NetBSD/sys/arch/arm/arm32/pmap.c

5040 lines
123 KiB
C

/* $NetBSD: pmap.c,v 1.140 2003/10/05 19:44:58 matt Exp $ */
/*
* Copyright 2003 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Steve C. Woodford for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2002-2003 Wasabi Systems, Inc.
* Copyright (c) 2001 Richard Earnshaw
* Copyright (c) 2001-2002 Christopher Gilbert
* All rights reserved.
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1994-1998 Mark Brinicombe.
* Copyright (c) 1994 Brini.
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
*
* RiscBSD kernel project
*
* pmap.c
*
* Machine dependant vm stuff
*
* Created : 20/09/94
*/
/*
* Performance improvements, UVM changes, overhauls and part-rewrites
* were contributed by Neil A. Carson <neil@causality.com>.
*/
/*
* Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
* can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
* Systems, Inc.
*
* There are still a few things outstanding at this time:
*
* - There are some unresolved issues for MP systems:
*
* o The L1 metadata needs a lock, or more specifically, some places
* need to acquire an exclusive lock when modifying L1 translation
* table entries.
*
* o When one cpu modifies an L1 entry, and that L1 table is also
* being used by another cpu, then the latter will need to be told
* that a tlb invalidation may be necessary. (But only if the old
* domain number in the L1 entry being over-written is currently
* the active domain on that cpu). I guess there are lots more tlb
* shootdown issues too...
*
* o If the vector_page is at 0x00000000 instead of 0xffff0000, then
* MP systems will lose big-time because of the MMU domain hack.
* The only way this can be solved (apart from moving the vector
* page to 0xffff0000) is to reserve the first 1MB of user address
* space for kernel use only. This would require re-linking all
* applications so that the text section starts above this 1MB
* boundary.
*
* o Tracking which VM space is resident in the cache/tlb has not yet
* been implemented for MP systems.
*
* o Finally, there is a pathological condition where two cpus running
* two separate processes (not lwps) which happen to share an L1
* can get into a fight over one or more L1 entries. This will result
* in a significant slow-down if both processes are in tight loops.
*/
/*
* Special compilation symbols
* PMAP_DEBUG - Build in pmap_debug_level code
*/
/* Include header files */
#include "opt_cpuoptions.h"
#include "opt_pmap_debug.h"
#include "opt_ddb.h"
#include "opt_lockdebug.h"
#include "opt_multiprocessor.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/user.h>
#include <sys/pool.h>
#include <sys/cdefs.h>
#include <uvm/uvm.h>
#include <machine/bus.h>
#include <machine/pmap.h>
#include <machine/pcb.h>
#include <machine/param.h>
#include <arm/arm32/katelib.h>
__KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.140 2003/10/05 19:44:58 matt Exp $");
#ifdef PMAP_DEBUG
/* XXX need to get rid of all refs to this */
int pmap_debug_level = 0;
/*
* for switching to potentially finer grained debugging
*/
#define PDB_FOLLOW 0x0001
#define PDB_INIT 0x0002
#define PDB_ENTER 0x0004
#define PDB_REMOVE 0x0008
#define PDB_CREATE 0x0010
#define PDB_PTPAGE 0x0020
#define PDB_GROWKERN 0x0040
#define PDB_BITS 0x0080
#define PDB_COLLECT 0x0100
#define PDB_PROTECT 0x0200
#define PDB_MAP_L1 0x0400
#define PDB_BOOTSTRAP 0x1000
#define PDB_PARANOIA 0x2000
#define PDB_WIRING 0x4000
#define PDB_PVDUMP 0x8000
#define PDB_VAC 0x10000
#define PDB_KENTER 0x20000
#define PDB_KREMOVE 0x40000
int debugmap = 1;
int pmapdebug = 0;
#define NPDEBUG(_lev_,_stat_) \
if (pmapdebug & (_lev_)) \
((_stat_))
#else /* PMAP_DEBUG */
#define NPDEBUG(_lev_,_stat_) /* Nothing */
#endif /* PMAP_DEBUG */
/*
* pmap_kernel() points here
*/
struct pmap kernel_pmap_store;
/*
* Which pmap is currently 'live' in the cache
*
* XXXSCW: Fix for SMP ...
*/
union pmap_cache_state *pmap_cache_state;
/*
* Pool and cache that pmap structures are allocated from.
* We use a cache to avoid clearing the pm_l2[] array (1KB)
* in pmap_create().
*/
static struct pool pmap_pmap_pool;
static struct pool_cache pmap_pmap_cache;
static LIST_HEAD(, pmap) pmap_pmaps;
/*
* Pool of PV structures
*/
static struct pool pmap_pv_pool;
static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
static void pmap_bootstrap_pv_page_free(struct pool *, void *);
static struct pool_allocator pmap_bootstrap_pv_allocator = {
pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
};
/*
* Pool and cache of l2_dtable structures.
* We use a cache to avoid clearing the structures when they're
* allocated. (196 bytes)
*/
static struct pool pmap_l2dtable_pool;
static struct pool_cache pmap_l2dtable_cache;
static vaddr_t pmap_kernel_l2dtable_kva;
/*
* Pool and cache of L2 page descriptors.
* We use a cache to avoid clearing the descriptor table
* when they're allocated. (1KB)
*/
static struct pool pmap_l2ptp_pool;
static struct pool_cache pmap_l2ptp_cache;
static vaddr_t pmap_kernel_l2ptp_kva;
static paddr_t pmap_kernel_l2ptp_phys;
/*
* pmap copy/zero page, and mem(5) hook point
*/
static pt_entry_t *csrc_pte, *cdst_pte;
static vaddr_t csrcp, cdstp;
char *memhook;
extern caddr_t msgbufaddr;
/*
* Flag to indicate if pmap_init() has done its thing
*/
boolean_t pmap_initialized;
/*
* Misc. locking data structures
*/
#if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
static struct lock pmap_main_lock;
#define PMAP_MAP_TO_HEAD_LOCK() \
(void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
#define PMAP_MAP_TO_HEAD_UNLOCK() \
(void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
#define PMAP_HEAD_TO_MAP_LOCK() \
(void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
#define PMAP_HEAD_TO_MAP_UNLOCK() \
spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
#else
#define PMAP_MAP_TO_HEAD_LOCK() /* null */
#define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
#define PMAP_HEAD_TO_MAP_LOCK() /* null */
#define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
#endif
#define pmap_acquire_pmap_lock(pm) \
do { \
if ((pm) != pmap_kernel()) \
simple_lock(&(pm)->pm_lock); \
} while (/*CONSTCOND*/0)
#define pmap_release_pmap_lock(pm) \
do { \
if ((pm) != pmap_kernel()) \
simple_unlock(&(pm)->pm_lock); \
} while (/*CONSTCOND*/0)
/*
* Metadata for L1 translation tables.
*/
struct l1_ttable {
/* Entry on the L1 Table list */
SLIST_ENTRY(l1_ttable) l1_link;
/* Entry on the L1 Least Recently Used list */
TAILQ_ENTRY(l1_ttable) l1_lru;
/* Track how many domains are allocated from this L1 */
volatile u_int l1_domain_use_count;
/*
* A free-list of domain numbers for this L1.
* We avoid using ffs() and a bitmap to track domains since ffs()
* is slow on ARM.
*/
u_int8_t l1_domain_first;
u_int8_t l1_domain_free[PMAP_DOMAINS];
/* Physical address of this L1 page table */
paddr_t l1_physaddr;
/* KVA of this L1 page table */
pd_entry_t *l1_kva;
};
/*
* Convert a virtual address into its L1 table index. That is, the
* index used to locate the L2 descriptor table pointer in an L1 table.
* This is basically used to index l1->l1_kva[].
*
* Each L2 descriptor table represents 1MB of VA space.
*/
#define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
/*
* L1 Page Tables are tracked using a Least Recently Used list.
* - New L1s are allocated from the HEAD.
* - Freed L1s are added to the TAIl.
* - Recently accessed L1s (where an 'access' is some change to one of
* the userland pmaps which owns this L1) are moved to the TAIL.
*/
static TAILQ_HEAD(, l1_ttable) l1_lru_list;
static struct simplelock l1_lru_lock;
/*
* A list of all L1 tables
*/
static SLIST_HEAD(, l1_ttable) l1_list;
/*
* The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
*
* This is normally 16MB worth L2 page descriptors for any given pmap.
* Reference counts are maintained for L2 descriptors so they can be
* freed when empty.
*/
struct l2_dtable {
/* The number of L2 page descriptors allocated to this l2_dtable */
u_int l2_occupancy;
/* List of L2 page descriptors */
struct l2_bucket {
pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
paddr_t l2b_phys; /* Physical address of same */
u_short l2b_l1idx; /* This L2 table's L1 index */
u_short l2b_occupancy; /* How many active descriptors */
} l2_bucket[L2_BUCKET_SIZE];
};
/*
* Given an L1 table index, calculate the corresponding l2_dtable index
* and bucket index within the l2_dtable.
*/
#define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
(L2_SIZE - 1))
#define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
/*
* Given a virtual address, this macro returns the
* virtual address required to drop into the next L2 bucket.
*/
#define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
/*
* L2 allocation.
*/
#define pmap_alloc_l2_dtable() \
pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
#define pmap_free_l2_dtable(l2) \
pool_cache_put(&pmap_l2dtable_cache, (l2))
#define pmap_alloc_l2_ptp(pap) \
((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
PR_NOWAIT, (pap)))
/*
* We try to map the page tables write-through, if possible. However, not
* all CPUs have a write-through cache mode, so on those we have to sync
* the cache when we frob page tables.
*
* We try to evaluate this at compile time, if possible. However, it's
* not always possible to do that, hence this run-time var.
*/
int pmap_needs_pte_sync;
/*
* Real definition of pv_entry.
*/
struct pv_entry {
struct pv_entry *pv_next; /* next pv_entry */
pmap_t pv_pmap; /* pmap where mapping lies */
vaddr_t pv_va; /* virtual address for mapping */
u_int pv_flags; /* flags */
};
/*
* Macro to determine if a mapping might be resident in the
* instruction cache and/or TLB
*/
#define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
/*
* Macro to determine if a mapping might be resident in the
* data cache and/or TLB
*/
#define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
/*
* Local prototypes
*/
static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
pt_entry_t **);
static boolean_t pmap_is_current(pmap_t);
static boolean_t pmap_is_cached(pmap_t);
static void pmap_enter_pv(struct vm_page *, struct pv_entry *,
pmap_t, vaddr_t, u_int);
static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t);
static u_int pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
u_int, u_int);
static void pmap_pinit(pmap_t);
static int pmap_pmap_ctor(void *, void *, int);
static void pmap_alloc_l1(pmap_t);
static void pmap_free_l1(pmap_t);
static void pmap_use_l1(pmap_t);
static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
static int pmap_l2ptp_ctor(void *, void *, int);
static int pmap_l2dtable_ctor(void *, void *, int);
static void pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
static void pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
static void pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
static void pmap_clearbit(struct vm_page *, u_int);
static int pmap_clean_page(struct pv_entry *, boolean_t);
static void pmap_page_remove(struct vm_page *);
static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
static vaddr_t kernel_pt_lookup(paddr_t);
/*
* External function prototypes
*/
extern void bzero_page(vaddr_t);
extern void bcopy_page(vaddr_t, vaddr_t);
/*
* Misc variables
*/
vaddr_t virtual_avail;
vaddr_t virtual_end;
vaddr_t pmap_curmaxkvaddr;
vaddr_t avail_start;
vaddr_t avail_end;
extern pv_addr_t systempage;
/* Function to set the debug level of the pmap code */
#ifdef PMAP_DEBUG
void
pmap_debug(int level)
{
pmap_debug_level = level;
printf("pmap_debug: level=%d\n", pmap_debug_level);
}
#endif /* PMAP_DEBUG */
/*
* A bunch of routines to conditionally flush the caches/TLB depending
* on whether the specified pmap actually needs to be flushed at any
* given time.
*/
static __inline void
pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
{
if (pm->pm_cstate.cs_tlb_id)
cpu_tlb_flushID_SE(va);
}
static __inline void
pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
{
if (pm->pm_cstate.cs_tlb_d)
cpu_tlb_flushD_SE(va);
}
static __inline void
pmap_tlb_flushID(pmap_t pm)
{
if (pm->pm_cstate.cs_tlb_id) {
cpu_tlb_flushID();
pm->pm_cstate.cs_tlb = 0;
}
}
static __inline void
pmap_tlb_flushD(pmap_t pm)
{
if (pm->pm_cstate.cs_tlb_d) {
cpu_tlb_flushD();
pm->pm_cstate.cs_tlb_d = 0;
}
}
static __inline void
pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
{
if (pm->pm_cstate.cs_cache_id)
cpu_idcache_wbinv_range(va, len);
}
static __inline void
pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
boolean_t do_inv, boolean_t rd_only)
{
if (pm->pm_cstate.cs_cache_d) {
if (do_inv) {
if (rd_only)
cpu_dcache_inv_range(va, len);
else
cpu_dcache_wbinv_range(va, len);
} else
if (!rd_only)
cpu_dcache_wb_range(va, len);
}
}
static __inline void
pmap_idcache_wbinv_all(pmap_t pm)
{
if (pm->pm_cstate.cs_cache_id) {
cpu_idcache_wbinv_all();
pm->pm_cstate.cs_cache = 0;
}
}
static __inline void
pmap_dcache_wbinv_all(pmap_t pm)
{
if (pm->pm_cstate.cs_cache_d) {
cpu_dcache_wbinv_all();
pm->pm_cstate.cs_cache_d = 0;
}
}
static __inline boolean_t
pmap_is_current(pmap_t pm)
{
if (pm == pmap_kernel() ||
(curproc && curproc->p_vmspace->vm_map.pmap == pm))
return (TRUE);
return (FALSE);
}
static __inline boolean_t
pmap_is_cached(pmap_t pm)
{
if (pm == pmap_kernel() || pmap_cache_state == NULL ||
pmap_cache_state == &pm->pm_cstate)
return (TRUE);
return (FALSE);
}
/*
* PTE_SYNC_CURRENT:
*
* Make sure the pte is written out to RAM.
* We need to do this for one of two cases:
* - We're dealing with the kernel pmap
* - There is no pmap active in the cache/tlb.
* - The specified pmap is 'active' in the cache/tlb.
*/
#ifdef PMAP_INCLUDE_PTE_SYNC
#define PTE_SYNC_CURRENT(pm, ptep) \
do { \
if (PMAP_NEEDS_PTE_SYNC && \
pmap_is_cached(pm)) \
PTE_SYNC(ptep); \
} while (/*CONSTCOND*/0)
#else
#define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
#endif
/*
* main pv_entry manipulation functions:
* pmap_enter_pv: enter a mapping onto a vm_page list
* pmap_remove_pv: remove a mappiing from a vm_page list
*
* NOTE: pmap_enter_pv expects to lock the pvh itself
* pmap_remove_pv expects te caller to lock the pvh before calling
*/
/*
* pmap_enter_pv: enter a mapping onto a vm_page lst
*
* => caller should hold the proper lock on pmap_main_lock
* => caller should have pmap locked
* => we will gain the lock on the vm_page and allocate the new pv_entry
* => caller should adjust ptp's wire_count before calling
* => caller should not adjust pmap's wire_count
*/
static void
pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
vaddr_t va, u_int flags)
{
NPDEBUG(PDB_PVDUMP,
printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
pve->pv_pmap = pm;
pve->pv_va = va;
pve->pv_flags = flags;
simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
pg->mdpage.pvh_list = pve; /* ... locked list */
pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
if (pm == pmap_kernel()) {
if (flags & PVF_WRITE)
pg->mdpage.krw_mappings++;
else
pg->mdpage.kro_mappings++;
} else
if (flags & PVF_WRITE)
pg->mdpage.urw_mappings++;
else
pg->mdpage.uro_mappings++;
simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
if (pve->pv_flags & PVF_WIRED)
++pm->pm_stats.wired_count;
}
/*
*
* pmap_find_pv: Find a pv entry
*
* => caller should hold lock on vm_page
*/
static __inline struct pv_entry *
pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
{
struct pv_entry *pv;
for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
if (pm == pv->pv_pmap && va == pv->pv_va)
break;
}
return (pv);
}
/*
* pmap_remove_pv: try to remove a mapping from a pv_list
*
* => caller should hold proper lock on pmap_main_lock
* => pmap should be locked
* => caller should hold lock on vm_page [so that attrs can be adjusted]
* => caller should adjust ptp's wire_count and free PTP if needed
* => caller should NOT adjust pmap's wire_count
* => we return the removed pve
*/
static struct pv_entry *
pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
{
struct pv_entry *pve, **prevptr;
NPDEBUG(PDB_PVDUMP,
printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
pve = *prevptr;
while (pve) {
if (pve->pv_pmap == pm && pve->pv_va == va) { /* match? */
NPDEBUG(PDB_PVDUMP,
printf("pmap_remove_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, pve->pv_flags));
*prevptr = pve->pv_next; /* remove it! */
if (pve->pv_flags & PVF_WIRED)
--pm->pm_stats.wired_count;
if (pm == pmap_kernel()) {
if (pve->pv_flags & PVF_WRITE)
pg->mdpage.krw_mappings--;
else
pg->mdpage.kro_mappings--;
} else
if (pve->pv_flags & PVF_WRITE)
pg->mdpage.urw_mappings--;
else
pg->mdpage.uro_mappings--;
break;
}
prevptr = &pve->pv_next; /* previous pointer */
pve = pve->pv_next; /* advance */
}
return(pve); /* return removed pve */
}
/*
*
* pmap_modify_pv: Update pv flags
*
* => caller should hold lock on vm_page [so that attrs can be adjusted]
* => caller should NOT adjust pmap's wire_count
* => caller must call pmap_vac_me_harder() if writable status of a page
* may have changed.
* => we return the old flags
*
* Modify a physical-virtual mapping in the pv table
*/
static u_int
pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
u_int clr_mask, u_int set_mask)
{
struct pv_entry *npv;
u_int flags, oflags;
if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
return (0);
NPDEBUG(PDB_PVDUMP,
printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
/*
* There is at least one VA mapping this page.
*/
if (clr_mask & (PVF_REF | PVF_MOD))
pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
oflags = npv->pv_flags;
npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
if ((flags ^ oflags) & PVF_WIRED) {
if (flags & PVF_WIRED)
++pm->pm_stats.wired_count;
else
--pm->pm_stats.wired_count;
}
if ((flags ^ oflags) & PVF_WRITE) {
if (pm == pmap_kernel()) {
if (flags & PVF_WRITE) {
pg->mdpage.krw_mappings++;
pg->mdpage.kro_mappings--;
} else {
pg->mdpage.kro_mappings++;
pg->mdpage.krw_mappings--;
}
} else
if (flags & PVF_WRITE) {
pg->mdpage.urw_mappings++;
pg->mdpage.uro_mappings--;
} else {
pg->mdpage.uro_mappings++;
pg->mdpage.urw_mappings--;
}
}
return (oflags);
}
static void
pmap_pinit(pmap_t pm)
{
if (vector_page < KERNEL_BASE) {
/*
* Map the vector page.
*/
pmap_enter(pm, vector_page, systempage.pv_pa,
VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
pmap_update(pm);
}
}
/*
* Allocate an L1 translation table for the specified pmap.
* This is called at pmap creation time.
*/
static void
pmap_alloc_l1(pmap_t pm)
{
struct l1_ttable *l1;
u_int8_t domain;
/*
* Remove the L1 at the head of the LRU list
*/
simple_lock(&l1_lru_lock);
l1 = TAILQ_FIRST(&l1_lru_list);
KDASSERT(l1 != NULL);
TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
/*
* Pick the first available domain number, and update
* the link to the next number.
*/
domain = l1->l1_domain_first;
l1->l1_domain_first = l1->l1_domain_free[domain];
/*
* If there are still free domain numbers in this L1,
* put it back on the TAIL of the LRU list.
*/
if (++l1->l1_domain_use_count < PMAP_DOMAINS)
TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
simple_unlock(&l1_lru_lock);
/*
* Fix up the relevant bits in the pmap structure
*/
pm->pm_l1 = l1;
pm->pm_domain = domain;
}
/*
* Free an L1 translation table.
* This is called at pmap destruction time.
*/
static void
pmap_free_l1(pmap_t pm)
{
struct l1_ttable *l1 = pm->pm_l1;
simple_lock(&l1_lru_lock);
/*
* If this L1 is currently on the LRU list, remove it.
*/
if (l1->l1_domain_use_count < PMAP_DOMAINS)
TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
/*
* Free up the domain number which was allocated to the pmap
*/
l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
l1->l1_domain_first = pm->pm_domain;
l1->l1_domain_use_count--;
/*
* The L1 now must have at least 1 free domain, so add
* it back to the LRU list. If the use count is zero,
* put it at the head of the list, otherwise it goes
* to the tail.
*/
if (l1->l1_domain_use_count == 0)
TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
else
TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
simple_unlock(&l1_lru_lock);
}
static __inline void
pmap_use_l1(pmap_t pm)
{
struct l1_ttable *l1;
/*
* Do nothing if we're in interrupt context.
* Access to an L1 by the kernel pmap must not affect
* the LRU list.
*/
if (current_intr_depth || pm == pmap_kernel())
return;
l1 = pm->pm_l1;
/*
* If the L1 is not currently on the LRU list, just return
*/
if (l1->l1_domain_use_count == PMAP_DOMAINS)
return;
simple_lock(&l1_lru_lock);
/*
* Check the use count again, now that we've acquired the lock
*/
if (l1->l1_domain_use_count == PMAP_DOMAINS) {
simple_unlock(&l1_lru_lock);
return;
}
/*
* Move the L1 to the back of the LRU list
*/
TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
simple_unlock(&l1_lru_lock);
}
/*
* void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
*
* Free an L2 descriptor table.
*/
static __inline void
#ifndef PMAP_INCLUDE_PTE_SYNC
pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
#else
pmap_free_l2_ptp(boolean_t need_sync, pt_entry_t *l2, paddr_t pa)
#endif
{
#ifdef PMAP_INCLUDE_PTE_SYNC
/*
* Note: With a write-back cache, we may need to sync this
* L2 table before re-using it.
* This is because it may have belonged to a non-current
* pmap, in which case the cache syncs would have been
* skipped when the pages were being unmapped. If the
* L2 table were then to be immediately re-allocated to
* the *current* pmap, it may well contain stale mappings
* which have not yet been cleared by a cache write-back
* and so would still be visible to the mmu.
*/
if (need_sync)
PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
#endif
pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
}
/*
* Returns a pointer to the L2 bucket associated with the specified pmap
* and VA, or NULL if no L2 bucket exists for the address.
*/
static __inline struct l2_bucket *
pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
{
struct l2_dtable *l2;
struct l2_bucket *l2b;
u_short l1idx;
l1idx = L1_IDX(va);
if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
(l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
return (NULL);
return (l2b);
}
/*
* Returns a pointer to the L2 bucket associated with the specified pmap
* and VA.
*
* If no L2 bucket exists, perform the necessary allocations to put an L2
* bucket/page table in place.
*
* Note that if a new L2 bucket/page was allocated, the caller *must*
* increment the bucket occupancy counter appropriately *before*
* releasing the pmap's lock to ensure no other thread or cpu deallocates
* the bucket/page in the meantime.
*/
static struct l2_bucket *
pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
{
struct l2_dtable *l2;
struct l2_bucket *l2b;
u_short l1idx;
l1idx = L1_IDX(va);
if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
/*
* No mapping at this address, as there is
* no entry in the L1 table.
* Need to allocate a new l2_dtable.
*/
if ((l2 = pmap_alloc_l2_dtable()) == NULL)
return (NULL);
/*
* Link it into the parent pmap
*/
pm->pm_l2[L2_IDX(l1idx)] = l2;
}
l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
/*
* Fetch pointer to the L2 page table associated with the address.
*/
if (l2b->l2b_kva == NULL) {
pt_entry_t *ptep;
/*
* No L2 page table has been allocated. Chances are, this
* is because we just allocated the l2_dtable, above.
*/
if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
/*
* Oops, no more L2 page tables available at this
* time. We may need to deallocate the l2_dtable
* if we allocated a new one above.
*/
if (l2->l2_occupancy == 0) {
pm->pm_l2[L2_IDX(l1idx)] = NULL;
pmap_free_l2_dtable(l2);
}
return (NULL);
}
l2->l2_occupancy++;
l2b->l2b_kva = ptep;
l2b->l2b_l1idx = l1idx;
}
return (l2b);
}
/*
* One or more mappings in the specified L2 descriptor table have just been
* invalidated.
*
* Garbage collect the metadata and descriptor table itself if necessary.
*
* The pmap lock must be acquired when this is called (not necessary
* for the kernel pmap).
*/
static void
pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
{
struct l2_dtable *l2;
pd_entry_t *pl1pd, l1pd;
pt_entry_t *ptep;
u_short l1idx;
KDASSERT(count <= l2b->l2b_occupancy);
/*
* Update the bucket's reference count according to how many
* PTEs the caller has just invalidated.
*/
l2b->l2b_occupancy -= count;
/*
* Note:
*
* Level 2 page tables allocated to the kernel pmap are never freed
* as that would require checking all Level 1 page tables and
* removing any references to the Level 2 page table. See also the
* comment elsewhere about never freeing bootstrap L2 descriptors.
*
* We make do with just invalidating the mapping in the L2 table.
*
* This isn't really a big deal in practice and, in fact, leads
* to a performance win over time as we don't need to continually
* alloc/free.
*/
if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
return;
/*
* There are no more valid mappings in this level 2 page table.
* Go ahead and NULL-out the pointer in the bucket, then
* free the page table.
*/
l1idx = l2b->l2b_l1idx;
ptep = l2b->l2b_kva;
l2b->l2b_kva = NULL;
pl1pd = &pm->pm_l1->l1_kva[l1idx];
/*
* If the L1 slot matches the pmap's domain
* number, then invalidate it.
*/
l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
*pl1pd = 0;
PTE_SYNC(pl1pd);
}
/*
* Release the L2 descriptor table back to the pool cache.
*/
#ifndef PMAP_INCLUDE_PTE_SYNC
pmap_free_l2_ptp(ptep, l2b->l2b_phys);
#else
pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
#endif
/*
* Update the reference count in the associated l2_dtable
*/
l2 = pm->pm_l2[L2_IDX(l1idx)];
if (--l2->l2_occupancy > 0)
return;
/*
* There are no more valid mappings in any of the Level 1
* slots managed by this l2_dtable. Go ahead and NULL-out
* the pointer in the parent pmap and free the l2_dtable.
*/
pm->pm_l2[L2_IDX(l1idx)] = NULL;
pmap_free_l2_dtable(l2);
}
/*
* Pool cache constructors for L2 descriptor tables, metadata and pmap
* structures.
*/
static int
pmap_l2ptp_ctor(void *arg, void *v, int flags)
{
#ifndef PMAP_INCLUDE_PTE_SYNC
struct l2_bucket *l2b;
pt_entry_t *ptep, pte;
vaddr_t va = (vaddr_t)v & ~PGOFSET;
/*
* The mappings for these page tables were initially made using
* pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
* mode will not be right for page table mappings. To avoid
* polluting the pmap_kenter_pa() code with a special case for
* page tables, we simply fix up the cache-mode here if it's not
* correct.
*/
l2b = pmap_get_l2_bucket(pmap_kernel(), va);
KDASSERT(l2b != NULL);
ptep = &l2b->l2b_kva[l2pte_index(va)];
pte = *ptep;
if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
/*
* Page tables must have the cache-mode set to Write-Thru.
*/
*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
PTE_SYNC(ptep);
cpu_tlb_flushD_SE(va);
cpu_cpwait();
}
#endif
memset(v, 0, L2_TABLE_SIZE_REAL);
PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
return (0);
}
static int
pmap_l2dtable_ctor(void *arg, void *v, int flags)
{
memset(v, 0, sizeof(struct l2_dtable));
return (0);
}
static int
pmap_pmap_ctor(void *arg, void *v, int flags)
{
memset(v, 0, sizeof(struct pmap));
return (0);
}
/*
* Since we have a virtually indexed cache, we may need to inhibit caching if
* there is more than one mapping and at least one of them is writable.
* Since we purge the cache on every context switch, we only need to check for
* other mappings within the same pmap, or kernel_pmap.
* This function is also called when a page is unmapped, to possibly reenable
* caching on any remaining mappings.
*
* The code implements the following logic, where:
*
* KW = # of kernel read/write pages
* KR = # of kernel read only pages
* UW = # of user read/write pages
* UR = # of user read only pages
*
* KC = kernel mapping is cacheable
* UC = user mapping is cacheable
*
* KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
* +---------------------------------------------
* UW=0,UR=0 | --- KC=1 KC=1 KC=0
* UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
* UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
* UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
*/
static const int pmap_vac_flags[4][4] = {
{-1, 0, 0, PVF_KNC},
{0, 0, PVF_NC, PVF_NC},
{0, PVF_NC, PVF_NC, PVF_NC},
{PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
};
static __inline int
pmap_get_vac_flags(const struct vm_page *pg)
{
int kidx, uidx;
kidx = 0;
if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
kidx |= 1;
if (pg->mdpage.krw_mappings)
kidx |= 2;
uidx = 0;
if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
uidx |= 1;
if (pg->mdpage.urw_mappings)
uidx |= 2;
return (pmap_vac_flags[uidx][kidx]);
}
static __inline void
pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
{
int nattr;
nattr = pmap_get_vac_flags(pg);
if (nattr < 0) {
pg->mdpage.pvh_attrs &= ~PVF_NC;
return;
}
if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
return;
if (pm == pmap_kernel())
pmap_vac_me_kpmap(pg, pm, va);
else
pmap_vac_me_user(pg, pm, va);
pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
}
static void
pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
{
u_int u_cacheable, u_entries;
struct pv_entry *pv;
pmap_t last_pmap = pm;
/*
* Pass one, see if there are both kernel and user pmaps for
* this page. Calculate whether there are user-writable or
* kernel-writable pages.
*/
u_cacheable = 0;
for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
u_cacheable++;
}
u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
/*
* We know we have just been updating a kernel entry, so if
* all user pages are already cacheable, then there is nothing
* further to do.
*/
if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
return;
if (u_entries) {
/*
* Scan over the list again, for each entry, if it
* might not be set correctly, call pmap_vac_me_user
* to recalculate the settings.
*/
for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
/*
* We know kernel mappings will get set
* correctly in other calls. We also know
* that if the pmap is the same as last_pmap
* then we've just handled this entry.
*/
if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
continue;
/*
* If there are kernel entries and this page
* is writable but non-cacheable, then we can
* skip this entry also.
*/
if (pg->mdpage.k_mappings &&
(pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
(PVF_NC | PVF_WRITE))
continue;
/*
* Similarly if there are no kernel-writable
* entries and the page is already
* read-only/cacheable.
*/
if (pg->mdpage.krw_mappings == 0 &&
(pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
continue;
/*
* For some of the remaining cases, we know
* that we must recalculate, but for others we
* can't tell if they are correct or not, so
* we recalculate anyway.
*/
pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
}
if (pg->mdpage.k_mappings == 0)
return;
}
pmap_vac_me_user(pg, pm, va);
}
static void
pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
{
pmap_t kpmap = pmap_kernel();
struct pv_entry *pv, *npv;
struct l2_bucket *l2b;
pt_entry_t *ptep, pte;
u_int entries = 0;
u_int writable = 0;
u_int cacheable_entries = 0;
u_int kern_cacheable = 0;
u_int other_writable = 0;
/*
* Count mappings and writable mappings in this pmap.
* Include kernel mappings as part of our own.
* Keep a pointer to the first one.
*/
for (pv = npv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
/* Count mappings in the same pmap */
if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
if (entries++ == 0)
npv = pv;
/* Cacheable mappings */
if ((pv->pv_flags & PVF_NC) == 0) {
cacheable_entries++;
if (kpmap == pv->pv_pmap)
kern_cacheable++;
}
/* Writable mappings */
if (pv->pv_flags & PVF_WRITE)
++writable;
} else
if (pv->pv_flags & PVF_WRITE)
other_writable = 1;
}
/*
* Enable or disable caching as necessary.
* Note: the first entry might be part of the kernel pmap,
* so we can't assume this is indicative of the state of the
* other (maybe non-kpmap) entries.
*/
if ((entries > 1 && writable) ||
(entries > 0 && pm == kpmap && other_writable)) {
if (cacheable_entries == 0)
return;
for (pv = npv; pv; pv = pv->pv_next) {
if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
(pv->pv_flags & PVF_NC))
continue;
pv->pv_flags |= PVF_NC;
l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
pte = *ptep & ~L2_S_CACHE_MASK;
if ((va != pv->pv_va || pm != pv->pv_pmap) &&
l2pte_valid(pte)) {
if (PV_BEEN_EXECD(pv->pv_flags)) {
pmap_idcache_wbinv_range(pv->pv_pmap,
pv->pv_va, PAGE_SIZE);
pmap_tlb_flushID_SE(pv->pv_pmap,
pv->pv_va);
} else
if (PV_BEEN_REFD(pv->pv_flags)) {
pmap_dcache_wb_range(pv->pv_pmap,
pv->pv_va, PAGE_SIZE, TRUE,
(pv->pv_flags & PVF_WRITE) == 0);
pmap_tlb_flushD_SE(pv->pv_pmap,
pv->pv_va);
}
}
*ptep = pte;
PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
}
cpu_cpwait();
} else
if (entries > cacheable_entries) {
/*
* Turn cacheing back on for some pages. If it is a kernel
* page, only do so if there are no other writable pages.
*/
for (pv = npv; pv; pv = pv->pv_next) {
if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
(kpmap != pv->pv_pmap || other_writable)))
continue;
pv->pv_flags &= ~PVF_NC;
l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
if (l2pte_valid(pte)) {
if (PV_BEEN_EXECD(pv->pv_flags)) {
pmap_tlb_flushID_SE(pv->pv_pmap,
pv->pv_va);
} else
if (PV_BEEN_REFD(pv->pv_flags)) {
pmap_tlb_flushD_SE(pv->pv_pmap,
pv->pv_va);
}
}
*ptep = pte;
PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
}
}
}
/*
* Modify pte bits for all ptes corresponding to the given physical address.
* We use `maskbits' rather than `clearbits' because we're always passing
* constants and the latter would require an extra inversion at run-time.
*/
static void
pmap_clearbit(struct vm_page *pg, u_int maskbits)
{
struct l2_bucket *l2b;
struct pv_entry *pv;
pt_entry_t *ptep, npte, opte;
pmap_t pm;
vaddr_t va;
u_int oflags;
NPDEBUG(PDB_BITS,
printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
pg, pg->phys_addr, maskbits));
PMAP_HEAD_TO_MAP_LOCK();
simple_lock(&pg->mdpage.pvh_slock);
/*
* Clear saved attributes (modify, reference)
*/
pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
if (pg->mdpage.pvh_list == NULL) {
simple_unlock(&pg->mdpage.pvh_slock);
PMAP_HEAD_TO_MAP_UNLOCK();
return;
}
/*
* Loop over all current mappings setting/clearing as appropos
*/
for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
va = pv->pv_va;
pm = pv->pv_pmap;
oflags = pv->pv_flags;
pv->pv_flags &= ~maskbits;
pmap_acquire_pmap_lock(pm);
l2b = pmap_get_l2_bucket(pm, va);
KDASSERT(l2b != NULL);
ptep = &l2b->l2b_kva[l2pte_index(va)];
npte = opte = *ptep;
NPDEBUG(PDB_BITS,
printf(
"pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
pv, pv->pv_pmap, pv->pv_va, oflags));
if (maskbits & (PVF_WRITE|PVF_MOD)) {
if ((pv->pv_flags & PVF_NC)) {
/*
* Entry is not cacheable:
*
* Don't turn caching on again if this is a
* modified emulation. This would be
* inconsitent with the settings created by
* pmap_vac_me_harder(). Otherwise, it's safe
* to re-enable cacheing.
*
* There's no need to call pmap_vac_me_harder()
* here: all pages are losing their write
* permission.
*/
if (maskbits & PVF_WRITE) {
npte |= pte_l2_s_cache_mode;
pv->pv_flags &= ~PVF_NC;
}
} else
if (opte & L2_S_PROT_W) {
/*
* Entry is writable/cacheable: check if pmap
* is current if it is flush it, otherwise it
* won't be in the cache
*/
if (PV_BEEN_EXECD(oflags))
pmap_idcache_wbinv_range(pm, pv->pv_va,
PAGE_SIZE);
else
if (PV_BEEN_REFD(oflags))
pmap_dcache_wb_range(pm, pv->pv_va,
PAGE_SIZE,
(maskbits & PVF_REF) ? TRUE : FALSE,
FALSE);
}
/* make the pte read only */
npte &= ~L2_S_PROT_W;
if (maskbits & PVF_WRITE) {
/*
* Keep alias accounting up to date
*/
if (pv->pv_pmap == pmap_kernel()) {
if (oflags & PVF_WRITE) {
pg->mdpage.krw_mappings--;
pg->mdpage.kro_mappings++;
}
} else
if (oflags & PVF_WRITE) {
pg->mdpage.urw_mappings--;
pg->mdpage.uro_mappings++;
}
}
}
if (maskbits & PVF_REF) {
if ((pv->pv_flags & PVF_NC) == 0 &&
(maskbits & (PVF_WRITE|PVF_MOD)) == 0) {
/*
* Check npte here; we may have already
* done the wbinv above, and the validity
* of the PTE is the same for opte and
* npte.
*/
if (npte & L2_S_PROT_W) {
if (PV_BEEN_EXECD(oflags))
pmap_idcache_wbinv_range(pm,
pv->pv_va, PAGE_SIZE);
else
if (PV_BEEN_REFD(oflags))
pmap_dcache_wb_range(pm,
pv->pv_va, PAGE_SIZE,
TRUE, FALSE);
} else
if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) {
/* XXXJRT need idcache_inv_range */
if (PV_BEEN_EXECD(oflags))
pmap_idcache_wbinv_range(pm,
pv->pv_va, PAGE_SIZE);
else
if (PV_BEEN_REFD(oflags))
pmap_dcache_wb_range(pm,
pv->pv_va, PAGE_SIZE,
TRUE, TRUE);
}
}
/*
* Make the PTE invalid so that we will take a
* page fault the next time the mapping is
* referenced.
*/
npte &= ~L2_TYPE_MASK;
npte |= L2_TYPE_INV;
}
if (npte != opte) {
*ptep = npte;
PTE_SYNC(ptep);
/* Flush the TLB entry if a current pmap. */
if (PV_BEEN_EXECD(oflags))
pmap_tlb_flushID_SE(pm, pv->pv_va);
else
if (PV_BEEN_REFD(oflags))
pmap_tlb_flushD_SE(pm, pv->pv_va);
}
pmap_release_pmap_lock(pm);
NPDEBUG(PDB_BITS,
printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
pm, va, opte, npte));
}
simple_unlock(&pg->mdpage.pvh_slock);
PMAP_HEAD_TO_MAP_UNLOCK();
}
/*
* pmap_clean_page()
*
* This is a local function used to work out the best strategy to clean
* a single page referenced by its entry in the PV table. It's used by
* pmap_copy_page, pmap_zero page and maybe some others later on.
*
* Its policy is effectively:
* o If there are no mappings, we don't bother doing anything with the cache.
* o If there is one mapping, we clean just that page.
* o If there are multiple mappings, we clean the entire cache.
*
* So that some functions can be further optimised, it returns 0 if it didn't
* clean the entire cache, or 1 if it did.
*
* XXX One bug in this routine is that if the pv_entry has a single page
* mapped at 0x00000000 a whole cache clean will be performed rather than
* just the 1 page. Since this should not occur in everyday use and if it does
* it will just result in not the most efficient clean for the page.
*/
static int
pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
{
pmap_t pm, pm_to_clean = NULL;
struct pv_entry *npv;
u_int cache_needs_cleaning = 0;
u_int flags = 0;
vaddr_t page_to_clean = 0;
if (pv == NULL) {
/* nothing mapped in so nothing to flush */
return (0);
}
/*
* Since we flush the cache each time we change to a different
* user vmspace, we only need to flush the page if it is in the
* current pmap.
*/
if (curproc)
pm = curproc->p_vmspace->vm_map.pmap;
else
pm = pmap_kernel();
for (npv = pv; npv; npv = npv->pv_next) {
if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
flags |= npv->pv_flags;
/*
* The page is mapped non-cacheable in
* this map. No need to flush the cache.
*/
if (npv->pv_flags & PVF_NC) {
#ifdef DIAGNOSTIC
if (cache_needs_cleaning)
panic("pmap_clean_page: "
"cache inconsistency");
#endif
break;
} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
continue;
if (cache_needs_cleaning) {
page_to_clean = 0;
break;
} else {
page_to_clean = npv->pv_va;
pm_to_clean = npv->pv_pmap;
}
cache_needs_cleaning = 1;
}
}
if (page_to_clean) {
if (PV_BEEN_EXECD(flags))
pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
PAGE_SIZE);
else
pmap_dcache_wb_range(pm_to_clean, page_to_clean,
PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
} else if (cache_needs_cleaning) {
if (PV_BEEN_EXECD(flags))
pmap_idcache_wbinv_all(pm);
else
pmap_dcache_wbinv_all(pm);
return (1);
}
return (0);
}
/*
* Routine: pmap_page_remove
* Function:
* Removes this physical page from
* all physical maps in which it resides.
* Reflects back modify bits to the pager.
*/
static void
pmap_page_remove(struct vm_page *pg)
{
struct l2_bucket *l2b;
struct pv_entry *pv, *npv;
pmap_t pm, curpm;
pt_entry_t *ptep, pte;
boolean_t flush;
u_int flags;
NPDEBUG(PDB_FOLLOW,
printf("pmap_page_remove: pg %p (0x%08lx)\n", pg, pg->phys_addr));
PMAP_HEAD_TO_MAP_LOCK();
simple_lock(&pg->mdpage.pvh_slock);
pv = pg->mdpage.pvh_list;
if (pv == NULL) {
simple_unlock(&pg->mdpage.pvh_slock);
PMAP_HEAD_TO_MAP_UNLOCK();
return;
}
/*
* Clear alias counts
*/
pg->mdpage.k_mappings = 0;
pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
flush = FALSE;
flags = 0;
if (curproc)
curpm = curproc->p_vmspace->vm_map.pmap;
else
curpm = pmap_kernel();
pmap_clean_page(pv, FALSE);
while (pv) {
pm = pv->pv_pmap;
if (flush == FALSE && (pm == curpm || pm == pmap_kernel()))
flush = TRUE;
pmap_acquire_pmap_lock(pm);
l2b = pmap_get_l2_bucket(pm, pv->pv_va);
KDASSERT(l2b != NULL);
ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
pte = *ptep;
/*
* Update statistics
*/
--pm->pm_stats.resident_count;
/* Wired bit */
if (pv->pv_flags & PVF_WIRED)
--pm->pm_stats.wired_count;
flags |= pv->pv_flags;
/*
* Invalidate the PTEs.
*/
*ptep = 0;
PTE_SYNC_CURRENT(pm, ptep);
pmap_free_l2_bucket(pm, l2b, 1);
npv = pv->pv_next;
pool_put(&pmap_pv_pool, pv);
pv = npv;
pmap_release_pmap_lock(pm);
}
pg->mdpage.pvh_list = NULL;
simple_unlock(&pg->mdpage.pvh_slock);
PMAP_HEAD_TO_MAP_UNLOCK();
if (flush) {
if (PV_BEEN_EXECD(flags))
pmap_tlb_flushID(curpm);
else
pmap_tlb_flushD(curpm);
}
cpu_cpwait();
}
/*
* pmap_t pmap_create(void)
*
* Create a new pmap structure from scratch.
*/
pmap_t
pmap_create(void)
{
pmap_t pm;
pm = pool_cache_get(&pmap_pmap_cache, PR_WAITOK);
simple_lock_init(&pm->pm_lock);
pm->pm_obj.pgops = NULL; /* currently not a mappable object */
TAILQ_INIT(&pm->pm_obj.memq);
pm->pm_obj.uo_npages = 0;
pm->pm_obj.uo_refs = 1;
pm->pm_stats.wired_count = 0;
pm->pm_stats.resident_count = 1;
pm->pm_cstate.cs_all = 0;
pmap_alloc_l1(pm);
/*
* Note: The pool cache ensures that the pm_l2[] array is already
* initialised to zero.
*/
pmap_pinit(pm);
LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
return (pm);
}
/*
* void pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
* int flags)
*
* Insert the given physical page (p) at
* the specified virtual address (v) in the
* target physical map with the protection requested.
*
* NB: This is the only routine which MAY NOT lazy-evaluate
* or lose information. That is, this routine must actually
* insert this page into the given map NOW.
*/
int
pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
{
struct l2_bucket *l2b;
struct vm_page *pg, *opg;
struct pv_entry *pve;
pt_entry_t *ptep, npte, opte;
u_int nflags;
u_int oflags;
NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
KDASSERT(((va | pa) & PGOFSET) == 0);
/*
* Get a pointer to the page. Later on in this function, we
* test for a managed page by checking pg != NULL.
*/
pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
nflags = 0;
if (prot & VM_PROT_WRITE)
nflags |= PVF_WRITE;
if (prot & VM_PROT_EXECUTE)
nflags |= PVF_EXEC;
if (flags & PMAP_WIRED)
nflags |= PVF_WIRED;
PMAP_MAP_TO_HEAD_LOCK();
pmap_acquire_pmap_lock(pm);
/*
* Fetch the L2 bucket which maps this page, allocating one if
* necessary for user pmaps.
*/
if (pm == pmap_kernel())
l2b = pmap_get_l2_bucket(pm, va);
else
l2b = pmap_alloc_l2_bucket(pm, va);
if (l2b == NULL) {
if (flags & PMAP_CANFAIL) {
pmap_release_pmap_lock(pm);
PMAP_MAP_TO_HEAD_UNLOCK();
return (ENOMEM);
}
panic("pmap_enter: failed to allocate L2 bucket");
}
ptep = &l2b->l2b_kva[l2pte_index(va)];
opte = *ptep;
npte = pa;
oflags = 0;
if (opte) {
/*
* There is already a mapping at this address.
* If the physical address is different, lookup the
* vm_page.
*/
if (l2pte_pa(opte) != pa)
opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
else
opg = pg;
} else
opg = NULL;
if (pg) {
/*
* This is to be a managed mapping.
*/
if ((flags & VM_PROT_ALL) ||
(pg->mdpage.pvh_attrs & PVF_REF)) {
/*
* - The access type indicates that we don't need
* to do referenced emulation.
* OR
* - The physical page has already been referenced
* so no need to re-do referenced emulation here.
*/
npte |= L2_S_PROTO;
nflags |= PVF_REF;
if ((prot & VM_PROT_WRITE) != 0 &&
((flags & VM_PROT_WRITE) != 0 ||
(pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
/*
* This is a writable mapping, and the
* page's mod state indicates it has
* already been modified. Make it
* writable from the outset.
*/
npte |= L2_S_PROT_W;
nflags |= PVF_MOD;
}
} else {
/*
* Need to do page referenced emulation.
*/
npte |= L2_TYPE_INV;
}
npte |= pte_l2_s_cache_mode;
if (pg == opg) {
/*
* We're changing the attrs of an existing mapping.
*/
simple_lock(&pg->mdpage.pvh_slock);
oflags = pmap_modify_pv(pg, pm, va,
PVF_WRITE | PVF_EXEC | PVF_WIRED |
PVF_MOD | PVF_REF, nflags);
simple_unlock(&pg->mdpage.pvh_slock);
/*
* We may need to flush the cache if we're
* doing rw-ro...
*/
if (pm->pm_cstate.cs_cache_d &&
(oflags & PVF_NC) == 0 &&
(opte & L2_S_PROT_W) != 0 &&
(prot & VM_PROT_WRITE) == 0)
cpu_dcache_wb_range(va, PAGE_SIZE);
} else {
/*
* New mapping, or changing the backing page
* of an existing mapping.
*/
if (opg) {
/*
* Replacing an existing mapping with a new one.
* It is part of our managed memory so we
* must remove it from the PV list
*/
simple_lock(&opg->mdpage.pvh_slock);
pve = pmap_remove_pv(opg, pm, va);
pmap_vac_me_harder(opg, pm, 0);
simple_unlock(&opg->mdpage.pvh_slock);
oflags = pve->pv_flags;
/*
* If the old mapping was valid (ref/mod
* emulation creates 'invalid' mappings
* initially) then make sure to frob
* the cache.
*/
if ((oflags & PVF_NC) == 0 &&
l2pte_valid(opte)) {
if (PV_BEEN_EXECD(oflags)) {
pmap_idcache_wbinv_range(pm, va,
PAGE_SIZE);
} else
if (PV_BEEN_REFD(oflags)) {
pmap_dcache_wb_range(pm, va,
PAGE_SIZE, TRUE,
(oflags & PVF_WRITE) == 0);
}
}
} else
if ((pve = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
if ((flags & PMAP_CANFAIL) == 0)
panic("pmap_enter: no pv entries");
if (pm != pmap_kernel())
pmap_free_l2_bucket(pm, l2b, 0);
pmap_release_pmap_lock(pm);
PMAP_MAP_TO_HEAD_UNLOCK();
NPDEBUG(PDB_ENTER,
printf("pmap_enter: ENOMEM\n"));
return (ENOMEM);
}
pmap_enter_pv(pg, pve, pm, va, nflags);
}
} else {
/*
* We're mapping an unmanaged page.
* These are always readable, and possibly writable, from
* the get go as we don't need to track ref/mod status.
*/
npte |= L2_S_PROTO;
if (prot & VM_PROT_WRITE)
npte |= L2_S_PROT_W;
/*
* Make sure the vector table is mapped cacheable
*/
if (pm != pmap_kernel() && va == vector_page)
npte |= pte_l2_s_cache_mode;
if (opg) {
/*
* Looks like there's an existing 'managed' mapping
* at this address.
*/
simple_lock(&opg->mdpage.pvh_slock);
pve = pmap_remove_pv(opg, pm, va);
pmap_vac_me_harder(opg, pm, 0);
simple_unlock(&opg->mdpage.pvh_slock);
oflags = pve->pv_flags;
if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
if (PV_BEEN_EXECD(oflags))
pmap_idcache_wbinv_range(pm, va,
PAGE_SIZE);
else
if (PV_BEEN_REFD(oflags))
pmap_dcache_wb_range(pm, va, PAGE_SIZE,
TRUE, (oflags & PVF_WRITE) == 0);
}
pool_put(&pmap_pv_pool, pve);
}
}
/*
* Make sure userland mappings get the right permissions
*/
if (pm != pmap_kernel() && va != vector_page)
npte |= L2_S_PROT_U;
/*
* Keep the stats up to date
*/
if (opte == 0) {
l2b->l2b_occupancy++;
pm->pm_stats.resident_count++;
}
NPDEBUG(PDB_ENTER,
printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
/*
* If this is just a wiring change, the two PTEs will be
* identical, so there's no need to update the page table.
*/
if (npte != opte) {
boolean_t is_cached = pmap_is_cached(pm);
*ptep = npte;
if (is_cached) {
/*
* We only need to frob the cache/tlb if this pmap
* is current
*/
PTE_SYNC(ptep);
if (va != vector_page && l2pte_valid(npte)) {
/*
* This mapping is likely to be accessed as
* soon as we return to userland. Fix up the
* L1 entry to avoid taking another
* page/domain fault.
*/
pd_entry_t *pl1pd, l1pd;
pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
L1_C_PROTO;
if (*pl1pd != l1pd) {
*pl1pd = l1pd;
PTE_SYNC(pl1pd);
}
}
}
if (PV_BEEN_EXECD(oflags))
pmap_tlb_flushID_SE(pm, va);
else
if (PV_BEEN_REFD(oflags))
pmap_tlb_flushD_SE(pm, va);
NPDEBUG(PDB_ENTER,
printf("pmap_enter: is_cached %d cs 0x%08x\n",
is_cached, pm->pm_cstate.cs_all));
if (pg != NULL) {
simple_lock(&pg->mdpage.pvh_slock);
pmap_vac_me_harder(pg, pm, va);
simple_unlock(&pg->mdpage.pvh_slock);
}
}
pmap_release_pmap_lock(pm);
PMAP_MAP_TO_HEAD_UNLOCK();
return (0);
}
/*
* pmap_remove()
*
* pmap_remove is responsible for nuking a number of mappings for a range
* of virtual address space in the current pmap. To do this efficiently
* is interesting, because in a number of cases a wide virtual address
* range may be supplied that contains few actual mappings. So, the
* optimisations are:
* 1. Skip over hunks of address space for which no L1 or L2 entry exists.
* 2. Build up a list of pages we've hit, up to a maximum, so we can
* maybe do just a partial cache clean. This path of execution is
* complicated by the fact that the cache must be flushed _before_
* the PTE is nuked, being a VAC :-)
* 3. If we're called after UVM calls pmap_remove_all(), we can defer
* all invalidations until pmap_update(), since pmap_remove_all() has
* already flushed the cache.
* 4. Maybe later fast-case a single page, but I don't think this is
* going to make _that_ much difference overall.
*/
#define PMAP_REMOVE_CLEAN_LIST_SIZE 3
void
pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
{
struct l2_bucket *l2b;
vaddr_t next_bucket;
pt_entry_t *ptep;
u_int cleanlist_idx, total, cnt;
struct {
vaddr_t va;
pt_entry_t *pte;
} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
u_int mappings, is_exec, is_refd;
NPDEBUG(PDB_REMOVE, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
pm, sva, eva));
/*
* we lock in the pmap => pv_head direction
*/
PMAP_MAP_TO_HEAD_LOCK();
pmap_acquire_pmap_lock(pm);
if (pm->pm_remove_all || !pmap_is_cached(pm)) {
cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
if (pm->pm_cstate.cs_tlb == 0)
pm->pm_remove_all = TRUE;
} else
cleanlist_idx = 0;
total = 0;
while (sva < eva) {
/*
* Do one L2 bucket's worth at a time.
*/
next_bucket = L2_NEXT_BUCKET(sva);
if (next_bucket > eva)
next_bucket = eva;
l2b = pmap_get_l2_bucket(pm, sva);
if (l2b == NULL) {
sva = next_bucket;
continue;
}
ptep = &l2b->l2b_kva[l2pte_index(sva)];
mappings = 0;
while (sva < next_bucket) {
struct vm_page *pg;
pt_entry_t pte;
paddr_t pa;
pte = *ptep;
if (pte == 0) {
/*
* Nothing here, move along
*/
sva += PAGE_SIZE;
ptep++;
continue;
}
pm->pm_stats.resident_count--;
pa = l2pte_pa(pte);
is_exec = 0;
is_refd = 1;
/*
* Update flags. In a number of circumstances,
* we could cluster a lot of these and do a
* number of sequential pages in one go.
*/
if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
struct pv_entry *pve;
simple_lock(&pg->mdpage.pvh_slock);
pve = pmap_remove_pv(pg, pm, sva);
pmap_vac_me_harder(pg, pm, 0);
simple_unlock(&pg->mdpage.pvh_slock);
if (pve != NULL) {
if (pm->pm_remove_all == FALSE) {
is_exec =
PV_BEEN_EXECD(pve->pv_flags);
is_refd =
PV_BEEN_REFD(pve->pv_flags);
}
pool_put(&pmap_pv_pool, pve);
}
}
if (!l2pte_valid(pte)) {
*ptep = 0;
PTE_SYNC_CURRENT(pm, ptep);
sva += PAGE_SIZE;
ptep++;
mappings++;
continue;
}
if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
/* Add to the clean list. */
cleanlist[cleanlist_idx].pte = ptep;
cleanlist[cleanlist_idx].va =
sva | (is_exec & 1);
cleanlist_idx++;
} else
if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
/* Nuke everything if needed. */
pmap_idcache_wbinv_all(pm);
pmap_tlb_flushID(pm);
/*
* Roll back the previous PTE list,
* and zero out the current PTE.
*/
for (cnt = 0;
cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
*cleanlist[cnt].pte = 0;
}
*ptep = 0;
PTE_SYNC(ptep);
cleanlist_idx++;
pm->pm_remove_all = TRUE;
} else {
*ptep = 0;
PTE_SYNC(ptep);
if (pm->pm_remove_all == FALSE) {
if (is_exec)
pmap_tlb_flushID_SE(pm, sva);
else
if (is_refd)
pmap_tlb_flushD_SE(pm, sva);
}
}
sva += PAGE_SIZE;
ptep++;
mappings++;
}
/*
* Deal with any left overs
*/
if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
total += cleanlist_idx;
for (cnt = 0; cnt < cleanlist_idx; cnt++) {
if (pm->pm_cstate.cs_all != 0) {
vaddr_t clva = cleanlist[cnt].va & ~1;
if (cleanlist[cnt].va & 1) {
pmap_idcache_wbinv_range(pm,
clva, PAGE_SIZE);
pmap_tlb_flushID_SE(pm, clva);
} else {
pmap_dcache_wb_range(pm,
clva, PAGE_SIZE, TRUE,
FALSE);
pmap_tlb_flushD_SE(pm, clva);
}
}
*cleanlist[cnt].pte = 0;
PTE_SYNC_CURRENT(pm, cleanlist[cnt].pte);
}
/*
* If it looks like we're removing a whole bunch
* of mappings, it's faster to just write-back
* the whole cache now and defer TLB flushes until
* pmap_update() is called.
*/
if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
cleanlist_idx = 0;
else {
cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
pmap_idcache_wbinv_all(pm);
pm->pm_remove_all = TRUE;
}
}
pmap_free_l2_bucket(pm, l2b, mappings);
}
pmap_release_pmap_lock(pm);
PMAP_MAP_TO_HEAD_UNLOCK();
}
/*
* pmap_kenter_pa: enter an unmanaged, wired kernel mapping
*
* We assume there is already sufficient KVM space available
* to do this, as we can't allocate L2 descriptor tables/metadata
* from here.
*/
void
pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
{
struct l2_bucket *l2b;
pt_entry_t *ptep, opte;
NPDEBUG(PDB_KENTER,
printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
va, pa, prot));
l2b = pmap_get_l2_bucket(pmap_kernel(), va);
KDASSERT(l2b != NULL);
ptep = &l2b->l2b_kva[l2pte_index(va)];
opte = *ptep;
if (l2pte_valid(opte)) {
cpu_dcache_wbinv_range(va, PAGE_SIZE);
cpu_tlb_flushD_SE(va);
cpu_cpwait();
} else
if (opte == 0)
l2b->l2b_occupancy++;
*ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
pte_l2_s_cache_mode;
PTE_SYNC(ptep);
}
void
pmap_kremove(vaddr_t va, vsize_t len)
{
struct l2_bucket *l2b;
pt_entry_t *ptep, *sptep, opte;
vaddr_t next_bucket, eva;
u_int mappings;
NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
va, len));
eva = va + len;
while (va < eva) {
next_bucket = L2_NEXT_BUCKET(va);
if (next_bucket > eva)
next_bucket = eva;
l2b = pmap_get_l2_bucket(pmap_kernel(), va);
KDASSERT(l2b != NULL);
sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
mappings = 0;
while (va < next_bucket) {
opte = *ptep;
if (l2pte_valid(opte)) {
cpu_dcache_wbinv_range(va, PAGE_SIZE);
cpu_tlb_flushD_SE(va);
}
if (opte) {
*ptep = 0;
mappings++;
}
va += PAGE_SIZE;
ptep++;
}
KDASSERT(mappings <= l2b->l2b_occupancy);
l2b->l2b_occupancy -= mappings;
PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
}
cpu_cpwait();
}
boolean_t
pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
{
struct l2_dtable *l2;
pd_entry_t *pl1pd, l1pd;
pt_entry_t *ptep, pte;
paddr_t pa;
u_int l1idx;
pmap_acquire_pmap_lock(pm);
l1idx = L1_IDX(va);
pl1pd = &pm->pm_l1->l1_kva[l1idx];
l1pd = *pl1pd;
if (l1pte_section_p(l1pd)) {
/*
* These should only happen for pmap_kernel()
*/
KDASSERT(pm == pmap_kernel());
pmap_release_pmap_lock(pm);
pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
} else {
/*
* Note that we can't rely on the validity of the L1
* descriptor as an indication that a mapping exists.
* We have to look it up in the L2 dtable.
*/
l2 = pm->pm_l2[L2_IDX(l1idx)];
if (l2 == NULL ||
(ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
pmap_release_pmap_lock(pm);
return (FALSE);
}
ptep = &ptep[l2pte_index(va)];
pte = *ptep;
pmap_release_pmap_lock(pm);
if (pte == 0)
return (FALSE);
switch (pte & L2_TYPE_MASK) {
case L2_TYPE_L:
pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
break;
default:
pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
break;
}
}
if (pap != NULL)
*pap = pa;
return (TRUE);
}
void
pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
{
struct l2_bucket *l2b;
pt_entry_t *ptep, pte;
vaddr_t next_bucket;
u_int flags;
int flush;
NPDEBUG(PDB_PROTECT,
printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
pm, sva, eva, prot));
if ((prot & VM_PROT_READ) == 0) {
pmap_remove(pm, sva, eva);
return;
}
if (prot & VM_PROT_WRITE) {
/*
* If this is a read->write transition, just ignore it and let
* uvm_fault() take care of it later.
*/
return;
}
PMAP_MAP_TO_HEAD_LOCK();
pmap_acquire_pmap_lock(pm);
/*
* OK, at this point, we know we're doing write-protect operation.
* If the pmap is active, write-back the range.
*/
pmap_dcache_wb_range(pm, sva, eva - sva, FALSE, FALSE);
flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
flags = 0;
while (sva < eva) {
next_bucket = L2_NEXT_BUCKET(sva);
if (next_bucket > eva)
next_bucket = eva;
l2b = pmap_get_l2_bucket(pm, sva);
if (l2b == NULL) {
sva = next_bucket;
continue;
}
ptep = &l2b->l2b_kva[l2pte_index(sva)];
while (sva < next_bucket) {
if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) {
struct vm_page *pg;
u_int f;
pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
pte &= ~L2_S_PROT_W;
*ptep = pte;
PTE_SYNC(ptep);
if (pg != NULL) {
simple_lock(&pg->mdpage.pvh_slock);
f = pmap_modify_pv(pg, pm, sva,
PVF_WRITE, 0);
pmap_vac_me_harder(pg, pm, sva);
simple_unlock(&pg->mdpage.pvh_slock);
} else
f = PVF_REF | PVF_EXEC;
if (flush >= 0) {
flush++;
flags |= f;
} else
if (PV_BEEN_EXECD(f))
pmap_tlb_flushID_SE(pm, sva);
else
if (PV_BEEN_REFD(f))
pmap_tlb_flushD_SE(pm, sva);
}
sva += PAGE_SIZE;
ptep++;
}
}
pmap_release_pmap_lock(pm);
PMAP_MAP_TO_HEAD_UNLOCK();
if (flush) {
if (PV_BEEN_EXECD(flags))
pmap_tlb_flushID(pm);
else
if (PV_BEEN_REFD(flags))
pmap_tlb_flushD(pm);
}
}
void
pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
{
NPDEBUG(PDB_PROTECT,
printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
pg, pg->phys_addr, prot));
switch(prot) {
case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
case VM_PROT_READ|VM_PROT_WRITE:
return;
case VM_PROT_READ:
case VM_PROT_READ|VM_PROT_EXECUTE:
pmap_clearbit(pg, PVF_WRITE);
break;
default:
pmap_page_remove(pg);
break;
}
}
/*
* pmap_clear_modify:
*
* Clear the "modified" attribute for a page.
*/
boolean_t
pmap_clear_modify(struct vm_page *pg)
{
boolean_t rv;
if (pg->mdpage.pvh_attrs & PVF_MOD) {
rv = TRUE;
pmap_clearbit(pg, PVF_MOD);
} else
rv = FALSE;
return (rv);
}
/*
* pmap_clear_reference:
*
* Clear the "referenced" attribute for a page.
*/
boolean_t
pmap_clear_reference(struct vm_page *pg)
{
boolean_t rv;
if (pg->mdpage.pvh_attrs & PVF_REF) {
rv = TRUE;
pmap_clearbit(pg, PVF_REF);
} else
rv = FALSE;
return (rv);
}
/*
* pmap_is_modified:
*
* Test if a page has the "modified" attribute.
*/
/* See <arm/arm32/pmap.h> */
/*
* pmap_is_referenced:
*
* Test if a page has the "referenced" attribute.
*/
/* See <arm/arm32/pmap.h> */
int
pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
{
struct l2_dtable *l2;
struct l2_bucket *l2b;
pd_entry_t *pl1pd, l1pd;
pt_entry_t *ptep, pte;
paddr_t pa;
u_int l1idx;
int rv = 0;
PMAP_MAP_TO_HEAD_LOCK();
pmap_acquire_pmap_lock(pm);
l1idx = L1_IDX(va);
/*
* If there is no l2_dtable for this address, then the process
* has no business accessing it.
*
* Note: This will catch userland processes trying to access
* kernel addresses.
*/
l2 = pm->pm_l2[L2_IDX(l1idx)];
if (l2 == NULL)
goto out;
/*
* Likewise if there is no L2 descriptor table
*/
l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
if (l2b->l2b_kva == NULL)
goto out;
/*
* Check the PTE itself.
*/
ptep = &l2b->l2b_kva[l2pte_index(va)];
pte = *ptep;
if (pte == 0)
goto out;
/*
* Catch a userland access to the vector page mapped at 0x0
*/
if (user && (pte & L2_S_PROT_U) == 0)
goto out;
pa = l2pte_pa(pte);
if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
/*
* This looks like a good candidate for "page modified"
* emulation...
*/
struct pv_entry *pv;
struct vm_page *pg;
/* Extract the physical address of the page */
if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
goto out;
/* Get the current flags for this page. */
simple_lock(&pg->mdpage.pvh_slock);
pv = pmap_find_pv(pg, pm, va);
if (pv == NULL) {
simple_unlock(&pg->mdpage.pvh_slock);
goto out;
}
/*
* Do the flags say this page is writable? If not then it
* is a genuine write fault. If yes then the write fault is
* our fault as we did not reflect the write access in the
* PTE. Now we know a write has occurred we can correct this
* and also set the modified bit
*/
if ((pv->pv_flags & PVF_WRITE) == 0) {
simple_unlock(&pg->mdpage.pvh_slock);
goto out;
}
NPDEBUG(PDB_FOLLOW,
printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
pm, va, pg->phys_addr));
pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
pv->pv_flags |= PVF_REF | PVF_MOD;
simple_unlock(&pg->mdpage.pvh_slock);
/*
* Re-enable write permissions for the page. No need to call
* pmap_vac_me_harder(), since this is just a
* modified-emulation fault, and the PVF_WRITE bit isn't
* changing. We've already set the cacheable bits based on
* the assumption that we can write to this page.
*/
*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
PTE_SYNC(ptep);
rv = 1;
} else
if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
/*
* This looks like a good candidate for "page referenced"
* emulation.
*/
struct pv_entry *pv;
struct vm_page *pg;
/* Extract the physical address of the page */
if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
goto out;
/* Get the current flags for this page. */
simple_lock(&pg->mdpage.pvh_slock);
pv = pmap_find_pv(pg, pm, va);
if (pv == NULL) {
simple_unlock(&pg->mdpage.pvh_slock);
goto out;
}
pg->mdpage.pvh_attrs |= PVF_REF;
pv->pv_flags |= PVF_REF;
simple_unlock(&pg->mdpage.pvh_slock);
NPDEBUG(PDB_FOLLOW,
printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
pm, va, pg->phys_addr));
*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
PTE_SYNC(ptep);
rv = 1;
}
/*
* We know there is a valid mapping here, so simply
* fix up the L1 if necessary.
*/
pl1pd = &pm->pm_l1->l1_kva[l1idx];
l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
if (*pl1pd != l1pd) {
*pl1pd = l1pd;
PTE_SYNC(pl1pd);
rv = 1;
}
#ifdef CPU_SA110
/*
* There are bugs in the rev K SA110. This is a check for one
* of them.
*/
if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
curcpu()->ci_arm_cpurev < 3) {
/* Always current pmap */
if (l2pte_valid(pte)) {
extern int kernel_debug;
if (kernel_debug & 1) {
struct proc *p = curlwp->l_proc;
printf("prefetch_abort: page is already "
"mapped - pte=%p *pte=%08x\n", ptep, pte);
printf("prefetch_abort: pc=%08lx proc=%p "
"process=%s\n", va, p, p->p_comm);
printf("prefetch_abort: far=%08x fs=%x\n",
cpu_faultaddress(), cpu_faultstatus());
}
#ifdef DDB
if (kernel_debug & 2)
Debugger();
#endif
rv = 1;
}
}
#endif /* CPU_SA110 */
#ifdef DEBUG
/*
* If 'rv == 0' at this point, it generally indicates that there is a
* stale TLB entry for the faulting address. This happens when two or
* more processes are sharing an L1. Since we don't flush the TLB on
* a context switch between such processes, we can take domain faults
* for mappings which exist at the same VA in both processes. EVEN IF
* WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
* example.
*
* This is extremely likely to happen if pmap_enter() updated the L1
* entry for a recently entered mapping. In this case, the TLB is
* flushed for the new mapping, but there may still be TLB entries for
* other mappings belonging to other processes in the 1MB range
* covered by the L1 entry.
*
* Since 'rv == 0', we know that the L1 already contains the correct
* value, so the fault must be due to a stale TLB entry.
*
* Since we always need to flush the TLB anyway in the case where we
* fixed up the L1, or frobbed the L2 PTE, we effectively deal with
* stale TLB entries dynamically.
*
* However, the above condition can ONLY happen if the current L1 is
* being shared. If it happens when the L1 is unshared, it indicates
* that other parts of the pmap are not doing their job WRT managing
* the TLB.
*/
if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
extern int last_fault_code;
printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
pm, va, ftype);
printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
l2, l2b, ptep, pl1pd);
printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
pte, l1pd, last_fault_code);
#ifdef DDB
Debugger();
#endif
}
#endif
cpu_tlb_flushID_SE(va);
cpu_cpwait();
rv = 1;
out:
pmap_release_pmap_lock(pm);
PMAP_MAP_TO_HEAD_UNLOCK();
return (rv);
}
/*
* pmap_collect: free resources held by a pmap
*
* => optional function.
* => called when a process is swapped out to free memory.
*/
void
pmap_collect(pmap_t pm)
{
/*
* Nothing to do.
* We don't even need to free-up the process' L1.
*/
}
/*
* Routine: pmap_procwr
*
* Function:
* Synchronize caches corresponding to [addr, addr+len) in p.
*
*/
void
pmap_procwr(struct proc *p, vaddr_t va, int len)
{
/* We only need to do anything if it is the current process. */
if (p == curproc)
cpu_icache_sync_range(va, len);
}
/*
* Routine: pmap_unwire
* Function: Clear the wired attribute for a map/virtual-address pair.
*
* In/out conditions:
* The mapping must already exist in the pmap.
*/
void
pmap_unwire(pmap_t pm, vaddr_t va)
{
struct l2_bucket *l2b;
pt_entry_t *ptep, pte;
struct vm_page *pg;
paddr_t pa;
NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
PMAP_MAP_TO_HEAD_LOCK();
pmap_acquire_pmap_lock(pm);
l2b = pmap_get_l2_bucket(pm, va);
KDASSERT(l2b != NULL);
ptep = &l2b->l2b_kva[l2pte_index(va)];
pte = *ptep;
/* Extract the physical address of the page */
pa = l2pte_pa(pte);
if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
/* Update the wired bit in the pv entry for this page. */
simple_lock(&pg->mdpage.pvh_slock);
(void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
simple_unlock(&pg->mdpage.pvh_slock);
}
pmap_release_pmap_lock(pm);
PMAP_MAP_TO_HEAD_UNLOCK();
}
void
pmap_activate(struct lwp *l)
{
pmap_t pm;
struct pcb *pcb;
int s;
pm = l->l_proc->p_vmspace->vm_map.pmap;
pcb = &l->l_addr->u_pcb;
pmap_set_pcb_pagedir(pm, pcb);
if (l == curlwp) {
u_int cur_dacr, cur_ttb;
__asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb));
__asm __volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr));
cur_ttb &= ~(L1_TABLE_SIZE - 1);
if (cur_ttb == (u_int)pcb->pcb_pagedir &&
cur_dacr == pcb->pcb_dacr) {
/*
* No need to switch address spaces.
*/
return;
}
s = splhigh();
pmap_acquire_pmap_lock(pm);
disable_interrupts(I32_bit | F32_bit);
/*
* We MUST, I repeat, MUST fix up the L1 entry corresponding
* to 'vector_page' in the incoming L1 table before switching
* to it otherwise subsequent interrupts/exceptions (including
* domain faults!) will jump into hyperspace.
*/
if (pcb->pcb_pl1vec) {
*pcb->pcb_pl1vec = pcb->pcb_l1vec;
/*
* Don't need to PTE_SYNC() at this point since
* cpu_setttb() is about to flush both the cache
* and the TLB.
*/
}
cpu_domains(pcb->pcb_dacr);
cpu_setttb(pcb->pcb_pagedir);
enable_interrupts(I32_bit | F32_bit);
/*
* Flag any previous userland pmap as being NOT
* resident in the cache/tlb.
*/
if (pmap_cache_state && pmap_cache_state != &pm->pm_cstate)
pmap_cache_state->cs_all = 0;
/*
* The new pmap, however, IS resident.
*/
pmap_cache_state = &pm->pm_cstate;
pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
pmap_release_pmap_lock(pm);
splx(s);
}
}
void
pmap_deactivate(struct lwp *l)
{
}
void
pmap_update(pmap_t pm)
{
if (pm->pm_remove_all) {
/*
* Finish up the pmap_remove_all() optimisation by flushing
* the TLB.
*/
pmap_tlb_flushID(pm);
pm->pm_remove_all = FALSE;
}
if (pmap_is_current(pm)) {
/*
* If we're dealing with a current userland pmap, move its L1
* to the end of the LRU.
*/
if (pm != pmap_kernel())
pmap_use_l1(pm);
/*
* We can assume we're done with frobbing the cache/tlb for
* now. Make sure any future pmap ops don't skip cache/tlb
* flushes.
*/
pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
}
/*
* make sure TLB/cache operations have completed.
*/
cpu_cpwait();
}
void
pmap_remove_all(pmap_t pm)
{
/*
* The vmspace described by this pmap is about to be torn down.
* Until pmap_update() is called, UVM will only make calls
* to pmap_remove(). We can make life much simpler by flushing
* the cache now, and deferring TLB invalidation to pmap_update().
*/
pmap_idcache_wbinv_all(pm);
pm->pm_remove_all = TRUE;
}
/*
* Retire the given physical map from service.
* Should only be called if the map contains no valid mappings.
*/
void
pmap_destroy(pmap_t pm)
{
u_int count;
if (pm == NULL)
return;
if (pm->pm_remove_all) {
pmap_tlb_flushID(pm);
pm->pm_remove_all = FALSE;
}
/*
* Drop reference count
*/
simple_lock(&pm->pm_lock);
count = --pm->pm_obj.uo_refs;
simple_unlock(&pm->pm_lock);
if (count > 0) {
if (pmap_is_current(pm)) {
if (pm != pmap_kernel())
pmap_use_l1(pm);
pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
}
return;
}
/*
* reference count is zero, free pmap resources and then free pmap.
*/
if (vector_page < KERNEL_BASE) {
/* Remove the vector page mapping */
pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
pmap_update(pm);
}
LIST_REMOVE(pm, pm_list);
pmap_free_l1(pm);
/* return the pmap to the pool */
pool_cache_put(&pmap_pmap_cache, pm);
}
/*
* void pmap_reference(pmap_t pm)
*
* Add a reference to the specified pmap.
*/
void
pmap_reference(pmap_t pm)
{
if (pm == NULL)
return;
pmap_use_l1(pm);
simple_lock(&pm->pm_lock);
pm->pm_obj.uo_refs++;
simple_unlock(&pm->pm_lock);
}
/*
* pmap_zero_page()
*
* Zero a given physical page by mapping it at a page hook point.
* In doing the zero page op, the page we zero is mapped cachable, as with
* StrongARM accesses to non-cached pages are non-burst making writing
* _any_ bulk data very slow.
*/
#if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
void
pmap_zero_page_generic(paddr_t phys)
{
#ifdef DEBUG
struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
if (pg->mdpage.pvh_list != NULL)
panic("pmap_zero_page: page has mappings");
#endif
KDASSERT((phys & PGOFSET) == 0);
/*
* Hook in the page, zero it, and purge the cache for that
* zeroed page. Invalidate the TLB as needed.
*/
*cdst_pte = L2_S_PROTO | phys |
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
PTE_SYNC(cdst_pte);
cpu_tlb_flushD_SE(cdstp);
cpu_cpwait();
bzero_page(cdstp);
cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
}
#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
#if ARM_MMU_XSCALE == 1
void
pmap_zero_page_xscale(paddr_t phys)
{
#ifdef DEBUG
struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
if (pg->mdpage.pvh_list != NULL)
panic("pmap_zero_page: page has mappings");
#endif
KDASSERT((phys & PGOFSET) == 0);
/*
* Hook in the page, zero it, and purge the cache for that
* zeroed page. Invalidate the TLB as needed.
*/
*cdst_pte = L2_S_PROTO | phys |
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
PTE_SYNC(cdst_pte);
cpu_tlb_flushD_SE(cdstp);
cpu_cpwait();
bzero_page(cdstp);
xscale_cache_clean_minidata();
}
#endif /* ARM_MMU_XSCALE == 1 */
/* pmap_pageidlezero()
*
* The same as above, except that we assume that the page is not
* mapped. This means we never have to flush the cache first. Called
* from the idle loop.
*/
boolean_t
pmap_pageidlezero(paddr_t phys)
{
unsigned int i;
int *ptr;
boolean_t rv = TRUE;
#ifdef DEBUG
struct vm_page *pg;
pg = PHYS_TO_VM_PAGE(phys);
if (pg->mdpage.pvh_list != NULL)
panic("pmap_pageidlezero: page has mappings");
#endif
KDASSERT((phys & PGOFSET) == 0);
/*
* Hook in the page, zero it, and purge the cache for that
* zeroed page. Invalidate the TLB as needed.
*/
*cdst_pte = L2_S_PROTO | phys |
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
PTE_SYNC(cdst_pte);
cpu_tlb_flushD_SE(cdstp);
cpu_cpwait();
for (i = 0, ptr = (int *)cdstp;
i < (PAGE_SIZE / sizeof(int)); i++) {
if (sched_whichqs != 0) {
/*
* A process has become ready. Abort now,
* so we don't keep it waiting while we
* do slow memory access to finish this
* page.
*/
rv = FALSE;
break;
}
*ptr++ = 0;
}
if (rv)
/*
* if we aborted we'll rezero this page again later so don't
* purge it unless we finished it
*/
cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
return (rv);
}
/*
* pmap_copy_page()
*
* Copy one physical page into another, by mapping the pages into
* hook points. The same comment regarding cachability as in
* pmap_zero_page also applies here.
*/
#if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
void
pmap_copy_page_generic(paddr_t src, paddr_t dst)
{
struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
#ifdef DEBUG
struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
if (dst_pg->mdpage.pvh_list != NULL)
panic("pmap_copy_page: dst page has mappings");
#endif
KDASSERT((src & PGOFSET) == 0);
KDASSERT((dst & PGOFSET) == 0);
/*
* Clean the source page. Hold the source page's lock for
* the duration of the copy so that no other mappings can
* be created while we have a potentially aliased mapping.
*/
simple_lock(&src_pg->mdpage.pvh_slock);
(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
/*
* Map the pages into the page hook points, copy them, and purge
* the cache for the appropriate page. Invalidate the TLB
* as required.
*/
*csrc_pte = L2_S_PROTO | src |
L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
PTE_SYNC(csrc_pte);
*cdst_pte = L2_S_PROTO | dst |
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
PTE_SYNC(cdst_pte);
cpu_tlb_flushD_SE(csrcp);
cpu_tlb_flushD_SE(cdstp);
cpu_cpwait();
bcopy_page(csrcp, cdstp);
cpu_dcache_inv_range(csrcp, PAGE_SIZE);
simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
}
#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
#if ARM_MMU_XSCALE == 1
void
pmap_copy_page_xscale(paddr_t src, paddr_t dst)
{
struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
#ifdef DEBUG
struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
if (dst_pg->mdpage.pvh_list != NULL)
panic("pmap_copy_page: dst page has mappings");
#endif
KDASSERT((src & PGOFSET) == 0);
KDASSERT((dst & PGOFSET) == 0);
/*
* Clean the source page. Hold the source page's lock for
* the duration of the copy so that no other mappings can
* be created while we have a potentially aliased mapping.
*/
simple_lock(&src_pg->mdpage.pvh_slock);
(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
/*
* Map the pages into the page hook points, copy them, and purge
* the cache for the appropriate page. Invalidate the TLB
* as required.
*/
*csrc_pte = L2_S_PROTO | src |
L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
PTE_SYNC(csrc_pte);
*cdst_pte = L2_S_PROTO | dst |
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
PTE_SYNC(cdst_pte);
cpu_tlb_flushD_SE(csrcp);
cpu_tlb_flushD_SE(cdstp);
cpu_cpwait();
bcopy_page(csrcp, cdstp);
simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
xscale_cache_clean_minidata();
}
#endif /* ARM_MMU_XSCALE == 1 */
/*
* void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
*
* Return the start and end addresses of the kernel's virtual space.
* These values are setup in pmap_bootstrap and are updated as pages
* are allocated.
*/
void
pmap_virtual_space(vaddr_t *start, vaddr_t *end)
{
*start = virtual_avail;
*end = virtual_end;
}
/*
* Helper function for pmap_grow_l2_bucket()
*/
static __inline int
pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
{
struct l2_bucket *l2b;
pt_entry_t *ptep;
paddr_t pa;
if (uvm.page_init_done == FALSE) {
if (uvm_page_physget(&pa) == FALSE)
return (1);
} else {
struct vm_page *pg;
pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
if (pg == NULL)
return (1);
pa = VM_PAGE_TO_PHYS(pg);
}
if (pap)
*pap = pa;
l2b = pmap_get_l2_bucket(pmap_kernel(), va);
KDASSERT(l2b != NULL);
ptep = &l2b->l2b_kva[l2pte_index(va)];
*ptep = L2_S_PROTO | pa | cache_mode |
L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
PTE_SYNC(ptep);
memset((void *)va, 0, PAGE_SIZE);
return (0);
}
/*
* This is the same as pmap_alloc_l2_bucket(), except that it is only
* used by pmap_growkernel().
*/
static __inline struct l2_bucket *
pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
{
struct l2_dtable *l2;
struct l2_bucket *l2b;
u_short l1idx;
vaddr_t nva;
l1idx = L1_IDX(va);
if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
/*
* No mapping at this address, as there is
* no entry in the L1 table.
* Need to allocate a new l2_dtable.
*/
nva = pmap_kernel_l2dtable_kva;
if ((nva & PGOFSET) == 0) {
/*
* Need to allocate a backing page
*/
if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
return (NULL);
}
l2 = (struct l2_dtable *)nva;
nva += sizeof(struct l2_dtable);
if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
/*
* The new l2_dtable straddles a page boundary.
* Map in another page to cover it.
*/
if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
return (NULL);
}
pmap_kernel_l2dtable_kva = nva;
/*
* Link it into the parent pmap
*/
pm->pm_l2[L2_IDX(l1idx)] = l2;
}
l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
/*
* Fetch pointer to the L2 page table associated with the address.
*/
if (l2b->l2b_kva == NULL) {
pt_entry_t *ptep;
/*
* No L2 page table has been allocated. Chances are, this
* is because we just allocated the l2_dtable, above.
*/
nva = pmap_kernel_l2ptp_kva;
ptep = (pt_entry_t *)nva;
if ((nva & PGOFSET) == 0) {
/*
* Need to allocate a backing page
*/
if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
&pmap_kernel_l2ptp_phys))
return (NULL);
PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
}
l2->l2_occupancy++;
l2b->l2b_kva = ptep;
l2b->l2b_l1idx = l1idx;
l2b->l2b_phys = pmap_kernel_l2ptp_phys;
pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
}
return (l2b);
}
vaddr_t
pmap_growkernel(vaddr_t maxkvaddr)
{
pmap_t kpm = pmap_kernel();
struct l1_ttable *l1;
struct l2_bucket *l2b;
pd_entry_t *pl1pd;
int s;
if (maxkvaddr <= pmap_curmaxkvaddr)
goto out; /* we are OK */
NPDEBUG(PDB_GROWKERN,
printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
pmap_curmaxkvaddr, maxkvaddr));
KDASSERT(maxkvaddr <= virtual_end);
/*
* whoops! we need to add kernel PTPs
*/
s = splhigh(); /* to be safe */
simple_lock(&kpm->pm_lock);
/* Map 1MB at a time */
for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
KDASSERT(l2b != NULL);
/* Distribute new L1 entry to all other L1s */
SLIST_FOREACH(l1, &l1_list, l1_link) {
pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
L1_C_PROTO;
PTE_SYNC(pl1pd);
}
}
/*
* flush out the cache, expensive but growkernel will happen so
* rarely
*/
cpu_dcache_wbinv_all();
cpu_tlb_flushD();
cpu_cpwait();
simple_unlock(&kpm->pm_lock);
splx(s);
out:
return (pmap_curmaxkvaddr);
}
/************************ Utility routines ****************************/
/*
* vector_page_setprot:
*
* Manipulate the protection of the vector page.
*/
void
vector_page_setprot(int prot)
{
struct l2_bucket *l2b;
pt_entry_t *ptep;
l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
KDASSERT(l2b != NULL);
ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
PTE_SYNC(ptep);
cpu_tlb_flushD_SE(vector_page);
cpu_cpwait();
}
/*
* This is used to stuff certain critical values into the PCB where they
* can be accessed quickly from cpu_switch() et al.
*/
void
pmap_set_pcb_pagedir(pmap_t pm, struct pcb *pcb)
{
struct l2_bucket *l2b;
KDASSERT(pm->pm_l1);
pcb->pcb_pagedir = pm->pm_l1->l1_physaddr;
pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
(DOMAIN_CLIENT << (pm->pm_domain * 2));
pcb->pcb_cstate = (void *)&pm->pm_cstate;
if (vector_page < KERNEL_BASE) {
pcb->pcb_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
l2b = pmap_get_l2_bucket(pm, vector_page);
pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO |
L1_C_DOM(pm->pm_domain);
} else
pcb->pcb_pl1vec = NULL;
}
/*
* Fetch pointers to the PDE/PTE for the given pmap/VA pair.
* Returns TRUE if the mapping exists, else FALSE.
*
* NOTE: This function is only used by a couple of arm-specific modules.
* It is not safe to take any pmap locks here, since we could be right
* in the middle of debugging the pmap anyway...
*
* It is possible for this routine to return FALSE even though a valid
* mapping does exist. This is because we don't lock, so the metadata
* state may be inconsistent.
*
* NOTE: We can return a NULL *ptp in the case where the L1 pde is
* a "section" mapping.
*/
boolean_t
pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
{
struct l2_dtable *l2;
pd_entry_t *pl1pd, l1pd;
pt_entry_t *ptep;
u_short l1idx;
if (pm->pm_l1 == NULL)
return (FALSE);
l1idx = L1_IDX(va);
*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
l1pd = *pl1pd;
if (l1pte_section_p(l1pd)) {
*ptp = NULL;
return (TRUE);
}
if (pm->pm_l2 == NULL)
return (FALSE);
l2 = pm->pm_l2[L2_IDX(l1idx)];
if (l2 == NULL ||
(ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
return (FALSE);
}
*ptp = &ptep[l2pte_index(va)];
return (TRUE);
}
boolean_t
pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
{
u_short l1idx;
if (pm->pm_l1 == NULL)
return (FALSE);
l1idx = L1_IDX(va);
*pdp = &pm->pm_l1->l1_kva[l1idx];
return (TRUE);
}
/************************ Bootstrapping routines ****************************/
static void
pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
{
int i;
l1->l1_kva = l1pt;
l1->l1_domain_use_count = 0;
l1->l1_domain_first = 0;
for (i = 0; i < PMAP_DOMAINS; i++)
l1->l1_domain_free[i] = i + 1;
/*
* Copy the kernel's L1 entries to each new L1.
*/
if (pmap_initialized)
memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
&l1->l1_physaddr) == FALSE)
panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
}
/*
* pmap_bootstrap() is called from the board-specific initarm() routine
* once the kernel L1/L2 descriptors tables have been set up.
*
* This is a somewhat convoluted process since pmap bootstrap is, effectively,
* spread over a number of disparate files/functions.
*
* We are passed the following parameters
* - kernel_l1pt
* This is a pointer to the base of the kernel's L1 translation table.
* - vstart
* 1MB-aligned start of managed kernel virtual memory.
* - vend
* 1MB-aligned end of managed kernel virtual memory.
*
* We use the first parameter to build the metadata (struct l1_ttable and
* struct l2_dtable) necessary to track kernel mappings.
*/
#define PMAP_STATIC_L2_SIZE 16
void
pmap_bootstrap(pd_entry_t *kernel_l1pt, vaddr_t vstart, vaddr_t vend)
{
static struct l1_ttable static_l1;
static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
struct l1_ttable *l1 = &static_l1;
struct l2_dtable *l2;
struct l2_bucket *l2b;
pmap_t pm = pmap_kernel();
pd_entry_t pde;
pt_entry_t *ptep;
paddr_t pa;
vaddr_t va;
vsize_t size;
int l1idx, l2idx, l2next = 0;
/*
* Initialise the kernel pmap object
*/
pm->pm_l1 = l1;
pm->pm_domain = PMAP_DOMAIN_KERNEL;
pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
simple_lock_init(&pm->pm_lock);
pm->pm_obj.pgops = NULL;
TAILQ_INIT(&pm->pm_obj.memq);
pm->pm_obj.uo_npages = 0;
pm->pm_obj.uo_refs = 1;
/*
* Scan the L1 translation table created by initarm() and create
* the required metadata for all valid mappings found in it.
*/
for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
pde = kernel_l1pt[l1idx];
/*
* We're only interested in Coarse mappings.
* pmap_extract() can deal with section mappings without
* recourse to checking L2 metadata.
*/
if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
continue;
/*
* Lookup the KVA of this L2 descriptor table
*/
pa = (paddr_t)(pde & L1_C_ADDR_MASK);
ptep = (pt_entry_t *)kernel_pt_lookup(pa);
if (ptep == NULL) {
panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
(u_int)l1idx << L1_S_SHIFT, pa);
}
/*
* Fetch the associated L2 metadata structure.
* Allocate a new one if necessary.
*/
if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
if (l2next == PMAP_STATIC_L2_SIZE)
panic("pmap_bootstrap: out of static L2s");
pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
}
/*
* One more L1 slot tracked...
*/
l2->l2_occupancy++;
/*
* Fill in the details of the L2 descriptor in the
* appropriate bucket.
*/
l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
l2b->l2b_kva = ptep;
l2b->l2b_phys = pa;
l2b->l2b_l1idx = l1idx;
/*
* Establish an initial occupancy count for this descriptor
*/
for (l2idx = 0;
l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
l2idx++) {
if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
l2b->l2b_occupancy++;
}
}
/*
* Make sure the descriptor itself has the correct cache mode.
* If not, fix it, but bitch about the problem. Port-meisters
* should consider this a clue to fix up their initarm()
* function. :)
*/
if (pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)ptep)) {
printf("pmap_bootstrap: WARNING! wrong cache mode for "
"L2 pte @ %p\n", ptep);
}
}
/*
* Ensure the primary (kernel) L1 has the correct cache mode for
* a page table. Bitch if it is not correctly set.
*/
for (va = (vaddr_t)kernel_l1pt;
va < ((vaddr_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
if (pmap_set_pt_cache_mode(kernel_l1pt, va))
printf("pmap_bootstrap: WARNING! wrong cache mode for "
"primary L1 @ 0x%lx\n", va);
}
cpu_dcache_wbinv_all();
cpu_tlb_flushID();
cpu_cpwait();
/*
* now we allocate the "special" VAs which are used for tmp mappings
* by the pmap (and other modules). we allocate the VAs by advancing
* virtual_avail (note that there are no pages mapped at these VAs).
*
* Managed KVM space start from wherever initarm() tells us.
*/
virtual_avail = vstart;
virtual_end = vend;
pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)csrc_pte);
pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
pmap_set_pt_cache_mode(kernel_l1pt, (vaddr_t)cdst_pte);
pmap_alloc_specials(&virtual_avail, 1, (void *)&memhook, NULL);
pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
(void *)&msgbufaddr, NULL);
/*
* Allocate a range of kernel virtual address space to be used
* for L2 descriptor tables and metadata allocation in
* pmap_growkernel().
*/
size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
pmap_alloc_specials(&virtual_avail,
round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
&pmap_kernel_l2ptp_kva, NULL);
size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
pmap_alloc_specials(&virtual_avail,
round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
&pmap_kernel_l2dtable_kva, NULL);
/*
* init the static-global locks and global pmap list.
*/
#if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
spinlockinit(&pmap_main_lock, "pmaplk", 0);
#endif
/*
* We can now initialise the first L1's metadata.
*/
SLIST_INIT(&l1_list);
TAILQ_INIT(&l1_lru_list);
simple_lock_init(&l1_lru_lock);
pmap_init_l1(l1, kernel_l1pt);
/*
* Initialize the pmap pool and cache
*/
pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
&pool_allocator_nointr);
pool_cache_init(&pmap_pmap_cache, &pmap_pmap_pool,
pmap_pmap_ctor, NULL, NULL);
LIST_INIT(&pmap_pmaps);
LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
/*
* Initialize the pv pool.
*/
pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
&pmap_bootstrap_pv_allocator);
/*
* Initialize the L2 dtable pool and cache.
*/
pool_init(&pmap_l2dtable_pool, sizeof(struct l2_dtable), 0, 0, 0,
"l2dtblpl", NULL);
pool_cache_init(&pmap_l2dtable_cache, &pmap_l2dtable_pool,
pmap_l2dtable_ctor, NULL, NULL);
/*
* Initialise the L2 descriptor table pool and cache
*/
pool_init(&pmap_l2ptp_pool, L2_TABLE_SIZE_REAL, 0, L2_TABLE_SIZE_REAL,
0, "l2ptppl", NULL);
pool_cache_init(&pmap_l2ptp_cache, &pmap_l2ptp_pool,
pmap_l2ptp_ctor, NULL, NULL);
cpu_dcache_wbinv_all();
}
static int
pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
{
pd_entry_t *pdep, pde;
pt_entry_t *ptep, pte;
vaddr_t pa;
int rv = 0;
/*
* Make sure the descriptor itself has the correct cache mode
*/
pdep = &kl1[L1_IDX(va)];
pde = *pdep;
if (l1pte_section_p(pde)) {
if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
*pdep = (pde & ~L1_S_CACHE_MASK) |
pte_l1_s_cache_mode_pt;
PTE_SYNC(pdep);
cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
rv = 1;
}
} else {
pa = (paddr_t)(pde & L1_C_ADDR_MASK);
ptep = (pt_entry_t *)kernel_pt_lookup(pa);
if (ptep == NULL)
panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
ptep = &ptep[l2pte_index(va)];
pte = *ptep;
if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
*ptep = (pte & ~L2_S_CACHE_MASK) |
pte_l2_s_cache_mode_pt;
PTE_SYNC(ptep);
cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
rv = 1;
}
}
return (rv);
}
static void
pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
{
vaddr_t va = *availp;
struct l2_bucket *l2b;
if (ptep) {
l2b = pmap_get_l2_bucket(pmap_kernel(), va);
if (l2b == NULL)
panic("pmap_alloc_specials: no l2b for 0x%lx", va);
if (ptep)
*ptep = &l2b->l2b_kva[l2pte_index(va)];
}
*vap = va;
*availp = va + (PAGE_SIZE * pages);
}
void
pmap_init(void)
{
extern int physmem;
/*
* Set the available memory vars - These do not map to real memory
* addresses and cannot as the physical memory is fragmented.
* They are used by ps for %mem calculations.
* One could argue whether this should be the entire memory or just
* the memory that is useable in a user process.
*/
avail_start = 0;
avail_end = physmem * PAGE_SIZE;
/*
* Now we need to free enough pv_entry structures to allow us to get
* the kmem_map/kmem_object allocated and inited (done after this
* function is finished). to do this we allocate one bootstrap page out
* of kernel_map and use it to provide an initial pool of pv_entry
* structures. we never free this page.
*/
pool_setlowat(&pmap_pv_pool,
(PAGE_SIZE / sizeof(struct pv_entry)) * 2);
pmap_initialized = TRUE;
}
static vaddr_t last_bootstrap_page = 0;
static void *free_bootstrap_pages = NULL;
static void *
pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
{
extern void *pool_page_alloc(struct pool *, int);
vaddr_t new_page;
void *rv;
if (pmap_initialized)
return (pool_page_alloc(pp, flags));
if (free_bootstrap_pages) {
rv = free_bootstrap_pages;
free_bootstrap_pages = *((void **)rv);
return (rv);
}
new_page = uvm_km_kmemalloc(kernel_map, NULL, PAGE_SIZE,
(flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT);
KASSERT(new_page > last_bootstrap_page);
last_bootstrap_page = new_page;
return ((void *)new_page);
}
static void
pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
{
extern void pool_page_free(struct pool *, void *);
if (pmap_initialized) {
pool_page_free(pp, v);
return;
}
if ((vaddr_t)v < last_bootstrap_page) {
*((void **)v) = free_bootstrap_pages;
free_bootstrap_pages = v;
return;
}
}
/*
* pmap_postinit()
*
* This routine is called after the vm and kmem subsystems have been
* initialised. This allows the pmap code to perform any initialisation
* that can only be done one the memory allocation is in place.
*/
void
pmap_postinit(void)
{
extern paddr_t physical_start, physical_end;
struct l2_bucket *l2b;
struct l1_ttable *l1;
struct pglist plist;
struct vm_page *m;
pd_entry_t *pl1pt;
pt_entry_t *ptep, pte;
vaddr_t va, eva;
u_int loop, needed;
int error;
pool_setlowat(&pmap_l2ptp_pool,
(PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
pool_setlowat(&pmap_l2dtable_pool,
(PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
needed -= 1;
l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
for (loop = 0; loop < needed; loop++, l1++) {
/* Allocate a L1 page table */
va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
if (va == 0)
panic("Cannot allocate L1 KVM");
error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
if (error)
panic("Cannot allocate L1 physical pages");
m = TAILQ_FIRST(&plist);
eva = va + L1_TABLE_SIZE;
pl1pt = (pd_entry_t *)va;
while (m && va < eva) {
paddr_t pa = VM_PAGE_TO_PHYS(m);
pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
/*
* Make sure the L1 descriptor table is mapped
* with the cache-mode set to write-through.
*/
l2b = pmap_get_l2_bucket(pmap_kernel(), va);
ptep = &l2b->l2b_kva[l2pte_index(va)];
pte = *ptep;
pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
*ptep = pte;
PTE_SYNC(ptep);
cpu_tlb_flushD_SE(va);
va += PAGE_SIZE;
m = m->pageq.tqe_next;
}
#ifdef DIAGNOSTIC
if (m)
panic("pmap_alloc_l1pt: pglist not empty");
#endif /* DIAGNOSTIC */
pmap_init_l1(l1, pl1pt);
}
#ifdef DEBUG
printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
needed);
#endif
}
/*
* Note that the following routines are used by board-specific initialisation
* code to configure the initial kernel page tables.
*
* If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
* L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
* behaviour of the old pmap, and provides an easy migration path for
* initial bring-up of the new pmap on existing ports. Fortunately,
* pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
* will be deprecated.
*
* If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
* tables.
*/
/*
* This list exists for the benefit of pmap_map_chunk(). It keeps track
* of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
* find them as necessary.
*
* Note that the data on this list MUST remain valid after initarm() returns,
* as pmap_bootstrap() uses it to contruct L2 table metadata.
*/
SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
static vaddr_t
kernel_pt_lookup(paddr_t pa)
{
pv_addr_t *pv;
SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
#ifndef ARM32_NEW_VM_LAYOUT
if (pv->pv_pa == (pa & ~PGOFSET))
return (pv->pv_va | (pa & PGOFSET));
#else
if (pv->pv_pa == pa)
return (pv->pv_va);
#endif
}
return (0);
}
/*
* pmap_map_section:
*
* Create a single section mapping.
*/
void
pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
{
pd_entry_t *pde = (pd_entry_t *) l1pt;
pd_entry_t fl;
KASSERT(((va | pa) & L1_S_OFFSET) == 0);
switch (cache) {
case PTE_NOCACHE:
default:
fl = 0;
break;
case PTE_CACHE:
fl = pte_l1_s_cache_mode;
break;
case PTE_PAGETABLE:
fl = pte_l1_s_cache_mode_pt;
break;
}
pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
PTE_SYNC(&pde[va >> L1_S_SHIFT]);
}
/*
* pmap_map_entry:
*
* Create a single page mapping.
*/
void
pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
{
pd_entry_t *pde = (pd_entry_t *) l1pt;
pt_entry_t fl;
pt_entry_t *pte;
KASSERT(((va | pa) & PGOFSET) == 0);
switch (cache) {
case PTE_NOCACHE:
default:
fl = 0;
break;
case PTE_CACHE:
fl = pte_l2_s_cache_mode;
break;
case PTE_PAGETABLE:
fl = pte_l2_s_cache_mode_pt;
break;
}
if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
#ifndef ARM32_NEW_VM_LAYOUT
pte = (pt_entry_t *)
kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
#else
pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
#endif
if (pte == NULL)
panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
#ifndef ARM32_NEW_VM_LAYOUT
pte[(va >> PGSHIFT) & 0x3ff] =
L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
#else
pte[l2pte_index(va)] =
L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
PTE_SYNC(&pte[l2pte_index(va)]);
#endif
}
/*
* pmap_link_l2pt:
*
* Link the L2 page table specified by "l2pv" into the L1
* page table at the slot for "va".
*/
void
pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
{
pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
u_int slot = va >> L1_S_SHIFT;
#ifndef ARM32_NEW_VM_LAYOUT
KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
KASSERT((l2pv->pv_pa & PGOFSET) == 0);
#endif
proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
#ifdef ARM32_NEW_VM_LAYOUT
PTE_SYNC(&pde[slot]);
#else
pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
PTE_SYNC_RANGE(&pde[slot + 0], 4);
#endif
SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
}
/*
* pmap_map_chunk:
*
* Map a chunk of memory using the most efficient mappings
* possible (section, large page, small page) into the
* provided L1 and L2 tables at the specified virtual address.
*/
vsize_t
pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
int prot, int cache)
{
pd_entry_t *pde = (pd_entry_t *) l1pt;
pt_entry_t *pte, f1, f2s, f2l;
vsize_t resid;
int i;
resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
if (l1pt == 0)
panic("pmap_map_chunk: no L1 table provided");
#ifdef VERBOSE_INIT_ARM
printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
"prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
#endif
switch (cache) {
case PTE_NOCACHE:
default:
f1 = 0;
f2l = 0;
f2s = 0;
break;
case PTE_CACHE:
f1 = pte_l1_s_cache_mode;
f2l = pte_l2_l_cache_mode;
f2s = pte_l2_s_cache_mode;
break;
case PTE_PAGETABLE:
f1 = pte_l1_s_cache_mode_pt;
f2l = pte_l2_l_cache_mode_pt;
f2s = pte_l2_s_cache_mode_pt;
break;
}
size = resid;
while (resid > 0) {
/* See if we can use a section mapping. */
if (L1_S_MAPPABLE_P(va, pa, resid)) {
#ifdef VERBOSE_INIT_ARM
printf("S");
#endif
pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
L1_S_PROT(PTE_KERNEL, prot) | f1 |
L1_S_DOM(PMAP_DOMAIN_KERNEL);
PTE_SYNC(&pde[va >> L1_S_SHIFT]);
va += L1_S_SIZE;
pa += L1_S_SIZE;
resid -= L1_S_SIZE;
continue;
}
/*
* Ok, we're going to use an L2 table. Make sure
* one is actually in the corresponding L1 slot
* for the current VA.
*/
if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
#ifndef ARM32_NEW_VM_LAYOUT
pte = (pt_entry_t *)
kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
#else
pte = (pt_entry_t *) kernel_pt_lookup(
pde[L1_IDX(va)] & L1_C_ADDR_MASK);
#endif
if (pte == NULL)
panic("pmap_map_chunk: can't find L2 table for VA"
"0x%08lx", va);
/* See if we can use a L2 large page mapping. */
if (L2_L_MAPPABLE_P(va, pa, resid)) {
#ifdef VERBOSE_INIT_ARM
printf("L");
#endif
for (i = 0; i < 16; i++) {
#ifndef ARM32_NEW_VM_LAYOUT
pte[((va >> PGSHIFT) & 0x3f0) + i] =
L2_L_PROTO | pa |
L2_L_PROT(PTE_KERNEL, prot) | f2l;
PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
#else
pte[l2pte_index(va) + i] =
L2_L_PROTO | pa |
L2_L_PROT(PTE_KERNEL, prot) | f2l;
PTE_SYNC(&pte[l2pte_index(va) + i]);
#endif
}
va += L2_L_SIZE;
pa += L2_L_SIZE;
resid -= L2_L_SIZE;
continue;
}
/* Use a small page mapping. */
#ifdef VERBOSE_INIT_ARM
printf("P");
#endif
#ifndef ARM32_NEW_VM_LAYOUT
pte[(va >> PGSHIFT) & 0x3ff] =
L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
#else
pte[l2pte_index(va)] =
L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
PTE_SYNC(&pte[l2pte_index(va)]);
#endif
va += PAGE_SIZE;
pa += PAGE_SIZE;
resid -= PAGE_SIZE;
}
#ifdef VERBOSE_INIT_ARM
printf("\n");
#endif
return (size);
}
/********************** Static device map routines ***************************/
static const struct pmap_devmap *pmap_devmap_table;
/*
* Register the devmap table. This is provided in case early console
* initialization needs to register mappings created by bootstrap code
* before pmap_devmap_bootstrap() is called.
*/
void
pmap_devmap_register(const struct pmap_devmap *table)
{
pmap_devmap_table = table;
}
/*
* Map all of the static regions in the devmap table, and remember
* the devmap table so other parts of the kernel can look up entries
* later.
*/
void
pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
{
int i;
pmap_devmap_table = table;
for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
#ifdef VERBOSE_INIT_ARM
printf("devmap: %08lx -> %08lx @ %08lx\n",
pmap_devmap_table[i].pd_pa,
pmap_devmap_table[i].pd_pa +
pmap_devmap_table[i].pd_size - 1,
pmap_devmap_table[i].pd_va);
#endif
pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
pmap_devmap_table[i].pd_pa,
pmap_devmap_table[i].pd_size,
pmap_devmap_table[i].pd_prot,
pmap_devmap_table[i].pd_cache);
}
}
const struct pmap_devmap *
pmap_devmap_find_pa(paddr_t pa, psize_t size)
{
int i;
if (pmap_devmap_table == NULL)
return (NULL);
for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
if (pa >= pmap_devmap_table[i].pd_pa &&
pa + size <= pmap_devmap_table[i].pd_pa +
pmap_devmap_table[i].pd_size)
return (&pmap_devmap_table[i]);
}
return (NULL);
}
const struct pmap_devmap *
pmap_devmap_find_va(vaddr_t va, vsize_t size)
{
int i;
if (pmap_devmap_table == NULL)
return (NULL);
for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
if (va >= pmap_devmap_table[i].pd_va &&
va + size <= pmap_devmap_table[i].pd_va +
pmap_devmap_table[i].pd_size)
return (&pmap_devmap_table[i]);
}
return (NULL);
}
/********************** PTE initialization routines **************************/
/*
* These routines are called when the CPU type is identified to set up
* the PTE prototypes, cache modes, etc.
*
* The variables are always here, just in case LKMs need to reference
* them (though, they shouldn't).
*/
pt_entry_t pte_l1_s_cache_mode;
pt_entry_t pte_l1_s_cache_mode_pt;
pt_entry_t pte_l1_s_cache_mask;
pt_entry_t pte_l2_l_cache_mode;
pt_entry_t pte_l2_l_cache_mode_pt;
pt_entry_t pte_l2_l_cache_mask;
pt_entry_t pte_l2_s_cache_mode;
pt_entry_t pte_l2_s_cache_mode_pt;
pt_entry_t pte_l2_s_cache_mask;
pt_entry_t pte_l2_s_prot_u;
pt_entry_t pte_l2_s_prot_w;
pt_entry_t pte_l2_s_prot_mask;
pt_entry_t pte_l1_s_proto;
pt_entry_t pte_l1_c_proto;
pt_entry_t pte_l2_s_proto;
void (*pmap_copy_page_func)(paddr_t, paddr_t);
void (*pmap_zero_page_func)(paddr_t);
#if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
void
pmap_pte_init_generic(void)
{
pte_l1_s_cache_mode = L1_S_B|L1_S_C;
pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
pte_l2_l_cache_mode = L2_B|L2_C;
pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
pte_l2_s_cache_mode = L2_B|L2_C;
pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
/*
* If we have a write-through cache, set B and C. If
* we have a write-back cache, then we assume setting
* only C will make those pages write-through.
*/
if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
pte_l2_l_cache_mode_pt = L2_B|L2_C;
pte_l2_s_cache_mode_pt = L2_B|L2_C;
} else {
pte_l1_s_cache_mode_pt = L1_S_C;
pte_l2_l_cache_mode_pt = L2_C;
pte_l2_s_cache_mode_pt = L2_C;
}
pte_l2_s_prot_u = L2_S_PROT_U_generic;
pte_l2_s_prot_w = L2_S_PROT_W_generic;
pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
pte_l1_s_proto = L1_S_PROTO_generic;
pte_l1_c_proto = L1_C_PROTO_generic;
pte_l2_s_proto = L2_S_PROTO_generic;
pmap_copy_page_func = pmap_copy_page_generic;
pmap_zero_page_func = pmap_zero_page_generic;
}
#if defined(CPU_ARM8)
void
pmap_pte_init_arm8(void)
{
/*
* ARM8 is compatible with generic, but we need to use
* the page tables uncached.
*/
pmap_pte_init_generic();
pte_l1_s_cache_mode_pt = 0;
pte_l2_l_cache_mode_pt = 0;
pte_l2_s_cache_mode_pt = 0;
}
#endif /* CPU_ARM8 */
#if defined(CPU_ARM9)
void
pmap_pte_init_arm9(void)
{
/*
* ARM9 is compatible with generic, but we want to use
* write-through caching for now.
*/
pmap_pte_init_generic();
pte_l1_s_cache_mode = L1_S_C;
pte_l2_l_cache_mode = L2_C;
pte_l2_s_cache_mode = L2_C;
pte_l1_s_cache_mode_pt = L1_S_C;
pte_l2_l_cache_mode_pt = L2_C;
pte_l2_s_cache_mode_pt = L2_C;
}
#endif /* CPU_ARM9 */
#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
#if defined(CPU_ARM10)
void
pmap_pte_init_arm10(void)
{
/*
* ARM10 is compatible with generic, but we want to use
* write-through caching for now.
*/
pmap_pte_init_generic();
pte_l1_s_cache_mode = L1_S_B | L1_S_C;
pte_l2_l_cache_mode = L2_B | L2_C;
pte_l2_s_cache_mode = L2_B | L2_C;
pte_l1_s_cache_mode_pt = L1_S_C;
pte_l2_l_cache_mode_pt = L2_C;
pte_l2_s_cache_mode_pt = L2_C;
}
#endif /* CPU_ARM10 */
#if ARM_MMU_SA1 == 1
void
pmap_pte_init_sa1(void)
{
/*
* The StrongARM SA-1 cache does not have a write-through
* mode. So, do the generic initialization, then reset
* the page table cache mode to B=1,C=1, and note that
* the PTEs need to be sync'd.
*/
pmap_pte_init_generic();
pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
pte_l2_l_cache_mode_pt = L2_B|L2_C;
pte_l2_s_cache_mode_pt = L2_B|L2_C;
pmap_needs_pte_sync = 1;
}
#endif /* ARM_MMU_SA1 == 1*/
#if ARM_MMU_XSCALE == 1
void
pmap_pte_init_xscale(void)
{
uint32_t auxctl;
int write_through = 0;
pte_l1_s_cache_mode = L1_S_B|L1_S_C;
pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
pte_l2_l_cache_mode = L2_B|L2_C;
pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
pte_l2_s_cache_mode = L2_B|L2_C;
pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
pte_l1_s_cache_mode_pt = L1_S_C;
pte_l2_l_cache_mode_pt = L2_C;
pte_l2_s_cache_mode_pt = L2_C;
#ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
/*
* The XScale core has an enhanced mode where writes that
* miss the cache cause a cache line to be allocated. This
* is significantly faster than the traditional, write-through
* behavior of this case.
*/
pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
#endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
#ifdef XSCALE_CACHE_WRITE_THROUGH
/*
* Some versions of the XScale core have various bugs in
* their cache units, the work-around for which is to run
* the cache in write-through mode. Unfortunately, this
* has a major (negative) impact on performance. So, we
* go ahead and run fast-and-loose, in the hopes that we
* don't line up the planets in a way that will trip the
* bugs.
*
* However, we give you the option to be slow-but-correct.
*/
write_through = 1;
#elif defined(XSCALE_CACHE_WRITE_BACK)
/* force write back cache mode */
write_through = 0;
#elif defined(CPU_XSCALE_PXA2X0)
/*
* Intel PXA2[15]0 processors are known to have a bug in
* write-back cache on revision 4 and earlier (stepping
* A[01] and B[012]). Fixed for C0 and later.
*/
{
uint32_t id, type;
id = cpufunc_id();
type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
if ((id & CPU_ID_REVISION_MASK) < 5) {
/* write through for stepping A0-1 and B0-2 */
write_through = 1;
}
}
}
#endif /* XSCALE_CACHE_WRITE_THROUGH */
if (write_through) {
pte_l1_s_cache_mode = L1_S_C;
pte_l2_l_cache_mode = L2_C;
pte_l2_s_cache_mode = L2_C;
}
pte_l2_s_prot_u = L2_S_PROT_U_xscale;
pte_l2_s_prot_w = L2_S_PROT_W_xscale;
pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
pte_l1_s_proto = L1_S_PROTO_xscale;
pte_l1_c_proto = L1_C_PROTO_xscale;
pte_l2_s_proto = L2_S_PROTO_xscale;
pmap_copy_page_func = pmap_copy_page_xscale;
pmap_zero_page_func = pmap_zero_page_xscale;
/*
* Disable ECC protection of page table access, for now.
*/
__asm __volatile("mrc p15, 0, %0, c1, c0, 1"
: "=r" (auxctl));
auxctl &= ~XSCALE_AUXCTL_P;
__asm __volatile("mcr p15, 0, %0, c1, c0, 1"
:
: "r" (auxctl));
}
/*
* xscale_setup_minidata:
*
* Set up the mini-data cache clean area. We require the
* caller to allocate the right amount of physically and
* virtually contiguous space.
*/
void
xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
{
extern vaddr_t xscale_minidata_clean_addr;
extern vsize_t xscale_minidata_clean_size; /* already initialized */
pd_entry_t *pde = (pd_entry_t *) l1pt;
pt_entry_t *pte;
vsize_t size;
uint32_t auxctl;
xscale_minidata_clean_addr = va;
/* Round it to page size. */
size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
for (; size != 0;
va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
#ifndef ARM32_NEW_VM_LAYOUT
pte = (pt_entry_t *)
kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
#else
pte = (pt_entry_t *) kernel_pt_lookup(
pde[L1_IDX(va)] & L1_C_ADDR_MASK);
#endif
if (pte == NULL)
panic("xscale_setup_minidata: can't find L2 table for "
"VA 0x%08lx", va);
#ifndef ARM32_NEW_VM_LAYOUT
pte[(va >> PGSHIFT) & 0x3ff] =
#else
pte[l2pte_index(va)] =
#endif
L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
}
/*
* Configure the mini-data cache for write-back with
* read/write-allocate.
*
* NOTE: In order to reconfigure the mini-data cache, we must
* make sure it contains no valid data! In order to do that,
* we must issue a global data cache invalidate command!
*
* WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
* THIS IS VERY IMPORTANT!
*/
/* Invalidate data and mini-data. */
__asm __volatile("mcr p15, 0, %0, c7, c6, 0"
:
: "r" (auxctl));
__asm __volatile("mrc p15, 0, %0, c1, c0, 1"
: "=r" (auxctl));
auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
__asm __volatile("mcr p15, 0, %0, c1, c0, 1"
:
: "r" (auxctl));
}
#endif /* ARM_MMU_XSCALE == 1 */
#if defined(DDB)
/*
* A couple of ddb-callable functions for dumping pmaps
*/
void pmap_dump_all(void);
void pmap_dump(pmap_t);
void
pmap_dump_all(void)
{
pmap_t pm;
LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
if (pm == pmap_kernel())
continue;
pmap_dump(pm);
printf("\n");
}
}
static pt_entry_t ncptes[64];
static void pmap_dump_ncpg(pmap_t);
void
pmap_dump(pmap_t pm)
{
struct l2_dtable *l2;
struct l2_bucket *l2b;
pt_entry_t *ptep, pte;
vaddr_t l2_va, l2b_va, va;
int i, j, k, occ, rows = 0;
char ch;
if (pm == pmap_kernel())
printf("pmap_kernel (%p): ", pm);
else
printf("user pmap (%p): ", pm);
printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
l2_va = 0;
for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
l2 = pm->pm_l2[i];
if (l2 == NULL || l2->l2_occupancy == 0)
continue;
l2b_va = l2_va;
for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
l2b = &l2->l2_bucket[j];
if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
continue;
ptep = l2b->l2b_kva;
for (k = 0; k < 256 && ptep[k] == 0; k++)
;
k &= ~63;
occ = l2b->l2b_occupancy;
va = l2b_va + (k * 4096);
for (; k < 256; k++, va += 0x1000) {
if ((k % 64) == 0) {
if ((rows % 8) == 0) {
printf(
" |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
}
printf("%08lx: ", va);
}
ncptes[k & 63] = 0;
pte = ptep[k];
if (pte == 0) {
ch = '.';
} else {
occ--;
switch (pte & 0x0c) {
case 0x00:
ch = 'D'; /* No cache No buff */
break;
case 0x04:
ch = 'B'; /* No cache buff */
break;
case 0x08:
ch = 'C'; /* Cache No buff */
break;
case 0x0c:
ch = 'F'; /* Cache Buff */
break;
}
if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
ch += 0x20;
if ((pte & 0xc) == 0)
ncptes[k & 63] = pte;
}
if ((k % 64) == 63) {
rows++;
printf("%c\n", ch);
pmap_dump_ncpg(pm);
if (occ == 0)
break;
} else
printf("%c", ch);
}
}
}
}
static void
pmap_dump_ncpg(pmap_t pm)
{
struct vm_page *pg;
struct pv_entry *pv;
int i;
for (i = 0; i < 63; i++) {
if (ncptes[i] == 0)
continue;
pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
if (pg == NULL)
continue;
printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
pg->phys_addr,
pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
printf(" %c va 0x%08lx, flags 0x%x\n",
(pm == pv->pv_pmap) ? '*' : ' ',
pv->pv_va, pv->pv_flags);
}
}
}
#endif