm(kd, &mp, va, cnt));
}
/*
* Read proc's from memory file into buffer bp, which has space to hold
* at most maxcnt procs.
*/
static int
kvm_proclist(kd, what, arg, p, bp, maxcnt)
kvm_t *kd;
int what, arg;
struct proc *p;
struct kinfo_proc *bp;
int maxcnt;
{
int cnt = 0;
int nlwps;
struct kinfo_lwp *kl;
struct eproc eproc;
struct pgrp pgrp;
struct session sess;
struct tty tty;
struct proc proc;
for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
if (KREAD(kd, (u_long)p, &proc)) {
_kvm_err(kd, kd->program, "can't read proc at %p", p);
return (-1);
}
if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
&eproc.e_ucred)) {
_kvm_err(kd, kd->program,
"can't read proc credentials at %p", p);
return (-1);
}
switch (what) {
case KERN_PROC_PID:
if (proc.p_pid != (pid_t)arg)
continue;
break;
case KERN_PROC_UID:
if (eproc.e_ucred.cr_uid != (uid_t)arg)
continue;
break;
case KERN_PROC_RUID:
if (eproc.e_pcred.p_ruid != (uid_t)arg)
continue;
break;
}
/*
* We're going to add another proc to the set. If this
* will overflow the buffer, assume the reason is because
* nprocs (or the proc list) is corrupt and declare an error.
*/
if (cnt >= maxcnt) {
_kvm_err(kd, kd->program, "nprocs corrupt");
return (-1);
}
/*
* gather eproc
*/
eproc.e_paddr = p;
if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
_kvm_err(kd, kd->program, "can't read pgrp at %p",
proc.p_pgrp);
return (-1);
}
eproc.e_sess = pgrp.pg_session;
eproc.e_pgid = pgrp.pg_id;
eproc.e_jobc = pgrp.pg_jobc;
if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
_kvm_err(kd, kd->program, "can't read session at %p",
pgrp.pg_session);
return (-1);
}
if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
_kvm_err(kd, kd->program,
"can't read tty at %p", sess.s_ttyp);
return (-1);
}
eproc.e_tdev = tty.t_dev;
eproc.e_tsess = tty.t_session;
if (tty.t_pgrp != NULL) {
if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
_kvm_err(kd, kd->program,
"can't read tpgrp at %p",
tty.t_pgrp);
return (-1);
}
eproc.e_tpgid = pgrp.pg_id;
} else
eproc.e_tpgid = -1;
} else
eproc.e_tdev = NODEV;
eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
eproc.e_sid = sess.s_sid;
if (sess.s_leader == p)
eproc.e_flag |= EPROC_SLEADER;
/*
* Fill in the old-style proc.p_wmesg by copying the wmesg
* from the first available LWP.
*/
kl = kvm_getlwps(kd, proc.p_pid,
(u_long)PTRTOUINT64(eproc.e_paddr),
sizeof(struct kinfo_lwp), &nlwps);
if (kl) {
if (nlwps > 0) {
strcpy(eproc.e_wmesg, kl[0].l_wmesg);
}
}
(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
sizeof(eproc.e_vm));
eproc.e_xsize = eproc.e_xrssize = 0;
eproc.e_xccount = eproc.e_xswrss = 0;
switch (what) {
case KERN_PROC_PGRP:
if (eproc.e_pgid != (pid_t)arg)
continue;
break;
case KERN_PROC_TTY:
if ((proc.p_flag & P_CONTROLT) == 0 ||
eproc.e_tdev != (dev_t)arg)
continue;
break;
}
memcpy(&bp->kp_proc, &proc, sizeof(proc));
memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
++bp;
++cnt;
}
return (cnt);
}
/*
* Build proc info array by reading in proc list from a crash dump.
* Return number of procs read. maxcnt is the max we will read.
*/
static int
kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
kvm_t *kd;
int what, arg;
u_long a_allproc;
u_long a_zombproc;
int maxcnt;
{
struct kinfo_proc *bp = kd->procbase;
int acnt, zcnt;
struct proc *p;
if (KREAD(kd, a_allproc, &p)) {
_kvm_err(kd, kd->program, "cannot read allproc");
return (-1);
}
acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
if (acnt < 0)
return (acnt);
if (KREAD(kd, a_zombproc, &p)) {
_kvm_err(kd, kd->program, "cannot read zombproc");
return (-1);
}
zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
maxcnt - acnt);
if (zcnt < 0)
zcnt = 0;
return (acnt + zcnt);
}
struct kinfo_proc2 *
kvm_getproc2(kd, op, arg, esize, cnt)
kvm_t *kd;
int op, arg;
size_t esize;
int *cnt;
{
size_t size;
int mib[6], st, nprocs;
struct pstats pstats;
if (kd->procbase2 != NULL) {
free(kd->procbase2);
/*
* Clear this pointer in case this call fails. Otherwise,
* kvm_close() will free it again.
*/
kd->procbase2 = NULL;
}
if (ISSYSCTL(kd)) {
size = 0;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC2;
mib[2] = op;
mib[3] = arg;
mib[4] = (int)esize;
mib[5] = 0;
st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
if (st == -1) {
_kvm_syserr(kd, kd->program, "kvm_getproc2");
return (NULL);
}
mib[5] = (int) (size / esize);
kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
if (kd->procbase2 == NULL)
return (NULL);
st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
if (st == -1) {
_kvm_syserr(kd, kd->program, "kvm_getproc2");
return (NULL);
}
nprocs = (int) (size / esize);
} else {
char *kp2c;
struct kinfo_proc *kp;
struct kinfo_proc2 kp2, *kp2p;
struct kinfo_lwp *kl;
int i, nlwps;
kp = kvm_getprocs(kd, op, arg, &nprocs);
if (kp == NULL)
return (NULL);
kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
kp2c = (char *)(void *)kd->procbase2;
kp2p = &kp2;
for (i = 0; i < nprocs; i++, kp++) {
kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
(u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
sizeof(struct kinfo_lwp), &nlwps);
/* We use kl[0] as the "representative" LWP */
memset(kp2p, 0, sizeof(kp2));
kp2p->p_forw = kl[0].l_forw;
kp2p->p_back = kl[0].l_back;
kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
kp2p->p_addr = kl[0].l_addr;
kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
kp2p->p_tsess = 0;
kp2p->p_ru = PTRTOUINT64(kp->kp_proc.p_ru);
kp2p->p_eflag = 0;
kp2p->p_exitsig = kp->kp_proc.p_exitsig;
kp2p->p_flag = kp->kp_proc.p_flag;
kp2p->p_pid = kp->kp_proc.p_pid;
kp2p->p_ppid = kp->kp_eproc.e_ppid;
kp2p->p_sid = kp->kp_eproc.e_sid;
kp2p->p__pgid = kp->kp_eproc.e_pgid;
kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
/*CONSTCOND*/
memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
MIN(sizeof(kp2p->p_groups),
sizeof(kp->kp_eproc.e_ucred.cr_groups)));
kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
kp2p->p_jobc = kp->kp_eproc.e_jobc;
kp2p->p_tdev = kp->kp_eproc.e_tdev;
kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
kp2p->p_estcpu = kp->kp_proc.p_estcpu;
kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
kp2p->p_cpticks = kp->kp_proc.p_cpticks;
kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
kp2p->p_swtime = kl[0].l_swtime;
kp2p->p_slptime = kl[0].l_slptime;
#if 0 /* XXX thorpej */
kp2p->p_schedflags = kp->kp_proc.p_schedflags;
#else
kp2p->p_schedflags = 0;
#endif
kp2p->p_uticks = kp->kp_proc.p_uticks;
kp2p->p_sticks = kp->kp_proc.p_sticks;
kp2p->p_iticks = kp->kp_proc.p_iticks;
kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
kp2p->p_traceflag = kp->kp_proc.p_traceflag;
kp2p->p_holdcnt = kl[0].l_holdcnt;
memcpy(&kp2p->p_siglist,
&kp->kp_proc.p_sigctx.ps_siglist,
sizeof(ki_sigset_t));
memcpy(&kp2p->p_sigmask,
&kp->kp_proc.p_sigctx.ps_sigmask,
sizeof(ki_sigset_t));
memcpy(&kp2p->p_sigignore,
&kp->kp_proc.p_sigctx.ps_sigignore,
sizeof(ki_sigset_t));
memcpy(&kp2p->p_sigcatch,
&kp->kp_proc.p_sigctx.ps_sigcatch,
sizeof(ki_sigset_t));
kp2p->p_stat = kp->kp_proc.p_stat;
kp2p->p_priority = kl[0].l_priority;
kp2p->p_usrpri = kl[0].l_usrpri;
kp2p->p_nice = kp->kp_proc.p_nice;
kp2p->p_xstat = kp->kp_proc.p_xstat;
kp2p->p_acflag = kp->kp_proc.p_acflag;
/*CONSTCOND*/
strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
MIN(sizeof(kp2p->p_comm),
sizeof(kp->kp_proc.p_comm)));
strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
sizeof(kp2p->p_wmesg));
kp2p->p_wchan = kl[0].l_wchan;
strncpy(kp2p->p_login, kp->kp_eproc.e_login,
sizeof(kp2p->p_login));
kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
kp2p->p_realflag = kp->kp_proc.p_flag;
kp2p->p_nlwps = kp->kp_proc.p_nlwps;
kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
kp2p->p_realstat = kp->kp_proc.p_stat;
if (P_ZOMBIE(&kp->kp_proc) ||
kp->kp_proc.p_stats == NULL ||
KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
kp2p->p_uvalid = 0;
} else {
kp2p->p_uvalid = 1;
kp2p->p_ustart_sec = (u_int32_t)
pstats.p_start.tv_sec;
kp2p->p_ustart_usec = (u_int32_t)
pstats.p_start.tv_usec;
kp2p->p_uutime_sec = (u_int32_t)
pstats.p_ru.ru_utime.tv_sec;
kp2p->p_uutime_usec = (u_int32_t)
pstats.p_ru.ru_utime.tv_usec;
kp2p->p_ustime_sec = (u_int32_t)
pstats.p_ru.ru_stime.tv_sec;
kp2p->p_ustime_usec = (u_int32_t)
pstats.p_ru.ru_stime.tv_usec;
kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
kp2p->p_uctime_sec = (u_int32_t)
(pstats.p_cru.ru_utime.tv_sec +
pstats.p_cru.ru_stime.tv_sec);
kp2p->p_uctime_usec = (u_int32_t)
(pstats.p_cru.ru_utime.tv_usec +
pstats.p_cru.ru_stime.tv_usec);
}
memcpy(kp2c, &kp2, esize);
kp2c += esize;
}
_kvm_freeprocs(kd);
}
*cnt = nprocs;
return (kd->procbase2);
}
struct kinfo_lwp *
kvm_getlwps(kd, pid, paddr, esize, cnt)
kvm_t *kd;
int pid;
u_long paddr;
size_t esize;
int *cnt;
{
size_t size;
int mib[5], nlwps;
ssize_t st;
struct kinfo_lwp *kl;
if (kd->lwpbase != NULL) {
free(kd->lwpbase);
/*
* Clear this pointer in case this call fails. Otherwise,
* kvm_close() will free it again.
*/
kd->lwpbase = NULL;
}
if (ISSYSCTL(kd)) {
size = 0;
mib[0] = CTL_KERN;
mib[1] = KERN_LWP;
mib[2] = pid;
mib[3] = (int)esize;
mib[4] = 0;
st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
if (st == -1) {
_kvm_syserr(kd, kd->program, "kvm_getlwps");
return (NULL);
}
mib[4] = (int) (size / esize);
kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size);
if (kd->lwpbase == NULL)
return (NULL);
st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
if (st == -1) {
_kvm_syserr(kd, kd->program, "kvm_getlwps");
return (NULL);
}
nlwps = (int) (size / esize);
} else {
/* grovel through the memory image */
struct proc p;
struct lwp l;
u_long laddr;
int i;
st = kvm_read(kd, paddr, &p, sizeof(p));
if (st == -1) {
_kvm_syserr(kd, kd->program, "kvm_getlwps");
return (NULL);
}
nlwps = p.p_nlwps;
kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd,
nlwps * sizeof(struct kinfo_lwp));
if (kd->lwpbase == NULL)
return (NULL);
laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
for (i = 0; (i < nlwps) && (laddr != 0); i++) {
st = kvm_read(kd, laddr, &l, sizeof(l));
if (st == -1) {
_kvm_syserr(kd, kd->program, "kvm_getlwps");
return (NULL);
}
kl = &kd->lwpbase[i];
kl->l_laddr = laddr;
kl->l_forw = PTRTOUINT64(l.l_forw);
kl->l_back = PTRTOUINT64(l.l_back);
kl->l_addr = PTRTOUINT64(l.l_addr);
kl->l_lid = l.l_lid;
kl->l_flag = l.l_flag;
kl->l_swtime = l.l_swtime;
kl->l_slptime = l.l_slptime;
kl->l_schedflags = 0; /* XXX */
kl->l_holdcnt = l.l_holdcnt;
kl->l_priority = l.l_priority;
kl->l_usrpri = l.l_usrpri;
kl->l_stat = l.l_stat;
kl->l_wchan = PTRTOUINT64(l.l_wchan);
if (l.l_wmesg)
(void)kvm_read(kd, (u_long)l.l_wmesg,
kl->l_wmesg, (size_t)WMESGLEN);
kl->l_cpuid = KI_NOCPU;
laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
}
}
*cnt = nlwps;
return (kd->lwpbase);
}
struct kinfo_proc *
kvm_getprocs(kd, op, arg, cnt)
kvm_t *kd;
int op, arg;
int *cnt;
{
size_t size;
int mib[4], st, nprocs;
if (kd->procbase != NULL) {
free(kd->procbase);
/*
* Clear this pointer in case this call fails. Otherwise,
* kvm_close() will free it again.
*/
kd->procbase = NULL;
}
if (ISKMEM(kd)) {
size = 0;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = op;
mib[3] = arg;
st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
if (st == -1) {
_kvm_syserr(kd, kd->program, "kvm_getprocs");
return (NULL);
}
kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
if (kd->procbase == NULL)
return (NULL);
st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
if (st == -1) {
_kvm_syserr(kd, kd->program, "kvm_getprocs");
return (NULL);
}
if (size % sizeof(struct kinfo_proc) != 0) {
_kvm_err(kd, kd->program,
"proc size mismatch (%lu total, %lu chunks)",
(u_long)size, (u_long)sizeof(struct kinfo_proc));
return (NULL);
}
nprocs = (int) (size / sizeof(struct kinfo_proc));
} else if (ISSYSCTL(kd)) {
_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
"can't use kvm_getprocs");
return (NULL);
} else {
struct nlist nl[4], *p;
(void)memset(nl, 0, sizeof(nl));
nl[0].n_name = "_nprocs";
nl[1].n_name = "_allproc";
nl[2].n_name = "_zombproc";
nl[3].n_name = NULL;
if (kvm_nlist(kd, nl) != 0) {
for (p = nl; p->n_type != 0; ++p)
continue;
_kvm_err(kd, kd->program,
"%s: no such symbol", p->n_name);
return (NULL);
}
if (KREAD(kd, nl[0].n_value, &nprocs)) {
_kvm_err(kd, kd->program, "can't read nprocs");
return (NULL);
}
size = nprocs * sizeof(struct kinfo_proc);
kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
if (kd->procbase == NULL)
return (NULL);
nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
nl[2].n_value, nprocs);
if (nprocs < 0)
return (NULL);
#ifdef notdef
size = nprocs * sizeof(struct kinfo_proc);
(void)realloc(kd->procbase, size);
#endif
}
*cnt = nprocs;
return (kd->procbase);
}
void
_kvm_freeprocs(kd)
kvm_t *kd;
{
if (kd->procbase) {
free(kd->procbase);
kd->procbase = NULL;
}
}
void *
_kvm_realloc(kd, p, n)
kvm_t *kd;
void *p;
size_t n;
{
void *np = realloc(p, n);
if (np == NULL)
_kvm_err(kd, kd->program, "out of memory");
return (np);
}
/*
* Read in an argument vector from the user address space of process p.
* addr if the user-space base address of narg null-terminated contiguous
* strings. This is used to read in both the command arguments and
* environment strings. Read at most maxcnt characters of strings.
*/
static char **
kvm_argv(kd, p, addr, narg, maxcnt)
kvm_t *kd;
const struct miniproc *p;
u_long addr;
int narg;
int maxcnt;
{
char *np, *cp, *ep, *ap;
u_long oaddr = (u_long)~0L;
u_long len;
size_t cc;
char **argv;
/*
* Check that there aren't an unreasonable number of arguments,
* and that the address is in user space.
*/
if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
return (NULL);
if (kd->argv == NULL) {
/*
* Try to avoid reallocs.
*/
kd->argc = MAX(narg + 1, 32);
kd->argv = (char **)_kvm_malloc(kd, kd->argc *
sizeof(*kd->argv));
if (kd->argv == NULL)
return (NULL);
} else if (narg + 1 > kd->argc) {
kd->argc = MAX(2 * kd->argc, narg + 1);
kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
sizeof(*kd->argv));
if (kd->argv == NULL)
return (NULL);
}
if (kd->argspc == NULL) {
kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
if (kd->argspc == NULL)
return (NULL);
kd->arglen = kd->nbpg;
}
if (kd->argbuf == NULL) {
kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
if (kd->argbuf == NULL)
return (NULL);
}
cc = sizeof(char *) * narg;
if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
return (NULL);
ap = np = kd->argspc;
argv = kd->argv;
len = 0;
/*
* Loop over pages, filling in the argument vector.
*/
while (argv < kd->argv + narg && *argv != NULL) {
addr = (u_long)*argv & ~(kd->nbpg - 1);
if (addr != oaddr) {
if (kvm_ureadm(kd, p, addr, kd->argbuf,
(size_t)kd->nbpg) != kd->nbpg)
return (NULL);
oaddr = addr;
}
addr = (u_long)*argv & (kd->nbpg - 1);
cp = kd->argbuf + (size_t)addr;
cc = kd->nbpg - (size_t)addr;
if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
cc = (size_t)(maxcnt - len);
ep = memchr(cp, '\0', cc);
if (ep != NULL)
cc = ep - cp + 1;
if (len + cc > kd->arglen) {
ptrdiff_t off;
char **pp;
char *op = kd->argspc;
kd->arglen *= 2;
kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
(size_t)kd->arglen);
if (kd->argspc == NULL)
return (NULL);
/*
* Adjust argv pointers in case realloc moved
* the string space.
*/
off = kd->argspc - op;
for (pp = kd->argv; pp < argv; pp++)
*pp += off;
ap += off;
np += off;
}
memcpy(np, cp, cc);
np += cc;
len += cc;
if (ep != NULL) {
*argv++ = ap;
ap = np;
} else
*argv += cc;
if (maxcnt > 0 && len >= maxcnt) {
/*
* We're stopping prematurely. Terminate the
* current string.
*/
if (ep == NULL) {
*np = '\0';
*argv++ = ap;
}
break;
}
}
/* Make sure argv is terminated. */
*argv = NULL;
return (kd->argv);
}
static void
ps_str_a(p, addr, n)
struct ps_strings *p;
u_long *addr;
int *n;
{
*addr = (u_long)p->ps_argvstr;
*n = p->ps_nargvstr;
}
static void
ps_str_e(p, addr, n)
struct ps_strings *p;
u_long *addr;
int *n;
{
*addr = (u_long)p->ps_envstr;
*n = p->ps_nenvstr;
}
/*
* Determine if the proc indicated by p is still active.
* This test is not 100% foolproof in theory, but chances of
* being wrong are very low.
*/
static int
proc_verify(kd, kernp, p)
kvm_t *kd;
u_long kernp;
const struct miniproc *p;
{
struct proc kernproc;
/*
* Just read in the whole proc. It's not that big relative
* to the cost of the read system call.
*/
if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
sizeof(kernproc))
return (0);
return (p->p_pid == kernproc.p_pid &&
(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
}
static char **
kvm_doargv(kd, p, nchr, info)
kvm_t *kd;
const struct miniproc *p;
int nchr;
void (*info)(struct ps_strings *, u_long *, int *);
{
char **ap;
u_long addr;
int cnt;
struct ps_strings arginfo;
/*
* Pointers are stored at the top of the user stack.
*/
if (p->p_stat == SZOMB)
return (NULL);
cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
(void *)&arginfo, sizeof(arginfo));
if (cnt != sizeof(arginfo))
return (NULL);
(*info)(&arginfo, &addr, &cnt);
if (cnt == 0)
return (NULL);
ap = kvm_argv(kd, p, addr, cnt, nchr);
/*
* For live kernels, make sure this process didn't go away.
*/
if (ap != NULL && ISALIVE(kd) &&
!proc_verify(kd, (u_long)p->p_paddr, p))
ap = NULL;
return (ap);
}
/*
* Get the command args. This code is now machine independent.
*/
char **
kvm_getargv(kd, kp, nchr)
kvm_t *kd;
const struct kinfo_proc *kp;
int nchr;
{
struct miniproc p;
KPTOMINI(kp, &p);
return (kvm_doargv(kd, &p, nchr, ps_str_a));
}
char **
kvm_getenvv(kd, kp, nchr)
kvm_t *kd;
const struct kinfo_proc *kp;
int nchr;
{
struct miniproc p;
KPTOMINI(kp, &p);
return (kvm_doargv(kd, &p, nchr, ps_str_e));
}
static char **
kvm_doargv2(kd, pid, type, nchr)
kvm_t *kd;
pid_t pid;
int type;
int nchr;
{
size_t bufs;
int narg, mib[4];
size_t newarglen;
char **ap, *bp, *endp;
/*
* Check that there aren't an unreasonable number of arguments.
*/
if (nchr > ARG_MAX)
return (NULL);
if (nchr == 0)
nchr = ARG_MAX;
/* Get number of strings in argv */
mib[0] = CTL_KERN;
mib[1] = KERN_PROC_ARGS;
mib[2] = pid;
mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
bufs = sizeof(narg);
if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
return (NULL);
if (kd->argv == NULL) {
/*
* Try to avoid reallocs.
*/
kd->argc = MAX(narg + 1, 32);
kd->argv = (char **)_kvm_malloc(kd, kd->argc *
sizeof(*kd->argv));
if (kd->argv == NULL)
return (NULL);
} else if (narg + 1 > kd->argc) {
kd->argc = MAX(2 * kd->argc, narg + 1);
kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
sizeof(*kd->argv));
if (kd->argv == NULL)
return (NULL);
}
newarglen = MIN(nchr, ARG_MAX);
if (kd->arglen < newarglen) {
if (kd->arglen == 0)
kd->argspc = (char *)_kvm_malloc(kd, newarglen);
else
kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
newarglen);
if (kd->argspc == NULL)
return (NULL);
if (newarglen > INT_MAX)
return NULL;
kd->arglen = (int)newarglen;
}
memset(kd->argspc, 0, (size_t)kd->arglen); /* XXX necessary? */
mib[0] = CTL_KERN;
mib[1] = KERN_PROC_ARGS;
mib[2] = pid;
mib[3] = type;
bufs = kd->arglen;
if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
return (NULL);
bp = kd->argspc;
bp[kd->arglen-1] = '\0'; /* make sure the string ends with nul */
ap = kd->argv;
endp = bp + MIN(nchr, bufs);
while (bp < endp) {
*ap++ = bp;
/*
* XXX: don't need following anymore, or stick check
* for max argc in above while loop?
*/
if (ap >= kd->argv + kd->argc) {
kd->argc *= 2;
kd->argv = _kvm_realloc(kd, kd->argv,
kd->argc * sizeof(*kd->argv));
ap = kd->argv;
}
bp += strlen(bp) + 1;
}
*ap = NULL;
return (kd->argv);
}
char **
kvm_getargv2(kd, kp, nchr)
kvm_t *kd;
const struct kinfo_proc2 *kp;
int nchr;
{
return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
}
char **
kvm_getenvv2(kd, kp, nchr)
kvm_t *kd;
const struct kinfo_proc2 *kp;
int nchr;
{
return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
}
/*
* Read from user space. The user context is given by p.
*/
static ssize_t
kvm_ureadm(kd, p, uva, buf, len)
kvm_t *kd;
const struct miniproc *p;
u_long uva;
char *buf;
size_t len;
{
char *cp;
cp = buf;
while (len > 0) {
size_t cc;
char *dp;
u_long cnt;
dp = _kvm_ureadm(kd, p, uva, &cnt);
if (dp == NULL) {
_kvm_err(kd, 0, "invalid address (%lx)", uva);
return (0);
}
cc = (size_t)MIN(cnt, len);
memcpy(cp, dp, cc);
cp += cc;
uva += cc;
len -= cc;
}
return (ssize_t)(cp - buf);
}
ssize_t
kvm_uread(kd, p, uva, buf, len)
kvm_t *kd;
const struct proc *p;
u_long uva;
char *buf;
size_t len;
{
struct miniproc mp;
PTOMINI(p, &mp);
return (kvm_ureadm(kd, &mp, uva, buf, len));
}