5040 lines
123 KiB
C
5040 lines
123 KiB
C
/* $NetBSD: pmap.c,v 1.140 2003/10/05 19:44:58 matt Exp $ */
|
|
|
|
/*
|
|
* Copyright 2003 Wasabi Systems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Written by Steve C. Woodford for Wasabi Systems, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the NetBSD Project by
|
|
* Wasabi Systems, Inc.
|
|
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
|
|
* or promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2002-2003 Wasabi Systems, Inc.
|
|
* Copyright (c) 2001 Richard Earnshaw
|
|
* Copyright (c) 2001-2002 Christopher Gilbert
|
|
* All rights reserved.
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the company nor the name of the author may be used to
|
|
* endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 1999 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Charles M. Hannum.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1994-1998 Mark Brinicombe.
|
|
* Copyright (c) 1994 Brini.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software written for Brini by Mark Brinicombe
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Mark Brinicombe.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
*
|
|
* RiscBSD kernel project
|
|
*
|
|
* pmap.c
|
|
*
|
|
* Machine dependant vm stuff
|
|
*
|
|
* Created : 20/09/94
|
|
*/
|
|
|
|
/*
|
|
* Performance improvements, UVM changes, overhauls and part-rewrites
|
|
* were contributed by Neil A. Carson <neil@causality.com>.
|
|
*/
|
|
|
|
/*
|
|
* Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
|
|
* can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
|
|
* Systems, Inc.
|
|
*
|
|
* There are still a few things outstanding at this time:
|
|
*
|
|
* - There are some unresolved issues for MP systems:
|
|
*
|
|
* o The L1 metadata needs a lock, or more specifically, some places
|
|
* need to acquire an exclusive lock when modifying L1 translation
|
|
* table entries.
|
|
*
|
|
* o When one cpu modifies an L1 entry, and that L1 table is also
|
|
* being used by another cpu, then the latter will need to be told
|
|
* that a tlb invalidation may be necessary. (But only if the old
|
|
* domain number in the L1 entry being over-written is currently
|
|
* the active domain on that cpu). I guess there are lots more tlb
|
|
* shootdown issues too...
|
|
*
|
|
* o If the vector_page is at 0x00000000 instead of 0xffff0000, then
|
|
* MP systems will lose big-time because of the MMU domain hack.
|
|
* The only way this can be solved (apart from moving the vector
|
|
* page to 0xffff0000) is to reserve the first 1MB of user address
|
|
* space for kernel use only. This would require re-linking all
|
|
* applications so that the text section starts above this 1MB
|
|
* boundary.
|
|
*
|
|
* o Tracking which VM space is resident in the cache/tlb has not yet
|
|
* been implemented for MP systems.
|
|
*
|
|
* o Finally, there is a pathological condition where two cpus running
|
|
* two separate processes (not lwps) which happen to share an L1
|
|
* can get into a fight over one or more L1 entries. This will result
|
|
* in a significant slow-down if both processes are in tight loops.
|
|
*/
|
|
|
|
/*
|
|
* Special compilation symbols
|
|
* PMAP_DEBUG - Build in pmap_debug_level code
|
|
*/
|
|
|
|
/* Include header files */
|
|
|
|
#include "opt_cpuoptions.h"
|
|
#include "opt_pmap_debug.h"
|
|
#include "opt_ddb.h"
|
|
#include "opt_lockdebug.h"
|
|
#include "opt_multiprocessor.h"
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/user.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/cdefs.h>
|
|
|
|
#include <uvm/uvm.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/pmap.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/param.h>
|
|
#include <arm/arm32/katelib.h>
|
|
|
|
__KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.140 2003/10/05 19:44:58 matt Exp $");
|
|
|
|
#ifdef PMAP_DEBUG
|
|
|
|
/* XXX need to get rid of all refs to this */
|
|
int pmap_debug_level = 0;
|
|
|
|
/*
|
|
* for switching to potentially finer grained debugging
|
|
*/
|
|
#define PDB_FOLLOW 0x0001
|
|
#define PDB_INIT 0x0002
|
|
#define PDB_ENTER 0x0004
|
|
#define PDB_REMOVE 0x0008
|
|
#define PDB_CREATE 0x0010
|
|
#define PDB_PTPAGE 0x0020
|
|
#define PDB_GROWKERN 0x0040
|
|
#define PDB_BITS 0x0080
|
|
#define PDB_COLLECT 0x0100
|
|
#define PDB_PROTECT 0x0200
|
|
#define PDB_MAP_L1 0x0400
|
|
#define PDB_BOOTSTRAP 0x1000
|
|
#define PDB_PARANOIA 0x2000
|
|
#define PDB_WIRING 0x4000
|
|
#define PDB_PVDUMP 0x8000
|
|
#define PDB_VAC 0x10000
|
|
#define PDB_KENTER 0x20000
|
|
#define PDB_KREMOVE 0x40000
|
|
|
|
int debugmap = 1;
|
|
int pmapdebug = 0;
|
|
#define NPDEBUG(_lev_,_stat_) \
|
|
if (pmapdebug & (_lev_)) \
|
|
((_stat_))
|
|
|
|
#else /* PMAP_DEBUG */
|
|
#define NPDEBUG(_lev_,_stat_) /* Nothing */
|
|
#endif /* PMAP_DEBUG */
|
|
|
|
/*
|
|
* pmap_kernel() points here
|
|
*/
|
|
struct pmap kernel_pmap_store;
|
|
|
|
/*
|
|
* Which pmap is currently 'live' in the cache
|
|
*
|
|
* XXXSCW: Fix for SMP ...
|
|
*/
|
|
union pmap_cache_state *pmap_cache_state;
|
|
|
|
/*
|
|
* Pool and cache that pmap structures are allocated from.
|
|
* We use a cache to avoid clearing the pm_l2[] array (1KB)
|
|
* in pmap_create().
|
|
*/
|
|
static struct pool pmap_pmap_pool;
|
|
static struct pool_cache pmap_pmap_cache;
|
|
static LIST_HEAD(, pmap) pmap_pmaps;
|
|
|
|
/*
|
|
* Pool of PV structures
|
|
*/
|
|
static struct pool pmap_pv_pool;
|
|
static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
|
|
static void pmap_bootstrap_pv_page_free(struct pool *, void *);
|
|
static struct pool_allocator pmap_bootstrap_pv_allocator = {
|
|
pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
|
|
};
|
|
|
|
/*
|
|
* Pool and cache of l2_dtable structures.
|
|
* We use a cache to avoid clearing the structures when they're
|
|
* allocated. (196 bytes)
|
|
*/
|
|
static struct pool pmap_l2dtable_pool;
|
|
static struct pool_cache pmap_l2dtable_cache;
|
|
static vaddr_t pmap_kernel_l2dtable_kva;
|
|
|
|
/*
|
|
* Pool and cache of L2 page descriptors.
|
|
* We use a cache to avoid clearing the descriptor table
|
|
* when they're allocated. (1KB)
|
|
*/
|
|
static struct pool pmap_l2ptp_pool;
|
|
static struct pool_cache pmap_l2ptp_cache;
|
|
static vaddr_t pmap_kernel_l2ptp_kva;
|
|
static paddr_t pmap_kernel_l2ptp_phys;
|
|
|
|
/*
|
|
* pmap copy/zero page, and mem(5) hook point
|
|
*/
|
|
static pt_entry_t *csrc_pte, *cdst_pte;
|
|
static vaddr_t csrcp, cdstp;
|
|
char *memhook;
|
|
extern caddr_t msgbufaddr;
|
|
|
|
/*
|
|
* Flag to indicate if pmap_init() has done its thing
|
|
*/
|
|
boolean_t pmap_initialized;
|
|
|
|
/*
|
|
* Misc. locking data structures
|
|
*/
|
|
|
|
#if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
|
|
static struct lock pmap_main_lock;
|
|
|
|
#define PMAP_MAP_TO_HEAD_LOCK() \
|
|
(void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
|
|
#define PMAP_MAP_TO_HEAD_UNLOCK() \
|
|
(void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
|
|
#define PMAP_HEAD_TO_MAP_LOCK() \
|
|
(void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
|
|
#define PMAP_HEAD_TO_MAP_UNLOCK() \
|
|
spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
|
|
#else
|
|
#define PMAP_MAP_TO_HEAD_LOCK() /* null */
|
|
#define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
|
|
#define PMAP_HEAD_TO_MAP_LOCK() /* null */
|
|
#define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
|
|
#endif
|
|
|
|
#define pmap_acquire_pmap_lock(pm) \
|
|
do { \
|
|
if ((pm) != pmap_kernel()) \
|
|
simple_lock(&(pm)->pm_lock); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
#define pmap_release_pmap_lock(pm) \
|
|
do { \
|
|
if ((pm) != pmap_kernel()) \
|
|
simple_unlock(&(pm)->pm_lock); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
|
|
/*
|
|
* Metadata for L1 translation tables.
|
|
*/
|
|
struct l1_ttable {
|
|
/* Entry on the L1 Table list */
|
|
SLIST_ENTRY(l1_ttable) l1_link;
|
|
|
|
/* Entry on the L1 Least Recently Used list */
|
|
TAILQ_ENTRY(l1_ttable) l1_lru;
|
|
|
|
/* Track how many domains are allocated from this L1 */
|
|
volatile u_int l1_domain_use_count;
|
|
|
|
/*
|
|
* A free-list of domain numbers for this L1.
|
|
* We avoid using ffs() and a bitmap to track domains since ffs()
|
|
* is slow on ARM.
|
|
*/
|
|
u_int8_t l1_domain_first;
|
|
u_int8_t l1_domain_free[PMAP_DOMAINS];
|
|
|
|
/* Physical address of this L1 page table */
|
|
paddr_t l1_physaddr;
|
|
|
|
/* KVA of this L1 page table */
|
|
pd_entry_t *l1_kva;
|
|
};
|
|
|
|
/*
|
|
* Convert a virtual address into its L1 table index. That is, the
|
|
* index used to locate the L2 descriptor table pointer in an L1 table.
|
|
* This is basically used to index l1->l1_kva[].
|
|
*
|
|
* Each L2 descriptor table represents 1MB of VA space.
|
|
*/
|
|
#define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
|
|
|
|
/*
|
|
* L1 Page Tables are tracked using a Least Recently Used list.
|
|
* - New L1s are allocated from the HEAD.
|
|
* - Freed L1s are added to the TAIl.
|
|
* - Recently accessed L1s (where an 'access' is some change to one of
|
|
* the userland pmaps which owns this L1) are moved to the TAIL.
|
|
*/
|
|
static TAILQ_HEAD(, l1_ttable) l1_lru_list;
|
|
static struct simplelock l1_lru_lock;
|
|
|
|
/*
|
|
* A list of all L1 tables
|
|
*/
|
|
static SLIST_HEAD(, l1_ttable) l1_list;
|
|
|
|
/*
|
|
* The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
|
|
*
|
|
* This is normally 16MB worth L2 page descriptors for any given pmap.
|
|
* Reference counts are maintained for L2 descriptors so they can be
|
|
* freed when empty.
|
|
*/
|
|
struct l2_dtable {
|
|
/* The number of L2 page descriptors allocated to this l2_dtable */
|
|
u_int l2_occupancy;
|
|
|
|
/* List of L2 page descriptors */
|
|
struct l2_bucket {
|
|
pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
|
|
paddr_t l2b_phys; /* Physical address of same */
|
|
u_short l2b_l1idx; /* This L2 table's L1 index */
|
|
u_short l2b_occupancy; /* How many active descriptors */
|
|
} l2_bucket[L2_BUCKET_SIZE];
|
|
};
|
|
|
|
/*
|
|
* Given an L1 table index, calculate the corresponding l2_dtable index
|
|
* and bucket index within the l2_dtable.
|
|
*/
|
|
#define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
|
|
(L2_SIZE - 1))
|
|
#define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
|
|
|
|
/*
|
|
* Given a virtual address, this macro returns the
|
|
* virtual address required to drop into the next L2 bucket.
|
|
*/
|
|
#define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
|
|
|
|
/*
|
|
* L2 allocation.
|
|
*/
|
|
#define pmap_alloc_l2_dtable() \
|
|
pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
|
|
#define pmap_free_l2_dtable(l2) \
|
|
pool_cache_put(&pmap_l2dtable_cache, (l2))
|
|
#define pmap_alloc_l2_ptp(pap) \
|
|
((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
|
|
PR_NOWAIT, (pap)))
|
|
|
|
/*
|
|
* We try to map the page tables write-through, if possible. However, not
|
|
* all CPUs have a write-through cache mode, so on those we have to sync
|
|
* the cache when we frob page tables.
|
|
*
|
|
* We try to evaluate this at compile time, if possible. However, it's
|
|
* not always possible to do that, hence this run-time var.
|
|
*/
|
|
int pmap_needs_pte_sync;
|
|
|
|
/*
|
|
* Real definition of pv_entry.
|
|
*/
|
|
struct pv_entry {
|
|
struct pv_entry *pv_next; /* next pv_entry */
|
|
pmap_t pv_pmap; /* pmap where mapping lies */
|
|
vaddr_t pv_va; /* virtual address for mapping */
|
|
u_int pv_flags; /* flags */
|
|
};
|
|
|
|
/*
|
|
* Macro to determine if a mapping might be resident in the
|
|
* instruction cache and/or TLB
|
|
*/
|
|
#define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
|
|
|
|
/*
|
|
* Macro to determine if a mapping might be resident in the
|
|
* data cache and/or TLB
|
|
*/
|
|
#define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
|
|
|
|
/*
|
|
* Local prototypes
|
|
*/
|
|
static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
|
|
static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
|
|
pt_entry_t **);
|
|
static boolean_t pmap_is_current(pmap_t);
|
|
static boolean_t pmap_is_cached(pmap_t);
|
|
static void pmap_enter_pv(struct vm_page *, struct pv_entry *,
|
|
pmap_t, vaddr_t, u_int);
|
|
static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
|
|
static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t);
|
|
static u_int pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
|
|
u_int, u_int);
|
|
|
|
static void pmap_pinit(pmap_t);
|
|
static int pmap_pmap_ctor(void *, void *, int);
|
|
|
|
static void pmap_alloc_l1(pmap_t);
|
|
static void pmap_free_l1(pmap_t);
|
|
static void pmap_use_l1(pmap_t);
|
|
|
|
static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
|
|
static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
|
|
static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
|
|
static int pmap_l2ptp_ctor(void *, void *, int);
|
|
static int pmap_l2dtable_ctor(void *, void *, int);
|
|
|
|
static void pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
|
|
static void pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
|
|
static void pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
|
|
|
|
static void pmap_clearbit(struct vm_page *, u_int);
|
|
static int pmap_clean_page(struct pv_entry *, boolean_t);
|
|
static void pmap_page_remove(struct vm_page *);
|
|
|
|
static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
|
|
static vaddr_t kernel_pt_lookup(paddr_t);
|
|
|
|
|
|
/*
|
|
* External function prototypes
|
|
*/
|
|
extern void bzero_page(vaddr_t);
|
|
extern void bcopy_page(vaddr_t, vaddr_t);
|
|
|
|
/*
|
|
* Misc variables
|
|
*/
|
|
vaddr_t virtual_avail;
|
|
vaddr_t virtual_end;
|
|
vaddr_t pmap_curmaxkvaddr;
|
|
|
|
vaddr_t avail_start;
|
|
vaddr_t avail_end;
|
|
|
|
extern pv_addr_t systempage;
|
|
|
|
/* Function to set the debug level of the pmap code */
|
|
|
|
#ifdef PMAP_DEBUG
|
|
void
|
|
pmap_debug(int level)
|
|
{
|
|
pmap_debug_level = level;
|
|
printf("pmap_debug: level=%d\n", pmap_debug_level);
|
|
}
|
|
#endif /* PMAP_DEBUG */
|
|
|
|
/*
|
|
* A bunch of routines to conditionally flush the caches/TLB depending
|
|
* on whether the specified pmap actually needs to be flushed at any
|
|
* given time.
|
|
*/
|
|
static __inline void
|
|
pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
|
|
{
|
|
|
|
if (pm->pm_cstate.cs_tlb_id)
|
|
cpu_tlb_flushID_SE(va);
|
|
}
|
|
|
|
static __inline void
|
|
pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
|
|
{
|
|
|
|
if (pm->pm_cstate.cs_tlb_d)
|
|
cpu_tlb_flushD_SE(va);
|
|
}
|
|
|
|
static __inline void
|
|
pmap_tlb_flushID(pmap_t pm)
|
|
{
|
|
|
|
if (pm->pm_cstate.cs_tlb_id) {
|
|
cpu_tlb_flushID();
|
|
pm->pm_cstate.cs_tlb = 0;
|
|
}
|
|
}
|
|
|
|
static __inline void
|
|
pmap_tlb_flushD(pmap_t pm)
|
|
{
|
|
|
|
if (pm->pm_cstate.cs_tlb_d) {
|
|
cpu_tlb_flushD();
|
|
pm->pm_cstate.cs_tlb_d = 0;
|
|
}
|
|
}
|
|
|
|
static __inline void
|
|
pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
|
|
{
|
|
|
|
if (pm->pm_cstate.cs_cache_id)
|
|
cpu_idcache_wbinv_range(va, len);
|
|
}
|
|
|
|
static __inline void
|
|
pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
|
|
boolean_t do_inv, boolean_t rd_only)
|
|
{
|
|
|
|
if (pm->pm_cstate.cs_cache_d) {
|
|
if (do_inv) {
|
|
if (rd_only)
|
|
cpu_dcache_inv_range(va, len);
|
|
else
|
|
cpu_dcache_wbinv_range(va, len);
|
|
} else
|
|
if (!rd_only)
|
|
cpu_dcache_wb_range(va, len);
|
|
}
|
|
}
|
|
|
|
static __inline void
|
|
pmap_idcache_wbinv_all(pmap_t pm)
|
|
{
|
|
|
|
if (pm->pm_cstate.cs_cache_id) {
|
|
cpu_idcache_wbinv_all();
|
|
pm->pm_cstate.cs_cache = 0;
|
|
}
|
|
}
|
|
|
|
static __inline void
|
|
pmap_dcache_wbinv_all(pmap_t pm)
|
|
{
|
|
|
|
if (pm->pm_cstate.cs_cache_d) {
|
|
cpu_dcache_wbinv_all();
|
|
pm->pm_cstate.cs_cache_d = 0;
|
|
}
|
|
}
|
|
|
|
static __inline boolean_t
|
|
pmap_is_current(pmap_t pm)
|
|
{
|
|
|
|
if (pm == pmap_kernel() ||
|
|
(curproc && curproc->p_vmspace->vm_map.pmap == pm))
|
|
return (TRUE);
|
|
|
|
return (FALSE);
|
|
}
|
|
|
|
static __inline boolean_t
|
|
pmap_is_cached(pmap_t pm)
|
|
{
|
|
|
|
if (pm == pmap_kernel() || pmap_cache_state == NULL ||
|
|
pmap_cache_state == &pm->pm_cstate)
|
|
return (TRUE);
|
|
|
|
return (FALSE);
|
|
}
|
|
|
|
/*
|
|
* PTE_SYNC_CURRENT:
|
|
*
|
|
* Make sure the pte is written out to RAM.
|
|
* We need to do this for one of two cases:
|
|
* - We're dealing with the kernel pmap
|
|
* - There is no pmap active in the cache/tlb.
|
|
* - The specified pmap is 'active' in the cache/tlb.
|
|
*/
|
|
#ifdef PMAP_INCLUDE_PTE_SYNC
|
|
#define PTE_SYNC_CURRENT(pm, ptep) \
|
|
do { \
|
|
if (PMAP_NEEDS_PTE_SYNC && \
|
|
pmap_is_cached(pm)) \
|
|
PTE_SYNC(ptep); \
|
|
} while (/*CONSTCOND*/0)
|
|
#else
|
|
#define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
|
|
#endif
|
|
|
|
/*
|
|
* main pv_entry manipulation functions:
|
|
* pmap_enter_pv: enter a mapping onto a vm_page list
|
|
* pmap_remove_pv: remove a mappiing from a vm_page list
|
|
*
|
|
* NOTE: pmap_enter_pv expects to lock the pvh itself
|
|
* pmap_remove_pv expects te caller to lock the pvh before calling
|
|
*/
|
|
|
|
/*
|
|
* pmap_enter_pv: enter a mapping onto a vm_page lst
|
|
*
|
|
* => caller should hold the proper lock on pmap_main_lock
|
|
* => caller should have pmap locked
|
|
* => we will gain the lock on the vm_page and allocate the new pv_entry
|
|
* => caller should adjust ptp's wire_count before calling
|
|
* => caller should not adjust pmap's wire_count
|
|
*/
|
|
static void
|
|
pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
|
|
vaddr_t va, u_int flags)
|
|
{
|
|
|
|
NPDEBUG(PDB_PVDUMP,
|
|
printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
|
|
|
|
pve->pv_pmap = pm;
|
|
pve->pv_va = va;
|
|
pve->pv_flags = flags;
|
|
|
|
simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
|
|
pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
|
|
pg->mdpage.pvh_list = pve; /* ... locked list */
|
|
pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
|
|
if (pm == pmap_kernel()) {
|
|
if (flags & PVF_WRITE)
|
|
pg->mdpage.krw_mappings++;
|
|
else
|
|
pg->mdpage.kro_mappings++;
|
|
} else
|
|
if (flags & PVF_WRITE)
|
|
pg->mdpage.urw_mappings++;
|
|
else
|
|
pg->mdpage.uro_mappings++;
|
|
simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
|
|
|
|
if (pve->pv_flags & PVF_WIRED)
|
|
++pm->pm_stats.wired_count;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* pmap_find_pv: Find a pv entry
|
|
*
|
|
* => caller should hold lock on vm_page
|
|
*/
|
|
static __inline struct pv_entry *
|
|
pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
|
|
{
|
|
struct pv_entry *pv;
|
|
|
|
for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
|
|
if (pm == pv->pv_pmap && va == pv->pv_va)
|
|
break;
|
|
}
|
|
|
|
return (pv);
|
|
}
|
|
|
|
/*
|
|
* pmap_remove_pv: try to remove a mapping from a pv_list
|
|
*
|
|
* => caller should hold proper lock on pmap_main_lock
|
|
* => pmap should be locked
|
|
* => caller should hold lock on vm_page [so that attrs can be adjusted]
|
|
* => caller should adjust ptp's wire_count and free PTP if needed
|
|
* => caller should NOT adjust pmap's wire_count
|
|
* => we return the removed pve
|
|
*/
|
|
static struct pv_entry *
|
|
pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
|
|
{
|
|
struct pv_entry *pve, **prevptr;
|
|
|
|
NPDEBUG(PDB_PVDUMP,
|
|
printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
|
|
|
|
prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
|
|
pve = *prevptr;
|
|
|
|
while (pve) {
|
|
if (pve->pv_pmap == pm && pve->pv_va == va) { /* match? */
|
|
NPDEBUG(PDB_PVDUMP,
|
|
printf("pmap_remove_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, pve->pv_flags));
|
|
*prevptr = pve->pv_next; /* remove it! */
|
|
if (pve->pv_flags & PVF_WIRED)
|
|
--pm->pm_stats.wired_count;
|
|
if (pm == pmap_kernel()) {
|
|
if (pve->pv_flags & PVF_WRITE)
|
|
pg->mdpage.krw_mappings--;
|
|
else
|
|
pg->mdpage.kro_mappings--;
|
|
} else
|
|
if (pve->pv_flags & PVF_WRITE)
|
|
pg->mdpage.urw_mappings--;
|
|
else
|
|
pg->mdpage.uro_mappings--;
|
|
break;
|
|
}
|
|
prevptr = &pve->pv_next; /* previous pointer */
|
|
pve = pve->pv_next; /* advance */
|
|
}
|
|
|
|
return(pve); /* return removed pve */
|
|
}
|
|
|
|
/*
|
|
*
|
|
* pmap_modify_pv: Update pv flags
|
|
*
|
|
* => caller should hold lock on vm_page [so that attrs can be adjusted]
|
|
* => caller should NOT adjust pmap's wire_count
|
|
* => caller must call pmap_vac_me_harder() if writable status of a page
|
|
* may have changed.
|
|
* => we return the old flags
|
|
*
|
|
* Modify a physical-virtual mapping in the pv table
|
|
*/
|
|
static u_int
|
|
pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
|
|
u_int clr_mask, u_int set_mask)
|
|
{
|
|
struct pv_entry *npv;
|
|
u_int flags, oflags;
|
|
|
|
if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
|
|
return (0);
|
|
|
|
NPDEBUG(PDB_PVDUMP,
|
|
printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
|
|
|
|
/*
|
|
* There is at least one VA mapping this page.
|
|
*/
|
|
|
|
if (clr_mask & (PVF_REF | PVF_MOD))
|
|
pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
|
|
|
|
oflags = npv->pv_flags;
|
|
npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
|
|
|
|
if ((flags ^ oflags) & PVF_WIRED) {
|
|
if (flags & PVF_WIRED)
|
|
++pm->pm_stats.wired_count;
|
|
else
|
|
--pm->pm_stats.wired_count;
|
|
}
|
|
|
|
if ((flags ^ oflags) & PVF_WRITE) {
|
|
if (pm == pmap_kernel()) {
|
|
if (flags & PVF_WRITE) {
|
|
pg->mdpage.krw_mappings++;
|
|
pg->mdpage.kro_mappings--;
|
|
} else {
|
|
pg->mdpage.kro_mappings++;
|
|
pg->mdpage.krw_mappings--;
|
|
}
|
|
} else
|
|
if (flags & PVF_WRITE) {
|
|
pg->mdpage.urw_mappings++;
|
|
pg->mdpage.uro_mappings--;
|
|
} else {
|
|
pg->mdpage.uro_mappings++;
|
|
pg->mdpage.urw_mappings--;
|
|
}
|
|
}
|
|
|
|
return (oflags);
|
|
}
|
|
|
|
static void
|
|
pmap_pinit(pmap_t pm)
|
|
{
|
|
|
|
if (vector_page < KERNEL_BASE) {
|
|
/*
|
|
* Map the vector page.
|
|
*/
|
|
pmap_enter(pm, vector_page, systempage.pv_pa,
|
|
VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
|
|
pmap_update(pm);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate an L1 translation table for the specified pmap.
|
|
* This is called at pmap creation time.
|
|
*/
|
|
static void
|
|
pmap_alloc_l1(pmap_t pm)
|
|
{
|
|
struct l1_ttable *l1;
|
|
u_int8_t domain;
|
|
|
|
/*
|
|
* Remove the L1 at the head of the LRU list
|
|
*/
|
|
simple_lock(&l1_lru_lock);
|
|
l1 = TAILQ_FIRST(&l1_lru_list);
|
|
KDASSERT(l1 != NULL);
|
|
TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
|
|
|
|
/*
|
|
* Pick the first available domain number, and update
|
|
* the link to the next number.
|
|
*/
|
|
domain = l1->l1_domain_first;
|
|
l1->l1_domain_first = l1->l1_domain_free[domain];
|
|
|
|
/*
|
|
* If there are still free domain numbers in this L1,
|
|
* put it back on the TAIL of the LRU list.
|
|
*/
|
|
if (++l1->l1_domain_use_count < PMAP_DOMAINS)
|
|
TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
|
|
|
|
simple_unlock(&l1_lru_lock);
|
|
|
|
/*
|
|
* Fix up the relevant bits in the pmap structure
|
|
*/
|
|
pm->pm_l1 = l1;
|
|
pm->pm_domain = domain;
|
|
}
|
|
|
|
/*
|
|
* Free an L1 translation table.
|
|
* This is called at pmap destruction time.
|
|
*/
|
|
static void
|
|
pmap_free_l1(pmap_t pm)
|
|
{
|
|
struct l1_ttable *l1 = pm->pm_l1;
|
|
|
|
simple_lock(&l1_lru_lock);
|
|
|
|
/*
|
|
* If this L1 is currently on the LRU list, remove it.
|
|
*/
|
|
if (l1->l1_domain_use_count < PMAP_DOMAINS)
|
|
TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
|
|
|
|
/*
|
|
* Free up the domain number which was allocated to the pmap
|
|
*/
|
|
l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
|
|
l1->l1_domain_first = pm->pm_domain;
|
|
l1->l1_domain_use_count--;
|
|
|
|
/*
|
|
* The L1 now must have at least 1 free domain, so add
|
|
* it back to the LRU list. If the use count is zero,
|
|
* put it at the head of the list, otherwise it goes
|
|
* to the tail.
|
|
*/
|
|
if (l1->l1_domain_use_count == 0)
|
|
TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
|
|
else
|
|
TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
|
|
|
|
simple_unlock(&l1_lru_lock);
|
|
}
|
|
|
|
static __inline void
|
|
pmap_use_l1(pmap_t pm)
|
|
{
|
|
struct l1_ttable *l1;
|
|
|
|
/*
|
|
* Do nothing if we're in interrupt context.
|
|
* Access to an L1 by the kernel pmap must not affect
|
|
* the LRU list.
|
|
*/
|
|
if (current_intr_depth || pm == pmap_kernel())
|
|
return;
|
|
|
|
l1 = pm->pm_l1;
|
|
|
|
/*
|
|
* If the L1 is not currently on the LRU list, just return
|
|
*/
|
|
if (l1->l1_domain_use_count == PMAP_DOMAINS)
|
|
return;
|
|
|
|
simple_lock(&l1_lru_lock);
|
|
|
|
/*
|
|
* Check the use count again, now that we've acquired the lock
|
|
*/
|
|
if (l1->l1_domain_use_count == PMAP_DOMAINS) {
|
|
simple_unlock(&l1_lru_lock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Move the L1 to the back of the LRU list
|
|
*/
|
|
TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
|
|
TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
|
|
|
|
simple_unlock(&l1_lru_lock);
|
|
}
|
|
|
|
/*
|
|
* void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
|
|
*
|
|
* Free an L2 descriptor table.
|
|
*/
|
|
static __inline void
|
|
#ifndef PMAP_INCLUDE_PTE_SYNC
|
|
pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
|
|
#else
|
|
pmap_free_l2_ptp(boolean_t need_sync, pt_entry_t *l2, paddr_t pa)
|
|
#endif
|
|
{
|
|
#ifdef PMAP_INCLUDE_PTE_SYNC
|
|
/*
|
|
* Note: With a write-back cache, we may need to sync this
|
|
* L2 table before re-using it.
|
|
* This is because it may have belonged to a non-current
|
|
* pmap, in which case the cache syncs would have been
|
|
* skipped when the pages were being unmapped. If the
|
|
* L2 table were then to be immediately re-allocated to
|
|
* the *current* pmap, it may well contain stale mappings
|
|
* which have not yet been cleared by a cache write-back
|
|
* and so would still be visible to the mmu.
|
|
*/
|
|
if (need_sync)
|
|
PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
|
|
#endif
|
|
pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
|
|
}
|
|
|
|
/*
|
|
* Returns a pointer to the L2 bucket associated with the specified pmap
|
|
* and VA, or NULL if no L2 bucket exists for the address.
|
|
*/
|
|
static __inline struct l2_bucket *
|
|
pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
|
|
{
|
|
struct l2_dtable *l2;
|
|
struct l2_bucket *l2b;
|
|
u_short l1idx;
|
|
|
|
l1idx = L1_IDX(va);
|
|
|
|
if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
|
|
(l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
|
|
return (NULL);
|
|
|
|
return (l2b);
|
|
}
|
|
|
|
/*
|
|
* Returns a pointer to the L2 bucket associated with the specified pmap
|
|
* and VA.
|
|
*
|
|
* If no L2 bucket exists, perform the necessary allocations to put an L2
|
|
* bucket/page table in place.
|
|
*
|
|
* Note that if a new L2 bucket/page was allocated, the caller *must*
|
|
* increment the bucket occupancy counter appropriately *before*
|
|
* releasing the pmap's lock to ensure no other thread or cpu deallocates
|
|
* the bucket/page in the meantime.
|
|
*/
|
|
static struct l2_bucket *
|
|
pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
|
|
{
|
|
struct l2_dtable *l2;
|
|
struct l2_bucket *l2b;
|
|
u_short l1idx;
|
|
|
|
l1idx = L1_IDX(va);
|
|
|
|
if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
|
|
/*
|
|
* No mapping at this address, as there is
|
|
* no entry in the L1 table.
|
|
* Need to allocate a new l2_dtable.
|
|
*/
|
|
if ((l2 = pmap_alloc_l2_dtable()) == NULL)
|
|
return (NULL);
|
|
|
|
/*
|
|
* Link it into the parent pmap
|
|
*/
|
|
pm->pm_l2[L2_IDX(l1idx)] = l2;
|
|
}
|
|
|
|
l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
|
|
|
|
/*
|
|
* Fetch pointer to the L2 page table associated with the address.
|
|
*/
|
|
if (l2b->l2b_kva == NULL) {
|
|
pt_entry_t *ptep;
|
|
|
|
/*
|
|
* No L2 page table has been allocated. Chances are, this
|
|
* is because we just allocated the l2_dtable, above.
|
|
*/
|
|
if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
|
|
/*
|
|
* Oops, no more L2 page tables available at this
|
|
* time. We may need to deallocate the l2_dtable
|
|
* if we allocated a new one above.
|
|
*/
|
|
if (l2->l2_occupancy == 0) {
|
|
pm->pm_l2[L2_IDX(l1idx)] = NULL;
|
|
pmap_free_l2_dtable(l2);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
l2->l2_occupancy++;
|
|
l2b->l2b_kva = ptep;
|
|
l2b->l2b_l1idx = l1idx;
|
|
}
|
|
|
|
return (l2b);
|
|
}
|
|
|
|
/*
|
|
* One or more mappings in the specified L2 descriptor table have just been
|
|
* invalidated.
|
|
*
|
|
* Garbage collect the metadata and descriptor table itself if necessary.
|
|
*
|
|
* The pmap lock must be acquired when this is called (not necessary
|
|
* for the kernel pmap).
|
|
*/
|
|
static void
|
|
pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
|
|
{
|
|
struct l2_dtable *l2;
|
|
pd_entry_t *pl1pd, l1pd;
|
|
pt_entry_t *ptep;
|
|
u_short l1idx;
|
|
|
|
KDASSERT(count <= l2b->l2b_occupancy);
|
|
|
|
/*
|
|
* Update the bucket's reference count according to how many
|
|
* PTEs the caller has just invalidated.
|
|
*/
|
|
l2b->l2b_occupancy -= count;
|
|
|
|
/*
|
|
* Note:
|
|
*
|
|
* Level 2 page tables allocated to the kernel pmap are never freed
|
|
* as that would require checking all Level 1 page tables and
|
|
* removing any references to the Level 2 page table. See also the
|
|
* comment elsewhere about never freeing bootstrap L2 descriptors.
|
|
*
|
|
* We make do with just invalidating the mapping in the L2 table.
|
|
*
|
|
* This isn't really a big deal in practice and, in fact, leads
|
|
* to a performance win over time as we don't need to continually
|
|
* alloc/free.
|
|
*/
|
|
if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
|
|
return;
|
|
|
|
/*
|
|
* There are no more valid mappings in this level 2 page table.
|
|
* Go ahead and NULL-out the pointer in the bucket, then
|
|
* free the page table.
|
|
*/
|
|
l1idx = l2b->l2b_l1idx;
|
|
ptep = l2b->l2b_kva;
|
|
l2b->l2b_kva = NULL;
|
|
|
|
pl1pd = &pm->pm_l1->l1_kva[l1idx];
|
|
|
|
/*
|
|
* If the L1 slot matches the pmap's domain
|
|
* number, then invalidate it.
|
|
*/
|
|
l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
|
|
if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
|
|
*pl1pd = 0;
|
|
PTE_SYNC(pl1pd);
|
|
}
|
|
|
|
/*
|
|
* Release the L2 descriptor table back to the pool cache.
|
|
*/
|
|
#ifndef PMAP_INCLUDE_PTE_SYNC
|
|
pmap_free_l2_ptp(ptep, l2b->l2b_phys);
|
|
#else
|
|
pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
|
|
#endif
|
|
|
|
/*
|
|
* Update the reference count in the associated l2_dtable
|
|
*/
|
|
l2 = pm->pm_l2[L2_IDX(l1idx)];
|
|
if (--l2->l2_occupancy > 0)
|
|
return;
|
|
|
|
/*
|
|
* There are no more valid mappings in any of the Level 1
|
|
* slots managed by this l2_dtable. Go ahead and NULL-out
|
|
* the pointer in the parent pmap and free the l2_dtable.
|
|
*/
|
|
pm->pm_l2[L2_IDX(l1idx)] = NULL;
|
|
pmap_free_l2_dtable(l2);
|
|
}
|
|
|
|
/*
|
|
* Pool cache constructors for L2 descriptor tables, metadata and pmap
|
|
* structures.
|
|
*/
|
|
static int
|
|
pmap_l2ptp_ctor(void *arg, void *v, int flags)
|
|
{
|
|
#ifndef PMAP_INCLUDE_PTE_SYNC
|
|
struct l2_bucket *l2b;
|
|
pt_entry_t *ptep, pte;
|
|
vaddr_t va = (vaddr_t)v & ~PGOFSET;
|
|
|
|
/*
|
|
* The mappings for these page tables were initially made using
|
|
* pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
|
|
* mode will not be right for page table mappings. To avoid
|
|
* polluting the pmap_kenter_pa() code with a special case for
|
|
* page tables, we simply fix up the cache-mode here if it's not
|
|
* correct.
|
|
*/
|
|
l2b = pmap_get_l2_bucket(pmap_kernel(), va);
|
|
KDASSERT(l2b != NULL);
|
|
ptep = &l2b->l2b_kva[l2pte_index(va)];
|
|
pte = *ptep;
|
|
|
|
if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
|
|
/*
|
|
* Page tables must have the cache-mode set to Write-Thru.
|
|
*/
|
|
*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
|
|
PTE_SYNC(ptep);
|
|
cpu_tlb_flushD_SE(va);
|
|
cpu_cpwait();
|
|
}
|
|
#endif
|
|
|
|
memset(v, 0, L2_TABLE_SIZE_REAL);
|
|
PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
pmap_l2dtable_ctor(void *arg, void *v, int flags)
|
|
{
|
|
|
|
memset(v, 0, sizeof(struct l2_dtable));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
pmap_pmap_ctor(void *arg, void *v, int flags)
|
|
{
|
|
|
|
memset(v, 0, sizeof(struct pmap));
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Since we have a virtually indexed cache, we may need to inhibit caching if
|
|
* there is more than one mapping and at least one of them is writable.
|
|
* Since we purge the cache on every context switch, we only need to check for
|
|
* other mappings within the same pmap, or kernel_pmap.
|
|
* This function is also called when a page is unmapped, to possibly reenable
|
|
* caching on any remaining mappings.
|
|
*
|
|
* The code implements the following logic, where:
|
|
*
|
|
* KW = # of kernel read/write pages
|
|
* KR = # of kernel read only pages
|
|
* UW = # of user read/write pages
|
|
* UR = # of user read only pages
|
|
*
|
|
* KC = kernel mapping is cacheable
|
|
* UC = user mapping is cacheable
|
|
*
|
|
* KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
|
|
* +---------------------------------------------
|
|
* UW=0,UR=0 | --- KC=1 KC=1 KC=0
|
|
* UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
|
|
* UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
|
|
* UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
|
|
*/
|
|
|
|
static const int pmap_vac_flags[4][4] = {
|
|
{-1, 0, 0, PVF_KNC},
|
|
{0, 0, PVF_NC, PVF_NC},
|
|
{0, PVF_NC, PVF_NC, PVF_NC},
|
|
{PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
|
|
};
|
|
|
|
static __inline int
|
|
pmap_get_vac_flags(const struct vm_page *pg)
|
|
{
|
|
int kidx, uidx;
|
|
|
|
kidx = 0;
|
|
if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
|
|
kidx |= 1;
|
|
if (pg->mdpage.krw_mappings)
|
|
kidx |= 2;
|
|
|
|
uidx = 0;
|
|
if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
|
|
uidx |= 1;
|
|
if (pg->mdpage.urw_mappings)
|
|
uidx |= 2;
|
|
|
|
return (pmap_vac_flags[uidx][kidx]);
|
|
}
|
|
|
|
static __inline void
|
|
pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
|
|
{
|
|
int nattr;
|
|
|
|
nattr = pmap_get_vac_flags(pg);
|
|
|
|
if (nattr < 0) {
|
|
pg->mdpage.pvh_attrs &= ~PVF_NC;
|
|
return;
|
|
}
|
|
|
|
if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
|
|
return;
|
|
|
|
if (pm == pmap_kernel())
|
|
pmap_vac_me_kpmap(pg, pm, va);
|
|
else
|
|
pmap_vac_me_user(pg, pm, va);
|
|
|
|
pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
|
|
}
|
|
|
|
static void
|
|
pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
|
|
{
|
|
u_int u_cacheable, u_entries;
|
|
struct pv_entry *pv;
|
|
pmap_t last_pmap = pm;
|
|
|
|
/*
|
|
* Pass one, see if there are both kernel and user pmaps for
|
|
* this page. Calculate whether there are user-writable or
|
|
* kernel-writable pages.
|
|
*/
|
|
u_cacheable = 0;
|
|
for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
|
|
if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
|
|
u_cacheable++;
|
|
}
|
|
|
|
u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
|
|
|
|
/*
|
|
* We know we have just been updating a kernel entry, so if
|
|
* all user pages are already cacheable, then there is nothing
|
|
* further to do.
|
|
*/
|
|
if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
|
|
return;
|
|
|
|
if (u_entries) {
|
|
/*
|
|
* Scan over the list again, for each entry, if it
|
|
* might not be set correctly, call pmap_vac_me_user
|
|
* to recalculate the settings.
|
|
*/
|
|
for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
|
|
/*
|
|
* We know kernel mappings will get set
|
|
* correctly in other calls. We also know
|
|
* that if the pmap is the same as last_pmap
|
|
* then we've just handled this entry.
|
|
*/
|
|
if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
|
|
continue;
|
|
|
|
/*
|
|
* If there are kernel entries and this page
|
|
* is writable but non-cacheable, then we can
|
|
* skip this entry also.
|
|
*/
|
|
if (pg->mdpage.k_mappings &&
|
|
(pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
|
|
(PVF_NC | PVF_WRITE))
|
|
continue;
|
|
|
|
/*
|
|
* Similarly if there are no kernel-writable
|
|
* entries and the page is already
|
|
* read-only/cacheable.
|
|
*/
|
|
if (pg->mdpage.krw_mappings == 0 &&
|
|
(pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
|
|
continue;
|
|
|
|
/*
|
|
* For some of the remaining cases, we know
|
|
* that we must recalculate, but for others we
|
|
* can't tell if they are correct or not, so
|
|
* we recalculate anyway.
|
|
*/
|
|
pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
|
|
}
|
|
|
|
if (pg->mdpage.k_mappings == 0)
|
|
return;
|
|
}
|
|
|
|
pmap_vac_me_user(pg, pm, va);
|
|
}
|
|
|
|
static void
|
|
pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
|
|
{
|
|
pmap_t kpmap = pmap_kernel();
|
|
struct pv_entry *pv, *npv;
|
|
struct l2_bucket *l2b;
|
|
pt_entry_t *ptep, pte;
|
|
u_int entries = 0;
|
|
u_int writable = 0;
|
|
u_int cacheable_entries = 0;
|
|
u_int kern_cacheable = 0;
|
|
u_int other_writable = 0;
|
|
|
|
/*
|
|
* Count mappings and writable mappings in this pmap.
|
|
* Include kernel mappings as part of our own.
|
|
* Keep a pointer to the first one.
|
|
*/
|
|
for (pv = npv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
|
|
/* Count mappings in the same pmap */
|
|
if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
|
|
if (entries++ == 0)
|
|
npv = pv;
|
|
|
|
/* Cacheable mappings */
|
|
if ((pv->pv_flags & PVF_NC) == 0) {
|
|
cacheable_entries++;
|
|
if (kpmap == pv->pv_pmap)
|
|
kern_cacheable++;
|
|
}
|
|
|
|
/* Writable mappings */
|
|
if (pv->pv_flags & PVF_WRITE)
|
|
++writable;
|
|
} else
|
|
if (pv->pv_flags & PVF_WRITE)
|
|
other_writable = 1;
|
|
}
|
|
|
|
/*
|
|
* Enable or disable caching as necessary.
|
|
* Note: the first entry might be part of the kernel pmap,
|
|
* so we can't assume this is indicative of the state of the
|
|
* other (maybe non-kpmap) entries.
|
|
*/
|
|
if ((entries > 1 && writable) ||
|
|
(entries > 0 && pm == kpmap && other_writable)) {
|
|
if (cacheable_entries == 0)
|
|
return;
|
|
|
|
for (pv = npv; pv; pv = pv->pv_next) {
|
|
if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
|
|
(pv->pv_flags & PVF_NC))
|
|
continue;
|
|
|
|
pv->pv_flags |= PVF_NC;
|
|
|
|
l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
|
|
ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
|
|
pte = *ptep & ~L2_S_CACHE_MASK;
|
|
|
|
if ((va != pv->pv_va || pm != pv->pv_pmap) &&
|
|
l2pte_valid(pte)) {
|
|
if (PV_BEEN_EXECD(pv->pv_flags)) {
|
|
pmap_idcache_wbinv_range(pv->pv_pmap,
|
|
pv->pv_va, PAGE_SIZE);
|
|
pmap_tlb_flushID_SE(pv->pv_pmap,
|
|
pv->pv_va);
|
|
} else
|
|
if (PV_BEEN_REFD(pv->pv_flags)) {
|
|
pmap_dcache_wb_range(pv->pv_pmap,
|
|
pv->pv_va, PAGE_SIZE, TRUE,
|
|
(pv->pv_flags & PVF_WRITE) == 0);
|
|
pmap_tlb_flushD_SE(pv->pv_pmap,
|
|
pv->pv_va);
|
|
}
|
|
}
|
|
|
|
*ptep = pte;
|
|
PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
|
|
}
|
|
cpu_cpwait();
|
|
} else
|
|
if (entries > cacheable_entries) {
|
|
/*
|
|
* Turn cacheing back on for some pages. If it is a kernel
|
|
* page, only do so if there are no other writable pages.
|
|
*/
|
|
for (pv = npv; pv; pv = pv->pv_next) {
|
|
if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
|
|
(kpmap != pv->pv_pmap || other_writable)))
|
|
continue;
|
|
|
|
pv->pv_flags &= ~PVF_NC;
|
|
|
|
l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
|
|
ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
|
|
pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
|
|
|
|
if (l2pte_valid(pte)) {
|
|
if (PV_BEEN_EXECD(pv->pv_flags)) {
|
|
pmap_tlb_flushID_SE(pv->pv_pmap,
|
|
pv->pv_va);
|
|
} else
|
|
if (PV_BEEN_REFD(pv->pv_flags)) {
|
|
pmap_tlb_flushD_SE(pv->pv_pmap,
|
|
pv->pv_va);
|
|
}
|
|
}
|
|
|
|
*ptep = pte;
|
|
PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Modify pte bits for all ptes corresponding to the given physical address.
|
|
* We use `maskbits' rather than `clearbits' because we're always passing
|
|
* constants and the latter would require an extra inversion at run-time.
|
|
*/
|
|
static void
|
|
pmap_clearbit(struct vm_page *pg, u_int maskbits)
|
|
{
|
|
struct l2_bucket *l2b;
|
|
struct pv_entry *pv;
|
|
pt_entry_t *ptep, npte, opte;
|
|
pmap_t pm;
|
|
vaddr_t va;
|
|
u_int oflags;
|
|
|
|
NPDEBUG(PDB_BITS,
|
|
printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
|
|
pg, pg->phys_addr, maskbits));
|
|
|
|
PMAP_HEAD_TO_MAP_LOCK();
|
|
simple_lock(&pg->mdpage.pvh_slock);
|
|
|
|
/*
|
|
* Clear saved attributes (modify, reference)
|
|
*/
|
|
pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
|
|
|
|
if (pg->mdpage.pvh_list == NULL) {
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
PMAP_HEAD_TO_MAP_UNLOCK();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Loop over all current mappings setting/clearing as appropos
|
|
*/
|
|
for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
|
|
va = pv->pv_va;
|
|
pm = pv->pv_pmap;
|
|
oflags = pv->pv_flags;
|
|
pv->pv_flags &= ~maskbits;
|
|
|
|
pmap_acquire_pmap_lock(pm);
|
|
|
|
l2b = pmap_get_l2_bucket(pm, va);
|
|
KDASSERT(l2b != NULL);
|
|
|
|
ptep = &l2b->l2b_kva[l2pte_index(va)];
|
|
npte = opte = *ptep;
|
|
|
|
NPDEBUG(PDB_BITS,
|
|
printf(
|
|
"pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
|
|
pv, pv->pv_pmap, pv->pv_va, oflags));
|
|
|
|
if (maskbits & (PVF_WRITE|PVF_MOD)) {
|
|
if ((pv->pv_flags & PVF_NC)) {
|
|
/*
|
|
* Entry is not cacheable:
|
|
*
|
|
* Don't turn caching on again if this is a
|
|
* modified emulation. This would be
|
|
* inconsitent with the settings created by
|
|
* pmap_vac_me_harder(). Otherwise, it's safe
|
|
* to re-enable cacheing.
|
|
*
|
|
* There's no need to call pmap_vac_me_harder()
|
|
* here: all pages are losing their write
|
|
* permission.
|
|
*/
|
|
if (maskbits & PVF_WRITE) {
|
|
npte |= pte_l2_s_cache_mode;
|
|
pv->pv_flags &= ~PVF_NC;
|
|
}
|
|
} else
|
|
if (opte & L2_S_PROT_W) {
|
|
/*
|
|
* Entry is writable/cacheable: check if pmap
|
|
* is current if it is flush it, otherwise it
|
|
* won't be in the cache
|
|
*/
|
|
if (PV_BEEN_EXECD(oflags))
|
|
pmap_idcache_wbinv_range(pm, pv->pv_va,
|
|
PAGE_SIZE);
|
|
else
|
|
if (PV_BEEN_REFD(oflags))
|
|
pmap_dcache_wb_range(pm, pv->pv_va,
|
|
PAGE_SIZE,
|
|
(maskbits & PVF_REF) ? TRUE : FALSE,
|
|
FALSE);
|
|
}
|
|
|
|
/* make the pte read only */
|
|
npte &= ~L2_S_PROT_W;
|
|
|
|
if (maskbits & PVF_WRITE) {
|
|
/*
|
|
* Keep alias accounting up to date
|
|
*/
|
|
if (pv->pv_pmap == pmap_kernel()) {
|
|
if (oflags & PVF_WRITE) {
|
|
pg->mdpage.krw_mappings--;
|
|
pg->mdpage.kro_mappings++;
|
|
}
|
|
} else
|
|
if (oflags & PVF_WRITE) {
|
|
pg->mdpage.urw_mappings--;
|
|
pg->mdpage.uro_mappings++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (maskbits & PVF_REF) {
|
|
if ((pv->pv_flags & PVF_NC) == 0 &&
|
|
(maskbits & (PVF_WRITE|PVF_MOD)) == 0) {
|
|
/*
|
|
* Check npte here; we may have already
|
|
* done the wbinv above, and the validity
|
|
* of the PTE is the same for opte and
|
|
* npte.
|
|
*/
|
|
if (npte & L2_S_PROT_W) {
|
|
if (PV_BEEN_EXECD(oflags))
|
|
pmap_idcache_wbinv_range(pm,
|
|
pv->pv_va, PAGE_SIZE);
|
|
else
|
|
if (PV_BEEN_REFD(oflags))
|
|
pmap_dcache_wb_range(pm,
|
|
pv->pv_va, PAGE_SIZE,
|
|
TRUE, FALSE);
|
|
} else
|
|
if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) {
|
|
/* XXXJRT need idcache_inv_range */
|
|
if (PV_BEEN_EXECD(oflags))
|
|
pmap_idcache_wbinv_range(pm,
|
|
pv->pv_va, PAGE_SIZE);
|
|
else
|
|
if (PV_BEEN_REFD(oflags))
|
|
pmap_dcache_wb_range(pm,
|
|
pv->pv_va, PAGE_SIZE,
|
|
TRUE, TRUE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make the PTE invalid so that we will take a
|
|
* page fault the next time the mapping is
|
|
* referenced.
|
|
*/
|
|
npte &= ~L2_TYPE_MASK;
|
|
npte |= L2_TYPE_INV;
|
|
}
|
|
|
|
if (npte != opte) {
|
|
*ptep = npte;
|
|
PTE_SYNC(ptep);
|
|
/* Flush the TLB entry if a current pmap. */
|
|
if (PV_BEEN_EXECD(oflags))
|
|
pmap_tlb_flushID_SE(pm, pv->pv_va);
|
|
else
|
|
if (PV_BEEN_REFD(oflags))
|
|
pmap_tlb_flushD_SE(pm, pv->pv_va);
|
|
}
|
|
|
|
pmap_release_pmap_lock(pm);
|
|
|
|
NPDEBUG(PDB_BITS,
|
|
printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
|
|
pm, va, opte, npte));
|
|
}
|
|
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
PMAP_HEAD_TO_MAP_UNLOCK();
|
|
}
|
|
|
|
/*
|
|
* pmap_clean_page()
|
|
*
|
|
* This is a local function used to work out the best strategy to clean
|
|
* a single page referenced by its entry in the PV table. It's used by
|
|
* pmap_copy_page, pmap_zero page and maybe some others later on.
|
|
*
|
|
* Its policy is effectively:
|
|
* o If there are no mappings, we don't bother doing anything with the cache.
|
|
* o If there is one mapping, we clean just that page.
|
|
* o If there are multiple mappings, we clean the entire cache.
|
|
*
|
|
* So that some functions can be further optimised, it returns 0 if it didn't
|
|
* clean the entire cache, or 1 if it did.
|
|
*
|
|
* XXX One bug in this routine is that if the pv_entry has a single page
|
|
* mapped at 0x00000000 a whole cache clean will be performed rather than
|
|
* just the 1 page. Since this should not occur in everyday use and if it does
|
|
* it will just result in not the most efficient clean for the page.
|
|
*/
|
|
static int
|
|
pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
|
|
{
|
|
pmap_t pm, pm_to_clean = NULL;
|
|
struct pv_entry *npv;
|
|
u_int cache_needs_cleaning = 0;
|
|
u_int flags = 0;
|
|
vaddr_t page_to_clean = 0;
|
|
|
|
if (pv == NULL) {
|
|
/* nothing mapped in so nothing to flush */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Since we flush the cache each time we change to a different
|
|
* user vmspace, we only need to flush the page if it is in the
|
|
* current pmap.
|
|
*/
|
|
if (curproc)
|
|
pm = curproc->p_vmspace->vm_map.pmap;
|
|
else
|
|
pm = pmap_kernel();
|
|
|
|
for (npv = pv; npv; npv = npv->pv_next) {
|
|
if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
|
|
flags |= npv->pv_flags;
|
|
/*
|
|
* The page is mapped non-cacheable in
|
|
* this map. No need to flush the cache.
|
|
*/
|
|
if (npv->pv_flags & PVF_NC) {
|
|
#ifdef DIAGNOSTIC
|
|
if (cache_needs_cleaning)
|
|
panic("pmap_clean_page: "
|
|
"cache inconsistency");
|
|
#endif
|
|
break;
|
|
} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
|
|
continue;
|
|
if (cache_needs_cleaning) {
|
|
page_to_clean = 0;
|
|
break;
|
|
} else {
|
|
page_to_clean = npv->pv_va;
|
|
pm_to_clean = npv->pv_pmap;
|
|
}
|
|
cache_needs_cleaning = 1;
|
|
}
|
|
}
|
|
|
|
if (page_to_clean) {
|
|
if (PV_BEEN_EXECD(flags))
|
|
pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
|
|
PAGE_SIZE);
|
|
else
|
|
pmap_dcache_wb_range(pm_to_clean, page_to_clean,
|
|
PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
|
|
} else if (cache_needs_cleaning) {
|
|
if (PV_BEEN_EXECD(flags))
|
|
pmap_idcache_wbinv_all(pm);
|
|
else
|
|
pmap_dcache_wbinv_all(pm);
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_page_remove
|
|
* Function:
|
|
* Removes this physical page from
|
|
* all physical maps in which it resides.
|
|
* Reflects back modify bits to the pager.
|
|
*/
|
|
static void
|
|
pmap_page_remove(struct vm_page *pg)
|
|
{
|
|
struct l2_bucket *l2b;
|
|
struct pv_entry *pv, *npv;
|
|
pmap_t pm, curpm;
|
|
pt_entry_t *ptep, pte;
|
|
boolean_t flush;
|
|
u_int flags;
|
|
|
|
NPDEBUG(PDB_FOLLOW,
|
|
printf("pmap_page_remove: pg %p (0x%08lx)\n", pg, pg->phys_addr));
|
|
|
|
PMAP_HEAD_TO_MAP_LOCK();
|
|
simple_lock(&pg->mdpage.pvh_slock);
|
|
|
|
pv = pg->mdpage.pvh_list;
|
|
if (pv == NULL) {
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
PMAP_HEAD_TO_MAP_UNLOCK();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Clear alias counts
|
|
*/
|
|
pg->mdpage.k_mappings = 0;
|
|
pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
|
|
|
|
flush = FALSE;
|
|
flags = 0;
|
|
if (curproc)
|
|
curpm = curproc->p_vmspace->vm_map.pmap;
|
|
else
|
|
curpm = pmap_kernel();
|
|
|
|
pmap_clean_page(pv, FALSE);
|
|
|
|
while (pv) {
|
|
pm = pv->pv_pmap;
|
|
if (flush == FALSE && (pm == curpm || pm == pmap_kernel()))
|
|
flush = TRUE;
|
|
|
|
pmap_acquire_pmap_lock(pm);
|
|
|
|
l2b = pmap_get_l2_bucket(pm, pv->pv_va);
|
|
KDASSERT(l2b != NULL);
|
|
|
|
ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
|
|
pte = *ptep;
|
|
|
|
/*
|
|
* Update statistics
|
|
*/
|
|
--pm->pm_stats.resident_count;
|
|
|
|
/* Wired bit */
|
|
if (pv->pv_flags & PVF_WIRED)
|
|
--pm->pm_stats.wired_count;
|
|
|
|
flags |= pv->pv_flags;
|
|
|
|
/*
|
|
* Invalidate the PTEs.
|
|
*/
|
|
*ptep = 0;
|
|
PTE_SYNC_CURRENT(pm, ptep);
|
|
pmap_free_l2_bucket(pm, l2b, 1);
|
|
|
|
npv = pv->pv_next;
|
|
pool_put(&pmap_pv_pool, pv);
|
|
pv = npv;
|
|
pmap_release_pmap_lock(pm);
|
|
}
|
|
pg->mdpage.pvh_list = NULL;
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
PMAP_HEAD_TO_MAP_UNLOCK();
|
|
|
|
if (flush) {
|
|
if (PV_BEEN_EXECD(flags))
|
|
pmap_tlb_flushID(curpm);
|
|
else
|
|
pmap_tlb_flushD(curpm);
|
|
}
|
|
cpu_cpwait();
|
|
}
|
|
|
|
/*
|
|
* pmap_t pmap_create(void)
|
|
*
|
|
* Create a new pmap structure from scratch.
|
|
*/
|
|
pmap_t
|
|
pmap_create(void)
|
|
{
|
|
pmap_t pm;
|
|
|
|
pm = pool_cache_get(&pmap_pmap_cache, PR_WAITOK);
|
|
|
|
simple_lock_init(&pm->pm_lock);
|
|
pm->pm_obj.pgops = NULL; /* currently not a mappable object */
|
|
TAILQ_INIT(&pm->pm_obj.memq);
|
|
pm->pm_obj.uo_npages = 0;
|
|
pm->pm_obj.uo_refs = 1;
|
|
pm->pm_stats.wired_count = 0;
|
|
pm->pm_stats.resident_count = 1;
|
|
pm->pm_cstate.cs_all = 0;
|
|
pmap_alloc_l1(pm);
|
|
|
|
/*
|
|
* Note: The pool cache ensures that the pm_l2[] array is already
|
|
* initialised to zero.
|
|
*/
|
|
|
|
pmap_pinit(pm);
|
|
|
|
LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
|
|
|
|
return (pm);
|
|
}
|
|
|
|
/*
|
|
* void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
|
|
* int flags)
|
|
*
|
|
* Insert the given physical page (p) at
|
|
* the specified virtual address (v) in the
|
|
* target physical map with the protection requested.
|
|
*
|
|
* NB: This is the only routine which MAY NOT lazy-evaluate
|
|
* or lose information. That is, this routine must actually
|
|
* insert this page into the given map NOW.
|
|
*/
|
|
int
|
|
pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
|
|
{
|
|
struct l2_bucket *l2b;
|
|
struct vm_page *pg, *opg;
|
|
struct pv_entry *pve;
|
|
pt_entry_t *ptep, npte, opte;
|
|
u_int nflags;
|
|
u_int oflags;
|
|
|
|
NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
|
|
|
|
KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
|
|
KDASSERT(((va | pa) & PGOFSET) == 0);
|
|
|
|
/*
|
|
* Get a pointer to the page. Later on in this function, we
|
|
* test for a managed page by checking pg != NULL.
|
|
*/
|
|
pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
|
|
|
|
nflags = 0;
|
|
if (prot & VM_PROT_WRITE)
|
|
nflags |= PVF_WRITE;
|
|
if (prot & VM_PROT_EXECUTE)
|
|
nflags |= PVF_EXEC;
|
|
if (flags & PMAP_WIRED)
|
|
nflags |= PVF_WIRED;
|
|
|
|
PMAP_MAP_TO_HEAD_LOCK();
|
|
pmap_acquire_pmap_lock(pm);
|
|
|
|
/*
|
|
* Fetch the L2 bucket which maps this page, allocating one if
|
|
* necessary for user pmaps.
|
|
*/
|
|
if (pm == pmap_kernel())
|
|
l2b = pmap_get_l2_bucket(pm, va);
|
|
else
|
|
l2b = pmap_alloc_l2_bucket(pm, va);
|
|
if (l2b == NULL) {
|
|
if (flags & PMAP_CANFAIL) {
|
|
pmap_release_pmap_lock(pm);
|
|
PMAP_MAP_TO_HEAD_UNLOCK();
|
|
return (ENOMEM);
|
|
}
|
|
panic("pmap_enter: failed to allocate L2 bucket");
|
|
}
|
|
ptep = &l2b->l2b_kva[l2pte_index(va)];
|
|
opte = *ptep;
|
|
npte = pa;
|
|
oflags = 0;
|
|
|
|
if (opte) {
|
|
/*
|
|
* There is already a mapping at this address.
|
|
* If the physical address is different, lookup the
|
|
* vm_page.
|
|
*/
|
|
if (l2pte_pa(opte) != pa)
|
|
opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
|
|
else
|
|
opg = pg;
|
|
} else
|
|
opg = NULL;
|
|
|
|
if (pg) {
|
|
/*
|
|
* This is to be a managed mapping.
|
|
*/
|
|
if ((flags & VM_PROT_ALL) ||
|
|
(pg->mdpage.pvh_attrs & PVF_REF)) {
|
|
/*
|
|
* - The access type indicates that we don't need
|
|
* to do referenced emulation.
|
|
* OR
|
|
* - The physical page has already been referenced
|
|
* so no need to re-do referenced emulation here.
|
|
*/
|
|
npte |= L2_S_PROTO;
|
|
|
|
nflags |= PVF_REF;
|
|
|
|
if ((prot & VM_PROT_WRITE) != 0 &&
|
|
((flags & VM_PROT_WRITE) != 0 ||
|
|
(pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
|
|
/*
|
|
* This is a writable mapping, and the
|
|
* page's mod state indicates it has
|
|
* already been modified. Make it
|
|
* writable from the outset.
|
|
*/
|
|
npte |= L2_S_PROT_W;
|
|
nflags |= PVF_MOD;
|
|
}
|
|
} else {
|
|
/*
|
|
* Need to do page referenced emulation.
|
|
*/
|
|
npte |= L2_TYPE_INV;
|
|
}
|
|
|
|
npte |= pte_l2_s_cache_mode;
|
|
|
|
if (pg == opg) {
|
|
/*
|
|
* We're changing the attrs of an existing mapping.
|
|
*/
|
|
simple_lock(&pg->mdpage.pvh_slock);
|
|
oflags = pmap_modify_pv(pg, pm, va,
|
|
PVF_WRITE | PVF_EXEC | PVF_WIRED |
|
|
PVF_MOD | PVF_REF, nflags);
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
|
|
/*
|
|
* We may need to flush the cache if we're
|
|
* doing rw-ro...
|
|
*/
|
|
if (pm->pm_cstate.cs_cache_d &&
|
|
(oflags & PVF_NC) == 0 &&
|
|
(opte & L2_S_PROT_W) != 0 &&
|
|
(prot & VM_PROT_WRITE) == 0)
|
|
cpu_dcache_wb_range(va, PAGE_SIZE);
|
|
} else {
|
|
/*
|
|
* New mapping, or changing the backing page
|
|
* of an existing mapping.
|
|
*/
|
|
if (opg) {
|
|
/*
|
|
* Replacing an existing mapping with a new one.
|
|
* It is part of our managed memory so we
|
|
* must remove it from the PV list
|
|
*/
|
|
simple_lock(&opg->mdpage.pvh_slock);
|
|
pve = pmap_remove_pv(opg, pm, va);
|
|
pmap_vac_me_harder(opg, pm, 0);
|
|
simple_unlock(&opg->mdpage.pvh_slock);
|
|
oflags = pve->pv_flags;
|
|
|
|
/*
|
|
* If the old mapping was valid (ref/mod
|
|
* emulation creates 'invalid' mappings
|
|
* initially) then make sure to frob
|
|
* the cache.
|
|
*/
|
|
if ((oflags & PVF_NC) == 0 &&
|
|
l2pte_valid(opte)) {
|
|
if (PV_BEEN_EXECD(oflags)) {
|
|
pmap_idcache_wbinv_range(pm, va,
|
|
PAGE_SIZE);
|
|
} else
|
|
if (PV_BEEN_REFD(oflags)) {
|
|
pmap_dcache_wb_range(pm, va,
|
|
PAGE_SIZE, TRUE,
|
|
(oflags & PVF_WRITE) == 0);
|
|
}
|
|
}
|
|
} else
|
|
if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
|
|
if ((flags & PMAP_CANFAIL) == 0)
|
|
panic("pmap_enter: no pv entries");
|
|
|
|
if (pm != pmap_kernel())
|
|
pmap_free_l2_bucket(pm, l2b, 0);
|
|
pmap_release_pmap_lock(pm);
|
|
PMAP_MAP_TO_HEAD_UNLOCK();
|
|
NPDEBUG(PDB_ENTER,
|
|
printf("pmap_enter: ENOMEM\n"));
|
|
return (ENOMEM);
|
|
}
|
|
|
|
pmap_enter_pv(pg, pve, pm, va, nflags);
|
|
}
|
|
} else {
|
|
/*
|
|
* We're mapping an unmanaged page.
|
|
* These are always readable, and possibly writable, from
|
|
* the get go as we don't need to track ref/mod status.
|
|
*/
|
|
npte |= L2_S_PROTO;
|
|
if (prot & VM_PROT_WRITE)
|
|
npte |= L2_S_PROT_W;
|
|
|
|
/*
|
|
* Make sure the vector table is mapped cacheable
|
|
*/
|
|
if (pm != pmap_kernel() && va == vector_page)
|
|
npte |= pte_l2_s_cache_mode;
|
|
|
|
if (opg) {
|
|
/*
|
|
* Looks like there's an existing 'managed' mapping
|
|
* at this address.
|
|
*/
|
|
simple_lock(&opg->mdpage.pvh_slock);
|
|
pve = pmap_remove_pv(opg, pm, va);
|
|
pmap_vac_me_harder(opg, pm, 0);
|
|
simple_unlock(&opg->mdpage.pvh_slock);
|
|
oflags = pve->pv_flags;
|
|
|
|
if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
|
|
if (PV_BEEN_EXECD(oflags))
|
|
pmap_idcache_wbinv_range(pm, va,
|
|
PAGE_SIZE);
|
|
else
|
|
if (PV_BEEN_REFD(oflags))
|
|
pmap_dcache_wb_range(pm, va, PAGE_SIZE,
|
|
TRUE, (oflags & PVF_WRITE) == 0);
|
|
}
|
|
pool_put(&pmap_pv_pool, pve);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure userland mappings get the right permissions
|
|
*/
|
|
if (pm != pmap_kernel() && va != vector_page)
|
|
npte |= L2_S_PROT_U;
|
|
|
|
/*
|
|
* Keep the stats up to date
|
|
*/
|
|
if (opte == 0) {
|
|
l2b->l2b_occupancy++;
|
|
pm->pm_stats.resident_count++;
|
|
}
|
|
|
|
NPDEBUG(PDB_ENTER,
|
|
printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
|
|
|
|
/*
|
|
* If this is just a wiring change, the two PTEs will be
|
|
* identical, so there's no need to update the page table.
|
|
*/
|
|
if (npte != opte) {
|
|
boolean_t is_cached = pmap_is_cached(pm);
|
|
|
|
*ptep = npte;
|
|
if (is_cached) {
|
|
/*
|
|
* We only need to frob the cache/tlb if this pmap
|
|
* is current
|
|
*/
|
|
PTE_SYNC(ptep);
|
|
if (va != vector_page && l2pte_valid(npte)) {
|
|
/*
|
|
* This mapping is likely to be accessed as
|
|
* soon as we return to userland. Fix up the
|
|
* L1 entry to avoid taking another
|
|
* page/domain fault.
|
|
*/
|
|
pd_entry_t *pl1pd, l1pd;
|
|
|
|
pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
|
|
l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
|
|
L1_C_PROTO;
|
|
if (*pl1pd != l1pd) {
|
|
*pl1pd = l1pd;
|
|
PTE_SYNC(pl1pd);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (PV_BEEN_EXECD(oflags))
|
|
pmap_tlb_flushID_SE(pm, va);
|
|
else
|
|
if (PV_BEEN_REFD(oflags))
|
|
pmap_tlb_flushD_SE(pm, va);
|
|
|
|
NPDEBUG(PDB_ENTER,
|
|
printf("pmap_enter: is_cached %d cs 0x%08x\n",
|
|
is_cached, pm->pm_cstate.cs_all));
|
|
|
|
if (pg != NULL) {
|
|
simple_lock(&pg->mdpage.pvh_slock);
|
|
pmap_vac_me_harder(pg, pm, va);
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
}
|
|
}
|
|
|
|
pmap_release_pmap_lock(pm);
|
|
PMAP_MAP_TO_HEAD_UNLOCK();
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* pmap_remove()
|
|
*
|
|
* pmap_remove is responsible for nuking a number of mappings for a range
|
|
* of virtual address space in the current pmap. To do this efficiently
|
|
* is interesting, because in a number of cases a wide virtual address
|
|
* range may be supplied that contains few actual mappings. So, the
|
|
* optimisations are:
|
|
* 1. Skip over hunks of address space for which no L1 or L2 entry exists.
|
|
* 2. Build up a list of pages we've hit, up to a maximum, so we can
|
|
* maybe do just a partial cache clean. This path of execution is
|
|
* complicated by the fact that the cache must be flushed _before_
|
|
* the PTE is nuked, being a VAC :-)
|
|
* 3. If we're called after UVM calls pmap_remove_all(), we can defer
|
|
* all invalidations until pmap_update(), since pmap_remove_all() has
|
|
* already flushed the cache.
|
|
* 4. Maybe later fast-case a single page, but I don't think this is
|
|
* going to make _that_ much difference overall.
|
|
*/
|
|
|
|
#define PMAP_REMOVE_CLEAN_LIST_SIZE 3
|
|
|
|
void
|
|
pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
|
|
{
|
|
struct l2_bucket *l2b;
|
|
vaddr_t next_bucket;
|
|
pt_entry_t *ptep;
|
|
u_int cleanlist_idx, total, cnt;
|
|
struct {
|
|
vaddr_t va;
|
|
pt_entry_t *pte;
|
|
} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
|
|
u_int mappings, is_exec, is_refd;
|
|
|
|
NPDEBUG(PDB_REMOVE, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
|
|
pm, sva, eva));
|
|
|
|
/*
|
|
* we lock in the pmap => pv_head direction
|
|
*/
|
|
PMAP_MAP_TO_HEAD_LOCK();
|
|
pmap_acquire_pmap_lock(pm);
|
|
|
|
if (pm->pm_remove_all || !pmap_is_cached(pm)) {
|
|
cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
|
|
if (pm->pm_cstate.cs_tlb == 0)
|
|
pm->pm_remove_all = TRUE;
|
|
} else
|
|
cleanlist_idx = 0;
|
|
|
|
total = 0;
|
|
|
|
while (sva < eva) {
|
|
/*
|
|
* Do one L2 bucket's worth at a time.
|
|
*/
|
|
next_bucket = L2_NEXT_BUCKET(sva);
|
|
if (next_bucket > eva)
|
|
next_bucket = eva;
|
|
|
|
l2b = pmap_get_l2_bucket(pm, sva);
|
|
if (l2b == NULL) {
|
|
sva = next_bucket;
|
|
continue;
|
|
}
|
|
|
|
ptep = &l2b->l2b_kva[l2pte_index(sva)];
|
|
mappings = 0;
|
|
|
|
while (sva < next_bucket) {
|
|
struct vm_page *pg;
|
|
pt_entry_t pte;
|
|
paddr_t pa;
|
|
|
|
pte = *ptep;
|
|
|
|
if (pte == 0) {
|
|
/*
|
|
* Nothing here, move along
|
|
*/
|
|
sva += PAGE_SIZE;
|
|
ptep++;
|
|
continue;
|
|
}
|
|
|
|
pm->pm_stats.resident_count--;
|
|
pa = l2pte_pa(pte);
|
|
is_exec = 0;
|
|
is_refd = 1;
|
|
|
|
/*
|
|
* Update flags. In a number of circumstances,
|
|
* we could cluster a lot of these and do a
|
|
* number of sequential pages in one go.
|
|
*/
|
|
if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
|
|
struct pv_entry *pve;
|
|
simple_lock(&pg->mdpage.pvh_slock);
|
|
pve = pmap_remove_pv(pg, pm, sva);
|
|
pmap_vac_me_harder(pg, pm, 0);
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
if (pve != NULL) {
|
|
if (pm->pm_remove_all == FALSE) {
|
|
is_exec =
|
|
PV_BEEN_EXECD(pve->pv_flags);
|
|
is_refd =
|
|
PV_BEEN_REFD(pve->pv_flags);
|
|
}
|
|
pool_put(&pmap_pv_pool, pve);
|
|
}
|
|
}
|
|
|
|
if (!l2pte_valid(pte)) {
|
|
*ptep = 0;
|
|
PTE_SYNC_CURRENT(pm, ptep);
|
|
sva += PAGE_SIZE;
|
|
ptep++;
|
|
mappings++;
|
|
continue;
|
|
}
|
|
|
|
if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
|
|
/* Add to the clean list. */
|
|
cleanlist[cleanlist_idx].pte = ptep;
|
|
cleanlist[cleanlist_idx].va =
|
|
sva | (is_exec & 1);
|
|
cleanlist_idx++;
|
|
} else
|
|
if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
|
|
/* Nuke everything if needed. */
|
|
pmap_idcache_wbinv_all(pm);
|
|
pmap_tlb_flushID(pm);
|
|
|
|
/*
|
|
* Roll back the previous PTE list,
|
|
* and zero out the current PTE.
|
|
*/
|
|
for (cnt = 0;
|
|
cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
|
|
*cleanlist[cnt].pte = 0;
|
|
}
|
|
*ptep = 0;
|
|
PTE_SYNC(ptep);
|
|
cleanlist_idx++;
|
|
pm->pm_remove_all = TRUE;
|
|
} else {
|
|
*ptep = 0;
|
|
PTE_SYNC(ptep);
|
|
if (pm->pm_remove_all == FALSE) {
|
|
if (is_exec)
|
|
pmap_tlb_flushID_SE(pm, sva);
|
|
else
|
|
if (is_refd)
|
|
pmap_tlb_flushD_SE(pm, sva);
|
|
}
|
|
}
|
|
|
|
sva += PAGE_SIZE;
|
|
ptep++;
|
|
mappings++;
|
|
}
|
|
|
|
/*
|
|
* Deal with any left overs
|
|
*/
|
|
if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
|
|
total += cleanlist_idx;
|
|
for (cnt = 0; cnt < cleanlist_idx; cnt++) {
|
|
if (pm->pm_cstate.cs_all != 0) {
|
|
vaddr_t clva = cleanlist[cnt].va & ~1;
|
|
if (cleanlist[cnt].va & 1) {
|
|
pmap_idcache_wbinv_range(pm,
|
|
clva, PAGE_SIZE);
|
|
pmap_tlb_flushID_SE(pm, clva);
|
|
} else {
|
|
pmap_dcache_wb_range(pm,
|
|
clva, PAGE_SIZE, TRUE,
|
|
FALSE);
|
|
pmap_tlb_flushD_SE(pm, clva);
|
|
}
|
|
}
|
|
*cleanlist[cnt].pte = 0;
|
|
PTE_SYNC_CURRENT(pm, cleanlist[cnt].pte);
|
|
}
|
|
|
|
/*
|
|
* If it looks like we're removing a whole bunch
|
|
* of mappings, it's faster to just write-back
|
|
* the whole cache now and defer TLB flushes until
|
|
* pmap_update() is called.
|
|
*/
|
|
if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
|
|
cleanlist_idx = 0;
|
|
else {
|
|
cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
|
|
pmap_idcache_wbinv_all(pm);
|
|
pm->pm_remove_all = TRUE;
|
|
}
|
|
}
|
|
|
|
pmap_free_l2_bucket(pm, l2b, mappings);
|
|
}
|
|
|
|
pmap_release_pmap_lock(pm);
|
|
PMAP_MAP_TO_HEAD_UNLOCK();
|
|
}
|
|
|
|
/*
|
|
* pmap_kenter_pa: enter an unmanaged, wired kernel mapping
|
|
*
|
|
* We assume there is already sufficient KVM space available
|
|
* to do this, as we can't allocate L2 descriptor tables/metadata
|
|
* from here.
|
|
*/
|
|
void
|
|
pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
|
|
{
|
|
struct l2_bucket *l2b;
|
|
pt_entry_t *ptep, opte;
|
|
|
|
NPDEBUG(PDB_KENTER,
|
|
printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
|
|
va, pa, prot));
|
|
|
|
l2b = pmap_get_l2_bucket(pmap_kernel(), va);
|
|
KDASSERT(l2b != NULL);
|
|
|
|
ptep = &l2b->l2b_kva[l2pte_index(va)];
|
|
opte = *ptep;
|
|
|
|
if (l2pte_valid(opte)) {
|
|
cpu_dcache_wbinv_range(va, PAGE_SIZE);
|
|
cpu_tlb_flushD_SE(va);
|
|
cpu_cpwait();
|
|
} else
|
|
if (opte == 0)
|
|
l2b->l2b_occupancy++;
|
|
|
|
*ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
|
|
pte_l2_s_cache_mode;
|
|
PTE_SYNC(ptep);
|
|
}
|
|
|
|
void
|
|
pmap_kremove(vaddr_t va, vsize_t len)
|
|
{
|
|
struct l2_bucket *l2b;
|
|
pt_entry_t *ptep, *sptep, opte;
|
|
vaddr_t next_bucket, eva;
|
|
u_int mappings;
|
|
|
|
NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
|
|
va, len));
|
|
|
|
eva = va + len;
|
|
|
|
while (va < eva) {
|
|
next_bucket = L2_NEXT_BUCKET(va);
|
|
if (next_bucket > eva)
|
|
next_bucket = eva;
|
|
|
|
l2b = pmap_get_l2_bucket(pmap_kernel(), va);
|
|
KDASSERT(l2b != NULL);
|
|
|
|
sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
|
|
mappings = 0;
|
|
|
|
while (va < next_bucket) {
|
|
opte = *ptep;
|
|
if (l2pte_valid(opte)) {
|
|
cpu_dcache_wbinv_range(va, PAGE_SIZE);
|
|
cpu_tlb_flushD_SE(va);
|
|
}
|
|
if (opte) {
|
|
*ptep = 0;
|
|
mappings++;
|
|
}
|
|
va += PAGE_SIZE;
|
|
ptep++;
|
|
}
|
|
KDASSERT(mappings <= l2b->l2b_occupancy);
|
|
l2b->l2b_occupancy -= mappings;
|
|
PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
|
|
}
|
|
cpu_cpwait();
|
|
}
|
|
|
|
boolean_t
|
|
pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
|
|
{
|
|
struct l2_dtable *l2;
|
|
pd_entry_t *pl1pd, l1pd;
|
|
pt_entry_t *ptep, pte;
|
|
paddr_t pa;
|
|
u_int l1idx;
|
|
|
|
pmap_acquire_pmap_lock(pm);
|
|
|
|
l1idx = L1_IDX(va);
|
|
pl1pd = &pm->pm_l1->l1_kva[l1idx];
|
|
l1pd = *pl1pd;
|
|
|
|
if (l1pte_section_p(l1pd)) {
|
|
/*
|
|
* These should only happen for pmap_kernel()
|
|
*/
|
|
KDASSERT(pm == pmap_kernel());
|
|
pmap_release_pmap_lock(pm);
|
|
pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
|
|
} else {
|
|
/*
|
|
* Note that we can't rely on the validity of the L1
|
|
* descriptor as an indication that a mapping exists.
|
|
* We have to look it up in the L2 dtable.
|
|
*/
|
|
l2 = pm->pm_l2[L2_IDX(l1idx)];
|
|
|
|
if (l2 == NULL ||
|
|
(ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
|
|
pmap_release_pmap_lock(pm);
|
|
return (FALSE);
|
|
}
|
|
|
|
ptep = &ptep[l2pte_index(va)];
|
|
pte = *ptep;
|
|
pmap_release_pmap_lock(pm);
|
|
|
|
if (pte == 0)
|
|
return (FALSE);
|
|
|
|
switch (pte & L2_TYPE_MASK) {
|
|
case L2_TYPE_L:
|
|
pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
|
|
break;
|
|
|
|
default:
|
|
pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (pap != NULL)
|
|
*pap = pa;
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
void
|
|
pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
|
|
{
|
|
struct l2_bucket *l2b;
|
|
pt_entry_t *ptep, pte;
|
|
vaddr_t next_bucket;
|
|
u_int flags;
|
|
int flush;
|
|
|
|
NPDEBUG(PDB_PROTECT,
|
|
printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
|
|
pm, sva, eva, prot));
|
|
|
|
if ((prot & VM_PROT_READ) == 0) {
|
|
pmap_remove(pm, sva, eva);
|
|
return;
|
|
}
|
|
|
|
if (prot & VM_PROT_WRITE) {
|
|
/*
|
|
* If this is a read->write transition, just ignore it and let
|
|
* uvm_fault() take care of it later.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
PMAP_MAP_TO_HEAD_LOCK();
|
|
pmap_acquire_pmap_lock(pm);
|
|
|
|
/*
|
|
* OK, at this point, we know we're doing write-protect operation.
|
|
* If the pmap is active, write-back the range.
|
|
*/
|
|
pmap_dcache_wb_range(pm, sva, eva - sva, FALSE, FALSE);
|
|
|
|
flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
|
|
flags = 0;
|
|
|
|
while (sva < eva) {
|
|
next_bucket = L2_NEXT_BUCKET(sva);
|
|
if (next_bucket > eva)
|
|
next_bucket = eva;
|
|
|
|
l2b = pmap_get_l2_bucket(pm, sva);
|
|
if (l2b == NULL) {
|
|
sva = next_bucket;
|
|
continue;
|
|
}
|
|
|
|
ptep = &l2b->l2b_kva[l2pte_index(sva)];
|
|
|
|
while (sva < next_bucket) {
|
|
if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) {
|
|
struct vm_page *pg;
|
|
u_int f;
|
|
|
|
pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
|
|
pte &= ~L2_S_PROT_W;
|
|
*ptep = pte;
|
|
PTE_SYNC(ptep);
|
|
|
|
if (pg != NULL) {
|
|
simple_lock(&pg->mdpage.pvh_slock);
|
|
f = pmap_modify_pv(pg, pm, sva,
|
|
PVF_WRITE, 0);
|
|
pmap_vac_me_harder(pg, pm, sva);
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
} else
|
|
f = PVF_REF | PVF_EXEC;
|
|
|
|
if (flush >= 0) {
|
|
flush++;
|
|
flags |= f;
|
|
} else
|
|
if (PV_BEEN_EXECD(f))
|
|
pmap_tlb_flushID_SE(pm, sva);
|
|
else
|
|
if (PV_BEEN_REFD(f))
|
|
pmap_tlb_flushD_SE(pm, sva);
|
|
}
|
|
|
|
sva += PAGE_SIZE;
|
|
ptep++;
|
|
}
|
|
}
|
|
|
|
pmap_release_pmap_lock(pm);
|
|
PMAP_MAP_TO_HEAD_UNLOCK();
|
|
|
|
if (flush) {
|
|
if (PV_BEEN_EXECD(flags))
|
|
pmap_tlb_flushID(pm);
|
|
else
|
|
if (PV_BEEN_REFD(flags))
|
|
pmap_tlb_flushD(pm);
|
|
}
|
|
}
|
|
|
|
void
|
|
pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
|
|
{
|
|
|
|
NPDEBUG(PDB_PROTECT,
|
|
printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
|
|
pg, pg->phys_addr, prot));
|
|
|
|
switch(prot) {
|
|
case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
|
|
case VM_PROT_READ|VM_PROT_WRITE:
|
|
return;
|
|
|
|
case VM_PROT_READ:
|
|
case VM_PROT_READ|VM_PROT_EXECUTE:
|
|
pmap_clearbit(pg, PVF_WRITE);
|
|
break;
|
|
|
|
default:
|
|
pmap_page_remove(pg);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pmap_clear_modify:
|
|
*
|
|
* Clear the "modified" attribute for a page.
|
|
*/
|
|
boolean_t
|
|
pmap_clear_modify(struct vm_page *pg)
|
|
{
|
|
boolean_t rv;
|
|
|
|
if (pg->mdpage.pvh_attrs & PVF_MOD) {
|
|
rv = TRUE;
|
|
pmap_clearbit(pg, PVF_MOD);
|
|
} else
|
|
rv = FALSE;
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* pmap_clear_reference:
|
|
*
|
|
* Clear the "referenced" attribute for a page.
|
|
*/
|
|
boolean_t
|
|
pmap_clear_reference(struct vm_page *pg)
|
|
{
|
|
boolean_t rv;
|
|
|
|
if (pg->mdpage.pvh_attrs & PVF_REF) {
|
|
rv = TRUE;
|
|
pmap_clearbit(pg, PVF_REF);
|
|
} else
|
|
rv = FALSE;
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* pmap_is_modified:
|
|
*
|
|
* Test if a page has the "modified" attribute.
|
|
*/
|
|
/* See <arm/arm32/pmap.h> */
|
|
|
|
/*
|
|
* pmap_is_referenced:
|
|
*
|
|
* Test if a page has the "referenced" attribute.
|
|
*/
|
|
/* See <arm/arm32/pmap.h> */
|
|
|
|
int
|
|
pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
|
|
{
|
|
struct l2_dtable *l2;
|
|
struct l2_bucket *l2b;
|
|
pd_entry_t *pl1pd, l1pd;
|
|
pt_entry_t *ptep, pte;
|
|
paddr_t pa;
|
|
u_int l1idx;
|
|
int rv = 0;
|
|
|
|
PMAP_MAP_TO_HEAD_LOCK();
|
|
pmap_acquire_pmap_lock(pm);
|
|
|
|
l1idx = L1_IDX(va);
|
|
|
|
/*
|
|
* If there is no l2_dtable for this address, then the process
|
|
* has no business accessing it.
|
|
*
|
|
* Note: This will catch userland processes trying to access
|
|
* kernel addresses.
|
|
*/
|
|
l2 = pm->pm_l2[L2_IDX(l1idx)];
|
|
if (l2 == NULL)
|
|
goto out;
|
|
|
|
/*
|
|
* Likewise if there is no L2 descriptor table
|
|
*/
|
|
l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
|
|
if (l2b->l2b_kva == NULL)
|
|
goto out;
|
|
|
|
/*
|
|
* Check the PTE itself.
|
|
*/
|
|
ptep = &l2b->l2b_kva[l2pte_index(va)];
|
|
pte = *ptep;
|
|
if (pte == 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Catch a userland access to the vector page mapped at 0x0
|
|
*/
|
|
if (user && (pte & L2_S_PROT_U) == 0)
|
|
goto out;
|
|
|
|
pa = l2pte_pa(pte);
|
|
|
|
if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
|
|
/*
|
|
* This looks like a good candidate for "page modified"
|
|
* emulation...
|
|
*/
|
|
struct pv_entry *pv;
|
|
struct vm_page *pg;
|
|
|
|
/* Extract the physical address of the page */
|
|
if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
|
|
goto out;
|
|
|
|
/* Get the current flags for this page. */
|
|
simple_lock(&pg->mdpage.pvh_slock);
|
|
|
|
pv = pmap_find_pv(pg, pm, va);
|
|
if (pv == NULL) {
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Do the flags say this page is writable? If not then it
|
|
* is a genuine write fault. If yes then the write fault is
|
|
* our fault as we did not reflect the write access in the
|
|
* PTE. Now we know a write has occurred we can correct this
|
|
* and also set the modified bit
|
|
*/
|
|
if ((pv->pv_flags & PVF_WRITE) == 0) {
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
goto out;
|
|
}
|
|
|
|
NPDEBUG(PDB_FOLLOW,
|
|
printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
|
|
pm, va, pg->phys_addr));
|
|
|
|
pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
|
|
pv->pv_flags |= PVF_REF | PVF_MOD;
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
|
|
/*
|
|
* Re-enable write permissions for the page. No need to call
|
|
* pmap_vac_me_harder(), since this is just a
|
|
* modified-emulation fault, and the PVF_WRITE bit isn't
|
|
* changing. We've already set the cacheable bits based on
|
|
* the assumption that we can write to this page.
|
|
*/
|
|
*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
|
|
PTE_SYNC(ptep);
|
|
rv = 1;
|
|
} else
|
|
if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
|
|
/*
|
|
* This looks like a good candidate for "page referenced"
|
|
* emulation.
|
|
*/
|
|
struct pv_entry *pv;
|
|
struct vm_page *pg;
|
|
|
|
/* Extract the physical address of the page */
|
|
if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
|
|
goto out;
|
|
|
|
/* Get the current flags for this page. */
|
|
simple_lock(&pg->mdpage.pvh_slock);
|
|
|
|
pv = pmap_find_pv(pg, pm, va);
|
|
if (pv == NULL) {
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
goto out;
|
|
}
|
|
|
|
pg->mdpage.pvh_attrs |= PVF_REF;
|
|
pv->pv_flags |= PVF_REF;
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
|
|
NPDEBUG(PDB_FOLLOW,
|
|
printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
|
|
pm, va, pg->phys_addr));
|
|
|
|
*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
|
|
PTE_SYNC(ptep);
|
|
rv = 1;
|
|
}
|
|
|
|
/*
|
|
* We know there is a valid mapping here, so simply
|
|
* fix up the L1 if necessary.
|
|
*/
|
|
pl1pd = &pm->pm_l1->l1_kva[l1idx];
|
|
l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
|
|
if (*pl1pd != l1pd) {
|
|
*pl1pd = l1pd;
|
|
PTE_SYNC(pl1pd);
|
|
rv = 1;
|
|
}
|
|
|
|
#ifdef CPU_SA110
|
|
/*
|
|
* There are bugs in the rev K SA110. This is a check for one
|
|
* of them.
|
|
*/
|
|
if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
|
|
curcpu()->ci_arm_cpurev < 3) {
|
|
/* Always current pmap */
|
|
if (l2pte_valid(pte)) {
|
|
extern int kernel_debug;
|
|
if (kernel_debug & 1) {
|
|
struct proc *p = curlwp->l_proc;
|
|
printf("prefetch_abort: page is already "
|
|
"mapped - pte=%p *pte=%08x\n", ptep, pte);
|
|
printf("prefetch_abort: pc=%08lx proc=%p "
|
|
"process=%s\n", va, p, p->p_comm);
|
|
printf("prefetch_abort: far=%08x fs=%x\n",
|
|
cpu_faultaddress(), cpu_faultstatus());
|
|
}
|
|
#ifdef DDB
|
|
if (kernel_debug & 2)
|
|
Debugger();
|
|
#endif
|
|
rv = 1;
|
|
}
|
|
}
|
|
#endif /* CPU_SA110 */
|
|
|
|
#ifdef DEBUG
|
|
/*
|
|
* If 'rv == 0' at this point, it generally indicates that there is a
|
|
* stale TLB entry for the faulting address. This happens when two or
|
|
* more processes are sharing an L1. Since we don't flush the TLB on
|
|
* a context switch between such processes, we can take domain faults
|
|
* for mappings which exist at the same VA in both processes. EVEN IF
|
|
* WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
|
|
* example.
|
|
*
|
|
* This is extremely likely to happen if pmap_enter() updated the L1
|
|
* entry for a recently entered mapping. In this case, the TLB is
|
|
* flushed for the new mapping, but there may still be TLB entries for
|
|
* other mappings belonging to other processes in the 1MB range
|
|
* covered by the L1 entry.
|
|
*
|
|
* Since 'rv == 0', we know that the L1 already contains the correct
|
|
* value, so the fault must be due to a stale TLB entry.
|
|
*
|
|
* Since we always need to flush the TLB anyway in the case where we
|
|
* fixed up the L1, or frobbed the L2 PTE, we effectively deal with
|
|
* stale TLB entries dynamically.
|
|
*
|
|
* However, the above condition can ONLY happen if the current L1 is
|
|
* being shared. If it happens when the L1 is unshared, it indicates
|
|
* that other parts of the pmap are not doing their job WRT managing
|
|
* the TLB.
|
|
*/
|
|
if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
|
|
extern int last_fault_code;
|
|
printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
|
|
pm, va, ftype);
|
|
printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
|
|
l2, l2b, ptep, pl1pd);
|
|
printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
|
|
pte, l1pd, last_fault_code);
|
|
#ifdef DDB
|
|
Debugger();
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
cpu_tlb_flushID_SE(va);
|
|
cpu_cpwait();
|
|
|
|
rv = 1;
|
|
|
|
out:
|
|
pmap_release_pmap_lock(pm);
|
|
PMAP_MAP_TO_HEAD_UNLOCK();
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* pmap_collect: free resources held by a pmap
|
|
*
|
|
* => optional function.
|
|
* => called when a process is swapped out to free memory.
|
|
*/
|
|
void
|
|
pmap_collect(pmap_t pm)
|
|
{
|
|
/*
|
|
* Nothing to do.
|
|
* We don't even need to free-up the process' L1.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_procwr
|
|
*
|
|
* Function:
|
|
* Synchronize caches corresponding to [addr, addr+len) in p.
|
|
*
|
|
*/
|
|
void
|
|
pmap_procwr(struct proc *p, vaddr_t va, int len)
|
|
{
|
|
/* We only need to do anything if it is the current process. */
|
|
if (p == curproc)
|
|
cpu_icache_sync_range(va, len);
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_unwire
|
|
* Function: Clear the wired attribute for a map/virtual-address pair.
|
|
*
|
|
* In/out conditions:
|
|
* The mapping must already exist in the pmap.
|
|
*/
|
|
void
|
|
pmap_unwire(pmap_t pm, vaddr_t va)
|
|
{
|
|
struct l2_bucket *l2b;
|
|
pt_entry_t *ptep, pte;
|
|
struct vm_page *pg;
|
|
paddr_t pa;
|
|
|
|
NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
|
|
|
|
PMAP_MAP_TO_HEAD_LOCK();
|
|
pmap_acquire_pmap_lock(pm);
|
|
|
|
l2b = pmap_get_l2_bucket(pm, va);
|
|
KDASSERT(l2b != NULL);
|
|
|
|
ptep = &l2b->l2b_kva[l2pte_index(va)];
|
|
pte = *ptep;
|
|
|
|
/* Extract the physical address of the page */
|
|
pa = l2pte_pa(pte);
|
|
|
|
if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
|
|
/* Update the wired bit in the pv entry for this page. */
|
|
simple_lock(&pg->mdpage.pvh_slock);
|
|
(void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
|
|
simple_unlock(&pg->mdpage.pvh_slock);
|
|
}
|
|
|
|
pmap_release_pmap_lock(pm);
|
|
PMAP_MAP_TO_HEAD_UNLOCK();
|
|
}
|
|
|
|
void
|
|
pmap_activate(struct lwp *l)
|
|
{
|
|
pmap_t pm;
|
|
struct pcb *pcb;
|
|
int s;
|
|
|
|
pm = l->l_proc->p_vmspace->vm_map.pmap;
|
|
pcb = &l->l_addr->u_pcb;
|
|
|
|
pmap_set_pcb_pagedir(pm, pcb);
|
|
|
|
if (l == curlwp) {
|
|
u_int cur_dacr, cur_ttb;
|
|
|
|
__asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb));
|
|
__asm __volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr));
|
|
|
|
cur_ttb &= ~(L1_TABLE_SIZE - 1);
|
|
|
|
if (cur_ttb == (u_int)pcb->pcb_pagedir &&
|
|
cur_dacr == pcb->pcb_dacr) {
|
|
/*
|
|
* No need to switch address spaces.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
s = splhigh();
|
|
pmap_acquire_pmap_lock(pm);
|
|
disable_interrupts(I32_bit | F32_bit);
|
|
|
|
/*
|
|
* We MUST, I repeat, MUST fix up the L1 entry corresponding
|
|
* to 'vector_page' in the incoming L1 table before switching
|
|
* to it otherwise subsequent interrupts/exceptions (including
|
|
* domain faults!) will jump into hyperspace.
|
|
*/
|
|
if (pcb->pcb_pl1vec) {
|
|
*pcb->pcb_pl1vec = pcb->pcb_l1vec;
|
|
/*
|
|
* Don't need to PTE_SYNC() at this point since
|
|
* cpu_setttb() is about to flush both the cache
|
|
* and the TLB.
|
|
*/
|
|
}
|
|
|
|
cpu_domains(pcb->pcb_dacr);
|
|
cpu_setttb(pcb->pcb_pagedir);
|
|
|
|
enable_interrupts(I32_bit | F32_bit);
|
|
|
|
/*
|
|
* Flag any previous userland pmap as being NOT
|
|
* resident in the cache/tlb.
|
|
*/
|
|
if (pmap_cache_state && pmap_cache_state != &pm->pm_cstate)
|
|
pmap_cache_state->cs_all = 0;
|
|
|
|
/*
|
|
* The new pmap, however, IS resident.
|
|
*/
|
|
pmap_cache_state = &pm->pm_cstate;
|
|
pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
|
|
pmap_release_pmap_lock(pm);
|
|
splx(s);
|
|
}
|
|
}
|
|
|
|
void
|
|
pmap_deactivate(struct lwp *l)
|
|
{
|
|
}
|
|
|
|
void
|
|
pmap_update(pmap_t pm)
|
|
{
|
|
|
|
if (pm->pm_remove_all) {
|
|
/*
|
|
* Finish up the pmap_remove_all() optimisation by flushing
|
|
* the TLB.
|
|
*/
|
|
pmap_tlb_flushID(pm);
|
|
pm->pm_remove_all = FALSE;
|
|
}
|
|
|
|
if (pmap_is_current(pm)) {
|
|
/*
|
|
* If we're dealing with a current userland pmap, move its L1
|
|
* to the end of the LRU.
|
|
*/
|
|
if (pm != pmap_kernel())
|
|
pmap_use_l1(pm);
|
|
|
|
/*
|
|
* We can assume we're done with frobbing the cache/tlb for
|
|
* now. Make sure any future pmap ops don't skip cache/tlb
|
|
* flushes.
|
|
*/
|
|
pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
|
|
}
|
|
|
|
/*
|
|
* make sure TLB/cache operations have completed.
|
|
*/
|
|
cpu_cpwait();
|
|
}
|
|
|
|
void
|
|
pmap_remove_all(pmap_t pm)
|
|
{
|
|
|
|
/*
|
|
* The vmspace described by this pmap is about to be torn down.
|
|
* Until pmap_update() is called, UVM will only make calls
|
|
* to pmap_remove(). We can make life much simpler by flushing
|
|
* the cache now, and deferring TLB invalidation to pmap_update().
|
|
*/
|
|
pmap_idcache_wbinv_all(pm);
|
|
pm->pm_remove_all = TRUE;
|
|
}
|
|
|
|
/*
|
|
* Retire the given physical map from service.
|
|
* Should only be called if the map contains no valid mappings.
|
|
*/
|
|
void
|
|
pmap_destroy(pmap_t pm)
|
|
{
|
|
u_int count;
|
|
|
|
if (pm == NULL)
|
|
return;
|
|
|
|
if (pm->pm_remove_all) {
|
|
pmap_tlb_flushID(pm);
|
|
pm->pm_remove_all = FALSE;
|
|
}
|
|
|
|
/*
|
|
* Drop reference count
|
|
*/
|
|
simple_lock(&pm->pm_lock);
|
|
count = --pm->pm_obj.uo_refs;
|
|
simple_unlock(&pm->pm_lock);
|
|
if (count > 0) {
|
|
if (pmap_is_current(pm)) {
|
|
if (pm != pmap_kernel())
|
|
pmap_use_l1(pm);
|
|
pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* reference count is zero, free pmap resources and then free pmap.
|
|
*/
|
|
|
|
if (vector_page < KERNEL_BASE) {
|
|
/* Remove the vector page mapping */
|
|
pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
|
|
pmap_update(pm);
|
|
}
|
|
|
|
LIST_REMOVE(pm, pm_list);
|
|
|
|
pmap_free_l1(pm);
|
|
|
|
/* return the pmap to the pool */
|
|
pool_cache_put(&pmap_pmap_cache, pm);
|
|
}
|
|
|
|
|
|
/*
|
|
* void pmap_reference(pmap_t pm)
|
|
*
|
|
* Add a reference to the specified pmap.
|
|
*/
|
|
void
|
|
pmap_reference(pmap_t pm)
|
|
{
|
|
|
|
if (pm == NULL)
|
|
return;
|
|
|
|
pmap_use_l1(pm);
|
|
|
|
simple_lock(&pm->pm_lock);
|
|
pm->pm_obj.uo_refs++;
|
|
simple_unlock(&pm->pm_lock);
|
|
}
|
|
|
|
/*
|
|
* pmap_zero_page()
|
|
*
|
|
* Zero a given physical page by mapping it at a page hook point.
|
|
* In doing the zero page op, the page we zero is mapped cachable, as with
|
|
* StrongARM accesses to non-cached pages are non-burst making writing
|
|
* _any_ bulk data very slow.
|
|
*/
|
|
#if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
|
|
void
|
|
pmap_zero_page_generic(paddr_t phys)
|
|
{
|
|
#ifdef DEBUG
|
|
struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
|
|
|
|
if (pg->mdpage.pvh_list != NULL)
|
|
panic("pmap_zero_page: page has mappings");
|
|
#endif
|
|
|
|
KDASSERT((phys & PGOFSET) == 0);
|
|
|
|
/*
|
|
* Hook in the page, zero it, and purge the cache for that
|
|
* zeroed page. Invalidate the TLB as needed.
|
|
*/
|
|
*cdst_pte = L2_S_PROTO | phys |
|
|
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
|
|
PTE_SYNC(cdst_pte);
|
|
cpu_tlb_flushD_SE(cdstp);
|
|
cpu_cpwait();
|
|
bzero_page(cdstp);
|
|
cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
|
|
}
|
|
#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
|
|
|
|
#if ARM_MMU_XSCALE == 1
|
|
void
|
|
pmap_zero_page_xscale(paddr_t phys)
|
|
{
|
|
#ifdef DEBUG
|
|
struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
|
|
|
|
if (pg->mdpage.pvh_list != NULL)
|
|
panic("pmap_zero_page: page has mappings");
|
|
#endif
|
|
|
|
KDASSERT((phys & PGOFSET) == 0);
|
|
|
|
/*
|
|
* Hook in the page, zero it, and purge the cache for that
|
|
* zeroed page. Invalidate the TLB as needed.
|
|
*/
|
|
*cdst_pte = L2_S_PROTO | phys |
|
|
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
|
|
L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
|
|
PTE_SYNC(cdst_pte);
|
|
cpu_tlb_flushD_SE(cdstp);
|
|
cpu_cpwait();
|
|
bzero_page(cdstp);
|
|
xscale_cache_clean_minidata();
|
|
}
|
|
#endif /* ARM_MMU_XSCALE == 1 */
|
|
|
|
/* pmap_pageidlezero()
|
|
*
|
|
* The same as above, except that we assume that the page is not
|
|
* mapped. This means we never have to flush the cache first. Called
|
|
* from the idle loop.
|
|
*/
|
|
boolean_t
|
|
pmap_pageidlezero(paddr_t phys)
|
|
{
|
|
unsigned int i;
|
|
int *ptr;
|
|
boolean_t rv = TRUE;
|
|
#ifdef DEBUG
|
|
struct vm_page *pg;
|
|
|
|
pg = PHYS_TO_VM_PAGE(phys);
|
|
if (pg->mdpage.pvh_list != NULL)
|
|
panic("pmap_pageidlezero: page has mappings");
|
|
#endif
|
|
|
|
KDASSERT((phys & PGOFSET) == 0);
|
|
|
|
/*
|
|
* Hook in the page, zero it, and purge the cache for that
|
|
* zeroed page. Invalidate the TLB as needed.
|
|
*/
|
|
*cdst_pte = L2_S_PROTO | phys |
|
|
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
|
|
PTE_SYNC(cdst_pte);
|
|
cpu_tlb_flushD_SE(cdstp);
|
|
cpu_cpwait();
|
|
|
|
for (i = 0, ptr = (int *)cdstp;
|
|
i < (PAGE_SIZE / sizeof(int)); i++) {
|
|
if (sched_whichqs != 0) {
|
|
/*
|
|
* A process has become ready. Abort now,
|
|
* so we don't keep it waiting while we
|
|
* do slow memory access to finish this
|
|
* page.
|
|
*/
|
|
rv = FALSE;
|
|
break;
|
|
}
|
|
*ptr++ = 0;
|
|
}
|
|
|
|
if (rv)
|
|
/*
|
|
* if we aborted we'll rezero this page again later so don't
|
|
* purge it unless we finished it
|
|
*/
|
|
cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* pmap_copy_page()
|
|
*
|
|
* Copy one physical page into another, by mapping the pages into
|
|
* hook points. The same comment regarding cachability as in
|
|
* pmap_zero_page also applies here.
|
|
*/
|
|
#if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
|
|
void
|
|
pmap_copy_page_generic(paddr_t src, paddr_t dst)
|
|
{
|
|
struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
|
|
#ifdef DEBUG
|
|
struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
|
|
|
|
if (dst_pg->mdpage.pvh_list != NULL)
|
|
panic("pmap_copy_page: dst page has mappings");
|
|
#endif
|
|
|
|
KDASSERT((src & PGOFSET) == 0);
|
|
KDASSERT((dst & PGOFSET) == 0);
|
|
|
|
/*
|
|
* Clean the source page. Hold the source page's lock for
|
|
* the duration of the copy so that no other mappings can
|
|
* be created while we have a potentially aliased mapping.
|
|
*/
|
|
simple_lock(&src_pg->mdpage.pvh_slock);
|
|
(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
|
|
|
|
/*
|
|
* Map the pages into the page hook points, copy them, and purge
|
|
* the cache for the appropriate page. Invalidate the TLB
|
|
* as required.
|
|
*/
|
|
*csrc_pte = L2_S_PROTO | src |
|
|
L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
|
|
PTE_SYNC(csrc_pte);
|
|
*cdst_pte = L2_S_PROTO | dst |
|
|
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
|
|
PTE_SYNC(cdst_pte);
|
|
cpu_tlb_flushD_SE(csrcp);
|
|
cpu_tlb_flushD_SE(cdstp);
|
|
cpu_cpwait();
|
|
bcopy_page(csrcp, cdstp);
|
|
cpu_dcache_inv_range(csrcp, PAGE_SIZE);
|
|
simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
|
|
cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
|
|
}
|
|
#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
|
|
|
|
#if ARM_MMU_XSCALE == 1
|
|
void
|
|
pmap_copy_page_xscale(paddr_t src, paddr_t dst)
|
|
{
|
|
struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
|
|
#ifdef DEBUG
|
|
struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
|
|
|
|
if (dst_pg->mdpage.pvh_list != NULL)
|
|
panic("pmap_copy_page: dst page has mappings");
|
|
#endif
|
|
|
|
KDASSERT((src & PGOFSET) == 0);
|
|
KDASSERT((dst & PGOFSET) == 0);
|
|
|
|
/*
|
|
* Clean the source page. Hold the source page's lock for
|
|
* the duration of the copy so that no other mappings can
|
|
* be created while we have a potentially aliased mapping.
|
|
*/
|
|
simple_lock(&src_pg->mdpage.pvh_slock);
|
|
(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
|
|
|
|
/*
|
|
* Map the pages into the page hook points, copy them, and purge
|
|
* the cache for the appropriate page. Invalidate the TLB
|
|
* as required.
|
|
*/
|
|
*csrc_pte = L2_S_PROTO | src |
|
|
L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
|
|
L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
|
|
PTE_SYNC(csrc_pte);
|
|
*cdst_pte = L2_S_PROTO | dst |
|
|
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
|
|
L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
|
|
PTE_SYNC(cdst_pte);
|
|
cpu_tlb_flushD_SE(csrcp);
|
|
cpu_tlb_flushD_SE(cdstp);
|
|
cpu_cpwait();
|
|
bcopy_page(csrcp, cdstp);
|
|
simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
|
|
xscale_cache_clean_minidata();
|
|
}
|
|
#endif /* ARM_MMU_XSCALE == 1 */
|
|
|
|
/*
|
|
* void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
|
|
*
|
|
* Return the start and end addresses of the kernel's virtual space.
|
|
* These values are setup in pmap_bootstrap and are updated as pages
|
|
* are allocated.
|
|
*/
|
|
void
|
|
pmap_virtual_space(vaddr_t *start, vaddr_t *end)
|
|
{
|
|
*start = virtual_avail;
|
|
*end = virtual_end;
|
|
}
|
|
|
|
/*
|
|
* Helper function for pmap_grow_l2_bucket()
|
|
*/
|
|
static __inline int
|
|
pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
|
|
{
|
|
struct l2_bucket *l2b;
|
|
pt_entry_t *ptep;
|
|
paddr_t pa;
|
|
|
|
if (uvm.page_init_done == FALSE) {
|
|
if (uvm_page_physget(&pa) == FALSE)
|
|
return (1);
|
|
} else {
|
|
struct vm_page *pg;
|
|
pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
|
|
if (pg == NULL)
|
|
return (1);
|
|
pa = VM_PAGE_TO_PHYS(pg);
|
|
}
|
|
|
|
if (pap)
|
|
*pap = pa;
|
|
|
|
l2b = pmap_get_l2_bucket(pmap_kernel(), va);
|
|
KDASSERT(l2b != NULL);
|
|
|
|
ptep = &l2b->l2b_kva[l2pte_index(va)];
|
|
*ptep = L2_S_PROTO | pa | cache_mode |
|
|
L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
|
|
PTE_SYNC(ptep);
|
|
memset((void *)va, 0, PAGE_SIZE);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This is the same as pmap_alloc_l2_bucket(), except that it is only
|
|
* used by pmap_growkernel().
|
|
*/
|
|
static __inline struct l2_bucket *
|
|
pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
|
|
{
|
|
struct l2_dtable *l2;
|
|
struct l2_bucket *l2b;
|
|
u_short l1idx;
|
|
vaddr_t nva;
|
|
|
|
l1idx = L1_IDX(va);
|
|
|
|
if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
|
|
/*
|
|
* No mapping at this address, as there is
|
|
* no entry in the L1 table.
|
|
* Need to allocate a new l2_dtable.
|
|
*/
|
|
nva = pmap_kernel_l2dtable_kva;
|
|
if ((nva & PGOFSET) == 0) {
|
|
/*
|
|
* Need to allocate a backing page
|
|
*/
|
|
if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
|
|
return (NULL);
|
|
}
|
|
|
|
l2 = (struct l2_dtable *)nva;
|
|
nva += sizeof(struct l2_dtable);
|
|
|
|
if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
|
|
/*
|
|
* The new l2_dtable straddles a page boundary.
|
|
* Map in another page to cover it.
|
|
*/
|
|
if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
|
|
return (NULL);
|
|
}
|
|
|
|
pmap_kernel_l2dtable_kva = nva;
|
|
|
|
/*
|
|
* Link it into the parent pmap
|
|
*/
|
|
pm->pm_l2[L2_IDX(l1idx)] = l2;
|
|
}
|
|
|
|
l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
|
|
|
|
/*
|
|
* Fetch pointer to the L2 page table associated with the address.
|
|
*/
|
|
if (l2b->l2b_kva == NULL) {
|
|
pt_entry_t *ptep;
|
|
|
|
/*
|
|
* No L2 page table has been allocated. Chances are, this
|
|
* is because we just allocated the l2_dtable, above.
|
|
*/
|
|
nva = pmap_kernel_l2ptp_kva;
|
|
ptep = (pt_entry_t *)nva;
|
|
if ((nva & PGOFSET) == 0) {
|
|
/*
|
|
* Need to allocate a backing page
|
|
*/
|
|
if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
|
|
&pmap_kernel_l2ptp_phys))
|
|
return (NULL);
|
|
PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
|
|
}
|
|
|
|
l2->l2_occupancy++;
|
|
l2b->l2b_kva = ptep;
|
|
l2b->l2b_l1idx = l1idx;
|
|
l2b->l2b_phys = pmap_kernel_l2ptp_phys;
|
|
|
|
pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
|
|
pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
|
|
}
|
|
|
|
return (l2b);
|
|
}
|
|
|
|
vaddr_t
|
|
pmap_growkernel(vaddr_t maxkvaddr)
|
|
{
|
|
pmap_t kpm = pmap_kernel();
|
|
struct l1_ttable *l1;
|
|
struct l2_bucket *l2b;
|
|
pd_entry_t *pl1pd;
|
|
int s;
|
|
|
|
if (maxkvaddr <= pmap_curmaxkvaddr)
|
|
goto out; /* we are OK */
|
|
|
|
NPDEBUG(PDB_GROWKERN,
|
|
printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
|
|
pmap_curmaxkvaddr, maxkvaddr));
|
|
|
|
KDASSERT(maxkvaddr <= virtual_end);
|
|
|
|
/*
|
|
* whoops! we need to add kernel PTPs
|
|
*/
|
|
|
|
s = splhigh(); /* to be safe */
|
|
simple_lock(&kpm->pm_lock);
|
|
|
|
/* Map 1MB at a time */
|
|
for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
|
|
|
|
l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
|
|
KDASSERT(l2b != NULL);
|
|
|
|
/* Distribute new L1 entry to all other L1s */
|
|
SLIST_FOREACH(l1, &l1_list, l1_link) {
|
|
pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
|
|
*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
|
|
L1_C_PROTO;
|
|
PTE_SYNC(pl1pd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* flush out the cache, expensive but growkernel will happen so
|
|
* rarely
|
|
*/
|
|
cpu_dcache_wbinv_all();
|
|
cpu_tlb_flushD();
|
|
cpu_cpwait();
|
|
|
|
simple_unlock(&kpm->pm_lock);
|
|
splx(s);
|
|
|
|
out:
|
|
return (pmap_curmaxkvaddr);
|
|
}
|
|
|
|
/************************ Utility routines ****************************/
|
|
|
|
/*
|
|
* vector_page_setprot:
|
|
*
|
|
* Manipulate the protection of the vector page.
|
|
*/
|
|
void
|
|
vector_page_setprot(int prot)
|
|
{
|
|
struct l2_bucket *l2b;
|
|
pt_entry_t *ptep;
|
|
|
|
l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
|
|
KDASSERT(l2b != NULL);
|
|
|
|
ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
|
|
|
|
*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
|
|
PTE_SYNC(ptep);
|
|
cpu_tlb_flushD_SE(vector_page);
|
|
cpu_cpwait();
|
|
}
|
|
|
|
/*
|
|
* This is used to stuff certain critical values into the PCB where they
|
|
* can be accessed quickly from cpu_switch() et al.
|
|
*/
|
|
void
|
|
pmap_set_pcb_pagedir(pmap_t pm, struct pcb *pcb)
|
|
{
|
|
struct l2_bucket *l2b;
|
|
|
|
KDASSERT(pm->pm_l1);
|
|
|
|
pcb->pcb_pagedir = pm->pm_l1->l1_physaddr;
|
|
pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
|
|
(DOMAIN_CLIENT << (pm->pm_domain * 2));
|
|
pcb->pcb_cstate = (void *)&pm->pm_cstate;
|
|
|
|
if (vector_page < KERNEL_BASE) {
|
|
pcb->pcb_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
|
|
l2b = pmap_get_l2_bucket(pm, vector_page);
|
|
pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO |
|
|
L1_C_DOM(pm->pm_domain);
|
|
} else
|
|
pcb->pcb_pl1vec = NULL;
|
|
}
|
|
|
|
/*
|
|
* Fetch pointers to the PDE/PTE for the given pmap/VA pair.
|
|
* Returns TRUE if the mapping exists, else FALSE.
|
|
*
|
|
* NOTE: This function is only used by a couple of arm-specific modules.
|
|
* It is not safe to take any pmap locks here, since we could be right
|
|
* in the middle of debugging the pmap anyway...
|
|
*
|
|
* It is possible for this routine to return FALSE even though a valid
|
|
* mapping does exist. This is because we don't lock, so the metadata
|
|
* state may be inconsistent.
|
|
*
|
|
* NOTE: We can return a NULL *ptp in the case where the L1 pde is
|
|
* a "section" mapping.
|
|
*/
|
|
boolean_t
|
|
pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
|
|
{
|
|
struct l2_dtable *l2;
|
|
pd_entry_t *pl1pd, l1pd;
|
|
pt_entry_t *ptep;
|
|
u_short l1idx;
|
|
|
|
if (pm->pm_l1 == NULL)
|
|
return (FALSE);
|
|
|
|
l1idx = L1_IDX(va);
|
|
*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
|
|
l1pd = *pl1pd;
|
|
|
|
if (l1pte_section_p(l1pd)) {
|
|
*ptp = NULL;
|
|
return (TRUE);
|
|
}
|
|
|
|
if (pm->pm_l2 == NULL)
|
|
return (FALSE);
|
|
|
|
l2 = pm->pm_l2[L2_IDX(l1idx)];
|
|
|
|
if (l2 == NULL ||
|
|
(ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
|
|
return (FALSE);
|
|
}
|
|
|
|
*ptp = &ptep[l2pte_index(va)];
|
|
return (TRUE);
|
|
}
|
|
|
|
boolean_t
|
|
pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
|
|
{
|
|
u_short l1idx;
|
|
|
|
if (pm->pm_l1 == NULL)
|
|
return (FALSE);
|
|
|
|
l1idx = L1_IDX(va);
|
|
*pdp = &pm->pm_l1->l1_kva[l1idx];
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
/************************ Bootstrapping routines ****************************/
|
|
|
|
static void
|
|
pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
|
|
{
|
|
int i;
|
|
|
|
l1->l1_kva = l1pt;
|
|
l1->l1_domain_use_count = 0;
|
|
l1->l1_domain_first = 0;
|
|
|
|
for (i = 0; i < PMAP_DOMAINS; i++)
|
|
l1->l1_domain_free[i] = i + 1;
|
|
|
|
/*
|
|
* Copy the kernel's L1 entries to each new L1.
|
|
*/
|
|
if (pmap_initialized)
|
|
memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
|
|
|
|
if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
|
|
&l1->l1_physaddr) == FALSE)
|
|
panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
|
|
|
|
SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
|
|
TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
|
|
}
|
|
|
|
/*
|
|
* pmap_bootstrap() is called from the board-specific initarm() routine
|
|
* once the kernel L1/L2 descriptors tables have been set up.
|
|
*
|
|
* This is a somewhat convoluted process since pmap bootstrap is, effectively,
|
|
* spread over a number of disparate files/functions.
|
|
*
|
|
* We are passed the following parameters
|
|
* - kernel_l1pt
|
|
* This is a pointer to the base of the kernel's L1 translation table.
|
|
* - vstart
|
|
* 1MB-aligned start of managed kernel virtual memory.
|
|
* - vend
|
|
* 1MB-aligned end of managed kernel virtual memory.
|
|
*
|
|
* We use the first parameter to build the metadata (struct l1_ttable and
|
|
* struct l2_dtable) necessary to track kernel mappings.
|
|
*/
|
|
#define PMAP_STATIC_L2_SIZE 16
|
|
void
|
|
pmap_bootstrap(pd_entry_t *kernel_l1pt, vaddr_t vstart, vaddr_t vend)
|
|
{
|
|
static struct l1_ttable static_l1;
|
|
static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
|
|
struct l1_ttable *l1 = &static_l1;
|
|
struct l2_dtable *l2;
|
|
struct l2_bucket *l2b;
|
|
pmap_t pm = pmap_kernel();
|
|
pd_entry_t pde;
|
|
pt_entry_t *ptep;
|
|
paddr_t pa;
|
|
vaddr_t va;
|
|
vsize_t size;
|
|
int l1idx, l2idx, l2next = 0;
|
|
|
|
/*
|
|
* Initialise the kernel pmap object
|
|
*/
|
|
pm->pm_l1 = l1;
|
|
pm->pm_domain = PMAP_DOMAIN_KERNEL;
|
|
pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
|
|
simple_lock_init(&pm->pm_lock);
|
|
pm->pm_obj.pgops = NULL;
|
|
TAILQ_INIT(&pm->pm_obj.memq);
|
|
pm->pm_obj.uo_npages = 0;
|
|
pm->pm_obj.uo_refs = 1;
|
|
|
|
/*
|
|
* Scan the L1 translation table created by initarm() and create
|
|
* the required metadata for all valid mappings found in it.
|
|
*/
|
|
for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
|
|
pde = kernel_l1pt[l1idx];
|
|
|
|
/*
|
|
* We're only interested in Coarse mappings.
|
|
* pmap_extract() can deal with section mappings without
|
|
* recourse to checking L2 metadata.
|
|
*/
|
|
if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
|
|
continue;
|
|
|
|
/*
|
|
* Lookup the KVA of this L2 descriptor table
|
|
*/
|
|
pa = (paddr_t)(pde & L1_C_ADDR_MASK);
|
|
ptep = (pt_entry_t *)kernel_pt_lookup(pa);
|
|
if (ptep == NULL) {
|
|
panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
|
|
(u_int)l1idx << L1_S_SHIFT, pa);
|
|
}
|
|
|
|
/*
|
|
* Fetch the associated L2 metadata structure.
|
|
* Allocate a new one if necessary.
|
|
*/
|
|
if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
|
|
if (l2next == PMAP_STATIC_L2_SIZE)
|
|
panic("pmap_bootstrap: out of static L2s");
|
|
pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
|
|
}
|
|
|
|
/*
|
|
* One more L1 slot tracked...
|
|
*/
|
|
l2->l2_occupancy++;
|
|
|
|
/*
|
|
* Fill in the details of the L2 descriptor in the
|
|
* appropriate bucket.
|
|
*/
|
|
l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
|
|
l2b->l2b_kva = ptep;
|
|
l2b->l2b_phys = pa;
|
|
l2b->l2b_l1idx = l1idx;
|
|
|
|
/*
|
|
* Establish an initial occupancy count for this descriptor
|
|
*/
|
|
for (l2idx = 0;
|
|
l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
|
|
l2idx++) {
|
|
if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
|
|
l2b->l2b_occupancy++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure the descriptor itself has the correct cache mode.
|
|
* If not, fix it, but bitch about the problem. Port-meisters
|
|
* should consider this a clue to fix up their initarm()
|
|
* function. :)
|
|
*/
|
|
if (pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)ptep)) {
|
|
printf("pmap_bootstrap: WARNING! wrong cache mode for "
|
|
"L2 pte @ %p\n", ptep);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ensure the primary (kernel) L1 has the correct cache mode for
|
|
* a page table. Bitch if it is not correctly set.
|
|
*/
|
|
for (va = (vaddr_t)kernel_l1pt;
|
|
va < ((vaddr_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
|
|
if (pmap_set_pt_cache_mode(kernel_l1pt, va))
|
|
printf("pmap_bootstrap: WARNING! wrong cache mode for "
|
|
"primary L1 @ 0x%lx\n", va);
|
|
}
|
|
|
|
cpu_dcache_wbinv_all();
|
|
cpu_tlb_flushID();
|
|
cpu_cpwait();
|
|
|
|
/*
|
|
* now we allocate the "special" VAs which are used for tmp mappings
|
|
* by the pmap (and other modules). we allocate the VAs by advancing
|
|
* virtual_avail (note that there are no pages mapped at these VAs).
|
|
*
|
|
* Managed KVM space start from wherever initarm() tells us.
|
|
*/
|
|
virtual_avail = vstart;
|
|
virtual_end = vend;
|
|
|
|
pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
|
|
pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)csrc_pte);
|
|
pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
|
|
pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)cdst_pte);
|
|
pmap_alloc_specials(&virtual_avail, 1, (void *)&memhook, NULL);
|
|
pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
|
|
(void *)&msgbufaddr, NULL);
|
|
|
|
/*
|
|
* Allocate a range of kernel virtual address space to be used
|
|
* for L2 descriptor tables and metadata allocation in
|
|
* pmap_growkernel().
|
|
*/
|
|
size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
|
|
pmap_alloc_specials(&virtual_avail,
|
|
round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
|
|
&pmap_kernel_l2ptp_kva, NULL);
|
|
|
|
size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
|
|
pmap_alloc_specials(&virtual_avail,
|
|
round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
|
|
&pmap_kernel_l2dtable_kva, NULL);
|
|
|
|
/*
|
|
* init the static-global locks and global pmap list.
|
|
*/
|
|
#if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
|
|
spinlockinit(&pmap_main_lock, "pmaplk", 0);
|
|
#endif
|
|
|
|
/*
|
|
* We can now initialise the first L1's metadata.
|
|
*/
|
|
SLIST_INIT(&l1_list);
|
|
TAILQ_INIT(&l1_lru_list);
|
|
simple_lock_init(&l1_lru_lock);
|
|
pmap_init_l1(l1, kernel_l1pt);
|
|
|
|
/*
|
|
* Initialize the pmap pool and cache
|
|
*/
|
|
pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
|
|
&pool_allocator_nointr);
|
|
pool_cache_init(&pmap_pmap_cache, &pmap_pmap_pool,
|
|
pmap_pmap_ctor, NULL, NULL);
|
|
LIST_INIT(&pmap_pmaps);
|
|
LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
|
|
|
|
/*
|
|
* Initialize the pv pool.
|
|
*/
|
|
pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
|
|
&pmap_bootstrap_pv_allocator);
|
|
|
|
/*
|
|
* Initialize the L2 dtable pool and cache.
|
|
*/
|
|
pool_init(&pmap_l2dtable_pool, sizeof(struct l2_dtable), 0, 0, 0,
|
|
"l2dtblpl", NULL);
|
|
pool_cache_init(&pmap_l2dtable_cache, &pmap_l2dtable_pool,
|
|
pmap_l2dtable_ctor, NULL, NULL);
|
|
|
|
/*
|
|
* Initialise the L2 descriptor table pool and cache
|
|
*/
|
|
pool_init(&pmap_l2ptp_pool, L2_TABLE_SIZE_REAL, 0, L2_TABLE_SIZE_REAL,
|
|
0, "l2ptppl", NULL);
|
|
pool_cache_init(&pmap_l2ptp_cache, &pmap_l2ptp_pool,
|
|
pmap_l2ptp_ctor, NULL, NULL);
|
|
|
|
cpu_dcache_wbinv_all();
|
|
}
|
|
|
|
static int
|
|
pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
|
|
{
|
|
pd_entry_t *pdep, pde;
|
|
pt_entry_t *ptep, pte;
|
|
vaddr_t pa;
|
|
int rv = 0;
|
|
|
|
/*
|
|
* Make sure the descriptor itself has the correct cache mode
|
|
*/
|
|
pdep = &kl1[L1_IDX(va)];
|
|
pde = *pdep;
|
|
|
|
if (l1pte_section_p(pde)) {
|
|
if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
|
|
*pdep = (pde & ~L1_S_CACHE_MASK) |
|
|
pte_l1_s_cache_mode_pt;
|
|
PTE_SYNC(pdep);
|
|
cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
|
|
rv = 1;
|
|
}
|
|
} else {
|
|
pa = (paddr_t)(pde & L1_C_ADDR_MASK);
|
|
ptep = (pt_entry_t *)kernel_pt_lookup(pa);
|
|
if (ptep == NULL)
|
|
panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
|
|
|
|
ptep = &ptep[l2pte_index(va)];
|
|
pte = *ptep;
|
|
if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
|
|
*ptep = (pte & ~L2_S_CACHE_MASK) |
|
|
pte_l2_s_cache_mode_pt;
|
|
PTE_SYNC(ptep);
|
|
cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
|
|
rv = 1;
|
|
}
|
|
}
|
|
|
|
return (rv);
|
|
}
|
|
|
|
static void
|
|
pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
|
|
{
|
|
vaddr_t va = *availp;
|
|
struct l2_bucket *l2b;
|
|
|
|
if (ptep) {
|
|
l2b = pmap_get_l2_bucket(pmap_kernel(), va);
|
|
if (l2b == NULL)
|
|
panic("pmap_alloc_specials: no l2b for 0x%lx", va);
|
|
|
|
if (ptep)
|
|
*ptep = &l2b->l2b_kva[l2pte_index(va)];
|
|
}
|
|
|
|
*vap = va;
|
|
*availp = va + (PAGE_SIZE * pages);
|
|
}
|
|
|
|
void
|
|
pmap_init(void)
|
|
{
|
|
extern int physmem;
|
|
|
|
/*
|
|
* Set the available memory vars - These do not map to real memory
|
|
* addresses and cannot as the physical memory is fragmented.
|
|
* They are used by ps for %mem calculations.
|
|
* One could argue whether this should be the entire memory or just
|
|
* the memory that is useable in a user process.
|
|
*/
|
|
avail_start = 0;
|
|
avail_end = physmem * PAGE_SIZE;
|
|
|
|
/*
|
|
* Now we need to free enough pv_entry structures to allow us to get
|
|
* the kmem_map/kmem_object allocated and inited (done after this
|
|
* function is finished). to do this we allocate one bootstrap page out
|
|
* of kernel_map and use it to provide an initial pool of pv_entry
|
|
* structures. we never free this page.
|
|
*/
|
|
pool_setlowat(&pmap_pv_pool,
|
|
(PAGE_SIZE / sizeof(struct pv_entry)) * 2);
|
|
|
|
pmap_initialized = TRUE;
|
|
}
|
|
|
|
static vaddr_t last_bootstrap_page = 0;
|
|
static void *free_bootstrap_pages = NULL;
|
|
|
|
static void *
|
|
pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
|
|
{
|
|
extern void *pool_page_alloc(struct pool *, int);
|
|
vaddr_t new_page;
|
|
void *rv;
|
|
|
|
if (pmap_initialized)
|
|
return (pool_page_alloc(pp, flags));
|
|
|
|
if (free_bootstrap_pages) {
|
|
rv = free_bootstrap_pages;
|
|
free_bootstrap_pages = *((void **)rv);
|
|
return (rv);
|
|
}
|
|
|
|
new_page = uvm_km_kmemalloc(kernel_map, NULL, PAGE_SIZE,
|
|
(flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT);
|
|
|
|
KASSERT(new_page > last_bootstrap_page);
|
|
last_bootstrap_page = new_page;
|
|
return ((void *)new_page);
|
|
}
|
|
|
|
static void
|
|
pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
|
|
{
|
|
extern void pool_page_free(struct pool *, void *);
|
|
|
|
if (pmap_initialized) {
|
|
pool_page_free(pp, v);
|
|
return;
|
|
}
|
|
|
|
if ((vaddr_t)v < last_bootstrap_page) {
|
|
*((void **)v) = free_bootstrap_pages;
|
|
free_bootstrap_pages = v;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pmap_postinit()
|
|
*
|
|
* This routine is called after the vm and kmem subsystems have been
|
|
* initialised. This allows the pmap code to perform any initialisation
|
|
* that can only be done one the memory allocation is in place.
|
|
*/
|
|
void
|
|
pmap_postinit(void)
|
|
{
|
|
extern paddr_t physical_start, physical_end;
|
|
struct l2_bucket *l2b;
|
|
struct l1_ttable *l1;
|
|
struct pglist plist;
|
|
struct vm_page *m;
|
|
pd_entry_t *pl1pt;
|
|
pt_entry_t *ptep, pte;
|
|
vaddr_t va, eva;
|
|
u_int loop, needed;
|
|
int error;
|
|
|
|
pool_setlowat(&pmap_l2ptp_pool,
|
|
(PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
|
|
pool_setlowat(&pmap_l2dtable_pool,
|
|
(PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
|
|
|
|
needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
|
|
needed -= 1;
|
|
|
|
l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
|
|
|
|
for (loop = 0; loop < needed; loop++, l1++) {
|
|
/* Allocate a L1 page table */
|
|
va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
|
|
if (va == 0)
|
|
panic("Cannot allocate L1 KVM");
|
|
|
|
error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
|
|
physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
|
|
if (error)
|
|
panic("Cannot allocate L1 physical pages");
|
|
|
|
m = TAILQ_FIRST(&plist);
|
|
eva = va + L1_TABLE_SIZE;
|
|
pl1pt = (pd_entry_t *)va;
|
|
|
|
while (m && va < eva) {
|
|
paddr_t pa = VM_PAGE_TO_PHYS(m);
|
|
|
|
pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
|
|
|
|
/*
|
|
* Make sure the L1 descriptor table is mapped
|
|
* with the cache-mode set to write-through.
|
|
*/
|
|
l2b = pmap_get_l2_bucket(pmap_kernel(), va);
|
|
ptep = &l2b->l2b_kva[l2pte_index(va)];
|
|
pte = *ptep;
|
|
pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
|
|
*ptep = pte;
|
|
PTE_SYNC(ptep);
|
|
cpu_tlb_flushD_SE(va);
|
|
|
|
va += PAGE_SIZE;
|
|
m = m->pageq.tqe_next;
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (m)
|
|
panic("pmap_alloc_l1pt: pglist not empty");
|
|
#endif /* DIAGNOSTIC */
|
|
|
|
pmap_init_l1(l1, pl1pt);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
|
|
needed);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Note that the following routines are used by board-specific initialisation
|
|
* code to configure the initial kernel page tables.
|
|
*
|
|
* If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
|
|
* L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
|
|
* behaviour of the old pmap, and provides an easy migration path for
|
|
* initial bring-up of the new pmap on existing ports. Fortunately,
|
|
* pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
|
|
* will be deprecated.
|
|
*
|
|
* If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
|
|
* tables.
|
|
*/
|
|
|
|
/*
|
|
* This list exists for the benefit of pmap_map_chunk(). It keeps track
|
|
* of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
|
|
* find them as necessary.
|
|
*
|
|
* Note that the data on this list MUST remain valid after initarm() returns,
|
|
* as pmap_bootstrap() uses it to contruct L2 table metadata.
|
|
*/
|
|
SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
|
|
|
|
static vaddr_t
|
|
kernel_pt_lookup(paddr_t pa)
|
|
{
|
|
pv_addr_t *pv;
|
|
|
|
SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
|
|
#ifndef ARM32_NEW_VM_LAYOUT
|
|
if (pv->pv_pa == (pa & ~PGOFSET))
|
|
return (pv->pv_va | (pa & PGOFSET));
|
|
#else
|
|
if (pv->pv_pa == pa)
|
|
return (pv->pv_va);
|
|
#endif
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* pmap_map_section:
|
|
*
|
|
* Create a single section mapping.
|
|
*/
|
|
void
|
|
pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
|
|
{
|
|
pd_entry_t *pde = (pd_entry_t *) l1pt;
|
|
pd_entry_t fl;
|
|
|
|
KASSERT(((va | pa) & L1_S_OFFSET) == 0);
|
|
|
|
switch (cache) {
|
|
case PTE_NOCACHE:
|
|
default:
|
|
fl = 0;
|
|
break;
|
|
|
|
case PTE_CACHE:
|
|
fl = pte_l1_s_cache_mode;
|
|
break;
|
|
|
|
case PTE_PAGETABLE:
|
|
fl = pte_l1_s_cache_mode_pt;
|
|
break;
|
|
}
|
|
|
|
pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
|
|
L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
|
|
PTE_SYNC(&pde[va >> L1_S_SHIFT]);
|
|
}
|
|
|
|
/*
|
|
* pmap_map_entry:
|
|
*
|
|
* Create a single page mapping.
|
|
*/
|
|
void
|
|
pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
|
|
{
|
|
pd_entry_t *pde = (pd_entry_t *) l1pt;
|
|
pt_entry_t fl;
|
|
pt_entry_t *pte;
|
|
|
|
KASSERT(((va | pa) & PGOFSET) == 0);
|
|
|
|
switch (cache) {
|
|
case PTE_NOCACHE:
|
|
default:
|
|
fl = 0;
|
|
break;
|
|
|
|
case PTE_CACHE:
|
|
fl = pte_l2_s_cache_mode;
|
|
break;
|
|
|
|
case PTE_PAGETABLE:
|
|
fl = pte_l2_s_cache_mode_pt;
|
|
break;
|
|
}
|
|
|
|
if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
|
|
panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
|
|
|
|
#ifndef ARM32_NEW_VM_LAYOUT
|
|
pte = (pt_entry_t *)
|
|
kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
|
|
#else
|
|
pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
|
|
#endif
|
|
if (pte == NULL)
|
|
panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
|
|
|
|
#ifndef ARM32_NEW_VM_LAYOUT
|
|
pte[(va >> PGSHIFT) & 0x3ff] =
|
|
L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
|
|
PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
|
|
#else
|
|
pte[l2pte_index(va)] =
|
|
L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
|
|
PTE_SYNC(&pte[l2pte_index(va)]);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* pmap_link_l2pt:
|
|
*
|
|
* Link the L2 page table specified by "l2pv" into the L1
|
|
* page table at the slot for "va".
|
|
*/
|
|
void
|
|
pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
|
|
{
|
|
pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
|
|
u_int slot = va >> L1_S_SHIFT;
|
|
|
|
#ifndef ARM32_NEW_VM_LAYOUT
|
|
KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
|
|
KASSERT((l2pv->pv_pa & PGOFSET) == 0);
|
|
#endif
|
|
|
|
proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
|
|
|
|
pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
|
|
#ifdef ARM32_NEW_VM_LAYOUT
|
|
PTE_SYNC(&pde[slot]);
|
|
#else
|
|
pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
|
|
pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
|
|
pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
|
|
PTE_SYNC_RANGE(&pde[slot + 0], 4);
|
|
#endif
|
|
|
|
SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
|
|
}
|
|
|
|
/*
|
|
* pmap_map_chunk:
|
|
*
|
|
* Map a chunk of memory using the most efficient mappings
|
|
* possible (section, large page, small page) into the
|
|
* provided L1 and L2 tables at the specified virtual address.
|
|
*/
|
|
vsize_t
|
|
pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
|
|
int prot, int cache)
|
|
{
|
|
pd_entry_t *pde = (pd_entry_t *) l1pt;
|
|
pt_entry_t *pte, f1, f2s, f2l;
|
|
vsize_t resid;
|
|
int i;
|
|
|
|
resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
|
|
|
|
if (l1pt == 0)
|
|
panic("pmap_map_chunk: no L1 table provided");
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
|
|
"prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
|
|
#endif
|
|
|
|
switch (cache) {
|
|
case PTE_NOCACHE:
|
|
default:
|
|
f1 = 0;
|
|
f2l = 0;
|
|
f2s = 0;
|
|
break;
|
|
|
|
case PTE_CACHE:
|
|
f1 = pte_l1_s_cache_mode;
|
|
f2l = pte_l2_l_cache_mode;
|
|
f2s = pte_l2_s_cache_mode;
|
|
break;
|
|
|
|
case PTE_PAGETABLE:
|
|
f1 = pte_l1_s_cache_mode_pt;
|
|
f2l = pte_l2_l_cache_mode_pt;
|
|
f2s = pte_l2_s_cache_mode_pt;
|
|
break;
|
|
}
|
|
|
|
size = resid;
|
|
|
|
while (resid > 0) {
|
|
/* See if we can use a section mapping. */
|
|
if (L1_S_MAPPABLE_P(va, pa, resid)) {
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("S");
|
|
#endif
|
|
pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
|
|
L1_S_PROT(PTE_KERNEL, prot) | f1 |
|
|
L1_S_DOM(PMAP_DOMAIN_KERNEL);
|
|
PTE_SYNC(&pde[va >> L1_S_SHIFT]);
|
|
va += L1_S_SIZE;
|
|
pa += L1_S_SIZE;
|
|
resid -= L1_S_SIZE;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Ok, we're going to use an L2 table. Make sure
|
|
* one is actually in the corresponding L1 slot
|
|
* for the current VA.
|
|
*/
|
|
if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
|
|
panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
|
|
|
|
#ifndef ARM32_NEW_VM_LAYOUT
|
|
pte = (pt_entry_t *)
|
|
kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
|
|
#else
|
|
pte = (pt_entry_t *) kernel_pt_lookup(
|
|
pde[L1_IDX(va)] & L1_C_ADDR_MASK);
|
|
#endif
|
|
if (pte == NULL)
|
|
panic("pmap_map_chunk: can't find L2 table for VA"
|
|
"0x%08lx", va);
|
|
|
|
/* See if we can use a L2 large page mapping. */
|
|
if (L2_L_MAPPABLE_P(va, pa, resid)) {
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("L");
|
|
#endif
|
|
for (i = 0; i < 16; i++) {
|
|
#ifndef ARM32_NEW_VM_LAYOUT
|
|
pte[((va >> PGSHIFT) & 0x3f0) + i] =
|
|
L2_L_PROTO | pa |
|
|
L2_L_PROT(PTE_KERNEL, prot) | f2l;
|
|
PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
|
|
#else
|
|
pte[l2pte_index(va) + i] =
|
|
L2_L_PROTO | pa |
|
|
L2_L_PROT(PTE_KERNEL, prot) | f2l;
|
|
PTE_SYNC(&pte[l2pte_index(va) + i]);
|
|
#endif
|
|
}
|
|
va += L2_L_SIZE;
|
|
pa += L2_L_SIZE;
|
|
resid -= L2_L_SIZE;
|
|
continue;
|
|
}
|
|
|
|
/* Use a small page mapping. */
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("P");
|
|
#endif
|
|
#ifndef ARM32_NEW_VM_LAYOUT
|
|
pte[(va >> PGSHIFT) & 0x3ff] =
|
|
L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
|
|
PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
|
|
#else
|
|
pte[l2pte_index(va)] =
|
|
L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
|
|
PTE_SYNC(&pte[l2pte_index(va)]);
|
|
#endif
|
|
va += PAGE_SIZE;
|
|
pa += PAGE_SIZE;
|
|
resid -= PAGE_SIZE;
|
|
}
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("\n");
|
|
#endif
|
|
return (size);
|
|
}
|
|
|
|
/********************** Static device map routines ***************************/
|
|
|
|
static const struct pmap_devmap *pmap_devmap_table;
|
|
|
|
/*
|
|
* Register the devmap table. This is provided in case early console
|
|
* initialization needs to register mappings created by bootstrap code
|
|
* before pmap_devmap_bootstrap() is called.
|
|
*/
|
|
void
|
|
pmap_devmap_register(const struct pmap_devmap *table)
|
|
{
|
|
|
|
pmap_devmap_table = table;
|
|
}
|
|
|
|
/*
|
|
* Map all of the static regions in the devmap table, and remember
|
|
* the devmap table so other parts of the kernel can look up entries
|
|
* later.
|
|
*/
|
|
void
|
|
pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
|
|
{
|
|
int i;
|
|
|
|
pmap_devmap_table = table;
|
|
|
|
for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("devmap: %08lx -> %08lx @ %08lx\n",
|
|
pmap_devmap_table[i].pd_pa,
|
|
pmap_devmap_table[i].pd_pa +
|
|
pmap_devmap_table[i].pd_size - 1,
|
|
pmap_devmap_table[i].pd_va);
|
|
#endif
|
|
pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
|
|
pmap_devmap_table[i].pd_pa,
|
|
pmap_devmap_table[i].pd_size,
|
|
pmap_devmap_table[i].pd_prot,
|
|
pmap_devmap_table[i].pd_cache);
|
|
}
|
|
}
|
|
|
|
const struct pmap_devmap *
|
|
pmap_devmap_find_pa(paddr_t pa, psize_t size)
|
|
{
|
|
int i;
|
|
|
|
if (pmap_devmap_table == NULL)
|
|
return (NULL);
|
|
|
|
for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
|
|
if (pa >= pmap_devmap_table[i].pd_pa &&
|
|
pa + size <= pmap_devmap_table[i].pd_pa +
|
|
pmap_devmap_table[i].pd_size)
|
|
return (&pmap_devmap_table[i]);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
const struct pmap_devmap *
|
|
pmap_devmap_find_va(vaddr_t va, vsize_t size)
|
|
{
|
|
int i;
|
|
|
|
if (pmap_devmap_table == NULL)
|
|
return (NULL);
|
|
|
|
for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
|
|
if (va >= pmap_devmap_table[i].pd_va &&
|
|
va + size <= pmap_devmap_table[i].pd_va +
|
|
pmap_devmap_table[i].pd_size)
|
|
return (&pmap_devmap_table[i]);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/********************** PTE initialization routines **************************/
|
|
|
|
/*
|
|
* These routines are called when the CPU type is identified to set up
|
|
* the PTE prototypes, cache modes, etc.
|
|
*
|
|
* The variables are always here, just in case LKMs need to reference
|
|
* them (though, they shouldn't).
|
|
*/
|
|
|
|
pt_entry_t pte_l1_s_cache_mode;
|
|
pt_entry_t pte_l1_s_cache_mode_pt;
|
|
pt_entry_t pte_l1_s_cache_mask;
|
|
|
|
pt_entry_t pte_l2_l_cache_mode;
|
|
pt_entry_t pte_l2_l_cache_mode_pt;
|
|
pt_entry_t pte_l2_l_cache_mask;
|
|
|
|
pt_entry_t pte_l2_s_cache_mode;
|
|
pt_entry_t pte_l2_s_cache_mode_pt;
|
|
pt_entry_t pte_l2_s_cache_mask;
|
|
|
|
pt_entry_t pte_l2_s_prot_u;
|
|
pt_entry_t pte_l2_s_prot_w;
|
|
pt_entry_t pte_l2_s_prot_mask;
|
|
|
|
pt_entry_t pte_l1_s_proto;
|
|
pt_entry_t pte_l1_c_proto;
|
|
pt_entry_t pte_l2_s_proto;
|
|
|
|
void (*pmap_copy_page_func)(paddr_t, paddr_t);
|
|
void (*pmap_zero_page_func)(paddr_t);
|
|
|
|
#if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
|
|
void
|
|
pmap_pte_init_generic(void)
|
|
{
|
|
|
|
pte_l1_s_cache_mode = L1_S_B|L1_S_C;
|
|
pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
|
|
|
|
pte_l2_l_cache_mode = L2_B|L2_C;
|
|
pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
|
|
|
|
pte_l2_s_cache_mode = L2_B|L2_C;
|
|
pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
|
|
|
|
/*
|
|
* If we have a write-through cache, set B and C. If
|
|
* we have a write-back cache, then we assume setting
|
|
* only C will make those pages write-through.
|
|
*/
|
|
if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
|
|
pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
|
|
pte_l2_l_cache_mode_pt = L2_B|L2_C;
|
|
pte_l2_s_cache_mode_pt = L2_B|L2_C;
|
|
} else {
|
|
pte_l1_s_cache_mode_pt = L1_S_C;
|
|
pte_l2_l_cache_mode_pt = L2_C;
|
|
pte_l2_s_cache_mode_pt = L2_C;
|
|
}
|
|
|
|
pte_l2_s_prot_u = L2_S_PROT_U_generic;
|
|
pte_l2_s_prot_w = L2_S_PROT_W_generic;
|
|
pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
|
|
|
|
pte_l1_s_proto = L1_S_PROTO_generic;
|
|
pte_l1_c_proto = L1_C_PROTO_generic;
|
|
pte_l2_s_proto = L2_S_PROTO_generic;
|
|
|
|
pmap_copy_page_func = pmap_copy_page_generic;
|
|
pmap_zero_page_func = pmap_zero_page_generic;
|
|
}
|
|
|
|
#if defined(CPU_ARM8)
|
|
void
|
|
pmap_pte_init_arm8(void)
|
|
{
|
|
|
|
/*
|
|
* ARM8 is compatible with generic, but we need to use
|
|
* the page tables uncached.
|
|
*/
|
|
pmap_pte_init_generic();
|
|
|
|
pte_l1_s_cache_mode_pt = 0;
|
|
pte_l2_l_cache_mode_pt = 0;
|
|
pte_l2_s_cache_mode_pt = 0;
|
|
}
|
|
#endif /* CPU_ARM8 */
|
|
|
|
#if defined(CPU_ARM9)
|
|
void
|
|
pmap_pte_init_arm9(void)
|
|
{
|
|
|
|
/*
|
|
* ARM9 is compatible with generic, but we want to use
|
|
* write-through caching for now.
|
|
*/
|
|
pmap_pte_init_generic();
|
|
|
|
pte_l1_s_cache_mode = L1_S_C;
|
|
pte_l2_l_cache_mode = L2_C;
|
|
pte_l2_s_cache_mode = L2_C;
|
|
|
|
pte_l1_s_cache_mode_pt = L1_S_C;
|
|
pte_l2_l_cache_mode_pt = L2_C;
|
|
pte_l2_s_cache_mode_pt = L2_C;
|
|
}
|
|
#endif /* CPU_ARM9 */
|
|
#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
|
|
|
|
#if defined(CPU_ARM10)
|
|
void
|
|
pmap_pte_init_arm10(void)
|
|
{
|
|
|
|
/*
|
|
* ARM10 is compatible with generic, but we want to use
|
|
* write-through caching for now.
|
|
*/
|
|
pmap_pte_init_generic();
|
|
|
|
pte_l1_s_cache_mode = L1_S_B | L1_S_C;
|
|
pte_l2_l_cache_mode = L2_B | L2_C;
|
|
pte_l2_s_cache_mode = L2_B | L2_C;
|
|
|
|
pte_l1_s_cache_mode_pt = L1_S_C;
|
|
pte_l2_l_cache_mode_pt = L2_C;
|
|
pte_l2_s_cache_mode_pt = L2_C;
|
|
|
|
}
|
|
#endif /* CPU_ARM10 */
|
|
|
|
#if ARM_MMU_SA1 == 1
|
|
void
|
|
pmap_pte_init_sa1(void)
|
|
{
|
|
|
|
/*
|
|
* The StrongARM SA-1 cache does not have a write-through
|
|
* mode. So, do the generic initialization, then reset
|
|
* the page table cache mode to B=1,C=1, and note that
|
|
* the PTEs need to be sync'd.
|
|
*/
|
|
pmap_pte_init_generic();
|
|
|
|
pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
|
|
pte_l2_l_cache_mode_pt = L2_B|L2_C;
|
|
pte_l2_s_cache_mode_pt = L2_B|L2_C;
|
|
|
|
pmap_needs_pte_sync = 1;
|
|
}
|
|
#endif /* ARM_MMU_SA1 == 1*/
|
|
|
|
#if ARM_MMU_XSCALE == 1
|
|
void
|
|
pmap_pte_init_xscale(void)
|
|
{
|
|
uint32_t auxctl;
|
|
int write_through = 0;
|
|
|
|
pte_l1_s_cache_mode = L1_S_B|L1_S_C;
|
|
pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
|
|
|
|
pte_l2_l_cache_mode = L2_B|L2_C;
|
|
pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
|
|
|
|
pte_l2_s_cache_mode = L2_B|L2_C;
|
|
pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
|
|
|
|
pte_l1_s_cache_mode_pt = L1_S_C;
|
|
pte_l2_l_cache_mode_pt = L2_C;
|
|
pte_l2_s_cache_mode_pt = L2_C;
|
|
|
|
#ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
|
|
/*
|
|
* The XScale core has an enhanced mode where writes that
|
|
* miss the cache cause a cache line to be allocated. This
|
|
* is significantly faster than the traditional, write-through
|
|
* behavior of this case.
|
|
*/
|
|
pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
|
|
pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
|
|
pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
|
|
#endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
|
|
|
|
#ifdef XSCALE_CACHE_WRITE_THROUGH
|
|
/*
|
|
* Some versions of the XScale core have various bugs in
|
|
* their cache units, the work-around for which is to run
|
|
* the cache in write-through mode. Unfortunately, this
|
|
* has a major (negative) impact on performance. So, we
|
|
* go ahead and run fast-and-loose, in the hopes that we
|
|
* don't line up the planets in a way that will trip the
|
|
* bugs.
|
|
*
|
|
* However, we give you the option to be slow-but-correct.
|
|
*/
|
|
write_through = 1;
|
|
#elif defined(XSCALE_CACHE_WRITE_BACK)
|
|
/* force write back cache mode */
|
|
write_through = 0;
|
|
#elif defined(CPU_XSCALE_PXA2X0)
|
|
/*
|
|
* Intel PXA2[15]0 processors are known to have a bug in
|
|
* write-back cache on revision 4 and earlier (stepping
|
|
* A[01] and B[012]). Fixed for C0 and later.
|
|
*/
|
|
{
|
|
uint32_t id, type;
|
|
|
|
id = cpufunc_id();
|
|
type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
|
|
|
|
if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
|
|
if ((id & CPU_ID_REVISION_MASK) < 5) {
|
|
/* write through for stepping A0-1 and B0-2 */
|
|
write_through = 1;
|
|
}
|
|
}
|
|
}
|
|
#endif /* XSCALE_CACHE_WRITE_THROUGH */
|
|
|
|
if (write_through) {
|
|
pte_l1_s_cache_mode = L1_S_C;
|
|
pte_l2_l_cache_mode = L2_C;
|
|
pte_l2_s_cache_mode = L2_C;
|
|
}
|
|
|
|
pte_l2_s_prot_u = L2_S_PROT_U_xscale;
|
|
pte_l2_s_prot_w = L2_S_PROT_W_xscale;
|
|
pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
|
|
|
|
pte_l1_s_proto = L1_S_PROTO_xscale;
|
|
pte_l1_c_proto = L1_C_PROTO_xscale;
|
|
pte_l2_s_proto = L2_S_PROTO_xscale;
|
|
|
|
pmap_copy_page_func = pmap_copy_page_xscale;
|
|
pmap_zero_page_func = pmap_zero_page_xscale;
|
|
|
|
/*
|
|
* Disable ECC protection of page table access, for now.
|
|
*/
|
|
__asm __volatile("mrc p15, 0, %0, c1, c0, 1"
|
|
: "=r" (auxctl));
|
|
auxctl &= ~XSCALE_AUXCTL_P;
|
|
__asm __volatile("mcr p15, 0, %0, c1, c0, 1"
|
|
:
|
|
: "r" (auxctl));
|
|
}
|
|
|
|
/*
|
|
* xscale_setup_minidata:
|
|
*
|
|
* Set up the mini-data cache clean area. We require the
|
|
* caller to allocate the right amount of physically and
|
|
* virtually contiguous space.
|
|
*/
|
|
void
|
|
xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
|
|
{
|
|
extern vaddr_t xscale_minidata_clean_addr;
|
|
extern vsize_t xscale_minidata_clean_size; /* already initialized */
|
|
pd_entry_t *pde = (pd_entry_t *) l1pt;
|
|
pt_entry_t *pte;
|
|
vsize_t size;
|
|
uint32_t auxctl;
|
|
|
|
xscale_minidata_clean_addr = va;
|
|
|
|
/* Round it to page size. */
|
|
size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
|
|
|
|
for (; size != 0;
|
|
va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
|
|
#ifndef ARM32_NEW_VM_LAYOUT
|
|
pte = (pt_entry_t *)
|
|
kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
|
|
#else
|
|
pte = (pt_entry_t *) kernel_pt_lookup(
|
|
pde[L1_IDX(va)] & L1_C_ADDR_MASK);
|
|
#endif
|
|
if (pte == NULL)
|
|
panic("xscale_setup_minidata: can't find L2 table for "
|
|
"VA 0x%08lx", va);
|
|
#ifndef ARM32_NEW_VM_LAYOUT
|
|
pte[(va >> PGSHIFT) & 0x3ff] =
|
|
#else
|
|
pte[l2pte_index(va)] =
|
|
#endif
|
|
L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
|
|
L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
|
|
}
|
|
|
|
/*
|
|
* Configure the mini-data cache for write-back with
|
|
* read/write-allocate.
|
|
*
|
|
* NOTE: In order to reconfigure the mini-data cache, we must
|
|
* make sure it contains no valid data! In order to do that,
|
|
* we must issue a global data cache invalidate command!
|
|
*
|
|
* WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
|
|
* THIS IS VERY IMPORTANT!
|
|
*/
|
|
|
|
/* Invalidate data and mini-data. */
|
|
__asm __volatile("mcr p15, 0, %0, c7, c6, 0"
|
|
:
|
|
: "r" (auxctl));
|
|
|
|
|
|
__asm __volatile("mrc p15, 0, %0, c1, c0, 1"
|
|
: "=r" (auxctl));
|
|
auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
|
|
__asm __volatile("mcr p15, 0, %0, c1, c0, 1"
|
|
:
|
|
: "r" (auxctl));
|
|
}
|
|
#endif /* ARM_MMU_XSCALE == 1 */
|
|
|
|
#if defined(DDB)
|
|
/*
|
|
* A couple of ddb-callable functions for dumping pmaps
|
|
*/
|
|
void pmap_dump_all(void);
|
|
void pmap_dump(pmap_t);
|
|
|
|
void
|
|
pmap_dump_all(void)
|
|
{
|
|
pmap_t pm;
|
|
|
|
LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
|
|
if (pm == pmap_kernel())
|
|
continue;
|
|
pmap_dump(pm);
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
static pt_entry_t ncptes[64];
|
|
static void pmap_dump_ncpg(pmap_t);
|
|
|
|
void
|
|
pmap_dump(pmap_t pm)
|
|
{
|
|
struct l2_dtable *l2;
|
|
struct l2_bucket *l2b;
|
|
pt_entry_t *ptep, pte;
|
|
vaddr_t l2_va, l2b_va, va;
|
|
int i, j, k, occ, rows = 0;
|
|
char ch;
|
|
|
|
if (pm == pmap_kernel())
|
|
printf("pmap_kernel (%p): ", pm);
|
|
else
|
|
printf("user pmap (%p): ", pm);
|
|
|
|
printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
|
|
|
|
l2_va = 0;
|
|
for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
|
|
l2 = pm->pm_l2[i];
|
|
|
|
if (l2 == NULL || l2->l2_occupancy == 0)
|
|
continue;
|
|
|
|
l2b_va = l2_va;
|
|
for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
|
|
l2b = &l2->l2_bucket[j];
|
|
|
|
if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
|
|
continue;
|
|
|
|
ptep = l2b->l2b_kva;
|
|
|
|
for (k = 0; k < 256 && ptep[k] == 0; k++)
|
|
;
|
|
|
|
k &= ~63;
|
|
occ = l2b->l2b_occupancy;
|
|
va = l2b_va + (k * 4096);
|
|
for (; k < 256; k++, va += 0x1000) {
|
|
if ((k % 64) == 0) {
|
|
if ((rows % 8) == 0) {
|
|
printf(
|
|
" |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
|
|
}
|
|
printf("%08lx: ", va);
|
|
}
|
|
|
|
ncptes[k & 63] = 0;
|
|
pte = ptep[k];
|
|
if (pte == 0) {
|
|
ch = '.';
|
|
} else {
|
|
occ--;
|
|
switch (pte & 0x0c) {
|
|
case 0x00:
|
|
ch = 'D'; /* No cache No buff */
|
|
break;
|
|
case 0x04:
|
|
ch = 'B'; /* No cache buff */
|
|
break;
|
|
case 0x08:
|
|
ch = 'C'; /* Cache No buff */
|
|
break;
|
|
case 0x0c:
|
|
ch = 'F'; /* Cache Buff */
|
|
break;
|
|
}
|
|
|
|
if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
|
|
ch += 0x20;
|
|
|
|
if ((pte & 0xc) == 0)
|
|
ncptes[k & 63] = pte;
|
|
}
|
|
|
|
if ((k % 64) == 63) {
|
|
rows++;
|
|
printf("%c\n", ch);
|
|
pmap_dump_ncpg(pm);
|
|
if (occ == 0)
|
|
break;
|
|
} else
|
|
printf("%c", ch);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
pmap_dump_ncpg(pmap_t pm)
|
|
{
|
|
struct vm_page *pg;
|
|
struct pv_entry *pv;
|
|
int i;
|
|
|
|
for (i = 0; i < 63; i++) {
|
|
if (ncptes[i] == 0)
|
|
continue;
|
|
|
|
pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
|
|
if (pg == NULL)
|
|
continue;
|
|
|
|
printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
|
|
pg->phys_addr,
|
|
pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
|
|
pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
|
|
|
|
for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
|
|
printf(" %c va 0x%08lx, flags 0x%x\n",
|
|
(pm == pv->pv_pmap) ? '*' : ' ',
|
|
pv->pv_va, pv->pv_flags);
|
|
}
|
|
}
|
|
}
|
|
#endif
|