3173 lines
77 KiB
C
3173 lines
77 KiB
C
/* $NetBSD: ip_mroute.c,v 1.163 2018/09/14 05:09:51 maxv Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Stephen Deering of Stanford University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1989 Stephen Deering
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Stephen Deering of Stanford University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
|
|
*/
|
|
|
|
/*
|
|
* IP multicast forwarding procedures
|
|
*
|
|
* Written by David Waitzman, BBN Labs, August 1988.
|
|
* Modified by Steve Deering, Stanford, February 1989.
|
|
* Modified by Mark J. Steiglitz, Stanford, May, 1991
|
|
* Modified by Van Jacobson, LBL, January 1993
|
|
* Modified by Ajit Thyagarajan, PARC, August 1993
|
|
* Modified by Bill Fenner, PARC, April 1994
|
|
* Modified by Charles M. Hannum, NetBSD, May 1995.
|
|
* Modified by Ahmed Helmy, SGI, June 1996
|
|
* Modified by George Edmond Eddy (Rusty), ISI, February 1998
|
|
* Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
|
|
* Modified by Hitoshi Asaeda, WIDE, August 2000
|
|
* Modified by Pavlin Radoslavov, ICSI, October 2002
|
|
*
|
|
* MROUTING Revision: 1.2
|
|
* and PIM-SMv2 and PIM-DM support, advanced API support,
|
|
* bandwidth metering and signaling
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.163 2018/09/14 05:09:51 maxv Exp $");
|
|
|
|
#ifdef _KERNEL_OPT
|
|
#include "opt_inet.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_pim.h"
|
|
#endif
|
|
|
|
#ifdef PIM
|
|
#define _PIM_VT 1
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/syslog.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/raw_cb.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_offload.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/udp.h>
|
|
#include <netinet/igmp.h>
|
|
#include <netinet/igmp_var.h>
|
|
#include <netinet/ip_mroute.h>
|
|
#ifdef PIM
|
|
#include <netinet/pim.h>
|
|
#include <netinet/pim_var.h>
|
|
#endif
|
|
#include <netinet/ip_encap.h>
|
|
|
|
#ifdef IPSEC
|
|
#include <netipsec/ipsec.h>
|
|
#include <netipsec/key.h>
|
|
#endif
|
|
|
|
#define IP_MULTICASTOPTS 0
|
|
#define M_PULLUP(m, len) \
|
|
do { \
|
|
if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
|
|
(m) = m_pullup((m), (len)); \
|
|
} while (/*CONSTCOND*/ 0)
|
|
|
|
/*
|
|
* Globals. All but ip_mrouter and ip_mrtproto could be static,
|
|
* except for netstat or debugging purposes.
|
|
*/
|
|
struct socket *ip_mrouter = NULL;
|
|
int ip_mrtproto = IGMP_DVMRP; /* for netstat only */
|
|
|
|
#define MFCHASH(a, g) \
|
|
((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
|
|
((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
|
|
LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
|
|
u_long mfchash;
|
|
|
|
u_char nexpire[MFCTBLSIZ];
|
|
struct vif viftable[MAXVIFS];
|
|
struct mrtstat mrtstat;
|
|
u_int mrtdebug = 0; /* debug level */
|
|
#define DEBUG_MFC 0x02
|
|
#define DEBUG_FORWARD 0x04
|
|
#define DEBUG_EXPIRE 0x08
|
|
#define DEBUG_XMIT 0x10
|
|
#define DEBUG_PIM 0x20
|
|
|
|
#define VIFI_INVALID ((vifi_t) -1)
|
|
|
|
u_int tbfdebug = 0; /* tbf debug level */
|
|
|
|
/* vif attachment using sys/netinet/ip_encap.c */
|
|
static void vif_input(struct mbuf *, int, int, void *);
|
|
static int vif_encapcheck(struct mbuf *, int, int, void *);
|
|
|
|
static const struct encapsw vif_encapsw = {
|
|
.encapsw4 = {
|
|
.pr_input = vif_input,
|
|
.pr_ctlinput = NULL,
|
|
}
|
|
};
|
|
|
|
#define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
|
|
#define UPCALL_EXPIRE 6 /* number of timeouts */
|
|
|
|
/*
|
|
* Define the token bucket filter structures
|
|
*/
|
|
|
|
#define TBF_REPROCESS (hz / 100) /* 100x / second */
|
|
|
|
static int get_sg_cnt(struct sioc_sg_req *);
|
|
static int get_vif_cnt(struct sioc_vif_req *);
|
|
static int ip_mrouter_init(struct socket *, int);
|
|
static int set_assert(int);
|
|
static int add_vif(struct vifctl *);
|
|
static int del_vif(vifi_t *);
|
|
static void update_mfc_params(struct mfc *, struct mfcctl2 *);
|
|
static void init_mfc_params(struct mfc *, struct mfcctl2 *);
|
|
static void expire_mfc(struct mfc *);
|
|
static int add_mfc(struct sockopt *);
|
|
#ifdef UPCALL_TIMING
|
|
static void collate(struct timeval *);
|
|
#endif
|
|
static int del_mfc(struct sockopt *);
|
|
static int set_api_config(struct sockopt *); /* chose API capabilities */
|
|
static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
|
|
static void expire_upcalls(void *);
|
|
static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *);
|
|
static void phyint_send(struct ip *, struct vif *, struct mbuf *);
|
|
static void encap_send(struct ip *, struct vif *, struct mbuf *);
|
|
static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t);
|
|
static void tbf_queue(struct vif *, struct mbuf *);
|
|
static void tbf_process_q(struct vif *);
|
|
static void tbf_reprocess_q(void *);
|
|
static int tbf_dq_sel(struct vif *, struct ip *);
|
|
static void tbf_send_packet(struct vif *, struct mbuf *);
|
|
static void tbf_update_tokens(struct vif *);
|
|
static int priority(struct vif *, struct ip *);
|
|
|
|
/*
|
|
* Bandwidth monitoring
|
|
*/
|
|
static void free_bw_list(struct bw_meter *);
|
|
static int add_bw_upcall(struct bw_upcall *);
|
|
static int del_bw_upcall(struct bw_upcall *);
|
|
static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *);
|
|
static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
|
|
static void bw_upcalls_send(void);
|
|
static void schedule_bw_meter(struct bw_meter *, struct timeval *);
|
|
static void unschedule_bw_meter(struct bw_meter *);
|
|
static void bw_meter_process(void);
|
|
static void expire_bw_upcalls_send(void *);
|
|
static void expire_bw_meter_process(void *);
|
|
|
|
#ifdef PIM
|
|
static int pim_register_send(struct ip *, struct vif *,
|
|
struct mbuf *, struct mfc *);
|
|
static int pim_register_send_rp(struct ip *, struct vif *,
|
|
struct mbuf *, struct mfc *);
|
|
static int pim_register_send_upcall(struct ip *, struct vif *,
|
|
struct mbuf *, struct mfc *);
|
|
static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
|
|
#endif
|
|
|
|
#define ENCAP_TTL 64
|
|
#define ENCAP_PROTO IPPROTO_IPIP
|
|
|
|
/* prototype IP hdr for encapsulated packets */
|
|
static const struct ip multicast_encap_iphdr = {
|
|
.ip_hl = sizeof(struct ip) >> 2,
|
|
.ip_v = IPVERSION,
|
|
.ip_len = sizeof(struct ip),
|
|
.ip_ttl = ENCAP_TTL,
|
|
.ip_p = ENCAP_PROTO,
|
|
};
|
|
|
|
/*
|
|
* Bandwidth meter variables and constants
|
|
*/
|
|
|
|
/*
|
|
* Pending timeouts are stored in a hash table, the key being the
|
|
* expiration time. Periodically, the entries are analysed and processed.
|
|
*/
|
|
#define BW_METER_BUCKETS 1024
|
|
static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
|
|
struct callout bw_meter_ch;
|
|
#define BW_METER_PERIOD (hz) /* periodical handling of bw meters */
|
|
|
|
/*
|
|
* Pending upcalls are stored in a vector which is flushed when
|
|
* full, or periodically
|
|
*/
|
|
static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX];
|
|
static u_int bw_upcalls_n; /* # of pending upcalls */
|
|
struct callout bw_upcalls_ch;
|
|
#define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */
|
|
|
|
#ifdef PIM
|
|
struct pimstat pimstat;
|
|
|
|
/*
|
|
* Note: the PIM Register encapsulation adds the following in front of a
|
|
* data packet:
|
|
*
|
|
* struct pim_encap_hdr {
|
|
* struct ip ip;
|
|
* struct pim_encap_pimhdr pim;
|
|
* }
|
|
*/
|
|
|
|
struct pim_encap_pimhdr {
|
|
struct pim pim;
|
|
uint32_t flags;
|
|
};
|
|
|
|
static struct ip pim_encap_iphdr = {
|
|
.ip_v = IPVERSION,
|
|
.ip_hl = sizeof(struct ip) >> 2,
|
|
.ip_len = sizeof(struct ip),
|
|
.ip_ttl = ENCAP_TTL,
|
|
.ip_p = IPPROTO_PIM,
|
|
};
|
|
|
|
static struct pim_encap_pimhdr pim_encap_pimhdr = {
|
|
{
|
|
PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
|
|
0, /* reserved */
|
|
0, /* checksum */
|
|
},
|
|
0 /* flags */
|
|
};
|
|
|
|
static struct ifnet multicast_register_if;
|
|
static vifi_t reg_vif_num = VIFI_INVALID;
|
|
#endif /* PIM */
|
|
|
|
|
|
/*
|
|
* Private variables.
|
|
*/
|
|
static vifi_t numvifs = 0;
|
|
|
|
static struct callout expire_upcalls_ch;
|
|
|
|
/*
|
|
* whether or not special PIM assert processing is enabled.
|
|
*/
|
|
static int pim_assert;
|
|
/*
|
|
* Rate limit for assert notification messages, in usec
|
|
*/
|
|
#define ASSERT_MSG_TIME 3000000
|
|
|
|
/*
|
|
* Kernel multicast routing API capabilities and setup.
|
|
* If more API capabilities are added to the kernel, they should be
|
|
* recorded in `mrt_api_support'.
|
|
*/
|
|
static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
|
|
MRT_MFC_FLAGS_BORDER_VIF |
|
|
MRT_MFC_RP |
|
|
MRT_MFC_BW_UPCALL);
|
|
static u_int32_t mrt_api_config = 0;
|
|
|
|
/*
|
|
* Find a route for a given origin IP address and Multicast group address
|
|
* Type of service parameter to be added in the future!!!
|
|
* Statistics are updated by the caller if needed
|
|
* (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
|
|
*/
|
|
static struct mfc *
|
|
mfc_find(struct in_addr *o, struct in_addr *g)
|
|
{
|
|
struct mfc *rt;
|
|
|
|
LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
|
|
if (in_hosteq(rt->mfc_origin, *o) &&
|
|
in_hosteq(rt->mfc_mcastgrp, *g) &&
|
|
(rt->mfc_stall == NULL))
|
|
break;
|
|
}
|
|
|
|
return rt;
|
|
}
|
|
|
|
/*
|
|
* Macros to compute elapsed time efficiently
|
|
* Borrowed from Van Jacobson's scheduling code
|
|
*/
|
|
#define TV_DELTA(a, b, delta) do { \
|
|
int xxs; \
|
|
delta = (a).tv_usec - (b).tv_usec; \
|
|
xxs = (a).tv_sec - (b).tv_sec; \
|
|
switch (xxs) { \
|
|
case 2: \
|
|
delta += 1000000; \
|
|
/* fall through */ \
|
|
case 1: \
|
|
delta += 1000000; \
|
|
/* fall through */ \
|
|
case 0: \
|
|
break; \
|
|
default: \
|
|
delta += (1000000 * xxs); \
|
|
break; \
|
|
} \
|
|
} while (/*CONSTCOND*/ 0)
|
|
|
|
#ifdef UPCALL_TIMING
|
|
u_int32_t upcall_data[51];
|
|
#endif /* UPCALL_TIMING */
|
|
|
|
/*
|
|
* Handle MRT setsockopt commands to modify the multicast routing tables.
|
|
*/
|
|
int
|
|
ip_mrouter_set(struct socket *so, struct sockopt *sopt)
|
|
{
|
|
int error;
|
|
int optval;
|
|
struct vifctl vifc;
|
|
vifi_t vifi;
|
|
struct bw_upcall bwuc;
|
|
|
|
if (sopt->sopt_name != MRT_INIT && so != ip_mrouter)
|
|
error = ENOPROTOOPT;
|
|
else {
|
|
switch (sopt->sopt_name) {
|
|
case MRT_INIT:
|
|
error = sockopt_getint(sopt, &optval);
|
|
if (error)
|
|
break;
|
|
|
|
error = ip_mrouter_init(so, optval);
|
|
break;
|
|
case MRT_DONE:
|
|
error = ip_mrouter_done();
|
|
break;
|
|
case MRT_ADD_VIF:
|
|
error = sockopt_get(sopt, &vifc, sizeof(vifc));
|
|
if (error)
|
|
break;
|
|
error = add_vif(&vifc);
|
|
break;
|
|
case MRT_DEL_VIF:
|
|
error = sockopt_get(sopt, &vifi, sizeof(vifi));
|
|
if (error)
|
|
break;
|
|
error = del_vif(&vifi);
|
|
break;
|
|
case MRT_ADD_MFC:
|
|
error = add_mfc(sopt);
|
|
break;
|
|
case MRT_DEL_MFC:
|
|
error = del_mfc(sopt);
|
|
break;
|
|
case MRT_ASSERT:
|
|
error = sockopt_getint(sopt, &optval);
|
|
if (error)
|
|
break;
|
|
error = set_assert(optval);
|
|
break;
|
|
case MRT_API_CONFIG:
|
|
error = set_api_config(sopt);
|
|
break;
|
|
case MRT_ADD_BW_UPCALL:
|
|
error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
|
|
if (error)
|
|
break;
|
|
error = add_bw_upcall(&bwuc);
|
|
break;
|
|
case MRT_DEL_BW_UPCALL:
|
|
error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
|
|
if (error)
|
|
break;
|
|
error = del_bw_upcall(&bwuc);
|
|
break;
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Handle MRT getsockopt commands
|
|
*/
|
|
int
|
|
ip_mrouter_get(struct socket *so, struct sockopt *sopt)
|
|
{
|
|
int error;
|
|
|
|
if (so != ip_mrouter)
|
|
error = ENOPROTOOPT;
|
|
else {
|
|
switch (sopt->sopt_name) {
|
|
case MRT_VERSION:
|
|
error = sockopt_setint(sopt, 0x0305); /* XXX !!!! */
|
|
break;
|
|
case MRT_ASSERT:
|
|
error = sockopt_setint(sopt, pim_assert);
|
|
break;
|
|
case MRT_API_SUPPORT:
|
|
error = sockopt_set(sopt, &mrt_api_support,
|
|
sizeof(mrt_api_support));
|
|
break;
|
|
case MRT_API_CONFIG:
|
|
error = sockopt_set(sopt, &mrt_api_config,
|
|
sizeof(mrt_api_config));
|
|
break;
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Handle ioctl commands to obtain information from the cache
|
|
*/
|
|
int
|
|
mrt_ioctl(struct socket *so, u_long cmd, void *data)
|
|
{
|
|
int error;
|
|
|
|
if (so != ip_mrouter)
|
|
error = EINVAL;
|
|
else
|
|
switch (cmd) {
|
|
case SIOCGETVIFCNT:
|
|
error = get_vif_cnt((struct sioc_vif_req *)data);
|
|
break;
|
|
case SIOCGETSGCNT:
|
|
error = get_sg_cnt((struct sioc_sg_req *)data);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* returns the packet, byte, rpf-failure count for the source group provided
|
|
*/
|
|
static int
|
|
get_sg_cnt(struct sioc_sg_req *req)
|
|
{
|
|
int s;
|
|
struct mfc *rt;
|
|
|
|
s = splsoftnet();
|
|
rt = mfc_find(&req->src, &req->grp);
|
|
if (rt == NULL) {
|
|
splx(s);
|
|
req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
|
|
return EADDRNOTAVAIL;
|
|
}
|
|
req->pktcnt = rt->mfc_pkt_cnt;
|
|
req->bytecnt = rt->mfc_byte_cnt;
|
|
req->wrong_if = rt->mfc_wrong_if;
|
|
splx(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* returns the input and output packet and byte counts on the vif provided
|
|
*/
|
|
static int
|
|
get_vif_cnt(struct sioc_vif_req *req)
|
|
{
|
|
vifi_t vifi = req->vifi;
|
|
|
|
if (vifi >= numvifs)
|
|
return EINVAL;
|
|
|
|
req->icount = viftable[vifi].v_pkt_in;
|
|
req->ocount = viftable[vifi].v_pkt_out;
|
|
req->ibytes = viftable[vifi].v_bytes_in;
|
|
req->obytes = viftable[vifi].v_bytes_out;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Enable multicast routing
|
|
*/
|
|
static int
|
|
ip_mrouter_init(struct socket *so, int v)
|
|
{
|
|
if (mrtdebug)
|
|
log(LOG_DEBUG,
|
|
"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
|
|
so->so_type, so->so_proto->pr_protocol);
|
|
|
|
if (so->so_type != SOCK_RAW ||
|
|
so->so_proto->pr_protocol != IPPROTO_IGMP)
|
|
return EOPNOTSUPP;
|
|
|
|
if (v != 1)
|
|
return EINVAL;
|
|
|
|
if (ip_mrouter != NULL)
|
|
return EADDRINUSE;
|
|
|
|
ip_mrouter = so;
|
|
|
|
mfchashtbl = hashinit(MFCTBLSIZ, HASH_LIST, true, &mfchash);
|
|
memset((void *)nexpire, 0, sizeof(nexpire));
|
|
|
|
pim_assert = 0;
|
|
|
|
callout_init(&expire_upcalls_ch, 0);
|
|
callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
|
|
expire_upcalls, NULL);
|
|
|
|
callout_init(&bw_upcalls_ch, 0);
|
|
callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
|
|
expire_bw_upcalls_send, NULL);
|
|
|
|
callout_init(&bw_meter_ch, 0);
|
|
callout_reset(&bw_meter_ch, BW_METER_PERIOD,
|
|
expire_bw_meter_process, NULL);
|
|
|
|
if (mrtdebug)
|
|
log(LOG_DEBUG, "ip_mrouter_init\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Disable multicast routing
|
|
*/
|
|
int
|
|
ip_mrouter_done(void)
|
|
{
|
|
vifi_t vifi;
|
|
struct vif *vifp;
|
|
int i;
|
|
int s;
|
|
|
|
s = splsoftnet();
|
|
|
|
/* Clear out all the vifs currently in use. */
|
|
for (vifi = 0; vifi < numvifs; vifi++) {
|
|
vifp = &viftable[vifi];
|
|
if (!in_nullhost(vifp->v_lcl_addr))
|
|
reset_vif(vifp);
|
|
}
|
|
|
|
numvifs = 0;
|
|
pim_assert = 0;
|
|
mrt_api_config = 0;
|
|
|
|
callout_stop(&expire_upcalls_ch);
|
|
callout_stop(&bw_upcalls_ch);
|
|
callout_stop(&bw_meter_ch);
|
|
|
|
/*
|
|
* Free all multicast forwarding cache entries.
|
|
*/
|
|
for (i = 0; i < MFCTBLSIZ; i++) {
|
|
struct mfc *rt, *nrt;
|
|
|
|
for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
|
|
nrt = LIST_NEXT(rt, mfc_hash);
|
|
|
|
expire_mfc(rt);
|
|
}
|
|
}
|
|
|
|
memset((void *)nexpire, 0, sizeof(nexpire));
|
|
hashdone(mfchashtbl, HASH_LIST, mfchash);
|
|
mfchashtbl = NULL;
|
|
|
|
bw_upcalls_n = 0;
|
|
memset(bw_meter_timers, 0, sizeof(bw_meter_timers));
|
|
|
|
/* Reset de-encapsulation cache. */
|
|
|
|
ip_mrouter = NULL;
|
|
|
|
splx(s);
|
|
|
|
if (mrtdebug)
|
|
log(LOG_DEBUG, "ip_mrouter_done\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ip_mrouter_detach(struct ifnet *ifp)
|
|
{
|
|
int vifi, i;
|
|
struct vif *vifp;
|
|
struct mfc *rt;
|
|
struct rtdetq *rte;
|
|
|
|
/* XXX not sure about side effect to userland routing daemon */
|
|
for (vifi = 0; vifi < numvifs; vifi++) {
|
|
vifp = &viftable[vifi];
|
|
if (vifp->v_ifp == ifp)
|
|
reset_vif(vifp);
|
|
}
|
|
for (i = 0; i < MFCTBLSIZ; i++) {
|
|
if (nexpire[i] == 0)
|
|
continue;
|
|
LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
|
|
for (rte = rt->mfc_stall; rte; rte = rte->next) {
|
|
if (rte->ifp == ifp)
|
|
rte->ifp = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set PIM assert processing global
|
|
*/
|
|
static int
|
|
set_assert(int i)
|
|
{
|
|
pim_assert = !!i;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Configure API capabilities
|
|
*/
|
|
static int
|
|
set_api_config(struct sockopt *sopt)
|
|
{
|
|
u_int32_t apival;
|
|
int i, error;
|
|
|
|
/*
|
|
* We can set the API capabilities only if it is the first operation
|
|
* after MRT_INIT. I.e.:
|
|
* - there are no vifs installed
|
|
* - pim_assert is not enabled
|
|
* - the MFC table is empty
|
|
*/
|
|
error = sockopt_get(sopt, &apival, sizeof(apival));
|
|
if (error)
|
|
return error;
|
|
if (numvifs > 0)
|
|
return EPERM;
|
|
if (pim_assert)
|
|
return EPERM;
|
|
for (i = 0; i < MFCTBLSIZ; i++) {
|
|
if (LIST_FIRST(&mfchashtbl[i]) != NULL)
|
|
return EPERM;
|
|
}
|
|
|
|
mrt_api_config = apival & mrt_api_support;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add a vif to the vif table
|
|
*/
|
|
static int
|
|
add_vif(struct vifctl *vifcp)
|
|
{
|
|
struct vif *vifp;
|
|
struct ifnet *ifp;
|
|
int error, s;
|
|
struct sockaddr_in sin;
|
|
|
|
if (vifcp->vifc_vifi >= MAXVIFS)
|
|
return EINVAL;
|
|
if (in_nullhost(vifcp->vifc_lcl_addr))
|
|
return EADDRNOTAVAIL;
|
|
|
|
vifp = &viftable[vifcp->vifc_vifi];
|
|
if (!in_nullhost(vifp->v_lcl_addr))
|
|
return EADDRINUSE;
|
|
|
|
/* Find the interface with an address in AF_INET family. */
|
|
#ifdef PIM
|
|
if (vifcp->vifc_flags & VIFF_REGISTER) {
|
|
/*
|
|
* XXX: Because VIFF_REGISTER does not really need a valid
|
|
* local interface (e.g. it could be 127.0.0.2), we don't
|
|
* check its address.
|
|
*/
|
|
ifp = NULL;
|
|
} else
|
|
#endif
|
|
{
|
|
struct ifaddr *ifa;
|
|
|
|
sockaddr_in_init(&sin, &vifcp->vifc_lcl_addr, 0);
|
|
s = pserialize_read_enter();
|
|
ifa = ifa_ifwithaddr(sintosa(&sin));
|
|
if (ifa == NULL) {
|
|
pserialize_read_exit(s);
|
|
return EADDRNOTAVAIL;
|
|
}
|
|
ifp = ifa->ifa_ifp;
|
|
/* FIXME NOMPSAFE */
|
|
pserialize_read_exit(s);
|
|
}
|
|
|
|
if (vifcp->vifc_flags & VIFF_TUNNEL) {
|
|
if (vifcp->vifc_flags & VIFF_SRCRT) {
|
|
log(LOG_ERR, "source routed tunnels not supported\n");
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
/* attach this vif to decapsulator dispatch table */
|
|
/*
|
|
* XXX Use addresses in registration so that matching
|
|
* can be done with radix tree in decapsulator. But,
|
|
* we need to check inner header for multicast, so
|
|
* this requires both radix tree lookup and then a
|
|
* function to check, and this is not supported yet.
|
|
*/
|
|
error = encap_lock_enter();
|
|
if (error)
|
|
return error;
|
|
vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
|
|
vif_encapcheck, &vif_encapsw, vifp);
|
|
encap_lock_exit();
|
|
if (!vifp->v_encap_cookie)
|
|
return EINVAL;
|
|
|
|
/* Create a fake encapsulation interface. */
|
|
ifp = malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK|M_ZERO);
|
|
snprintf(ifp->if_xname, sizeof(ifp->if_xname),
|
|
"mdecap%d", vifcp->vifc_vifi);
|
|
|
|
/* Prepare cached route entry. */
|
|
memset(&vifp->v_route, 0, sizeof(vifp->v_route));
|
|
#ifdef PIM
|
|
} else if (vifcp->vifc_flags & VIFF_REGISTER) {
|
|
ifp = &multicast_register_if;
|
|
if (mrtdebug)
|
|
log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
|
|
(void *)ifp);
|
|
if (reg_vif_num == VIFI_INVALID) {
|
|
memset(ifp, 0, sizeof(*ifp));
|
|
snprintf(ifp->if_xname, sizeof(ifp->if_xname),
|
|
"register_vif");
|
|
ifp->if_flags = IFF_LOOPBACK;
|
|
memset(&vifp->v_route, 0, sizeof(vifp->v_route));
|
|
reg_vif_num = vifcp->vifc_vifi;
|
|
}
|
|
#endif
|
|
} else {
|
|
/* Make sure the interface supports multicast. */
|
|
if ((ifp->if_flags & IFF_MULTICAST) == 0)
|
|
return EOPNOTSUPP;
|
|
|
|
/* Enable promiscuous reception of all IP multicasts. */
|
|
sockaddr_in_init(&sin, &zeroin_addr, 0);
|
|
error = if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin));
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
s = splsoftnet();
|
|
|
|
/* Define parameters for the tbf structure. */
|
|
vifp->tbf_q = NULL;
|
|
vifp->tbf_t = &vifp->tbf_q;
|
|
microtime(&vifp->tbf_last_pkt_t);
|
|
vifp->tbf_n_tok = 0;
|
|
vifp->tbf_q_len = 0;
|
|
vifp->tbf_max_q_len = MAXQSIZE;
|
|
|
|
vifp->v_flags = vifcp->vifc_flags;
|
|
vifp->v_threshold = vifcp->vifc_threshold;
|
|
/* scaling up here allows division by 1024 in critical code */
|
|
vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
|
|
vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
|
|
vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
|
|
vifp->v_ifp = ifp;
|
|
/* Initialize per vif pkt counters. */
|
|
vifp->v_pkt_in = 0;
|
|
vifp->v_pkt_out = 0;
|
|
vifp->v_bytes_in = 0;
|
|
vifp->v_bytes_out = 0;
|
|
|
|
callout_init(&vifp->v_repq_ch, 0);
|
|
|
|
splx(s);
|
|
|
|
/* Adjust numvifs up if the vifi is higher than numvifs. */
|
|
if (numvifs <= vifcp->vifc_vifi)
|
|
numvifs = vifcp->vifc_vifi + 1;
|
|
|
|
if (mrtdebug)
|
|
log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
|
|
vifcp->vifc_vifi,
|
|
ntohl(vifcp->vifc_lcl_addr.s_addr),
|
|
(vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
|
|
ntohl(vifcp->vifc_rmt_addr.s_addr),
|
|
vifcp->vifc_threshold,
|
|
vifcp->vifc_rate_limit);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
reset_vif(struct vif *vifp)
|
|
{
|
|
struct mbuf *m, *n;
|
|
struct ifnet *ifp;
|
|
struct sockaddr_in sin;
|
|
|
|
callout_stop(&vifp->v_repq_ch);
|
|
|
|
/* detach this vif from decapsulator dispatch table */
|
|
encap_lock_enter();
|
|
encap_detach(vifp->v_encap_cookie);
|
|
encap_lock_exit();
|
|
vifp->v_encap_cookie = NULL;
|
|
|
|
/*
|
|
* Free packets queued at the interface
|
|
*/
|
|
for (m = vifp->tbf_q; m != NULL; m = n) {
|
|
n = m->m_nextpkt;
|
|
m_freem(m);
|
|
}
|
|
|
|
if (vifp->v_flags & VIFF_TUNNEL)
|
|
free(vifp->v_ifp, M_MRTABLE);
|
|
else if (vifp->v_flags & VIFF_REGISTER) {
|
|
#ifdef PIM
|
|
reg_vif_num = VIFI_INVALID;
|
|
#endif
|
|
} else {
|
|
sockaddr_in_init(&sin, &zeroin_addr, 0);
|
|
ifp = vifp->v_ifp;
|
|
if_mcast_op(ifp, SIOCDELMULTI, sintosa(&sin));
|
|
}
|
|
memset((void *)vifp, 0, sizeof(*vifp));
|
|
}
|
|
|
|
/*
|
|
* Delete a vif from the vif table
|
|
*/
|
|
static int
|
|
del_vif(vifi_t *vifip)
|
|
{
|
|
struct vif *vifp;
|
|
vifi_t vifi;
|
|
int s;
|
|
|
|
if (*vifip >= numvifs)
|
|
return EINVAL;
|
|
|
|
vifp = &viftable[*vifip];
|
|
if (in_nullhost(vifp->v_lcl_addr))
|
|
return EADDRNOTAVAIL;
|
|
|
|
s = splsoftnet();
|
|
|
|
reset_vif(vifp);
|
|
|
|
/* Adjust numvifs down */
|
|
for (vifi = numvifs; vifi > 0; vifi--)
|
|
if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
|
|
break;
|
|
numvifs = vifi;
|
|
|
|
splx(s);
|
|
|
|
if (mrtdebug)
|
|
log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* update an mfc entry without resetting counters and S,G addresses.
|
|
*/
|
|
static void
|
|
update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
|
|
{
|
|
int i;
|
|
|
|
rt->mfc_parent = mfccp->mfcc_parent;
|
|
for (i = 0; i < numvifs; i++) {
|
|
rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
|
|
rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
|
|
MRT_MFC_FLAGS_ALL;
|
|
}
|
|
/* set the RP address */
|
|
if (mrt_api_config & MRT_MFC_RP)
|
|
rt->mfc_rp = mfccp->mfcc_rp;
|
|
else
|
|
rt->mfc_rp = zeroin_addr;
|
|
}
|
|
|
|
/*
|
|
* fully initialize an mfc entry from the parameter.
|
|
*/
|
|
static void
|
|
init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
|
|
{
|
|
rt->mfc_origin = mfccp->mfcc_origin;
|
|
rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
|
|
|
|
update_mfc_params(rt, mfccp);
|
|
|
|
/* initialize pkt counters per src-grp */
|
|
rt->mfc_pkt_cnt = 0;
|
|
rt->mfc_byte_cnt = 0;
|
|
rt->mfc_wrong_if = 0;
|
|
timerclear(&rt->mfc_last_assert);
|
|
}
|
|
|
|
static void
|
|
expire_mfc(struct mfc *rt)
|
|
{
|
|
struct rtdetq *rte, *nrte;
|
|
|
|
free_bw_list(rt->mfc_bw_meter);
|
|
|
|
for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
|
|
nrte = rte->next;
|
|
m_freem(rte->m);
|
|
free(rte, M_MRTABLE);
|
|
}
|
|
|
|
LIST_REMOVE(rt, mfc_hash);
|
|
free(rt, M_MRTABLE);
|
|
}
|
|
|
|
/*
|
|
* Add an mfc entry
|
|
*/
|
|
static int
|
|
add_mfc(struct sockopt *sopt)
|
|
{
|
|
struct mfcctl2 mfcctl2;
|
|
struct mfcctl2 *mfccp;
|
|
struct mfc *rt;
|
|
u_int32_t hash = 0;
|
|
struct rtdetq *rte, *nrte;
|
|
u_short nstl;
|
|
int s;
|
|
int error;
|
|
|
|
/*
|
|
* select data size depending on API version.
|
|
*/
|
|
mfccp = &mfcctl2;
|
|
memset(&mfcctl2, 0, sizeof(mfcctl2));
|
|
|
|
if (mrt_api_config & MRT_API_FLAGS_ALL)
|
|
error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
|
|
else
|
|
error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
|
|
|
|
if (error)
|
|
return error;
|
|
|
|
s = splsoftnet();
|
|
rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
|
|
|
|
/* If an entry already exists, just update the fields */
|
|
if (rt) {
|
|
if (mrtdebug & DEBUG_MFC)
|
|
log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
|
|
ntohl(mfccp->mfcc_origin.s_addr),
|
|
ntohl(mfccp->mfcc_mcastgrp.s_addr),
|
|
mfccp->mfcc_parent);
|
|
|
|
update_mfc_params(rt, mfccp);
|
|
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find the entry for which the upcall was made and update
|
|
*/
|
|
nstl = 0;
|
|
hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
|
|
LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
|
|
if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
|
|
in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
|
|
rt->mfc_stall != NULL) {
|
|
if (nstl++)
|
|
log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
|
|
"multiple kernel entries",
|
|
ntohl(mfccp->mfcc_origin.s_addr),
|
|
ntohl(mfccp->mfcc_mcastgrp.s_addr),
|
|
mfccp->mfcc_parent, rt->mfc_stall);
|
|
|
|
if (mrtdebug & DEBUG_MFC)
|
|
log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n",
|
|
ntohl(mfccp->mfcc_origin.s_addr),
|
|
ntohl(mfccp->mfcc_mcastgrp.s_addr),
|
|
mfccp->mfcc_parent, rt->mfc_stall);
|
|
|
|
rte = rt->mfc_stall;
|
|
init_mfc_params(rt, mfccp);
|
|
rt->mfc_stall = NULL;
|
|
|
|
rt->mfc_expire = 0; /* Don't clean this guy up */
|
|
nexpire[hash]--;
|
|
|
|
/* free packets Qed at the end of this entry */
|
|
for (; rte != NULL; rte = nrte) {
|
|
nrte = rte->next;
|
|
if (rte->ifp) {
|
|
ip_mdq(rte->m, rte->ifp, rt);
|
|
}
|
|
m_freem(rte->m);
|
|
#ifdef UPCALL_TIMING
|
|
collate(&rte->t);
|
|
#endif /* UPCALL_TIMING */
|
|
free(rte, M_MRTABLE);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* It is possible that an entry is being inserted without an upcall
|
|
*/
|
|
if (nstl == 0) {
|
|
/*
|
|
* No mfc; make a new one
|
|
*/
|
|
if (mrtdebug & DEBUG_MFC)
|
|
log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
|
|
ntohl(mfccp->mfcc_origin.s_addr),
|
|
ntohl(mfccp->mfcc_mcastgrp.s_addr),
|
|
mfccp->mfcc_parent);
|
|
|
|
LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
|
|
if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
|
|
in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
|
|
init_mfc_params(rt, mfccp);
|
|
if (rt->mfc_expire)
|
|
nexpire[hash]--;
|
|
rt->mfc_expire = 0;
|
|
break; /* XXX */
|
|
}
|
|
}
|
|
if (rt == NULL) { /* no upcall, so make a new entry */
|
|
rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
|
|
if (rt == NULL) {
|
|
splx(s);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
init_mfc_params(rt, mfccp);
|
|
rt->mfc_expire = 0;
|
|
rt->mfc_stall = NULL;
|
|
rt->mfc_bw_meter = NULL;
|
|
|
|
/* insert new entry at head of hash chain */
|
|
LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
|
|
}
|
|
}
|
|
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef UPCALL_TIMING
|
|
/*
|
|
* collect delay statistics on the upcalls
|
|
*/
|
|
static void
|
|
collate(struct timeval *t)
|
|
{
|
|
u_int32_t d;
|
|
struct timeval tp;
|
|
u_int32_t delta;
|
|
|
|
microtime(&tp);
|
|
|
|
if (timercmp(t, &tp, <)) {
|
|
TV_DELTA(tp, *t, delta);
|
|
|
|
d = delta >> 10;
|
|
if (d > 50)
|
|
d = 50;
|
|
|
|
++upcall_data[d];
|
|
}
|
|
}
|
|
#endif /* UPCALL_TIMING */
|
|
|
|
/*
|
|
* Delete an mfc entry
|
|
*/
|
|
static int
|
|
del_mfc(struct sockopt *sopt)
|
|
{
|
|
struct mfcctl2 mfcctl2;
|
|
struct mfcctl2 *mfccp;
|
|
struct mfc *rt;
|
|
int s;
|
|
int error;
|
|
|
|
/*
|
|
* XXX: for deleting MFC entries the information in entries
|
|
* of size "struct mfcctl" is sufficient.
|
|
*/
|
|
|
|
mfccp = &mfcctl2;
|
|
memset(&mfcctl2, 0, sizeof(mfcctl2));
|
|
|
|
error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
|
|
if (error) {
|
|
/* Try with the size of mfcctl2. */
|
|
error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
if (mrtdebug & DEBUG_MFC)
|
|
log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
|
|
ntohl(mfccp->mfcc_origin.s_addr),
|
|
ntohl(mfccp->mfcc_mcastgrp.s_addr));
|
|
|
|
s = splsoftnet();
|
|
|
|
rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
|
|
if (rt == NULL) {
|
|
splx(s);
|
|
return EADDRNOTAVAIL;
|
|
}
|
|
|
|
/*
|
|
* free the bw_meter entries
|
|
*/
|
|
free_bw_list(rt->mfc_bw_meter);
|
|
rt->mfc_bw_meter = NULL;
|
|
|
|
LIST_REMOVE(rt, mfc_hash);
|
|
free(rt, M_MRTABLE);
|
|
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
|
|
{
|
|
if (s) {
|
|
if (sbappendaddr(&s->so_rcv, sintosa(src), mm, NULL) != 0) {
|
|
sorwakeup(s);
|
|
return 0;
|
|
}
|
|
soroverflow(s);
|
|
}
|
|
m_freem(mm);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* IP multicast forwarding function. This function assumes that the packet
|
|
* pointed to by "ip" has arrived on (or is about to be sent to) the interface
|
|
* pointed to by "ifp", and the packet is to be relayed to other networks
|
|
* that have members of the packet's destination IP multicast group.
|
|
*
|
|
* The packet is returned unscathed to the caller, unless it is
|
|
* erroneous, in which case a non-zero return value tells the caller to
|
|
* discard it.
|
|
*/
|
|
|
|
#define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */
|
|
#define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
|
|
|
|
int
|
|
ip_mforward(struct mbuf *m, struct ifnet *ifp)
|
|
{
|
|
struct ip *ip = mtod(m, struct ip *);
|
|
struct mfc *rt;
|
|
static int srctun = 0;
|
|
struct mbuf *mm;
|
|
struct sockaddr_in sin;
|
|
int s;
|
|
vifi_t vifi;
|
|
|
|
if (mrtdebug & DEBUG_FORWARD)
|
|
log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
|
|
ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
|
|
|
|
/*
|
|
* XXX XXX: Why do we check [1] against IPOPT_LSRR? Because we
|
|
* expect [0] to be IPOPT_NOP, maybe? In all cases that doesn't
|
|
* make a lot of sense, a forged packet can just put two IPOPT_NOPs
|
|
* followed by one IPOPT_LSRR, and bypass the check.
|
|
*/
|
|
if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
|
|
((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
|
|
/*
|
|
* Packet arrived via a physical interface or
|
|
* an encapsulated tunnel or a register_vif.
|
|
*/
|
|
} else {
|
|
/*
|
|
* Packet arrived through a source-route tunnel.
|
|
* Source-route tunnels are no longer supported.
|
|
*/
|
|
if ((srctun++ % 1000) == 0)
|
|
log(LOG_ERR,
|
|
"ip_mforward: received source-routed packet from %x\n",
|
|
ntohl(ip->ip_src.s_addr));
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
/*
|
|
* Clear any in-bound checksum flags for this packet.
|
|
*/
|
|
m->m_pkthdr.csum_flags = 0;
|
|
|
|
/*
|
|
* Don't forward a packet with time-to-live of zero or one,
|
|
* or a packet destined to a local-only group.
|
|
*/
|
|
if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
|
|
return 0;
|
|
|
|
/*
|
|
* Determine forwarding vifs from the forwarding cache table
|
|
*/
|
|
s = splsoftnet();
|
|
++mrtstat.mrts_mfc_lookups;
|
|
rt = mfc_find(&ip->ip_src, &ip->ip_dst);
|
|
|
|
/* Entry exists, so forward if necessary */
|
|
if (rt != NULL) {
|
|
splx(s);
|
|
return ip_mdq(m, ifp, rt);
|
|
} else {
|
|
/*
|
|
* If we don't have a route for packet's origin, make a copy
|
|
* of the packet and send message to routing daemon.
|
|
*/
|
|
|
|
struct mbuf *mb0;
|
|
struct rtdetq *rte;
|
|
u_int32_t hash;
|
|
const int hlen = ip->ip_hl << 2;
|
|
#ifdef UPCALL_TIMING
|
|
struct timeval tp;
|
|
microtime(&tp);
|
|
#endif
|
|
|
|
++mrtstat.mrts_mfc_misses;
|
|
|
|
mrtstat.mrts_no_route++;
|
|
if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
|
|
log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
|
|
ntohl(ip->ip_src.s_addr),
|
|
ntohl(ip->ip_dst.s_addr));
|
|
|
|
/*
|
|
* Allocate mbufs early so that we don't do extra work if we are
|
|
* just going to fail anyway. Make sure to pullup the header so
|
|
* that other people can't step on it.
|
|
*/
|
|
rte = malloc(sizeof(*rte), M_MRTABLE, M_NOWAIT);
|
|
if (rte == NULL) {
|
|
splx(s);
|
|
return ENOBUFS;
|
|
}
|
|
mb0 = m_copypacket(m, M_DONTWAIT);
|
|
M_PULLUP(mb0, hlen);
|
|
if (mb0 == NULL) {
|
|
free(rte, M_MRTABLE);
|
|
splx(s);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/* is there an upcall waiting for this flow? */
|
|
hash = MFCHASH(ip->ip_src, ip->ip_dst);
|
|
LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
|
|
if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
|
|
in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
|
|
rt->mfc_stall != NULL)
|
|
break;
|
|
}
|
|
|
|
if (rt == NULL) {
|
|
int i;
|
|
struct igmpmsg *im;
|
|
|
|
/*
|
|
* Locate the vifi for the incoming interface for
|
|
* this packet.
|
|
* If none found, drop packet.
|
|
*/
|
|
for (vifi = 0; vifi < numvifs &&
|
|
viftable[vifi].v_ifp != ifp; vifi++)
|
|
;
|
|
if (vifi >= numvifs) /* vif not found, drop packet */
|
|
goto non_fatal;
|
|
|
|
/* no upcall, so make a new entry */
|
|
rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
|
|
if (rt == NULL)
|
|
goto fail;
|
|
|
|
/*
|
|
* Make a copy of the header to send to the user level
|
|
* process
|
|
*/
|
|
mm = m_copym(m, 0, hlen, M_DONTWAIT);
|
|
M_PULLUP(mm, hlen);
|
|
if (mm == NULL)
|
|
goto fail1;
|
|
|
|
/*
|
|
* Send message to routing daemon to install
|
|
* a route into the kernel table
|
|
*/
|
|
|
|
im = mtod(mm, struct igmpmsg *);
|
|
im->im_msgtype = IGMPMSG_NOCACHE;
|
|
im->im_mbz = 0;
|
|
im->im_vif = vifi;
|
|
|
|
mrtstat.mrts_upcalls++;
|
|
|
|
sockaddr_in_init(&sin, &ip->ip_src, 0);
|
|
if (socket_send(ip_mrouter, mm, &sin) < 0) {
|
|
log(LOG_WARNING,
|
|
"ip_mforward: ip_mrouter socket queue full\n");
|
|
++mrtstat.mrts_upq_sockfull;
|
|
fail1:
|
|
free(rt, M_MRTABLE);
|
|
fail:
|
|
free(rte, M_MRTABLE);
|
|
m_freem(mb0);
|
|
splx(s);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/* insert new entry at head of hash chain */
|
|
rt->mfc_origin = ip->ip_src;
|
|
rt->mfc_mcastgrp = ip->ip_dst;
|
|
rt->mfc_pkt_cnt = 0;
|
|
rt->mfc_byte_cnt = 0;
|
|
rt->mfc_wrong_if = 0;
|
|
rt->mfc_expire = UPCALL_EXPIRE;
|
|
nexpire[hash]++;
|
|
for (i = 0; i < numvifs; i++) {
|
|
rt->mfc_ttls[i] = 0;
|
|
rt->mfc_flags[i] = 0;
|
|
}
|
|
rt->mfc_parent = -1;
|
|
|
|
/* clear the RP address */
|
|
rt->mfc_rp = zeroin_addr;
|
|
|
|
rt->mfc_bw_meter = NULL;
|
|
|
|
/* link into table */
|
|
LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
|
|
/* Add this entry to the end of the queue */
|
|
rt->mfc_stall = rte;
|
|
} else {
|
|
/* determine if q has overflowed */
|
|
struct rtdetq **p;
|
|
int npkts = 0;
|
|
|
|
/*
|
|
* XXX ouch! we need to append to the list, but we
|
|
* only have a pointer to the front, so we have to
|
|
* scan the entire list every time.
|
|
*/
|
|
for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
|
|
if (++npkts > MAX_UPQ) {
|
|
mrtstat.mrts_upq_ovflw++;
|
|
non_fatal:
|
|
free(rte, M_MRTABLE);
|
|
m_freem(mb0);
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
|
|
/* Add this entry to the end of the queue */
|
|
*p = rte;
|
|
}
|
|
|
|
rte->next = NULL;
|
|
rte->m = mb0;
|
|
rte->ifp = ifp;
|
|
#ifdef UPCALL_TIMING
|
|
rte->t = tp;
|
|
#endif
|
|
|
|
splx(s);
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
expire_upcalls(void *v)
|
|
{
|
|
int i;
|
|
|
|
/* XXX NOMPSAFE still need softnet_lock */
|
|
mutex_enter(softnet_lock);
|
|
KERNEL_LOCK(1, NULL);
|
|
|
|
for (i = 0; i < MFCTBLSIZ; i++) {
|
|
struct mfc *rt, *nrt;
|
|
|
|
if (nexpire[i] == 0)
|
|
continue;
|
|
|
|
for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
|
|
nrt = LIST_NEXT(rt, mfc_hash);
|
|
|
|
if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
|
|
continue;
|
|
nexpire[i]--;
|
|
|
|
/*
|
|
* free the bw_meter entries
|
|
*/
|
|
while (rt->mfc_bw_meter != NULL) {
|
|
struct bw_meter *x = rt->mfc_bw_meter;
|
|
|
|
rt->mfc_bw_meter = x->bm_mfc_next;
|
|
kmem_intr_free(x, sizeof(*x));
|
|
}
|
|
|
|
++mrtstat.mrts_cache_cleanups;
|
|
if (mrtdebug & DEBUG_EXPIRE)
|
|
log(LOG_DEBUG,
|
|
"expire_upcalls: expiring (%x %x)\n",
|
|
ntohl(rt->mfc_origin.s_addr),
|
|
ntohl(rt->mfc_mcastgrp.s_addr));
|
|
|
|
expire_mfc(rt);
|
|
}
|
|
}
|
|
|
|
callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
|
|
expire_upcalls, NULL);
|
|
|
|
KERNEL_UNLOCK_ONE(NULL);
|
|
mutex_exit(softnet_lock);
|
|
}
|
|
|
|
/*
|
|
* Macro to send packet on vif.
|
|
*/
|
|
#define MC_SEND(ip, vifp, m) do { \
|
|
if ((vifp)->v_flags & VIFF_TUNNEL) \
|
|
encap_send((ip), (vifp), (m)); \
|
|
else \
|
|
phyint_send((ip), (vifp), (m)); \
|
|
} while (/*CONSTCOND*/ 0)
|
|
|
|
/*
|
|
* Packet forwarding routine once entry in the cache is made
|
|
*/
|
|
static int
|
|
ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt)
|
|
{
|
|
struct ip *ip = mtod(m, struct ip *);
|
|
vifi_t vifi;
|
|
struct vif *vifp;
|
|
struct sockaddr_in sin;
|
|
const int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
|
|
|
|
/*
|
|
* Don't forward if it didn't arrive from the parent vif for its origin.
|
|
*/
|
|
vifi = rt->mfc_parent;
|
|
if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
|
|
/* came in the wrong interface */
|
|
if (mrtdebug & DEBUG_FORWARD)
|
|
log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
|
|
ifp, vifi,
|
|
vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
|
|
++mrtstat.mrts_wrong_if;
|
|
++rt->mfc_wrong_if;
|
|
|
|
/*
|
|
* If we are doing PIM assert processing, send a message
|
|
* to the routing daemon.
|
|
*
|
|
* XXX: A PIM-SM router needs the WRONGVIF detection so it
|
|
* can complete the SPT switch, regardless of the type
|
|
* of the iif (broadcast media, GRE tunnel, etc).
|
|
*/
|
|
if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
|
|
struct timeval now;
|
|
u_int32_t delta;
|
|
|
|
#ifdef PIM
|
|
if (ifp == &multicast_register_if)
|
|
pimstat.pims_rcv_registers_wrongiif++;
|
|
#endif
|
|
|
|
/* Get vifi for the incoming packet */
|
|
for (vifi = 0;
|
|
vifi < numvifs && viftable[vifi].v_ifp != ifp;
|
|
vifi++)
|
|
;
|
|
if (vifi >= numvifs) {
|
|
/* The iif is not found: ignore the packet. */
|
|
return 0;
|
|
}
|
|
|
|
if (rt->mfc_flags[vifi] &
|
|
MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
|
|
/* WRONGVIF disabled: ignore the packet */
|
|
return 0;
|
|
}
|
|
|
|
microtime(&now);
|
|
|
|
TV_DELTA(rt->mfc_last_assert, now, delta);
|
|
|
|
if (delta > ASSERT_MSG_TIME) {
|
|
struct igmpmsg *im;
|
|
const int hlen = ip->ip_hl << 2;
|
|
struct mbuf *mm =
|
|
m_copym(m, 0, hlen, M_DONTWAIT);
|
|
|
|
M_PULLUP(mm, hlen);
|
|
if (mm == NULL)
|
|
return ENOBUFS;
|
|
|
|
rt->mfc_last_assert = now;
|
|
|
|
im = mtod(mm, struct igmpmsg *);
|
|
im->im_msgtype = IGMPMSG_WRONGVIF;
|
|
im->im_mbz = 0;
|
|
im->im_vif = vifi;
|
|
|
|
mrtstat.mrts_upcalls++;
|
|
|
|
sockaddr_in_init(&sin, &im->im_src, 0);
|
|
if (socket_send(ip_mrouter, mm, &sin) < 0) {
|
|
log(LOG_WARNING,
|
|
"ip_mforward: ip_mrouter socket queue full\n");
|
|
++mrtstat.mrts_upq_sockfull;
|
|
return ENOBUFS;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* If I sourced this packet, it counts as output, else it was input. */
|
|
if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
|
|
viftable[vifi].v_pkt_out++;
|
|
viftable[vifi].v_bytes_out += plen;
|
|
} else {
|
|
viftable[vifi].v_pkt_in++;
|
|
viftable[vifi].v_bytes_in += plen;
|
|
}
|
|
rt->mfc_pkt_cnt++;
|
|
rt->mfc_byte_cnt += plen;
|
|
|
|
/*
|
|
* For each vif, decide if a copy of the packet should be forwarded.
|
|
* Forward if:
|
|
* - the ttl exceeds the vif's threshold
|
|
* - there are group members downstream on interface
|
|
*/
|
|
for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) {
|
|
if ((rt->mfc_ttls[vifi] > 0) &&
|
|
(ip->ip_ttl > rt->mfc_ttls[vifi])) {
|
|
vifp->v_pkt_out++;
|
|
vifp->v_bytes_out += plen;
|
|
#ifdef PIM
|
|
if (vifp->v_flags & VIFF_REGISTER)
|
|
pim_register_send(ip, vifp, m, rt);
|
|
else
|
|
#endif
|
|
MC_SEND(ip, vifp, m);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Perform upcall-related bw measuring.
|
|
*/
|
|
if (rt->mfc_bw_meter != NULL) {
|
|
struct bw_meter *x;
|
|
struct timeval now;
|
|
|
|
microtime(&now);
|
|
for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
|
|
bw_meter_receive_packet(x, plen, &now);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
|
|
{
|
|
struct mbuf *mb_copy;
|
|
const int hlen = ip->ip_hl << 2;
|
|
|
|
/*
|
|
* Make a new reference to the packet; make sure that
|
|
* the IP header is actually copied, not just referenced,
|
|
* so that ip_output() only scribbles on the copy.
|
|
*/
|
|
mb_copy = m_copypacket(m, M_DONTWAIT);
|
|
M_PULLUP(mb_copy, hlen);
|
|
if (mb_copy == NULL)
|
|
return;
|
|
|
|
if (vifp->v_rate_limit <= 0)
|
|
tbf_send_packet(vifp, mb_copy);
|
|
else
|
|
tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
|
|
ntohs(ip->ip_len));
|
|
}
|
|
|
|
static void
|
|
encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
|
|
{
|
|
struct mbuf *mb_copy;
|
|
struct ip *ip_copy;
|
|
int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
|
|
|
|
/* Take care of delayed checksums */
|
|
if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
|
|
in_undefer_cksum_tcpudp(m);
|
|
m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
|
|
}
|
|
|
|
/*
|
|
* copy the old packet & pullup its IP header into the
|
|
* new mbuf so we can modify it. Try to fill the new
|
|
* mbuf since if we don't the ethernet driver will.
|
|
*/
|
|
MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
|
|
if (mb_copy == NULL)
|
|
return;
|
|
mb_copy->m_data += max_linkhdr;
|
|
mb_copy->m_pkthdr.len = len;
|
|
mb_copy->m_len = sizeof(multicast_encap_iphdr);
|
|
|
|
if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
|
|
m_freem(mb_copy);
|
|
return;
|
|
}
|
|
i = MHLEN - max_linkhdr;
|
|
if (i > len)
|
|
i = len;
|
|
mb_copy = m_pullup(mb_copy, i);
|
|
if (mb_copy == NULL)
|
|
return;
|
|
|
|
/*
|
|
* fill in the encapsulating IP header.
|
|
*/
|
|
ip_copy = mtod(mb_copy, struct ip *);
|
|
*ip_copy = multicast_encap_iphdr;
|
|
if (len < IP_MINFRAGSIZE)
|
|
ip_copy->ip_id = 0;
|
|
else
|
|
ip_copy->ip_id = ip_newid(NULL);
|
|
ip_copy->ip_len = htons(len);
|
|
ip_copy->ip_src = vifp->v_lcl_addr;
|
|
ip_copy->ip_dst = vifp->v_rmt_addr;
|
|
|
|
/*
|
|
* turn the encapsulated IP header back into a valid one.
|
|
*/
|
|
ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr));
|
|
--ip->ip_ttl;
|
|
ip->ip_sum = 0;
|
|
mb_copy->m_data += sizeof(multicast_encap_iphdr);
|
|
ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
|
|
mb_copy->m_data -= sizeof(multicast_encap_iphdr);
|
|
|
|
if (vifp->v_rate_limit <= 0)
|
|
tbf_send_packet(vifp, mb_copy);
|
|
else
|
|
tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
|
|
}
|
|
|
|
/*
|
|
* De-encapsulate a packet and feed it back through ip input.
|
|
*/
|
|
static void
|
|
vif_input(struct mbuf *m, int off, int proto, void *eparg)
|
|
{
|
|
struct vif *vifp = eparg;
|
|
|
|
KASSERT(vifp != NULL);
|
|
|
|
if (proto != ENCAP_PROTO) {
|
|
m_freem(m);
|
|
mrtstat.mrts_bad_tunnel++;
|
|
return;
|
|
}
|
|
|
|
m_adj(m, off);
|
|
m_set_rcvif(m, vifp->v_ifp);
|
|
|
|
if (__predict_false(!pktq_enqueue(ip_pktq, m, 0))) {
|
|
m_freem(m);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if the packet should be received on the vif denoted by arg.
|
|
* (The encap selection code will call this once per vif since each is
|
|
* registered separately.)
|
|
*/
|
|
static int
|
|
vif_encapcheck(struct mbuf *m, int off, int proto, void *arg)
|
|
{
|
|
struct vif *vifp;
|
|
struct ip ip;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (!arg || proto != IPPROTO_IPV4)
|
|
panic("unexpected arg in vif_encapcheck");
|
|
#endif
|
|
|
|
/*
|
|
* Accept the packet only if the inner heaader is multicast
|
|
* and the outer header matches a tunnel-mode vif. Order
|
|
* checks in the hope that common non-matching packets will be
|
|
* rejected quickly. Assume that unicast IPv4 traffic in a
|
|
* parallel tunnel (e.g. gif(4)) is unlikely.
|
|
*/
|
|
|
|
/* Obtain the outer IP header and the vif pointer. */
|
|
m_copydata(m, 0, sizeof(ip), (void *)&ip);
|
|
vifp = (struct vif *)arg;
|
|
|
|
/*
|
|
* The outer source must match the vif's remote peer address.
|
|
* For a multicast router with several tunnels, this is the
|
|
* only check that will fail on packets in other tunnels,
|
|
* assuming the local address is the same.
|
|
*/
|
|
if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src))
|
|
return 0;
|
|
|
|
/* The outer destination must match the vif's local address. */
|
|
if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst))
|
|
return 0;
|
|
|
|
/* The vif must be of tunnel type. */
|
|
if ((vifp->v_flags & VIFF_TUNNEL) == 0)
|
|
return 0;
|
|
|
|
/* Check that the inner destination is multicast. */
|
|
if (off + sizeof(ip) > m->m_pkthdr.len)
|
|
return 0;
|
|
m_copydata(m, off, sizeof(ip), (void *)&ip);
|
|
if (!IN_MULTICAST(ip.ip_dst.s_addr))
|
|
return 0;
|
|
|
|
/*
|
|
* We have checked that both the outer src and dst addresses
|
|
* match the vif, and that the inner destination is multicast
|
|
* (224/5). By claiming more than 64, we intend to
|
|
* preferentially take packets that also match a parallel
|
|
* gif(4).
|
|
*/
|
|
return 32 + 32 + 5;
|
|
}
|
|
|
|
/*
|
|
* Token bucket filter module
|
|
*/
|
|
static void
|
|
tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len)
|
|
{
|
|
|
|
if (len > MAX_BKT_SIZE) {
|
|
/* drop if packet is too large */
|
|
mrtstat.mrts_pkt2large++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
tbf_update_tokens(vifp);
|
|
|
|
/*
|
|
* If there are enough tokens, and the queue is empty, send this packet
|
|
* out immediately. Otherwise, try to insert it on this vif's queue.
|
|
*/
|
|
if (vifp->tbf_q_len == 0) {
|
|
if (len <= vifp->tbf_n_tok) {
|
|
vifp->tbf_n_tok -= len;
|
|
tbf_send_packet(vifp, m);
|
|
} else {
|
|
/* queue packet and timeout till later */
|
|
tbf_queue(vifp, m);
|
|
callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
|
|
tbf_reprocess_q, vifp);
|
|
}
|
|
} else {
|
|
if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
|
|
!tbf_dq_sel(vifp, ip)) {
|
|
/* queue full, and couldn't make room */
|
|
mrtstat.mrts_q_overflow++;
|
|
m_freem(m);
|
|
} else {
|
|
/* queue length low enough, or made room */
|
|
tbf_queue(vifp, m);
|
|
tbf_process_q(vifp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* adds a packet to the queue at the interface
|
|
*/
|
|
static void
|
|
tbf_queue(struct vif *vifp, struct mbuf *m)
|
|
{
|
|
int s = splsoftnet();
|
|
|
|
/* insert at tail */
|
|
*vifp->tbf_t = m;
|
|
vifp->tbf_t = &m->m_nextpkt;
|
|
vifp->tbf_q_len++;
|
|
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* processes the queue at the interface
|
|
*/
|
|
static void
|
|
tbf_process_q(struct vif *vifp)
|
|
{
|
|
struct mbuf *m;
|
|
int len;
|
|
int s = splsoftnet();
|
|
|
|
/*
|
|
* Loop through the queue at the interface and send as many packets
|
|
* as possible.
|
|
*/
|
|
for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) {
|
|
len = ntohs(mtod(m, struct ip *)->ip_len);
|
|
|
|
/* determine if the packet can be sent */
|
|
if (len <= vifp->tbf_n_tok) {
|
|
/* if so,
|
|
* reduce no of tokens, dequeue the packet,
|
|
* send the packet.
|
|
*/
|
|
if ((vifp->tbf_q = m->m_nextpkt) == NULL)
|
|
vifp->tbf_t = &vifp->tbf_q;
|
|
--vifp->tbf_q_len;
|
|
|
|
m->m_nextpkt = NULL;
|
|
vifp->tbf_n_tok -= len;
|
|
tbf_send_packet(vifp, m);
|
|
} else
|
|
break;
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
tbf_reprocess_q(void *arg)
|
|
{
|
|
struct vif *vifp = arg;
|
|
|
|
if (ip_mrouter == NULL)
|
|
return;
|
|
|
|
tbf_update_tokens(vifp);
|
|
tbf_process_q(vifp);
|
|
|
|
if (vifp->tbf_q_len != 0)
|
|
callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
|
|
tbf_reprocess_q, vifp);
|
|
}
|
|
|
|
/* function that will selectively discard a member of the queue
|
|
* based on the precedence value and the priority
|
|
*/
|
|
static int
|
|
tbf_dq_sel(struct vif *vifp, struct ip *ip)
|
|
{
|
|
u_int p;
|
|
struct mbuf **mp, *m;
|
|
int s = splsoftnet();
|
|
|
|
p = priority(vifp, ip);
|
|
|
|
for (mp = &vifp->tbf_q, m = *mp;
|
|
m != NULL;
|
|
mp = &m->m_nextpkt, m = *mp) {
|
|
if (p > priority(vifp, mtod(m, struct ip *))) {
|
|
if ((*mp = m->m_nextpkt) == NULL)
|
|
vifp->tbf_t = mp;
|
|
--vifp->tbf_q_len;
|
|
|
|
m_freem(m);
|
|
mrtstat.mrts_drop_sel++;
|
|
splx(s);
|
|
return 1;
|
|
}
|
|
}
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
tbf_send_packet(struct vif *vifp, struct mbuf *m)
|
|
{
|
|
int error;
|
|
int s = splsoftnet();
|
|
|
|
if (vifp->v_flags & VIFF_TUNNEL) {
|
|
/* If tunnel options */
|
|
ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
|
|
} else {
|
|
/* if physical interface option, extract the options and then send */
|
|
struct ip_moptions imo;
|
|
|
|
imo.imo_multicast_if_index = if_get_index(vifp->v_ifp);
|
|
imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
|
|
imo.imo_multicast_loop = 1;
|
|
|
|
error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS,
|
|
&imo, NULL);
|
|
|
|
if (mrtdebug & DEBUG_XMIT)
|
|
log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
|
|
(long)(vifp - viftable), error);
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/* determine the current time and then
|
|
* the elapsed time (between the last time and time now)
|
|
* in milliseconds & update the no. of tokens in the bucket
|
|
*/
|
|
static void
|
|
tbf_update_tokens(struct vif *vifp)
|
|
{
|
|
struct timeval tp;
|
|
u_int32_t tm;
|
|
int s = splsoftnet();
|
|
|
|
microtime(&tp);
|
|
|
|
TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
|
|
|
|
/*
|
|
* This formula is actually
|
|
* "time in seconds" * "bytes/second".
|
|
*
|
|
* (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
|
|
*
|
|
* The (1000/1024) was introduced in add_vif to optimize
|
|
* this divide into a shift.
|
|
*/
|
|
vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
|
|
vifp->tbf_last_pkt_t = tp;
|
|
|
|
if (vifp->tbf_n_tok > MAX_BKT_SIZE)
|
|
vifp->tbf_n_tok = MAX_BKT_SIZE;
|
|
|
|
splx(s);
|
|
}
|
|
|
|
static int
|
|
priority(struct vif *vifp, struct ip *ip)
|
|
{
|
|
int prio = 50; /* the lowest priority -- default case */
|
|
|
|
/* temporary hack; may add general packet classifier some day */
|
|
|
|
/*
|
|
* XXX XXX: We're reading the UDP header, but we didn't ensure
|
|
* it was present in the packet.
|
|
*/
|
|
|
|
/*
|
|
* The UDP port space is divided up into four priority ranges:
|
|
* [0, 16384) : unclassified - lowest priority
|
|
* [16384, 32768) : audio - highest priority
|
|
* [32768, 49152) : whiteboard - medium priority
|
|
* [49152, 65536) : video - low priority
|
|
*/
|
|
if (ip->ip_p == IPPROTO_UDP) {
|
|
struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
|
|
|
|
switch (ntohs(udp->uh_dport) & 0xc000) {
|
|
case 0x4000:
|
|
prio = 70;
|
|
break;
|
|
case 0x8000:
|
|
prio = 60;
|
|
break;
|
|
case 0xc000:
|
|
prio = 55;
|
|
break;
|
|
}
|
|
|
|
if (tbfdebug > 1)
|
|
log(LOG_DEBUG, "port %x prio %d\n",
|
|
ntohs(udp->uh_dport), prio);
|
|
}
|
|
|
|
return prio;
|
|
}
|
|
|
|
/*
|
|
* Code for bandwidth monitors
|
|
*/
|
|
|
|
/*
|
|
* Define common interface for timeval-related methods
|
|
*/
|
|
#define BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
|
|
#define BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
|
|
#define BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
|
|
|
|
static uint32_t
|
|
compute_bw_meter_flags(struct bw_upcall *req)
|
|
{
|
|
uint32_t flags = 0;
|
|
|
|
if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
|
|
flags |= BW_METER_UNIT_PACKETS;
|
|
if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
|
|
flags |= BW_METER_UNIT_BYTES;
|
|
if (req->bu_flags & BW_UPCALL_GEQ)
|
|
flags |= BW_METER_GEQ;
|
|
if (req->bu_flags & BW_UPCALL_LEQ)
|
|
flags |= BW_METER_LEQ;
|
|
|
|
return flags;
|
|
}
|
|
|
|
/*
|
|
* Add a bw_meter entry
|
|
*/
|
|
static int
|
|
add_bw_upcall(struct bw_upcall *req)
|
|
{
|
|
int s;
|
|
struct mfc *mfc;
|
|
struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
|
|
BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
|
|
struct timeval now;
|
|
struct bw_meter *x;
|
|
uint32_t flags;
|
|
|
|
if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
|
|
return EOPNOTSUPP;
|
|
|
|
/* Test if the flags are valid */
|
|
if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
|
|
return EINVAL;
|
|
if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
|
|
return EINVAL;
|
|
if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
|
|
== (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
|
|
return EINVAL;
|
|
|
|
/* Test if the threshold time interval is valid */
|
|
if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
|
|
return EINVAL;
|
|
|
|
flags = compute_bw_meter_flags(req);
|
|
|
|
/*
|
|
* Find if we have already same bw_meter entry
|
|
*/
|
|
s = splsoftnet();
|
|
mfc = mfc_find(&req->bu_src, &req->bu_dst);
|
|
if (mfc == NULL) {
|
|
splx(s);
|
|
return EADDRNOTAVAIL;
|
|
}
|
|
for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
|
|
if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
|
|
&req->bu_threshold.b_time, ==)) &&
|
|
(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
|
|
(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
|
|
(x->bm_flags & BW_METER_USER_FLAGS) == flags) {
|
|
splx(s);
|
|
return 0; /* XXX Already installed */
|
|
}
|
|
}
|
|
|
|
/* Allocate the new bw_meter entry */
|
|
x = kmem_intr_alloc(sizeof(*x), KM_NOSLEEP);
|
|
if (x == NULL) {
|
|
splx(s);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/* Set the new bw_meter entry */
|
|
x->bm_threshold.b_time = req->bu_threshold.b_time;
|
|
microtime(&now);
|
|
x->bm_start_time = now;
|
|
x->bm_threshold.b_packets = req->bu_threshold.b_packets;
|
|
x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
|
|
x->bm_measured.b_packets = 0;
|
|
x->bm_measured.b_bytes = 0;
|
|
x->bm_flags = flags;
|
|
x->bm_time_next = NULL;
|
|
x->bm_time_hash = BW_METER_BUCKETS;
|
|
|
|
/* Add the new bw_meter entry to the front of entries for this MFC */
|
|
x->bm_mfc = mfc;
|
|
x->bm_mfc_next = mfc->mfc_bw_meter;
|
|
mfc->mfc_bw_meter = x;
|
|
schedule_bw_meter(x, &now);
|
|
splx(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
free_bw_list(struct bw_meter *list)
|
|
{
|
|
while (list != NULL) {
|
|
struct bw_meter *x = list;
|
|
|
|
list = list->bm_mfc_next;
|
|
unschedule_bw_meter(x);
|
|
kmem_intr_free(x, sizeof(*x));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Delete one or multiple bw_meter entries
|
|
*/
|
|
static int
|
|
del_bw_upcall(struct bw_upcall *req)
|
|
{
|
|
int s;
|
|
struct mfc *mfc;
|
|
struct bw_meter *x;
|
|
|
|
if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
|
|
return EOPNOTSUPP;
|
|
|
|
s = splsoftnet();
|
|
/* Find the corresponding MFC entry */
|
|
mfc = mfc_find(&req->bu_src, &req->bu_dst);
|
|
if (mfc == NULL) {
|
|
splx(s);
|
|
return EADDRNOTAVAIL;
|
|
} else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
|
|
/*
|
|
* Delete all bw_meter entries for this mfc
|
|
*/
|
|
struct bw_meter *list;
|
|
|
|
list = mfc->mfc_bw_meter;
|
|
mfc->mfc_bw_meter = NULL;
|
|
free_bw_list(list);
|
|
splx(s);
|
|
return 0;
|
|
} else { /* Delete a single bw_meter entry */
|
|
struct bw_meter *prev;
|
|
uint32_t flags = 0;
|
|
|
|
flags = compute_bw_meter_flags(req);
|
|
|
|
/* Find the bw_meter entry to delete */
|
|
for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
|
|
prev = x, x = x->bm_mfc_next) {
|
|
if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
|
|
&req->bu_threshold.b_time, ==)) &&
|
|
(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
|
|
(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
|
|
(x->bm_flags & BW_METER_USER_FLAGS) == flags)
|
|
break;
|
|
}
|
|
if (x != NULL) { /* Delete entry from the list for this MFC */
|
|
if (prev != NULL)
|
|
prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/
|
|
else
|
|
x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
|
|
|
|
unschedule_bw_meter(x);
|
|
splx(s);
|
|
/* Free the bw_meter entry */
|
|
kmem_intr_free(x, sizeof(*x));
|
|
return 0;
|
|
} else {
|
|
splx(s);
|
|
return EINVAL;
|
|
}
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Perform bandwidth measurement processing that may result in an upcall
|
|
*/
|
|
static void
|
|
bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
|
|
{
|
|
struct timeval delta;
|
|
|
|
delta = *nowp;
|
|
BW_TIMEVALDECR(&delta, &x->bm_start_time);
|
|
|
|
if (x->bm_flags & BW_METER_GEQ) {
|
|
/*
|
|
* Processing for ">=" type of bw_meter entry
|
|
*/
|
|
if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
|
|
/* Reset the bw_meter entry */
|
|
x->bm_start_time = *nowp;
|
|
x->bm_measured.b_packets = 0;
|
|
x->bm_measured.b_bytes = 0;
|
|
x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
|
|
}
|
|
|
|
/* Record that a packet is received */
|
|
x->bm_measured.b_packets++;
|
|
x->bm_measured.b_bytes += plen;
|
|
|
|
/*
|
|
* Test if we should deliver an upcall
|
|
*/
|
|
if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
|
|
if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
|
|
(x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
|
|
((x->bm_flags & BW_METER_UNIT_BYTES) &&
|
|
(x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
|
|
/* Prepare an upcall for delivery */
|
|
bw_meter_prepare_upcall(x, nowp);
|
|
x->bm_flags |= BW_METER_UPCALL_DELIVERED;
|
|
}
|
|
}
|
|
} else if (x->bm_flags & BW_METER_LEQ) {
|
|
/*
|
|
* Processing for "<=" type of bw_meter entry
|
|
*/
|
|
if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
|
|
/*
|
|
* We are behind time with the multicast forwarding table
|
|
* scanning for "<=" type of bw_meter entries, so test now
|
|
* if we should deliver an upcall.
|
|
*/
|
|
if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
|
|
(x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
|
|
((x->bm_flags & BW_METER_UNIT_BYTES) &&
|
|
(x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
|
|
/* Prepare an upcall for delivery */
|
|
bw_meter_prepare_upcall(x, nowp);
|
|
}
|
|
/* Reschedule the bw_meter entry */
|
|
unschedule_bw_meter(x);
|
|
schedule_bw_meter(x, nowp);
|
|
}
|
|
|
|
/* Record that a packet is received */
|
|
x->bm_measured.b_packets++;
|
|
x->bm_measured.b_bytes += plen;
|
|
|
|
/*
|
|
* Test if we should restart the measuring interval
|
|
*/
|
|
if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
|
|
x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
|
|
(x->bm_flags & BW_METER_UNIT_BYTES &&
|
|
x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
|
|
/* Don't restart the measuring interval */
|
|
} else {
|
|
/* Do restart the measuring interval */
|
|
/*
|
|
* XXX: note that we don't unschedule and schedule, because this
|
|
* might be too much overhead per packet. Instead, when we process
|
|
* all entries for a given timer hash bin, we check whether it is
|
|
* really a timeout. If not, we reschedule at that time.
|
|
*/
|
|
x->bm_start_time = *nowp;
|
|
x->bm_measured.b_packets = 0;
|
|
x->bm_measured.b_bytes = 0;
|
|
x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Prepare a bandwidth-related upcall
|
|
*/
|
|
static void
|
|
bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
|
|
{
|
|
struct timeval delta;
|
|
struct bw_upcall *u;
|
|
|
|
/*
|
|
* Compute the measured time interval
|
|
*/
|
|
delta = *nowp;
|
|
BW_TIMEVALDECR(&delta, &x->bm_start_time);
|
|
|
|
/*
|
|
* If there are too many pending upcalls, deliver them now
|
|
*/
|
|
if (bw_upcalls_n >= BW_UPCALLS_MAX)
|
|
bw_upcalls_send();
|
|
|
|
/*
|
|
* Set the bw_upcall entry
|
|
*/
|
|
u = &bw_upcalls[bw_upcalls_n++];
|
|
u->bu_src = x->bm_mfc->mfc_origin;
|
|
u->bu_dst = x->bm_mfc->mfc_mcastgrp;
|
|
u->bu_threshold.b_time = x->bm_threshold.b_time;
|
|
u->bu_threshold.b_packets = x->bm_threshold.b_packets;
|
|
u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
|
|
u->bu_measured.b_time = delta;
|
|
u->bu_measured.b_packets = x->bm_measured.b_packets;
|
|
u->bu_measured.b_bytes = x->bm_measured.b_bytes;
|
|
u->bu_flags = 0;
|
|
if (x->bm_flags & BW_METER_UNIT_PACKETS)
|
|
u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
|
|
if (x->bm_flags & BW_METER_UNIT_BYTES)
|
|
u->bu_flags |= BW_UPCALL_UNIT_BYTES;
|
|
if (x->bm_flags & BW_METER_GEQ)
|
|
u->bu_flags |= BW_UPCALL_GEQ;
|
|
if (x->bm_flags & BW_METER_LEQ)
|
|
u->bu_flags |= BW_UPCALL_LEQ;
|
|
}
|
|
|
|
/*
|
|
* Send the pending bandwidth-related upcalls
|
|
*/
|
|
static void
|
|
bw_upcalls_send(void)
|
|
{
|
|
struct mbuf *m;
|
|
int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
|
|
struct sockaddr_in k_igmpsrc = {
|
|
.sin_len = sizeof(k_igmpsrc),
|
|
.sin_family = AF_INET,
|
|
};
|
|
static struct igmpmsg igmpmsg = {
|
|
0, /* unused1 */
|
|
0, /* unused2 */
|
|
IGMPMSG_BW_UPCALL,/* im_msgtype */
|
|
0, /* im_mbz */
|
|
0, /* im_vif */
|
|
0, /* unused3 */
|
|
{ 0 }, /* im_src */
|
|
{ 0 } /* im_dst */
|
|
};
|
|
|
|
if (bw_upcalls_n == 0)
|
|
return; /* No pending upcalls */
|
|
|
|
bw_upcalls_n = 0;
|
|
|
|
/*
|
|
* Allocate a new mbuf, initialize it with the header and
|
|
* the payload for the pending calls.
|
|
*/
|
|
MGETHDR(m, M_DONTWAIT, MT_HEADER);
|
|
if (m == NULL) {
|
|
log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
|
|
return;
|
|
}
|
|
|
|
m->m_len = m->m_pkthdr.len = 0;
|
|
m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg);
|
|
m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]);
|
|
|
|
/*
|
|
* Send the upcalls
|
|
* XXX do we need to set the address in k_igmpsrc ?
|
|
*/
|
|
mrtstat.mrts_upcalls++;
|
|
if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
|
|
log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
|
|
++mrtstat.mrts_upq_sockfull;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute the timeout hash value for the bw_meter entries
|
|
*/
|
|
#define BW_METER_TIMEHASH(bw_meter, hash) \
|
|
do { \
|
|
struct timeval next_timeval = (bw_meter)->bm_start_time; \
|
|
BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
|
|
(hash) = next_timeval.tv_sec; \
|
|
if (next_timeval.tv_usec) \
|
|
(hash)++; /* XXX: make sure we don't timeout early */ \
|
|
(hash) %= BW_METER_BUCKETS; \
|
|
} while (/*CONSTCOND*/ 0)
|
|
|
|
/*
|
|
* Schedule a timer to process periodically bw_meter entry of type "<="
|
|
* by linking the entry in the proper hash bucket.
|
|
*/
|
|
static void
|
|
schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
|
|
{
|
|
int time_hash;
|
|
|
|
if (!(x->bm_flags & BW_METER_LEQ))
|
|
return; /* XXX: we schedule timers only for "<=" entries */
|
|
|
|
/*
|
|
* Reset the bw_meter entry
|
|
*/
|
|
x->bm_start_time = *nowp;
|
|
x->bm_measured.b_packets = 0;
|
|
x->bm_measured.b_bytes = 0;
|
|
x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
|
|
|
|
/*
|
|
* Compute the timeout hash value and insert the entry
|
|
*/
|
|
BW_METER_TIMEHASH(x, time_hash);
|
|
x->bm_time_next = bw_meter_timers[time_hash];
|
|
bw_meter_timers[time_hash] = x;
|
|
x->bm_time_hash = time_hash;
|
|
}
|
|
|
|
/*
|
|
* Unschedule the periodic timer that processes bw_meter entry of type "<="
|
|
* by removing the entry from the proper hash bucket.
|
|
*/
|
|
static void
|
|
unschedule_bw_meter(struct bw_meter *x)
|
|
{
|
|
int time_hash;
|
|
struct bw_meter *prev, *tmp;
|
|
|
|
if (!(x->bm_flags & BW_METER_LEQ))
|
|
return; /* XXX: we schedule timers only for "<=" entries */
|
|
|
|
/*
|
|
* Compute the timeout hash value and delete the entry
|
|
*/
|
|
time_hash = x->bm_time_hash;
|
|
if (time_hash >= BW_METER_BUCKETS)
|
|
return; /* Entry was not scheduled */
|
|
|
|
for (prev = NULL, tmp = bw_meter_timers[time_hash];
|
|
tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
|
|
if (tmp == x)
|
|
break;
|
|
|
|
if (tmp == NULL)
|
|
panic("unschedule_bw_meter: bw_meter entry not found");
|
|
|
|
if (prev != NULL)
|
|
prev->bm_time_next = x->bm_time_next;
|
|
else
|
|
bw_meter_timers[time_hash] = x->bm_time_next;
|
|
|
|
x->bm_time_next = NULL;
|
|
x->bm_time_hash = BW_METER_BUCKETS;
|
|
}
|
|
|
|
/*
|
|
* Process all "<=" type of bw_meter that should be processed now,
|
|
* and for each entry prepare an upcall if necessary. Each processed
|
|
* entry is rescheduled again for the (periodic) processing.
|
|
*
|
|
* This is run periodically (once per second normally). On each round,
|
|
* all the potentially matching entries are in the hash slot that we are
|
|
* looking at.
|
|
*/
|
|
static void
|
|
bw_meter_process(void)
|
|
{
|
|
int s;
|
|
static uint32_t last_tv_sec; /* last time we processed this */
|
|
|
|
uint32_t loops;
|
|
int i;
|
|
struct timeval now, process_endtime;
|
|
|
|
microtime(&now);
|
|
if (last_tv_sec == now.tv_sec)
|
|
return; /* nothing to do */
|
|
|
|
loops = now.tv_sec - last_tv_sec;
|
|
last_tv_sec = now.tv_sec;
|
|
if (loops > BW_METER_BUCKETS)
|
|
loops = BW_METER_BUCKETS;
|
|
|
|
s = splsoftnet();
|
|
/*
|
|
* Process all bins of bw_meter entries from the one after the last
|
|
* processed to the current one. On entry, i points to the last bucket
|
|
* visited, so we need to increment i at the beginning of the loop.
|
|
*/
|
|
for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
|
|
struct bw_meter *x, *tmp_list;
|
|
|
|
if (++i >= BW_METER_BUCKETS)
|
|
i = 0;
|
|
|
|
/* Disconnect the list of bw_meter entries from the bin */
|
|
tmp_list = bw_meter_timers[i];
|
|
bw_meter_timers[i] = NULL;
|
|
|
|
/* Process the list of bw_meter entries */
|
|
while (tmp_list != NULL) {
|
|
x = tmp_list;
|
|
tmp_list = tmp_list->bm_time_next;
|
|
|
|
/* Test if the time interval is over */
|
|
process_endtime = x->bm_start_time;
|
|
BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
|
|
if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
|
|
/* Not yet: reschedule, but don't reset */
|
|
int time_hash;
|
|
|
|
BW_METER_TIMEHASH(x, time_hash);
|
|
if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
|
|
/*
|
|
* XXX: somehow the bin processing is a bit ahead of time.
|
|
* Put the entry in the next bin.
|
|
*/
|
|
if (++time_hash >= BW_METER_BUCKETS)
|
|
time_hash = 0;
|
|
}
|
|
x->bm_time_next = bw_meter_timers[time_hash];
|
|
bw_meter_timers[time_hash] = x;
|
|
x->bm_time_hash = time_hash;
|
|
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Test if we should deliver an upcall
|
|
*/
|
|
if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
|
|
(x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
|
|
((x->bm_flags & BW_METER_UNIT_BYTES) &&
|
|
(x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
|
|
/* Prepare an upcall for delivery */
|
|
bw_meter_prepare_upcall(x, &now);
|
|
}
|
|
|
|
/*
|
|
* Reschedule for next processing
|
|
*/
|
|
schedule_bw_meter(x, &now);
|
|
}
|
|
}
|
|
|
|
/* Send all upcalls that are pending delivery */
|
|
bw_upcalls_send();
|
|
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* A periodic function for sending all upcalls that are pending delivery
|
|
*/
|
|
static void
|
|
expire_bw_upcalls_send(void *unused)
|
|
{
|
|
int s;
|
|
|
|
s = splsoftnet();
|
|
bw_upcalls_send();
|
|
splx(s);
|
|
|
|
callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
|
|
expire_bw_upcalls_send, NULL);
|
|
}
|
|
|
|
/*
|
|
* A periodic function for periodic scanning of the multicast forwarding
|
|
* table for processing all "<=" bw_meter entries.
|
|
*/
|
|
static void
|
|
expire_bw_meter_process(void *unused)
|
|
{
|
|
if (mrt_api_config & MRT_MFC_BW_UPCALL)
|
|
bw_meter_process();
|
|
|
|
callout_reset(&bw_meter_ch, BW_METER_PERIOD,
|
|
expire_bw_meter_process, NULL);
|
|
}
|
|
|
|
/*
|
|
* End of bandwidth monitoring code
|
|
*/
|
|
|
|
#ifdef PIM
|
|
/*
|
|
* Send the packet up to the user daemon, or eventually do kernel encapsulation
|
|
*/
|
|
static int
|
|
pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
|
|
struct mfc *rt)
|
|
{
|
|
struct mbuf *mb_copy, *mm;
|
|
|
|
if (mrtdebug & DEBUG_PIM)
|
|
log(LOG_DEBUG, "pim_register_send: \n");
|
|
|
|
mb_copy = pim_register_prepare(ip, m);
|
|
if (mb_copy == NULL)
|
|
return ENOBUFS;
|
|
|
|
/*
|
|
* Send all the fragments. Note that the mbuf for each fragment
|
|
* is freed by the sending machinery.
|
|
*/
|
|
for (mm = mb_copy; mm; mm = mb_copy) {
|
|
mb_copy = mm->m_nextpkt;
|
|
mm->m_nextpkt = NULL;
|
|
mm = m_pullup(mm, sizeof(struct ip));
|
|
if (mm != NULL) {
|
|
ip = mtod(mm, struct ip *);
|
|
if ((mrt_api_config & MRT_MFC_RP) &&
|
|
!in_nullhost(rt->mfc_rp)) {
|
|
pim_register_send_rp(ip, vifp, mm, rt);
|
|
} else {
|
|
pim_register_send_upcall(ip, vifp, mm, rt);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return a copy of the data packet that is ready for PIM Register
|
|
* encapsulation.
|
|
* XXX: Note that in the returned copy the IP header is a valid one.
|
|
*/
|
|
static struct mbuf *
|
|
pim_register_prepare(struct ip *ip, struct mbuf *m)
|
|
{
|
|
struct mbuf *mb_copy = NULL;
|
|
int mtu;
|
|
|
|
/* Take care of delayed checksums */
|
|
if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
|
|
in_undefer_cksum_tcpudp(m);
|
|
m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
|
|
}
|
|
|
|
/*
|
|
* Copy the old packet & pullup its IP header into the
|
|
* new mbuf so we can modify it.
|
|
*/
|
|
mb_copy = m_copypacket(m, M_DONTWAIT);
|
|
if (mb_copy == NULL)
|
|
return NULL;
|
|
mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
|
|
if (mb_copy == NULL)
|
|
return NULL;
|
|
|
|
/* take care of the TTL */
|
|
ip = mtod(mb_copy, struct ip *);
|
|
--ip->ip_ttl;
|
|
|
|
/* Compute the MTU after the PIM Register encapsulation */
|
|
mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
|
|
|
|
if (ntohs(ip->ip_len) <= mtu) {
|
|
/* Turn the IP header into a valid one */
|
|
ip->ip_sum = 0;
|
|
ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
|
|
} else {
|
|
/* Fragment the packet */
|
|
if (ip_fragment(mb_copy, NULL, mtu) != 0) {
|
|
/* XXX: mb_copy was freed by ip_fragment() */
|
|
return NULL;
|
|
}
|
|
}
|
|
return mb_copy;
|
|
}
|
|
|
|
/*
|
|
* Send an upcall with the data packet to the user-level process.
|
|
*/
|
|
static int
|
|
pim_register_send_upcall(struct ip *ip, struct vif *vifp,
|
|
struct mbuf *mb_copy, struct mfc *rt)
|
|
{
|
|
struct mbuf *mb_first;
|
|
int len = ntohs(ip->ip_len);
|
|
struct igmpmsg *im;
|
|
struct sockaddr_in k_igmpsrc = {
|
|
.sin_len = sizeof(k_igmpsrc),
|
|
.sin_family = AF_INET,
|
|
};
|
|
|
|
/*
|
|
* Add a new mbuf with an upcall header
|
|
*/
|
|
MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
|
|
if (mb_first == NULL) {
|
|
m_freem(mb_copy);
|
|
return ENOBUFS;
|
|
}
|
|
mb_first->m_data += max_linkhdr;
|
|
mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
|
|
mb_first->m_len = sizeof(struct igmpmsg);
|
|
mb_first->m_next = mb_copy;
|
|
|
|
/* Send message to routing daemon */
|
|
im = mtod(mb_first, struct igmpmsg *);
|
|
im->im_msgtype = IGMPMSG_WHOLEPKT;
|
|
im->im_mbz = 0;
|
|
im->im_vif = vifp - viftable;
|
|
im->im_src = ip->ip_src;
|
|
im->im_dst = ip->ip_dst;
|
|
|
|
k_igmpsrc.sin_addr = ip->ip_src;
|
|
|
|
mrtstat.mrts_upcalls++;
|
|
|
|
if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
|
|
if (mrtdebug & DEBUG_PIM)
|
|
log(LOG_WARNING,
|
|
"mcast: pim_register_send_upcall: ip_mrouter socket queue full\n");
|
|
++mrtstat.mrts_upq_sockfull;
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/* Keep statistics */
|
|
pimstat.pims_snd_registers_msgs++;
|
|
pimstat.pims_snd_registers_bytes += len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Encapsulate the data packet in PIM Register message and send it to the RP.
|
|
*/
|
|
static int
|
|
pim_register_send_rp(struct ip *ip, struct vif *vifp,
|
|
struct mbuf *mb_copy, struct mfc *rt)
|
|
{
|
|
struct mbuf *mb_first;
|
|
struct ip *ip_outer;
|
|
struct pim_encap_pimhdr *pimhdr;
|
|
int len = ntohs(ip->ip_len);
|
|
vifi_t vifi = rt->mfc_parent;
|
|
|
|
if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
|
|
m_freem(mb_copy);
|
|
return EADDRNOTAVAIL; /* The iif vif is invalid */
|
|
}
|
|
|
|
/*
|
|
* Add a new mbuf with the encapsulating header
|
|
*/
|
|
MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
|
|
if (mb_first == NULL) {
|
|
m_freem(mb_copy);
|
|
return ENOBUFS;
|
|
}
|
|
mb_first->m_data += max_linkhdr;
|
|
mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
|
|
mb_first->m_next = mb_copy;
|
|
|
|
mb_first->m_pkthdr.len = len + mb_first->m_len;
|
|
|
|
/*
|
|
* Fill in the encapsulating IP and PIM header
|
|
*/
|
|
ip_outer = mtod(mb_first, struct ip *);
|
|
*ip_outer = pim_encap_iphdr;
|
|
if (mb_first->m_pkthdr.len < IP_MINFRAGSIZE)
|
|
ip_outer->ip_id = 0;
|
|
else
|
|
ip_outer->ip_id = ip_newid(NULL);
|
|
ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
|
|
sizeof(pim_encap_pimhdr));
|
|
ip_outer->ip_src = viftable[vifi].v_lcl_addr;
|
|
ip_outer->ip_dst = rt->mfc_rp;
|
|
/*
|
|
* Copy the inner header TOS to the outer header, and take care of the
|
|
* IP_DF bit.
|
|
*/
|
|
ip_outer->ip_tos = ip->ip_tos;
|
|
if (ntohs(ip->ip_off) & IP_DF)
|
|
ip_outer->ip_off |= htons(IP_DF);
|
|
pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer
|
|
+ sizeof(pim_encap_iphdr));
|
|
*pimhdr = pim_encap_pimhdr;
|
|
/* If the iif crosses a border, set the Border-bit */
|
|
if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
|
|
pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
|
|
|
|
mb_first->m_data += sizeof(pim_encap_iphdr);
|
|
pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
|
|
mb_first->m_data -= sizeof(pim_encap_iphdr);
|
|
|
|
if (vifp->v_rate_limit == 0)
|
|
tbf_send_packet(vifp, mb_first);
|
|
else
|
|
tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len));
|
|
|
|
/* Keep statistics */
|
|
pimstat.pims_snd_registers_msgs++;
|
|
pimstat.pims_snd_registers_bytes += len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* PIM-SMv2 and PIM-DM messages processing.
|
|
* Receives and verifies the PIM control messages, and passes them
|
|
* up to the listening socket, using rip_input().
|
|
* The only message with special processing is the PIM_REGISTER message
|
|
* (used by PIM-SM): the PIM header is stripped off, and the inner packet
|
|
* is passed to if_simloop().
|
|
*/
|
|
void
|
|
pim_input(struct mbuf *m, int off, int proto)
|
|
{
|
|
struct ip *ip = mtod(m, struct ip *);
|
|
struct pim *pim;
|
|
int minlen;
|
|
int datalen;
|
|
int ip_tos;
|
|
int iphlen;
|
|
|
|
iphlen = off;
|
|
datalen = ntohs(ip->ip_len) - iphlen;
|
|
|
|
/* Keep statistics */
|
|
pimstat.pims_rcv_total_msgs++;
|
|
pimstat.pims_rcv_total_bytes += datalen;
|
|
|
|
/*
|
|
* Validate lengths
|
|
*/
|
|
if (datalen < PIM_MINLEN) {
|
|
pimstat.pims_rcv_tooshort++;
|
|
log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
|
|
datalen, (u_long)ip->ip_src.s_addr);
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the packet is at least as big as a REGISTER, go ahead
|
|
* and grab the PIM REGISTER header size, to avoid another
|
|
* possible m_pullup() later.
|
|
*
|
|
* PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8
|
|
* PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
|
|
*/
|
|
minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
|
|
|
|
/*
|
|
* Get the IP and PIM headers in contiguous memory, and
|
|
* possibly the PIM REGISTER header.
|
|
*/
|
|
if ((m->m_flags & M_EXT || m->m_len < minlen) &&
|
|
(m = m_pullup(m, minlen)) == NULL) {
|
|
log(LOG_ERR, "pim_input: m_pullup failure\n");
|
|
return;
|
|
}
|
|
ip = mtod(m, struct ip *);
|
|
ip_tos = ip->ip_tos;
|
|
|
|
/* adjust mbuf to point to the PIM header */
|
|
m->m_data += iphlen;
|
|
m->m_len -= iphlen;
|
|
pim = mtod(m, struct pim *);
|
|
|
|
/*
|
|
* Validate checksum. If PIM REGISTER, exclude the data packet.
|
|
*
|
|
* XXX: some older PIMv2 implementations don't make this distinction,
|
|
* so for compatibility reason perform the checksum over part of the
|
|
* message, and if error, then over the whole message.
|
|
*/
|
|
if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
|
|
/* do nothing, checksum okay */
|
|
} else if (in_cksum(m, datalen)) {
|
|
pimstat.pims_rcv_badsum++;
|
|
if (mrtdebug & DEBUG_PIM)
|
|
log(LOG_DEBUG, "pim_input: invalid checksum\n");
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/* PIM version check */
|
|
if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
|
|
pimstat.pims_rcv_badversion++;
|
|
log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
|
|
PIM_VT_V(pim->pim_vt), PIM_VERSION);
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/* restore mbuf back to the outer IP */
|
|
m->m_data -= iphlen;
|
|
m->m_len += iphlen;
|
|
|
|
if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
|
|
/*
|
|
* Since this is a REGISTER, we'll make a copy of the register
|
|
* headers ip + pim + u_int32 + encap_ip, to be passed up to the
|
|
* routing daemon.
|
|
*/
|
|
int s;
|
|
struct sockaddr_in dst = {
|
|
.sin_len = sizeof(dst),
|
|
.sin_family = AF_INET,
|
|
};
|
|
struct mbuf *mcp;
|
|
struct ip *encap_ip;
|
|
u_int32_t *reghdr;
|
|
struct ifnet *vifp;
|
|
|
|
s = splsoftnet();
|
|
if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
|
|
splx(s);
|
|
if (mrtdebug & DEBUG_PIM)
|
|
log(LOG_DEBUG,
|
|
"pim_input: register vif not set: %d\n", reg_vif_num);
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
/* XXX need refcnt? */
|
|
vifp = viftable[reg_vif_num].v_ifp;
|
|
splx(s);
|
|
|
|
/*
|
|
* Validate length
|
|
*/
|
|
if (datalen < PIM_REG_MINLEN) {
|
|
pimstat.pims_rcv_tooshort++;
|
|
pimstat.pims_rcv_badregisters++;
|
|
log(LOG_ERR,
|
|
"pim_input: register packet size too small %d from %lx\n",
|
|
datalen, (u_long)ip->ip_src.s_addr);
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
reghdr = (u_int32_t *)(pim + 1);
|
|
encap_ip = (struct ip *)(reghdr + 1);
|
|
|
|
if (mrtdebug & DEBUG_PIM) {
|
|
log(LOG_DEBUG,
|
|
"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
|
|
(u_long)ntohl(encap_ip->ip_src.s_addr),
|
|
(u_long)ntohl(encap_ip->ip_dst.s_addr),
|
|
ntohs(encap_ip->ip_len));
|
|
}
|
|
|
|
/* verify the version number of the inner packet */
|
|
if (encap_ip->ip_v != IPVERSION) {
|
|
pimstat.pims_rcv_badregisters++;
|
|
if (mrtdebug & DEBUG_PIM) {
|
|
log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
|
|
"of the inner packet\n", encap_ip->ip_v);
|
|
}
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/* verify the inner packet doesn't have options */
|
|
if (encap_ip->ip_hl != (sizeof(struct ip) >> 2)) {
|
|
pimstat.pims_rcv_badregisters++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/* verify the inner packet is destined to a mcast group */
|
|
if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
|
|
pimstat.pims_rcv_badregisters++;
|
|
if (mrtdebug & DEBUG_PIM)
|
|
log(LOG_DEBUG,
|
|
"pim_input: inner packet of register is not "
|
|
"multicast %lx\n",
|
|
(u_long)ntohl(encap_ip->ip_dst.s_addr));
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/* If a NULL_REGISTER, pass it to the daemon */
|
|
if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
|
|
goto pim_input_to_daemon;
|
|
|
|
/*
|
|
* Copy the TOS from the outer IP header to the inner IP header.
|
|
*/
|
|
if (encap_ip->ip_tos != ip_tos) {
|
|
/* Outer TOS -> inner TOS */
|
|
encap_ip->ip_tos = ip_tos;
|
|
/* Recompute the inner header checksum. Sigh... */
|
|
|
|
/* adjust mbuf to point to the inner IP header */
|
|
m->m_data += (iphlen + PIM_MINLEN);
|
|
m->m_len -= (iphlen + PIM_MINLEN);
|
|
|
|
encap_ip->ip_sum = 0;
|
|
encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
|
|
|
|
/* restore mbuf to point back to the outer IP header */
|
|
m->m_data -= (iphlen + PIM_MINLEN);
|
|
m->m_len += (iphlen + PIM_MINLEN);
|
|
}
|
|
|
|
/*
|
|
* Decapsulate the inner IP packet and loopback to forward it
|
|
* as a normal multicast packet. Also, make a copy of the
|
|
* outer_iphdr + pimhdr + reghdr + encap_iphdr
|
|
* to pass to the daemon later, so it can take the appropriate
|
|
* actions (e.g., send back PIM_REGISTER_STOP).
|
|
* XXX: here m->m_data points to the outer IP header.
|
|
*/
|
|
mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_DONTWAIT);
|
|
if (mcp == NULL) {
|
|
log(LOG_ERR,
|
|
"pim_input: pim register: could not copy register head\n");
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/* Keep statistics */
|
|
/* XXX: registers_bytes include only the encap. mcast pkt */
|
|
pimstat.pims_rcv_registers_msgs++;
|
|
pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
|
|
|
|
/*
|
|
* forward the inner ip packet; point m_data at the inner ip.
|
|
*/
|
|
m_adj(m, iphlen + PIM_MINLEN);
|
|
|
|
if (mrtdebug & DEBUG_PIM) {
|
|
log(LOG_DEBUG,
|
|
"pim_input: forwarding decapsulated register: "
|
|
"src %lx, dst %lx, vif %d\n",
|
|
(u_long)ntohl(encap_ip->ip_src.s_addr),
|
|
(u_long)ntohl(encap_ip->ip_dst.s_addr),
|
|
reg_vif_num);
|
|
}
|
|
/* NB: vifp was collected above; can it change on us? */
|
|
looutput(vifp, m, (struct sockaddr *)&dst, NULL);
|
|
|
|
/* prepare the register head to send to the mrouting daemon */
|
|
m = mcp;
|
|
}
|
|
|
|
pim_input_to_daemon:
|
|
/*
|
|
* Pass the PIM message up to the daemon; if it is a Register message,
|
|
* pass the 'head' only up to the daemon. This includes the
|
|
* outer IP header, PIM header, PIM-Register header and the
|
|
* inner IP header.
|
|
* XXX: the outer IP header pkt size of a Register is not adjust to
|
|
* reflect the fact that the inner multicast data is truncated.
|
|
*/
|
|
/*
|
|
* Currently, pim_input() is always called holding softnet_lock
|
|
* by ipintr()(!NET_MPSAFE) or PR_INPUT_WRAP()(NET_MPSAFE).
|
|
*/
|
|
KASSERT(mutex_owned(softnet_lock));
|
|
rip_input(m, iphlen, proto);
|
|
|
|
return;
|
|
}
|
|
#endif /* PIM */
|