fb526e055c
* Increase the size of sigset_t to accomodate 128 signals -- adding new versions of sys_setprocmask(), sys_sigaction(), sys_sigpending() and sys_sigsuspend() to handle the changed arguments. * Abstract the guts of sys_sigaltstack(), sys_setprocmask(), sys_sigaction(), sys_sigpending() and sys_sigsuspend() into separate functions, and call them from all the emulations rather than hard-coding everything. (Avoids uses the stackgap crap for these system calls.) * Add a new flag (p_checksig) to indicate that a process may have signals pending and userret() needs to do the full (slow) check. * Eliminate SAS_ALTSTACK; it's exactly the inverse of SS_DISABLE. * Correct emulation bugs with restoring SS_ONSTACK. * Make the signal mask in the sigcontext always use the emulated mask format. * Store signals internally in sigaction structures, rather than maintaining a bunch of little sigsets for each SA_* bit. * Keep track of where we put the signal trampoline, rather than figuring it out in *_sendsig(). * Issue a warning when a non-emulated sigaction bit is observed. * Add missing emulated signals, and a native SIGPWR (currently not used). * Implement the `not reset when caught' semantics for relevant signals. Note: Only code touched by the i386 port has been modified. Other ports and emulations need to be updated.
1221 lines
29 KiB
C
1221 lines
29 KiB
C
/* $NetBSD: linux_oldmmap.c,v 1.46 1998/09/11 12:50:08 mycroft Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1995 Frank van der Linden
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the NetBSD Project
|
|
* by Frank van der Linden
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Linux compatibility module. Try to deal with various Linux system calls.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/dirent.h>
|
|
#include <sys/file.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/signal.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/time.h>
|
|
#include <sys/times.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/utsname.h>
|
|
#include <sys/unistd.h>
|
|
|
|
#include <sys/syscallargs.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
|
|
#include <compat/linux/linux_types.h>
|
|
#include <compat/linux/linux_fcntl.h>
|
|
#include <compat/linux/linux_mmap.h>
|
|
#include <compat/linux/linux_signal.h>
|
|
#include <compat/linux/linux_syscallargs.h>
|
|
#include <compat/linux/linux_util.h>
|
|
#include <compat/linux/linux_dirent.h>
|
|
|
|
/* linux_misc.c */
|
|
static void bsd_to_linux_wstat __P((int *));
|
|
static void bsd_to_linux_statfs __P((struct statfs *, struct linux_statfs *));
|
|
int linux_select1 __P((struct proc *, register_t *, int, fd_set *, fd_set *,
|
|
fd_set *, struct timeval *));
|
|
|
|
/*
|
|
* The information on a terminated (or stopped) process needs
|
|
* to be converted in order for Linux binaries to get a valid signal
|
|
* number out of it.
|
|
*/
|
|
static void
|
|
bsd_to_linux_wstat(status)
|
|
int *status;
|
|
{
|
|
|
|
if (WIFSIGNALED(*status))
|
|
*status = (*status & ~0177) |
|
|
native_to_linux_sig[WTERMSIG(*status)];
|
|
else if (WIFSTOPPED(*status))
|
|
*status = (*status & ~0xff00) |
|
|
(native_to_linux_sig[WSTOPSIG(*status)] << 8);
|
|
}
|
|
|
|
/*
|
|
* waitpid(2). Passed on to the NetBSD call, surrounded by code to
|
|
* reserve some space for a NetBSD-style wait status, and converting
|
|
* it to what Linux wants.
|
|
*/
|
|
int
|
|
linux_sys_waitpid(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_waitpid_args /* {
|
|
syscallarg(int) pid;
|
|
syscallarg(int *) status;
|
|
syscallarg(int) options;
|
|
} */ *uap = v;
|
|
struct sys_wait4_args w4a;
|
|
int error, *status, tstat;
|
|
caddr_t sg;
|
|
|
|
if (SCARG(uap, status) != NULL) {
|
|
sg = stackgap_init(p->p_emul);
|
|
status = (int *) stackgap_alloc(&sg, sizeof status);
|
|
} else
|
|
status = NULL;
|
|
|
|
SCARG(&w4a, pid) = SCARG(uap, pid);
|
|
SCARG(&w4a, status) = status;
|
|
SCARG(&w4a, options) = SCARG(uap, options);
|
|
SCARG(&w4a, rusage) = NULL;
|
|
|
|
if ((error = sys_wait4(p, &w4a, retval)))
|
|
return error;
|
|
|
|
sigdelset(&p->p_siglist, SIGCHLD);
|
|
|
|
if (status != NULL) {
|
|
if ((error = copyin(status, &tstat, sizeof tstat)))
|
|
return error;
|
|
|
|
bsd_to_linux_wstat(&tstat);
|
|
return copyout(&tstat, SCARG(uap, status), sizeof tstat);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is very much the same as waitpid()
|
|
*/
|
|
int
|
|
linux_sys_wait4(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_wait4_args /* {
|
|
syscallarg(int) pid;
|
|
syscallarg(int *) status;
|
|
syscallarg(int) options;
|
|
syscallarg(struct rusage *) rusage;
|
|
} */ *uap = v;
|
|
struct sys_wait4_args w4a;
|
|
int error, *status, tstat;
|
|
caddr_t sg;
|
|
|
|
if (SCARG(uap, status) != NULL) {
|
|
sg = stackgap_init(p->p_emul);
|
|
status = (int *) stackgap_alloc(&sg, sizeof status);
|
|
} else
|
|
status = NULL;
|
|
|
|
SCARG(&w4a, pid) = SCARG(uap, pid);
|
|
SCARG(&w4a, status) = status;
|
|
SCARG(&w4a, options) = SCARG(uap, options);
|
|
SCARG(&w4a, rusage) = SCARG(uap, rusage);
|
|
|
|
if ((error = sys_wait4(p, &w4a, retval)))
|
|
return error;
|
|
|
|
sigdelset(&p->p_siglist, SIGCHLD);
|
|
|
|
if (status != NULL) {
|
|
if ((error = copyin(status, &tstat, sizeof tstat)))
|
|
return error;
|
|
|
|
bsd_to_linux_wstat(&tstat);
|
|
return copyout(&tstat, SCARG(uap, status), sizeof tstat);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is the old brk(2) call. I don't think anything in the Linux
|
|
* world uses this anymore
|
|
*/
|
|
int
|
|
linux_sys_break(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
#if 0
|
|
struct linux_sys_brk_args /* {
|
|
syscallarg(char *) nsize;
|
|
} */ *uap = v;
|
|
#endif
|
|
|
|
return ENOSYS;
|
|
}
|
|
|
|
/*
|
|
* Linux brk(2). The check if the new address is >= the old one is
|
|
* done in the kernel in Linux. NetBSD does it in the library.
|
|
*/
|
|
int
|
|
linux_sys_brk(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_brk_args /* {
|
|
syscallarg(char *) nsize;
|
|
} */ *uap = v;
|
|
char *nbrk = SCARG(uap, nsize);
|
|
struct sys_obreak_args oba;
|
|
struct vmspace *vm = p->p_vmspace;
|
|
caddr_t oldbrk;
|
|
|
|
oldbrk = vm->vm_daddr + ctob(vm->vm_dsize);
|
|
/*
|
|
* XXX inconsistent.. Linux always returns at least the old
|
|
* brk value, but it will be page-aligned if this fails,
|
|
* and possibly not page aligned if it succeeds (the user
|
|
* supplied pointer is returned).
|
|
*/
|
|
SCARG(&oba, nsize) = nbrk;
|
|
|
|
if ((caddr_t) nbrk > vm->vm_daddr && sys_obreak(p, &oba, retval) == 0)
|
|
retval[0] = (register_t)nbrk;
|
|
else
|
|
retval[0] = (register_t)oldbrk;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* I wonder why Linux has gettimeofday() _and_ time().. Still, we
|
|
* need to deal with it.
|
|
*/
|
|
int
|
|
linux_sys_time(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_time_args /* {
|
|
linux_time_t *t;
|
|
} */ *uap = v;
|
|
struct timeval atv;
|
|
linux_time_t tt;
|
|
int error;
|
|
|
|
microtime(&atv);
|
|
|
|
tt = atv.tv_sec;
|
|
if (SCARG(uap, t) && (error = copyout(&tt, SCARG(uap, t), sizeof tt)))
|
|
return error;
|
|
|
|
retval[0] = tt;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Convert BSD statfs structure to Linux statfs structure.
|
|
* The Linux structure has less fields, and it also wants
|
|
* the length of a name in a dir entry in a field, which
|
|
* we fake (probably the wrong way).
|
|
*/
|
|
static void
|
|
bsd_to_linux_statfs(bsp, lsp)
|
|
struct statfs *bsp;
|
|
struct linux_statfs *lsp;
|
|
{
|
|
|
|
lsp->l_ftype = bsp->f_type;
|
|
lsp->l_fbsize = bsp->f_bsize;
|
|
lsp->l_fblocks = bsp->f_blocks;
|
|
lsp->l_fbfree = bsp->f_bfree;
|
|
lsp->l_fbavail = bsp->f_bavail;
|
|
lsp->l_ffiles = bsp->f_files;
|
|
lsp->l_fffree = bsp->f_ffree;
|
|
lsp->l_ffsid.val[0] = bsp->f_fsid.val[0];
|
|
lsp->l_ffsid.val[1] = bsp->f_fsid.val[1];
|
|
lsp->l_fnamelen = MAXNAMLEN; /* XXX */
|
|
}
|
|
|
|
/*
|
|
* Implement the fs stat functions. Straightforward.
|
|
*/
|
|
int
|
|
linux_sys_statfs(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_statfs_args /* {
|
|
syscallarg(char *) path;
|
|
syscallarg(struct linux_statfs *) sp;
|
|
} */ *uap = v;
|
|
struct statfs btmp, *bsp;
|
|
struct linux_statfs ltmp;
|
|
struct sys_statfs_args bsa;
|
|
caddr_t sg;
|
|
int error;
|
|
|
|
sg = stackgap_init(p->p_emul);
|
|
bsp = (struct statfs *) stackgap_alloc(&sg, sizeof (struct statfs));
|
|
|
|
LINUX_CHECK_ALT_EXIST(p, &sg, SCARG(uap, path));
|
|
|
|
SCARG(&bsa, path) = SCARG(uap, path);
|
|
SCARG(&bsa, buf) = bsp;
|
|
|
|
if ((error = sys_statfs(p, &bsa, retval)))
|
|
return error;
|
|
|
|
if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp)))
|
|
return error;
|
|
|
|
bsd_to_linux_statfs(&btmp, <mp);
|
|
|
|
return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp);
|
|
}
|
|
|
|
int
|
|
linux_sys_fstatfs(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_fstatfs_args /* {
|
|
syscallarg(int) fd;
|
|
syscallarg(struct linux_statfs *) sp;
|
|
} */ *uap = v;
|
|
struct statfs btmp, *bsp;
|
|
struct linux_statfs ltmp;
|
|
struct sys_fstatfs_args bsa;
|
|
caddr_t sg;
|
|
int error;
|
|
|
|
sg = stackgap_init(p->p_emul);
|
|
bsp = (struct statfs *) stackgap_alloc(&sg, sizeof (struct statfs));
|
|
|
|
SCARG(&bsa, fd) = SCARG(uap, fd);
|
|
SCARG(&bsa, buf) = bsp;
|
|
|
|
if ((error = sys_fstatfs(p, &bsa, retval)))
|
|
return error;
|
|
|
|
if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp)))
|
|
return error;
|
|
|
|
bsd_to_linux_statfs(&btmp, <mp);
|
|
|
|
return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp);
|
|
}
|
|
|
|
/*
|
|
* uname(). Just copy the info from the various strings stored in the
|
|
* kernel, and put it in the Linux utsname structure. That structure
|
|
* is almost the same as the NetBSD one, only it has fields 65 characters
|
|
* long, and an extra domainname field.
|
|
*/
|
|
int
|
|
linux_sys_uname(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_uname_args /* {
|
|
syscallarg(struct linux_utsname *) up;
|
|
} */ *uap = v;
|
|
extern char ostype[], hostname[], osrelease[], version[], machine[],
|
|
domainname[];
|
|
struct linux_utsname luts;
|
|
int len;
|
|
char *cp;
|
|
|
|
strncpy(luts.l_sysname, ostype, sizeof(luts.l_sysname));
|
|
strncpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
|
|
strncpy(luts.l_release, osrelease, sizeof(luts.l_release));
|
|
strncpy(luts.l_version, version, sizeof(luts.l_version));
|
|
strncpy(luts.l_machine, machine, sizeof(luts.l_machine));
|
|
strncpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
|
|
|
|
/* This part taken from the the uname() in libc */
|
|
len = sizeof(luts.l_version);
|
|
for (cp = luts.l_version; len--; ++cp) {
|
|
if (*cp == '\n' || *cp == '\t') {
|
|
if (len > 1)
|
|
*cp = ' ';
|
|
else
|
|
*cp = '\0';
|
|
}
|
|
}
|
|
|
|
return copyout(&luts, SCARG(uap, up), sizeof(luts));
|
|
}
|
|
|
|
int
|
|
linux_sys_olduname(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_uname_args /* {
|
|
syscallarg(struct linux_oldutsname *) up;
|
|
} */ *uap = v;
|
|
extern char ostype[], hostname[], osrelease[], version[], machine[];
|
|
struct linux_oldutsname luts;
|
|
int len;
|
|
char *cp;
|
|
|
|
strncpy(luts.l_sysname, ostype, sizeof(luts.l_sysname));
|
|
strncpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
|
|
strncpy(luts.l_release, osrelease, sizeof(luts.l_release));
|
|
strncpy(luts.l_version, version, sizeof(luts.l_version));
|
|
strncpy(luts.l_machine, machine, sizeof(luts.l_machine));
|
|
|
|
/* This part taken from the the uname() in libc */
|
|
len = sizeof(luts.l_version);
|
|
for (cp = luts.l_version; len--; ++cp) {
|
|
if (*cp == '\n' || *cp == '\t') {
|
|
if (len > 1)
|
|
*cp = ' ';
|
|
else
|
|
*cp = '\0';
|
|
}
|
|
}
|
|
|
|
return copyout(&luts, SCARG(uap, up), sizeof(luts));
|
|
}
|
|
|
|
int
|
|
linux_sys_oldolduname(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_uname_args /* {
|
|
syscallarg(struct linux_oldoldutsname *) up;
|
|
} */ *uap = v;
|
|
extern char ostype[], hostname[], osrelease[], version[], machine[];
|
|
struct linux_oldoldutsname luts;
|
|
int len;
|
|
char *cp;
|
|
|
|
strncpy(luts.l_sysname, ostype, sizeof(luts.l_sysname));
|
|
strncpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
|
|
strncpy(luts.l_release, osrelease, sizeof(luts.l_release));
|
|
strncpy(luts.l_version, version, sizeof(luts.l_version));
|
|
strncpy(luts.l_machine, machine, sizeof(luts.l_machine));
|
|
|
|
/* This part taken from the the uname() in libc */
|
|
len = sizeof(luts.l_version);
|
|
for (cp = luts.l_version; len--; ++cp) {
|
|
if (*cp == '\n' || *cp == '\t') {
|
|
if (len > 1)
|
|
*cp = ' ';
|
|
else
|
|
*cp = '\0';
|
|
}
|
|
}
|
|
|
|
return copyout(&luts, SCARG(uap, up), sizeof(luts));
|
|
}
|
|
|
|
/*
|
|
* Linux wants to pass everything to a syscall in registers. However,
|
|
* mmap() has 6 of them. Oops: out of register error. They just pass
|
|
* everything in a structure.
|
|
*/
|
|
int
|
|
linux_sys_mmap(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_mmap_args /* {
|
|
syscallarg(struct linux_mmap *) lmp;
|
|
} */ *uap = v;
|
|
struct linux_mmap lmap;
|
|
struct sys_mmap_args cma;
|
|
int error, flags;
|
|
|
|
if ((error = copyin(SCARG(uap, lmp), &lmap, sizeof lmap)))
|
|
return error;
|
|
|
|
flags = 0;
|
|
flags |= cvtto_bsd_mask(lmap.lm_flags, LINUX_MAP_SHARED, MAP_SHARED);
|
|
flags |= cvtto_bsd_mask(lmap.lm_flags, LINUX_MAP_PRIVATE, MAP_PRIVATE);
|
|
flags |= cvtto_bsd_mask(lmap.lm_flags, LINUX_MAP_FIXED, MAP_FIXED);
|
|
flags |= cvtto_bsd_mask(lmap.lm_flags, LINUX_MAP_ANON, MAP_ANON);
|
|
|
|
SCARG(&cma,addr) = lmap.lm_addr;
|
|
SCARG(&cma,len) = lmap.lm_len;
|
|
if (lmap.lm_prot & VM_PROT_WRITE) /* XXX */
|
|
lmap.lm_prot |= VM_PROT_READ;
|
|
SCARG(&cma,prot) = lmap.lm_prot;
|
|
SCARG(&cma,flags) = flags;
|
|
SCARG(&cma,fd) = lmap.lm_fd;
|
|
SCARG(&cma,pad) = 0;
|
|
SCARG(&cma,pos) = lmap.lm_pos;
|
|
|
|
return sys_mmap(p, &cma, retval);
|
|
}
|
|
|
|
int
|
|
linux_sys_mremap(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_mremap_args /* {
|
|
syscallarg(void *) old_address;
|
|
syscallarg(size_t) old_size;
|
|
syscallarg(size_t) new_size;
|
|
syscallarg(u_long) flags;
|
|
} */ *uap = v;
|
|
struct sys_munmap_args mua;
|
|
size_t old_size, new_size;
|
|
int error;
|
|
|
|
old_size = round_page(SCARG(uap, old_size));
|
|
new_size = round_page(SCARG(uap, new_size));
|
|
|
|
/*
|
|
* Growing mapped region.
|
|
*/
|
|
if (new_size > old_size) {
|
|
/*
|
|
* XXX Implement me. What we probably want to do is
|
|
* XXX dig out the guts of the old mapping, mmap that
|
|
* XXX object again with the new size, then munmap
|
|
* XXX the old mapping.
|
|
*/
|
|
*retval = 0;
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* Shrinking mapped region.
|
|
*/
|
|
if (new_size < old_size) {
|
|
SCARG(&mua, addr) = (caddr_t)SCARG(uap, old_address) +
|
|
new_size;
|
|
SCARG(&mua, len) = old_size - new_size;
|
|
error = sys_munmap(p, &mua, retval);
|
|
*retval = error ? 0 : (register_t)SCARG(uap, old_address);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* No change.
|
|
*/
|
|
*retval = (register_t)SCARG(uap, old_address);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_sys_msync(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_msync_args /* {
|
|
syscallarg(caddr_t) addr;
|
|
syscallarg(int) len;
|
|
syscallarg(int) fl;
|
|
} */ *uap = v;
|
|
|
|
struct sys___msync13_args bma;
|
|
|
|
/* flags are ignored */
|
|
SCARG(&bma, addr) = SCARG(uap, addr);
|
|
SCARG(&bma, len) = SCARG(uap, len);
|
|
SCARG(&bma, flags) = SCARG(uap, fl);
|
|
|
|
return sys___msync13(p, &bma, retval);
|
|
}
|
|
|
|
/*
|
|
* This code is partly stolen from src/lib/libc/compat-43/times.c
|
|
* XXX - CLK_TCK isn't declared in /sys, just in <time.h>, done here
|
|
*/
|
|
|
|
#define CLK_TCK 100
|
|
#define CONVTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK))
|
|
|
|
int
|
|
linux_sys_times(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_times_args /* {
|
|
syscallarg(struct times *) tms;
|
|
} */ *uap = v;
|
|
struct timeval t;
|
|
struct linux_tms ltms;
|
|
struct rusage ru;
|
|
int error, s;
|
|
|
|
calcru(p, &ru.ru_utime, &ru.ru_stime, NULL);
|
|
ltms.ltms_utime = CONVTCK(ru.ru_utime);
|
|
ltms.ltms_stime = CONVTCK(ru.ru_stime);
|
|
|
|
ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
|
|
ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
|
|
|
|
if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms)))
|
|
return error;
|
|
|
|
s = splclock();
|
|
timersub(&time, &boottime, &t);
|
|
splx(s);
|
|
|
|
retval[0] = ((linux_clock_t)(CONVTCK(t)));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* NetBSD passes fd[0] in retval[0], and fd[1] in retval[1].
|
|
* Linux directly passes the pointer.
|
|
*/
|
|
int
|
|
linux_sys_pipe(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_pipe_args /* {
|
|
syscallarg(int *) pfds;
|
|
} */ *uap = v;
|
|
int error;
|
|
|
|
if ((error = sys_pipe(p, 0, retval)))
|
|
return error;
|
|
|
|
/* Assumes register_t is an int */
|
|
|
|
if ((error = copyout(retval, SCARG(uap, pfds), 2 * sizeof (int))))
|
|
return error;
|
|
|
|
retval[0] = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Alarm. This is a libc call which uses setitimer(2) in NetBSD.
|
|
* Fiddle with the timers to make it work.
|
|
*/
|
|
int
|
|
linux_sys_alarm(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_alarm_args /* {
|
|
syscallarg(unsigned int) secs;
|
|
} */ *uap = v;
|
|
int s;
|
|
struct itimerval *itp, it;
|
|
|
|
itp = &p->p_realtimer;
|
|
s = splclock();
|
|
/*
|
|
* Clear any pending timer alarms.
|
|
*/
|
|
untimeout(realitexpire, p);
|
|
timerclear(&itp->it_interval);
|
|
if (timerisset(&itp->it_value) &&
|
|
timercmp(&itp->it_value, &time, >))
|
|
timersub(&itp->it_value, &time, &itp->it_value);
|
|
/*
|
|
* Return how many seconds were left (rounded up)
|
|
*/
|
|
retval[0] = itp->it_value.tv_sec;
|
|
if (itp->it_value.tv_usec)
|
|
retval[0]++;
|
|
|
|
/*
|
|
* alarm(0) just resets the timer.
|
|
*/
|
|
if (SCARG(uap, secs) == 0) {
|
|
timerclear(&itp->it_value);
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check the new alarm time for sanity, and set it.
|
|
*/
|
|
timerclear(&it.it_interval);
|
|
it.it_value.tv_sec = SCARG(uap, secs);
|
|
it.it_value.tv_usec = 0;
|
|
if (itimerfix(&it.it_value) || itimerfix(&it.it_interval)) {
|
|
splx(s);
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (timerisset(&it.it_value)) {
|
|
timeradd(&it.it_value, &time, &it.it_value);
|
|
timeout(realitexpire, p, hzto(&it.it_value));
|
|
}
|
|
p->p_realtimer = it;
|
|
splx(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* utime(). Do conversion to things that utimes() understands,
|
|
* and pass it on.
|
|
*/
|
|
int
|
|
linux_sys_utime(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_utime_args /* {
|
|
syscallarg(char *) path;
|
|
syscallarg(struct linux_utimbuf *)times;
|
|
} */ *uap = v;
|
|
caddr_t sg;
|
|
int error;
|
|
struct sys_utimes_args ua;
|
|
struct timeval tv[2], *tvp;
|
|
struct linux_utimbuf lut;
|
|
|
|
sg = stackgap_init(p->p_emul);
|
|
LINUX_CHECK_ALT_EXIST(p, &sg, SCARG(uap, path));
|
|
|
|
SCARG(&ua, path) = SCARG(uap, path);
|
|
|
|
if (SCARG(uap, times) != NULL) {
|
|
if ((error = copyin(SCARG(uap, times), &lut, sizeof lut)))
|
|
return error;
|
|
tv[0].tv_usec = tv[1].tv_usec = 0;
|
|
tv[0].tv_sec = lut.l_actime;
|
|
tv[1].tv_sec = lut.l_modtime;
|
|
tvp = (struct timeval *) stackgap_alloc(&sg, sizeof(tv));
|
|
if ((error = copyout(tv, tvp, sizeof tv)))
|
|
return error;
|
|
SCARG(&ua, tptr) = tvp;
|
|
}
|
|
else
|
|
SCARG(&ua, tptr) = NULL;
|
|
|
|
return sys_utimes(p, &ua, retval);
|
|
}
|
|
|
|
/*
|
|
* The old Linux readdir was only able to read one entry at a time,
|
|
* even though it had a 'count' argument. In fact, the emulation
|
|
* of the old call was better than the original, because it did handle
|
|
* the count arg properly. Don't bother with it anymore now, and use
|
|
* it to distinguish between old and new. The difference is that the
|
|
* newer one actually does multiple entries, and the reclen field
|
|
* really is the reclen, not the namelength.
|
|
*/
|
|
int
|
|
linux_sys_readdir(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_readdir_args /* {
|
|
syscallarg(int) fd;
|
|
syscallarg(struct linux_dirent *) dent;
|
|
syscallarg(unsigned int) count;
|
|
} */ *uap = v;
|
|
|
|
SCARG(uap, count) = 1;
|
|
return linux_sys_getdents(p, uap, retval);
|
|
}
|
|
|
|
/*
|
|
* Linux 'readdir' call. This code is mostly taken from the
|
|
* SunOS getdents call (see compat/sunos/sunos_misc.c), though
|
|
* an attempt has been made to keep it a little cleaner (failing
|
|
* miserably, because of the cruft needed if count 1 is passed).
|
|
*
|
|
* The d_off field should contain the offset of the next valid entry,
|
|
* but in Linux it has the offset of the entry itself. We emulate
|
|
* that bug here.
|
|
*
|
|
* Read in BSD-style entries, convert them, and copy them out.
|
|
*
|
|
* Note that this doesn't handle union-mounted filesystems.
|
|
*/
|
|
int
|
|
linux_sys_getdents(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_readdir_args /* {
|
|
syscallarg(int) fd;
|
|
syscallarg(caddr_t) dent;
|
|
syscallarg(unsigned int) count;
|
|
} */ *uap = v;
|
|
register struct dirent *bdp;
|
|
struct vnode *vp;
|
|
caddr_t inp, buf; /* BSD-format */
|
|
int len, reclen; /* BSD-format */
|
|
caddr_t outp; /* Linux-format */
|
|
int resid, linux_reclen = 0; /* Linux-format */
|
|
struct file *fp;
|
|
struct uio auio;
|
|
struct iovec aiov;
|
|
struct linux_dirent idb;
|
|
off_t off; /* true file offset */
|
|
int buflen, error, eofflag, nbytes, oldcall;
|
|
struct vattr va;
|
|
off_t *cookiebuf = NULL, *cookie;
|
|
int ncookies;
|
|
|
|
if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
|
|
return (error);
|
|
|
|
if ((fp->f_flag & FREAD) == 0)
|
|
return (EBADF);
|
|
|
|
vp = (struct vnode *)fp->f_data;
|
|
if (vp->v_type != VDIR)
|
|
return (EINVAL);
|
|
|
|
if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
|
|
return error;
|
|
|
|
nbytes = SCARG(uap, count);
|
|
if (nbytes == 1) { /* emulating old, broken behaviour */
|
|
nbytes = sizeof (struct linux_dirent);
|
|
buflen = max(va.va_blocksize, nbytes);
|
|
oldcall = 1;
|
|
} else {
|
|
buflen = min(MAXBSIZE, nbytes);
|
|
if (buflen < va.va_blocksize)
|
|
buflen = va.va_blocksize;
|
|
oldcall = 0;
|
|
}
|
|
buf = malloc(buflen, M_TEMP, M_WAITOK);
|
|
|
|
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
|
|
off = fp->f_offset;
|
|
again:
|
|
aiov.iov_base = buf;
|
|
aiov.iov_len = buflen;
|
|
auio.uio_iov = &aiov;
|
|
auio.uio_iovcnt = 1;
|
|
auio.uio_rw = UIO_READ;
|
|
auio.uio_segflg = UIO_SYSSPACE;
|
|
auio.uio_procp = p;
|
|
auio.uio_resid = buflen;
|
|
auio.uio_offset = off;
|
|
/*
|
|
* First we read into the malloc'ed buffer, then
|
|
* we massage it into user space, one record at a time.
|
|
*/
|
|
error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
|
|
&ncookies);
|
|
if (error)
|
|
goto out;
|
|
|
|
inp = buf;
|
|
outp = SCARG(uap, dent);
|
|
resid = nbytes;
|
|
if ((len = buflen - auio.uio_resid) == 0)
|
|
goto eof;
|
|
|
|
for (cookie = cookiebuf; len > 0; len -= reclen) {
|
|
bdp = (struct dirent *)inp;
|
|
reclen = bdp->d_reclen;
|
|
if (reclen & 3)
|
|
panic("linux_readdir");
|
|
if (bdp->d_fileno == 0) {
|
|
inp += reclen; /* it is a hole; squish it out */
|
|
off = *cookie++;
|
|
continue;
|
|
}
|
|
linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
|
|
if (reclen > len || resid < linux_reclen) {
|
|
/* entry too big for buffer, so just stop */
|
|
outp++;
|
|
break;
|
|
}
|
|
/*
|
|
* Massage in place to make a Linux-shaped dirent (otherwise
|
|
* we have to worry about touching user memory outside of
|
|
* the copyout() call).
|
|
*/
|
|
idb.d_ino = (linux_ino_t)bdp->d_fileno;
|
|
/*
|
|
* The old readdir() call misuses the offset and reclen fields.
|
|
*/
|
|
if (oldcall) {
|
|
idb.d_off = (linux_off_t)linux_reclen;
|
|
idb.d_reclen = (u_short)bdp->d_namlen;
|
|
} else {
|
|
if (sizeof (linux_off_t) < 4 && (off >> 32) != 0) {
|
|
compat_offseterr(vp, "linux_getdents");
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
idb.d_off = (linux_off_t)off;
|
|
idb.d_reclen = (u_short)linux_reclen;
|
|
}
|
|
strcpy(idb.d_name, bdp->d_name);
|
|
if ((error = copyout((caddr_t)&idb, outp, linux_reclen)))
|
|
goto out;
|
|
/* advance past this real entry */
|
|
inp += reclen;
|
|
off = *cookie++; /* each entry points to itself */
|
|
/* advance output past Linux-shaped entry */
|
|
outp += linux_reclen;
|
|
resid -= linux_reclen;
|
|
if (oldcall)
|
|
break;
|
|
}
|
|
|
|
/* if we squished out the whole block, try again */
|
|
if (outp == SCARG(uap, dent))
|
|
goto again;
|
|
fp->f_offset = off; /* update the vnode offset */
|
|
|
|
if (oldcall)
|
|
nbytes = resid + linux_reclen;
|
|
|
|
eof:
|
|
*retval = nbytes - resid;
|
|
out:
|
|
VOP_UNLOCK(vp, 0);
|
|
if (cookiebuf)
|
|
free(cookiebuf, M_TEMP);
|
|
free(buf, M_TEMP);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Not sure why the arguments to this older version of select() were put
|
|
* into a structure, because there are 5, and that can all be handled
|
|
* in registers on the i386 like Linux wants to.
|
|
*/
|
|
int
|
|
linux_sys_oldselect(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_oldselect_args /* {
|
|
syscallarg(struct linux_select *) lsp;
|
|
} */ *uap = v;
|
|
struct linux_select ls;
|
|
int error;
|
|
|
|
if ((error = copyin(SCARG(uap, lsp), &ls, sizeof(ls))))
|
|
return error;
|
|
|
|
return linux_select1(p, retval, ls.nfds, ls.readfds, ls.writefds,
|
|
ls.exceptfds, ls.timeout);
|
|
}
|
|
|
|
/*
|
|
* Even when just using registers to pass arguments to syscalls you can
|
|
* have 5 of them on the i386. So this newer version of select() does
|
|
* this.
|
|
*/
|
|
int
|
|
linux_sys_select(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_select_args /* {
|
|
syscallarg(int) nfds;
|
|
syscallarg(fd_set *) readfds;
|
|
syscallarg(fd_set *) writefds;
|
|
syscallarg(fd_set *) exceptfds;
|
|
syscallarg(struct timeval *) timeout;
|
|
} */ *uap = v;
|
|
|
|
return linux_select1(p, retval, SCARG(uap, nfds), SCARG(uap, readfds),
|
|
SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout));
|
|
}
|
|
|
|
/*
|
|
* Common code for the old and new versions of select(). A couple of
|
|
* things are important:
|
|
* 1) return the amount of time left in the 'timeout' parameter
|
|
* 2) select never returns ERESTART on Linux, always return EINTR
|
|
*/
|
|
int
|
|
linux_select1(p, retval, nfds, readfds, writefds, exceptfds, timeout)
|
|
struct proc *p;
|
|
register_t *retval;
|
|
int nfds;
|
|
fd_set *readfds, *writefds, *exceptfds;
|
|
struct timeval *timeout;
|
|
{
|
|
struct sys_select_args bsa;
|
|
struct timeval tv0, tv1, utv, *tvp;
|
|
caddr_t sg;
|
|
int error;
|
|
|
|
SCARG(&bsa, nd) = nfds;
|
|
SCARG(&bsa, in) = readfds;
|
|
SCARG(&bsa, ou) = writefds;
|
|
SCARG(&bsa, ex) = exceptfds;
|
|
SCARG(&bsa, tv) = timeout;
|
|
|
|
/*
|
|
* Store current time for computation of the amount of
|
|
* time left.
|
|
*/
|
|
if (timeout) {
|
|
if ((error = copyin(timeout, &utv, sizeof(utv))))
|
|
return error;
|
|
if (itimerfix(&utv)) {
|
|
/*
|
|
* The timeval was invalid. Convert it to something
|
|
* valid that will act as it does under Linux.
|
|
*/
|
|
sg = stackgap_init(p->p_emul);
|
|
tvp = stackgap_alloc(&sg, sizeof(utv));
|
|
utv.tv_sec += utv.tv_usec / 1000000;
|
|
utv.tv_usec %= 1000000;
|
|
if (utv.tv_usec < 0) {
|
|
utv.tv_sec -= 1;
|
|
utv.tv_usec += 1000000;
|
|
}
|
|
if (utv.tv_sec < 0)
|
|
timerclear(&utv);
|
|
if ((error = copyout(&utv, tvp, sizeof(utv))))
|
|
return error;
|
|
SCARG(&bsa, tv) = tvp;
|
|
}
|
|
microtime(&tv0);
|
|
}
|
|
|
|
error = sys_select(p, &bsa, retval);
|
|
if (error) {
|
|
/*
|
|
* See fs/select.c in the Linux kernel. Without this,
|
|
* Maelstrom doesn't work.
|
|
*/
|
|
if (error == ERESTART)
|
|
error = EINTR;
|
|
return error;
|
|
}
|
|
|
|
if (timeout) {
|
|
if (*retval) {
|
|
/*
|
|
* Compute how much time was left of the timeout,
|
|
* by subtracting the current time and the time
|
|
* before we started the call, and subtracting
|
|
* that result from the user-supplied value.
|
|
*/
|
|
microtime(&tv1);
|
|
timersub(&tv1, &tv0, &tv1);
|
|
timersub(&utv, &tv1, &utv);
|
|
if (utv.tv_sec < 0)
|
|
timerclear(&utv);
|
|
} else
|
|
timerclear(&utv);
|
|
if ((error = copyout(&utv, timeout, sizeof(utv))))
|
|
return error;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Get the process group of a certain process. Look it up
|
|
* and return the value.
|
|
*/
|
|
int
|
|
linux_sys_getpgid(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_getpgid_args /* {
|
|
syscallarg(int) pid;
|
|
} */ *uap = v;
|
|
struct proc *targp;
|
|
|
|
if (SCARG(uap, pid) != 0 && SCARG(uap, pid) != p->p_pid) {
|
|
if ((targp = pfind(SCARG(uap, pid))) == 0)
|
|
return ESRCH;
|
|
}
|
|
else
|
|
targp = p;
|
|
|
|
retval[0] = targp->p_pgid;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set the 'personality' (emulation mode) for the current process. Only
|
|
* accept the Linux personality here (0). This call is needed because
|
|
* the Linux ELF crt0 issues it in an ugly kludge to make sure that
|
|
* ELF binaries run in Linux mode, not SVR4 mode.
|
|
*/
|
|
int
|
|
linux_sys_personality(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_personality_args /* {
|
|
syscallarg(int) per;
|
|
} */ *uap = v;
|
|
|
|
if (SCARG(uap, per) != 0)
|
|
return EINVAL;
|
|
retval[0] = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The calls are here because of type conversions.
|
|
*/
|
|
int
|
|
linux_sys_setreuid(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_setreuid_args /* {
|
|
syscallarg(int) ruid;
|
|
syscallarg(int) euid;
|
|
} */ *uap = v;
|
|
struct sys_setreuid_args bsa;
|
|
|
|
SCARG(&bsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
|
|
(uid_t)-1 : SCARG(uap, ruid);
|
|
SCARG(&bsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
|
|
(uid_t)-1 : SCARG(uap, euid);
|
|
|
|
return sys_setreuid(p, &bsa, retval);
|
|
}
|
|
|
|
int
|
|
linux_sys_setregid(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_setregid_args /* {
|
|
syscallarg(int) rgid;
|
|
syscallarg(int) egid;
|
|
} */ *uap = v;
|
|
struct sys_setregid_args bsa;
|
|
|
|
SCARG(&bsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
|
|
(uid_t)-1 : SCARG(uap, rgid);
|
|
SCARG(&bsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
|
|
(uid_t)-1 : SCARG(uap, egid);
|
|
|
|
return sys_setregid(p, &bsa, retval);
|
|
}
|
|
|
|
int
|
|
linux_sys___sysctl(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys___sysctl_args /* {
|
|
syscallarg(struct linux___sysctl *) lsp;
|
|
} */ *uap = v;
|
|
struct linux___sysctl ls;
|
|
struct sys___sysctl_args bsa;
|
|
int error;
|
|
|
|
if ((error = copyin(SCARG(uap, lsp), &ls, sizeof ls)))
|
|
return error;
|
|
SCARG(&bsa, name) = ls.name;
|
|
SCARG(&bsa, namelen) = ls.namelen;
|
|
SCARG(&bsa, old) = ls.old;
|
|
SCARG(&bsa, oldlenp) = ls.oldlenp;
|
|
SCARG(&bsa, new) = ls.new;
|
|
SCARG(&bsa, newlen) = ls.newlen;
|
|
|
|
return sys___sysctl(p, &bsa, retval);
|
|
}
|
|
|
|
int
|
|
linux_sys_nice(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct linux_sys_nice_args /* {
|
|
syscallarg(int) incr;
|
|
} */ *uap = v;
|
|
struct sys_setpriority_args bsa;
|
|
|
|
SCARG(&bsa, which) = PRIO_PROCESS;
|
|
SCARG(&bsa, who) = 0;
|
|
SCARG(&bsa, prio) = SCARG(uap, incr);
|
|
return sys_setpriority(p, &bsa, retval);
|
|
}
|