NetBSD/sys/arch/arm/imx/imx23_digfilt.c
jmcneill b4ea3c5a3c From Petri Laakso <petri.laakso@asd.fi>:
-       Audio output driver for imx23
-       Supporting code for audio driver
2015-01-10 12:16:28 +00:00

1131 lines
29 KiB
C

/* $Id: imx23_digfilt.c,v 1.1 2015/01/10 12:16:28 jmcneill Exp $ */
/*
* Copyright (c) 2014 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Petri Laakso.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/cdefs.h>
#include <sys/types.h>
#include <sys/device.h>
#include <sys/errno.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/mutex.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/auconv.h>
#include <sys/mallocvar.h>
#include <arm/imx/imx23_digfiltreg.h>
#include <arm/imx/imx23_rtcvar.h>
#include <arm/imx/imx23_clkctrlvar.h>
#include <arm/imx/imx23_apbdmavar.h>
#include <arm/imx/imx23_icollreg.h>
#include <arm/imx/imx23var.h>
#include <arm/pic/picvar.h>
/* Autoconf. */
static int digfilt_match(device_t, cfdata_t, void *);
static void digfilt_attach(device_t, device_t, void *);
static int digfilt_activate(device_t, enum devact);
/* Audio driver interface. */
static int digfilt_drain(void *);
static int digfilt_query_encoding(void *, struct audio_encoding *);
static int digfilt_set_params(void *, int, int, audio_params_t *,
audio_params_t *, stream_filter_list_t *,
stream_filter_list_t *);
static int digfilt_round_blocksize(void *, int, int, const audio_params_t *);
static int digfilt_init_output(void *, void *, int );
static int digfilt_start_output(void *, void *, int, void (*)(void *), void *);
static int digfilt_halt_output(void *);
static int digfilt_getdev(void *, struct audio_device *);
static int digfilt_set_port(void *, mixer_ctrl_t *);
static int digfilt_get_port(void *, mixer_ctrl_t *);
static int digfilt_query_devinfo(void *, mixer_devinfo_t *);
static void *digfilt_allocm(void *, int, size_t);
static void digfilt_freem(void *, void *, size_t);
static size_t digfilt_round_buffersize(void *, int, size_t);
static int digfilt_get_props(void *);
static void digfilt_get_locks(void *, kmutex_t **, kmutex_t **);
/* IRQs */
static int dac_error_intr(void *);
static int dac_dma_intr(void *);
struct digfilt_softc;
/* Audio out. */
static void *digfilt_ao_alloc_dmachain(void *, size_t);
static void digfilt_ao_apply_mutes(struct digfilt_softc *);
static void digfilt_ao_init(struct digfilt_softc *);
static void digfilt_ao_reset(struct digfilt_softc *);
static void digfilt_ao_set_rate(struct digfilt_softc *, int);
/* Audio in. */
#if 0
static void digfilt_ai_reset(struct digfilt_softc *);
#endif
#define DIGFILT_DMA_NSEGS 1
#define DIGFILT_BLOCKSIZE_MAX 4096
#define DIGFILT_BLOCKSIZE_ROUND 512
#define DIGFILT_DMA_CHAIN_LENGTH 3
#define DIGFILT_DMA_CHANNEL 1
#define DIGFILT_MUTE_DAC 1
#define DIGFILT_MUTE_HP 2
#define DIGFILT_MUTE_LINE 4
#define DIGFILT_SOFT_RST_LOOP 455 /* At least 1 us. */
#define AO_RD(sc, reg) \
bus_space_read_4(sc->sc_iot, sc->sc_aohdl, (reg))
#define AO_WR(sc, reg, val) \
bus_space_write_4(sc->sc_iot, sc->sc_aohdl, (reg), (val))
#define AI_RD(sc, reg) \
bus_space_read_4(sc->sc_iot, sc->sc_aihdl, (reg))
#define AI_WR(sc, reg, val) \
bus_space_write_4(sc->sc_iot, sc->sc_aihdl, (reg), (val))
struct digfilt_softc {
device_t sc_dev;
device_t sc_audiodev;
struct audio_format sc_format;
struct audio_encoding_set *sc_encodings;
bus_space_handle_t sc_aihdl;
bus_space_handle_t sc_aohdl;
apbdma_softc_t sc_dmac;
bus_dma_tag_t sc_dmat;
bus_dmamap_t sc_dmamp;
bus_dmamap_t sc_c_dmamp;
bus_dma_segment_t sc_ds[DIGFILT_DMA_NSEGS];
bus_dma_segment_t sc_c_ds[DIGFILT_DMA_NSEGS];
bus_space_handle_t sc_hdl;
kmutex_t sc_intr_lock;
bus_space_tag_t sc_iot;
kmutex_t sc_lock;
audio_params_t sc_pparam;
void *sc_buffer;
void *sc_dmachain;
void *sc_intarg;
void (*sc_intr)(void*);
uint8_t sc_mute;
uint8_t sc_cmd_index;
};
CFATTACH_DECL3_NEW(digfilt,
sizeof(struct digfilt_softc),
digfilt_match,
digfilt_attach,
NULL,
digfilt_activate,
NULL,
NULL,
0);
static const struct audio_hw_if digfilt_hw_if = {
.open = NULL,
.close = NULL,
.drain = digfilt_drain,
.query_encoding = digfilt_query_encoding,
.set_params = digfilt_set_params,
.round_blocksize = digfilt_round_blocksize,
.commit_settings = NULL,
.init_output = digfilt_init_output,
.init_input = NULL,
.start_output = digfilt_start_output,
.start_input = NULL,
.halt_output = digfilt_halt_output,
.speaker_ctl = NULL,
.getdev = digfilt_getdev,
.setfd = NULL,
.set_port = digfilt_set_port,
.get_port = digfilt_get_port,
.query_devinfo = digfilt_query_devinfo,
.allocm = digfilt_allocm,
.freem = digfilt_freem,
.round_buffersize = digfilt_round_buffersize,
.mappage = NULL,
.get_props = digfilt_get_props,
.trigger_output = NULL,
.trigger_input = NULL,
.dev_ioctl = NULL,
.get_locks = digfilt_get_locks
};
enum {
DIGFILT_OUTPUT_CLASS,
DIGFILT_OUTPUT_DAC_VOLUME,
DIGFILT_OUTPUT_DAC_MUTE,
DIGFILT_OUTPUT_HP_VOLUME,
DIGFILT_OUTPUT_HP_MUTE,
DIGFILT_OUTPUT_LINE_VOLUME,
DIGFILT_OUTPUT_LINE_MUTE,
DIGFILT_ENUM_LAST
};
static int
digfilt_match(device_t parent, cfdata_t match, void *aux)
{
struct apb_attach_args *aa = aux;
if (aa->aa_addr == HW_DIGFILT_BASE && aa->aa_size == HW_DIGFILT_SIZE)
return 1;
else
return 0;
}
static void
digfilt_attach(device_t parent, device_t self, void *aux)
{
struct apb_softc *sc_parent = device_private(parent);
struct digfilt_softc *sc = device_private(self);
struct apb_attach_args *aa = aux;
static int digfilt_attached = 0;
int error;
uint32_t v;
void *intr;
sc->sc_dev = self;
sc->sc_iot = aa->aa_iot;
sc->sc_dmat = aa->aa_dmat;
/* This driver requires DMA functionality from the bus.
* Parent bus passes handle to the DMA controller instance. */
if (sc_parent->dmac == NULL) {
aprint_error_dev(sc->sc_dev, "DMA functionality missing\n");
return;
}
sc->sc_dmac = device_private(sc_parent->dmac);
if (aa->aa_addr == HW_DIGFILT_BASE && digfilt_attached) {
aprint_error_dev(sc->sc_dev, "DIGFILT already attached\n");
return;
}
/* Allocate DMA for audio buffer. */
error = bus_dmamap_create(sc->sc_dmat, MAXPHYS, DIGFILT_DMA_NSEGS,
MAXPHYS, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW, &sc->sc_dmamp);
if (error) {
aprint_error_dev(sc->sc_dev,
"Unable to allocate DMA handle\n");
return;
}
/* Allocate for DMA chain. */
error = bus_dmamap_create(sc->sc_dmat, MAXPHYS, DIGFILT_DMA_NSEGS,
MAXPHYS, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW, &sc->sc_c_dmamp);
if (error) {
aprint_error_dev(sc->sc_dev,
"Unable to allocate DMA handle\n");
return;
}
/* Map DIGFILT bus space. */
if (bus_space_map(sc->sc_iot, HW_DIGFILT_BASE, HW_DIGFILT_SIZE, 0,
&sc->sc_hdl)) {
aprint_error_dev(sc->sc_dev,
"Unable to map DIGFILT bus space\n");
return;
}
/* Map AUDIOOUT subregion from parent bus space. */
if (bus_space_subregion(sc->sc_iot, sc->sc_hdl,
(HW_AUDIOOUT_BASE - HW_DIGFILT_BASE), HW_AUDIOOUT_SIZE,
&sc->sc_aohdl)) {
aprint_error_dev(sc->sc_dev,
"Unable to submap AUDIOOUT bus space\n");
return;
}
/* Map AUDIOIN subregion from parent bus space. */
if (bus_space_subregion(sc->sc_iot, sc->sc_hdl,
(HW_AUDIOIN_BASE - HW_DIGFILT_BASE), HW_AUDIOIN_SIZE,
&sc->sc_aihdl)) {
aprint_error_dev(sc->sc_dev,
"Unable to submap AUDIOIN bus space\n");
return;
}
/* Enable clocks to the DIGFILT block. */
clkctrl_en_filtclk();
delay(10);
digfilt_ao_reset(sc); /* Reset AUDIOOUT. */
/* Not yet: digfilt_ai_reset(sc); */
v = AO_RD(sc, HW_AUDIOOUT_VERSION);
aprint_normal(": DIGFILT Block v%" __PRIuBIT ".%" __PRIuBIT
".%" __PRIuBIT "\n",
__SHIFTOUT(v, HW_AUDIOOUT_VERSION_MAJOR),
__SHIFTOUT(v, HW_AUDIOOUT_VERSION_MINOR),
__SHIFTOUT(v, HW_AUDIOOUT_VERSION_STEP));
digfilt_ao_init(sc);
digfilt_ao_set_rate(sc, 44100); /* Default sample rate 44.1 kHz. */
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SCHED);
/* HW supported formats. */
sc->sc_format.mode = AUMODE_PLAY|AUMODE_RECORD;
sc->sc_format.encoding = AUDIO_ENCODING_SLINEAR_LE;
sc->sc_format.validbits = 16;
sc->sc_format.precision = 16;
sc->sc_format.channels = 2;
sc->sc_format.channel_mask = AUFMT_STEREO;
sc->sc_format.frequency_type = 8;
sc->sc_format.frequency[0] = 8000;
sc->sc_format.frequency[1] = 11025;
sc->sc_format.frequency[2] = 12000;
sc->sc_format.frequency[3] = 16000;
sc->sc_format.frequency[4] = 22050;
sc->sc_format.frequency[5] = 24000;
sc->sc_format.frequency[6] = 32000;
sc->sc_format.frequency[7] = 44100;
if (auconv_create_encodings(&sc->sc_format, 1, &sc->sc_encodings)) {
aprint_error_dev(self, "could not create encodings\n");
return;
}
sc->sc_audiodev = audio_attach_mi(&digfilt_hw_if, sc, sc->sc_dev);
/* Default mutes. */
sc->sc_mute = DIGFILT_MUTE_LINE;
digfilt_ao_apply_mutes(sc);
/* Allocate DMA safe memory for the DMA chain. */
sc->sc_dmachain = digfilt_ao_alloc_dmachain(sc,
sizeof(struct apbdma_command) * DIGFILT_DMA_CHAIN_LENGTH);
if (sc->sc_dmachain == NULL) {
aprint_error_dev(self, "digfilt_ao_alloc_dmachain failed\n");
return;
}
intr = intr_establish(IRQ_DAC_DMA, IPL_SCHED, IST_LEVEL, dac_dma_intr,
sc);
if (intr == NULL) {
aprint_error_dev(sc->sc_dev,
"Unable to establish IRQ for DAC_DMA\n");
return;
}
intr = intr_establish(IRQ_DAC_ERROR, IPL_SCHED, IST_LEVEL,
dac_error_intr, sc);
if (intr == NULL) {
aprint_error_dev(sc->sc_dev,
"Unable to establish IRQ for DAC_ERROR\n");
return;
}
/* Initialize DMA channel. */
apbdma_chan_init(sc->sc_dmac, DIGFILT_DMA_CHANNEL);
digfilt_attached = 1;
return;
}
static int
digfilt_activate(device_t self, enum devact act)
{
return EOPNOTSUPP;
}
static int
digfilt_drain(void *priv)
{
struct digfilt_softc *sc = priv;
apbdma_wait(sc->sc_dmac, 1);
sc->sc_cmd_index = 0;
return 0;
}
static int
digfilt_query_encoding(void *priv, struct audio_encoding *ae)
{
struct digfilt_softc *sc = priv;
return auconv_query_encoding(sc->sc_encodings, ae);
}
static int
digfilt_set_params(void *priv, int setmode, int usemode,
audio_params_t *play, audio_params_t *rec,
stream_filter_list_t *pfil, stream_filter_list_t *rfil)
{
struct digfilt_softc *sc = priv;
int index;
if (play && (setmode & AUMODE_PLAY)) {
index = auconv_set_converter(&sc->sc_format, 1,
AUMODE_PLAY, play, true, pfil);
if (index < 0)
return EINVAL;
sc->sc_pparam = pfil->req_size > 0 ?
pfil->filters[0].param :
*play;
/* At this point bitrate should be figured out. */
digfilt_ao_set_rate(sc, sc->sc_pparam.sample_rate);
}
return 0;
}
static int
digfilt_round_blocksize(void *priv, int bs, int mode,
const audio_params_t *param)
{
int blocksize;
if (bs > DIGFILT_BLOCKSIZE_MAX)
blocksize = DIGFILT_BLOCKSIZE_MAX;
else
blocksize = bs & ~(DIGFILT_BLOCKSIZE_ROUND-1);
return blocksize;
}
static int
digfilt_init_output(void *priv, void *buffer, int size)
{
struct digfilt_softc *sc = priv;
apbdma_command_t dma_cmd;
int i;
dma_cmd = sc->sc_dmachain;
sc->sc_cmd_index = 0;
/*
* Build circular DMA command chain template for later use.
*/
for (i = 0; i < DIGFILT_DMA_CHAIN_LENGTH; i++) {
/* Last entry loops back to first. */
if (i == DIGFILT_DMA_CHAIN_LENGTH - 1)
dma_cmd[i].next = (void *)(sc->sc_c_dmamp->dm_segs[0].ds_addr);
else
dma_cmd[i].next = (void *)(sc->sc_c_dmamp->dm_segs[0].ds_addr + (sizeof(struct apbdma_command) * (1 + i)));
dma_cmd[i].control = __SHIFTIN(DIGFILT_BLOCKSIZE_MAX, APBDMA_CMD_XFER_COUNT) |
__SHIFTIN(1, APBDMA_CMD_CMDPIOWORDS) |
APBDMA_CMD_SEMAPHORE |
APBDMA_CMD_IRQONCMPLT |
APBDMA_CMD_CHAIN |
__SHIFTIN(APBDMA_CMD_DMA_READ, APBDMA_CMD_COMMAND);
dma_cmd[i].buffer = (void *)(sc->sc_c_dmamp->dm_segs[0].ds_addr);
dma_cmd[i].pio_words[0] = HW_AUDIOOUT_CTRL_WORD_LENGTH |
HW_AUDIOOUT_CTRL_FIFO_ERROR_IRQ_EN |
HW_AUDIOOUT_CTRL_RUN;
}
apbdma_chan_set_chain(sc->sc_dmac, DIGFILT_DMA_CHANNEL, sc->sc_c_dmamp);
return 0;
}
static int
digfilt_start_output(void *priv, void *start, int bs, void (*intr)(void*), void *intarg)
{
struct digfilt_softc *sc = priv;
apbdma_command_t dma_cmd;
bus_addr_t offset;
sc->sc_intr = intr;
sc->sc_intarg = intarg;
dma_cmd = sc->sc_dmachain;
offset = (bus_addr_t)start - (bus_addr_t)sc->sc_buffer;
dma_cmd[sc->sc_cmd_index].buffer =
(void *)((bus_addr_t)sc->sc_dmamp->dm_segs[0].ds_addr + offset);
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamp, offset, bs, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, sc->sc_c_dmamp,
sizeof(struct apbdma_command) * sc->sc_cmd_index, sizeof(struct apbdma_command), BUS_DMASYNC_PREWRITE);
sc->sc_cmd_index++;
if (sc->sc_cmd_index > DIGFILT_DMA_CHAIN_LENGTH - 1)
sc->sc_cmd_index = 0;
apbdma_run(sc->sc_dmac, DIGFILT_DMA_CHANNEL);
return 0;
}
static int
digfilt_halt_output(void *priv)
{
return 0;
}
static int
digfilt_getdev(void *priv, struct audio_device *ad)
{
struct digfilt_softc *sc = priv;
strncpy(ad->name, device_xname(sc->sc_dev), MAX_AUDIO_DEV_LEN);
strncpy(ad->version, "", MAX_AUDIO_DEV_LEN);
strncpy(ad->config, "", MAX_AUDIO_DEV_LEN);
return 0;
}
static int
digfilt_set_port(void *priv, mixer_ctrl_t *mc)
{
struct digfilt_softc *sc = priv;
uint32_t val;
uint8_t nvol;
switch (mc->dev) {
case DIGFILT_OUTPUT_DAC_VOLUME:
val = AO_RD(sc, HW_AUDIOOUT_DACVOLUME);
val &= ~(HW_AUDIOOUT_DACVOLUME_VOLUME_LEFT |
HW_AUDIOOUT_DACVOLUME_VOLUME_RIGHT);
/* DAC volume field is 8 bits. */
nvol = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
if (nvol > 0xff)
nvol = 0xff;
val |= __SHIFTIN(nvol, HW_AUDIOOUT_DACVOLUME_VOLUME_LEFT);
nvol = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
if (nvol > 0xff)
nvol = 0xff;
val |= __SHIFTIN(nvol, HW_AUDIOOUT_DACVOLUME_VOLUME_RIGHT);
AO_WR(sc, HW_AUDIOOUT_DACVOLUME, val);
return 0;
case DIGFILT_OUTPUT_HP_VOLUME:
val = AO_RD(sc, HW_AUDIOOUT_HPVOL);
val &= ~(HW_AUDIOOUT_HPVOL_VOL_LEFT |
HW_AUDIOOUT_HPVOL_VOL_RIGHT);
/* HP volume field is 7 bits. */
nvol = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
if (nvol > 0x7f)
nvol = 0x7f;
nvol = ~nvol;
val |= __SHIFTIN(nvol, HW_AUDIOOUT_HPVOL_VOL_LEFT);
nvol = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
if (nvol > 0x7f)
nvol = 0x7f;
nvol = ~nvol;
val |= __SHIFTIN(nvol, HW_AUDIOOUT_HPVOL_VOL_RIGHT);
AO_WR(sc, HW_AUDIOOUT_HPVOL, val);
return 0;
case DIGFILT_OUTPUT_LINE_VOLUME:
return 1;
case DIGFILT_OUTPUT_DAC_MUTE:
if (mc->un.ord)
sc->sc_mute |= DIGFILT_MUTE_DAC;
else
sc->sc_mute &= ~DIGFILT_MUTE_DAC;
digfilt_ao_apply_mutes(sc);
return 0;
case DIGFILT_OUTPUT_HP_MUTE:
if (mc->un.ord)
sc->sc_mute |= DIGFILT_MUTE_HP;
else
sc->sc_mute &= ~DIGFILT_MUTE_HP;
digfilt_ao_apply_mutes(sc);
return 0;
case DIGFILT_OUTPUT_LINE_MUTE:
if (mc->un.ord)
sc->sc_mute |= DIGFILT_MUTE_LINE;
else
sc->sc_mute &= ~DIGFILT_MUTE_LINE;
digfilt_ao_apply_mutes(sc);
return 0;
}
return ENXIO;
}
static int
digfilt_get_port(void *priv, mixer_ctrl_t *mc)
{
struct digfilt_softc *sc = priv;
uint32_t val;
uint8_t nvol;
switch (mc->dev) {
case DIGFILT_OUTPUT_DAC_VOLUME:
val = AO_RD(sc, HW_AUDIOOUT_DACVOLUME);
nvol = __SHIFTOUT(val, HW_AUDIOOUT_DACVOLUME_VOLUME_LEFT);
mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = nvol;
nvol = __SHIFTOUT(val, HW_AUDIOOUT_DACVOLUME_VOLUME_RIGHT);
mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = nvol;
return 0;
case DIGFILT_OUTPUT_HP_VOLUME:
val = AO_RD(sc, HW_AUDIOOUT_HPVOL);
nvol = __SHIFTOUT(val, HW_AUDIOOUT_HPVOL_VOL_LEFT);
mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = ~nvol & 0x7f;
nvol = __SHIFTOUT(val, HW_AUDIOOUT_HPVOL_VOL_RIGHT);
mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = ~nvol & 0x7f;
return 0;
case DIGFILT_OUTPUT_LINE_VOLUME:
mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 255;
mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 255;
return 0;
case DIGFILT_OUTPUT_DAC_MUTE:
val = AO_RD(sc, HW_AUDIOOUT_DACVOLUME);
mc->un.ord = (val & (HW_AUDIOOUT_DACVOLUME_MUTE_LEFT |
HW_AUDIOOUT_DACVOLUME_MUTE_RIGHT)) ? 1 : 0;
return 0;
case DIGFILT_OUTPUT_HP_MUTE:
val = AO_RD(sc, HW_AUDIOOUT_HPVOL);
mc->un.ord = (val & HW_AUDIOOUT_HPVOL_MUTE) ? 1 : 0;
return 0;
case DIGFILT_OUTPUT_LINE_MUTE:
val = AO_RD(sc, HW_AUDIOOUT_SPEAKERCTRL);
mc->un.ord = (val & HW_AUDIOOUT_SPEAKERCTRL_MUTE) ? 1 : 0;
return 0;
}
return ENXIO;
}
static int
digfilt_query_devinfo(void *priv, mixer_devinfo_t *di)
{
switch (di->index) {
case DIGFILT_OUTPUT_CLASS:
di->mixer_class = DIGFILT_OUTPUT_CLASS;
strcpy(di->label.name, AudioCoutputs);
di->type = AUDIO_MIXER_CLASS;
di->next = di->prev = AUDIO_MIXER_LAST;
return 0;
case DIGFILT_OUTPUT_DAC_VOLUME:
di->mixer_class = DIGFILT_OUTPUT_CLASS;
strcpy(di->label.name, AudioNdac);
di->type = AUDIO_MIXER_VALUE;
di->prev = AUDIO_MIXER_LAST;
di->next = DIGFILT_OUTPUT_DAC_MUTE;
di->un.v.num_channels = 2;
strcpy(di->un.v.units.name, AudioNvolume);
return 0;
case DIGFILT_OUTPUT_DAC_MUTE:
di->mixer_class = DIGFILT_OUTPUT_CLASS;
di->type = AUDIO_MIXER_ENUM;
di->prev = DIGFILT_OUTPUT_DAC_VOLUME;
di->next = AUDIO_MIXER_LAST;
mute:
strlcpy(di->label.name, AudioNmute, sizeof(di->label.name));
di->un.e.num_mem = 2;
strlcpy(di->un.e.member[0].label.name, AudioNon,
sizeof(di->un.e.member[0].label.name));
di->un.e.member[0].ord = 1;
strlcpy(di->un.e.member[1].label.name, AudioNoff,
sizeof(di->un.e.member[1].label.name));
di->un.e.member[1].ord = 0;
return 0;
case DIGFILT_OUTPUT_HP_VOLUME:
di->mixer_class = DIGFILT_OUTPUT_CLASS;
strcpy(di->label.name, AudioNheadphone);
di->type = AUDIO_MIXER_VALUE;
di->prev = AUDIO_MIXER_LAST;
di->next = DIGFILT_OUTPUT_HP_MUTE;
di->un.v.num_channels = 2;
strcpy(di->un.v.units.name, AudioNvolume);
return 0;
case DIGFILT_OUTPUT_HP_MUTE:
di->mixer_class = DIGFILT_OUTPUT_CLASS;
di->type = AUDIO_MIXER_ENUM;
di->prev = DIGFILT_OUTPUT_HP_VOLUME;
di->next = AUDIO_MIXER_LAST;
goto mute;
case DIGFILT_OUTPUT_LINE_VOLUME:
di->mixer_class = DIGFILT_OUTPUT_CLASS;
strcpy(di->label.name, AudioNline);
di->type = AUDIO_MIXER_VALUE;
di->prev = AUDIO_MIXER_LAST;
di->next = DIGFILT_OUTPUT_LINE_MUTE;
di->un.v.num_channels = 2;
strcpy(di->un.v.units.name, AudioNvolume);
return 0;
case DIGFILT_OUTPUT_LINE_MUTE:
di->mixer_class = DIGFILT_OUTPUT_CLASS;
di->type = AUDIO_MIXER_ENUM;
di->prev = DIGFILT_OUTPUT_LINE_VOLUME;
di->next = AUDIO_MIXER_LAST;
goto mute;
}
return ENXIO;
}
static void *
digfilt_allocm(void *priv, int direction, size_t size)
{
struct digfilt_softc *sc = priv;
int rsegs;
int error;
sc->sc_buffer = NULL;
/*
* AUMODE_PLAY is DMA from memory to device.
*/
if (direction != AUMODE_PLAY)
return NULL;
error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &sc->sc_ds[0], DIGFILT_DMA_NSEGS, &rsegs, BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev,
"bus_dmamem_alloc: %d\n", error);
goto out;
}
error = bus_dmamem_map(sc->sc_dmat, sc->sc_ds, DIGFILT_DMA_NSEGS, size, &sc->sc_buffer, BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev, "bus_dmamem_map: %d\n", error);
goto dmamem_free;
}
/* After load sc_dmamp is valid. */
error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamp, sc->sc_buffer, size, NULL, BUS_DMA_NOWAIT|BUS_DMA_WRITE);
if (error) {
aprint_error_dev(sc->sc_dev, "bus_dmamap_load: %d\n", error);
goto dmamem_unmap;
}
memset(sc->sc_buffer, 0x00, size);
return sc->sc_buffer;
dmamem_unmap:
bus_dmamem_unmap(sc->sc_dmat, sc->sc_buffer, size);
dmamem_free:
bus_dmamem_free(sc->sc_dmat, sc->sc_ds, DIGFILT_DMA_NSEGS);
out:
return NULL;
}
static void
digfilt_freem(void *priv, void *kvap, size_t size)
{
struct digfilt_softc *sc = priv;
bus_dmamem_unmap(sc->sc_dmat, kvap, size);
bus_dmamem_free(sc->sc_dmat, sc->sc_ds, DIGFILT_DMA_NSEGS);
return;
}
static size_t
digfilt_round_buffersize(void *hdl, int direction, size_t bs)
{
int bufsize;
bufsize = bs & ~(DIGFILT_BLOCKSIZE_MAX-1);
return bufsize;
}
static int
digfilt_get_props(void *sc)
{
return (AUDIO_PROP_PLAYBACK | AUDIO_PROP_INDEPENDENT);
}
static void
digfilt_get_locks(void *priv, kmutex_t **intr, kmutex_t **thread)
{
struct digfilt_softc *sc = priv;
*intr = &sc->sc_intr_lock;
*thread = &sc->sc_lock;
return;
}
/*
* IRQ for DAC error.
*/
static int
dac_error_intr(void *arg)
{
struct digfilt_softc *sc = arg;
AO_WR(sc, HW_AUDIOOUT_CTRL_CLR, HW_AUDIOOUT_CTRL_FIFO_UNDERFLOW_IRQ);
return 1;
}
/*
* IRQ from DMA.
*/
static int
dac_dma_intr(void *arg)
{
struct digfilt_softc *sc = arg;
unsigned int dma_err;
mutex_enter(&sc->sc_intr_lock);
dma_err = apbdma_intr_status(sc->sc_dmac, DIGFILT_DMA_CHANNEL);
if (dma_err) {
apbdma_ack_error_intr(sc->sc_dmac, DIGFILT_DMA_CHANNEL);
}
sc->sc_intr(sc->sc_intarg);
apbdma_ack_intr(sc->sc_dmac, DIGFILT_DMA_CHANNEL);
mutex_exit(&sc->sc_intr_lock);
/* Return 1 to acknowledge IRQ. */
return 1;
}
static void *
digfilt_ao_alloc_dmachain(void *priv, size_t size)
{
struct digfilt_softc *sc = priv;
int rsegs;
int error;
void *kvap;
kvap = NULL;
error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &sc->sc_c_ds[0], DIGFILT_DMA_NSEGS, &rsegs, BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev,
"bus_dmamem_alloc: %d\n", error);
goto out;
}
error = bus_dmamem_map(sc->sc_dmat, sc->sc_c_ds, DIGFILT_DMA_NSEGS, size, &kvap, BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev, "bus_dmamem_map: %d\n", error);
goto dmamem_free;
}
/* After load sc_c_dmamp is valid. */
error = bus_dmamap_load(sc->sc_dmat, sc->sc_c_dmamp, kvap, size, NULL, BUS_DMA_NOWAIT|BUS_DMA_WRITE);
if (error) {
aprint_error_dev(sc->sc_dev, "bus_dmamap_load: %d\n", error);
goto dmamem_unmap;
}
memset(kvap, 0x00, size);
return kvap;
dmamem_unmap:
bus_dmamem_unmap(sc->sc_dmat, kvap, size);
dmamem_free:
bus_dmamem_free(sc->sc_dmat, sc->sc_c_ds, DIGFILT_DMA_NSEGS);
out:
return kvap;
}
static void
digfilt_ao_apply_mutes(struct digfilt_softc *sc)
{
/* DAC. */
if (sc->sc_mute & DIGFILT_MUTE_DAC) {
AO_WR(sc, HW_AUDIOOUT_DACVOLUME_SET,
HW_AUDIOOUT_DACVOLUME_MUTE_LEFT |
HW_AUDIOOUT_DACVOLUME_MUTE_RIGHT
);
} else {
AO_WR(sc, HW_AUDIOOUT_DACVOLUME_CLR,
HW_AUDIOOUT_DACVOLUME_MUTE_LEFT |
HW_AUDIOOUT_DACVOLUME_MUTE_RIGHT
);
}
/* HP. */
if (sc->sc_mute & DIGFILT_MUTE_HP)
AO_WR(sc, HW_AUDIOOUT_HPVOL_SET, HW_AUDIOOUT_HPVOL_MUTE);
else
AO_WR(sc, HW_AUDIOOUT_HPVOL_CLR, HW_AUDIOOUT_HPVOL_MUTE);
/* Line. */
if (sc->sc_mute & DIGFILT_MUTE_LINE)
AO_WR(sc, HW_AUDIOOUT_SPEAKERCTRL_SET,
HW_AUDIOOUT_SPEAKERCTRL_MUTE);
else
AO_WR(sc, HW_AUDIOOUT_SPEAKERCTRL_CLR,
HW_AUDIOOUT_SPEAKERCTRL_MUTE);
return;
}
/*
* Initialize audio system.
*/
static void
digfilt_ao_init(struct digfilt_softc *sc)
{
AO_WR(sc, HW_AUDIOOUT_ANACLKCTRL_CLR, HW_AUDIOOUT_ANACLKCTRL_CLKGATE);
while ((AO_RD(sc, HW_AUDIOOUT_ANACLKCTRL) &
HW_AUDIOOUT_ANACLKCTRL_CLKGATE));
/* Hold headphones outputs at ground. */
AO_WR(sc, HW_AUDIOOUT_ANACTRL_SET, HW_AUDIOOUT_ANACTRL_HP_HOLD_GND);
/* Remove pulldown resistors on headphone outputs. */
rtc_release_gnd(1);
/* Release pull down */
AO_WR(sc, HW_AUDIOOUT_ANACTRL_CLR, HW_AUDIOOUT_ANACTRL_HP_HOLD_GND);
AO_WR(sc, HW_AUDIOOUT_ANACTRL_SET, HW_AUDIOOUT_ANACTRL_HP_CLASSAB);
/* Enable Modules. */
AO_WR(sc, HW_AUDIOOUT_PWRDN_CLR,
HW_AUDIOOUT_PWRDN_RIGHT_ADC |
HW_AUDIOOUT_PWRDN_DAC |
HW_AUDIOOUT_PWRDN_CAPLESS |
HW_AUDIOOUT_PWRDN_HEADPHONE
);
return;
}
/*
* Reset the AUDIOOUT block.
*
* Inspired by i.MX23 RM "39.3.10 Correct Way to Soft Reset a Block"
*/
static void
digfilt_ao_reset(struct digfilt_softc *sc)
{
unsigned int loop;
/* Prepare for soft-reset by making sure that SFTRST is not currently
* asserted. Also clear CLKGATE so we can wait for its assertion below.
*/
AO_WR(sc, HW_AUDIOOUT_CTRL_CLR, HW_AUDIOOUT_CTRL_SFTRST);
/* Wait at least a microsecond for SFTRST to deassert. */
loop = 0;
while ((AO_RD(sc, HW_AUDIOOUT_CTRL) & HW_AUDIOOUT_CTRL_SFTRST) ||
(loop < DIGFILT_SOFT_RST_LOOP))
loop++;
/* Clear CLKGATE so we can wait for its assertion below. */
AO_WR(sc, HW_AUDIOOUT_CTRL_CLR, HW_AUDIOOUT_CTRL_CLKGATE);
/* Soft-reset the block. */
AO_WR(sc, HW_AUDIOOUT_CTRL_SET, HW_AUDIOOUT_CTRL_SFTRST);
/* Wait until clock is in the gated state. */
while (!(AO_RD(sc, HW_AUDIOOUT_CTRL) & HW_AUDIOOUT_CTRL_CLKGATE));
/* Bring block out of reset. */
AO_WR(sc, HW_AUDIOOUT_CTRL_CLR, HW_AUDIOOUT_CTRL_SFTRST);
loop = 0;
while ((AO_RD(sc, HW_AUDIOOUT_CTRL) & HW_AUDIOOUT_CTRL_SFTRST) ||
(loop < DIGFILT_SOFT_RST_LOOP))
loop++;
AO_WR(sc, HW_AUDIOOUT_CTRL_CLR, HW_AUDIOOUT_CTRL_CLKGATE);
/* Wait until clock is in the NON-gated state. */
while (AO_RD(sc, HW_AUDIOOUT_CTRL) & HW_AUDIOOUT_CTRL_CLKGATE);
return;
}
static void
digfilt_ao_set_rate(struct digfilt_softc *sc, int sr)
{
uint32_t val;
val = AO_RD(sc, HW_AUDIOOUT_DACSRR);
val &= ~(HW_AUDIOOUT_DACSRR_BASEMULT | HW_AUDIOOUT_DACSRR_SRC_HOLD |
HW_AUDIOOUT_DACSRR_SRC_INT | HW_AUDIOOUT_DACSRR_SRC_FRAC);
switch(sr) {
case 8000:
val |= (__SHIFTIN(0x1 ,HW_AUDIOOUT_DACSRR_BASEMULT) |
__SHIFTIN(0x3, HW_AUDIOOUT_DACSRR_SRC_HOLD) |
__SHIFTIN(0x17, HW_AUDIOOUT_DACSRR_SRC_INT) |
__SHIFTIN(0x0E00, HW_AUDIOOUT_DACSRR_SRC_FRAC));
break;
case 11025:
val |= (__SHIFTIN(0x1 ,HW_AUDIOOUT_DACSRR_BASEMULT) |
__SHIFTIN(0x3, HW_AUDIOOUT_DACSRR_SRC_HOLD) |
__SHIFTIN(0x11, HW_AUDIOOUT_DACSRR_SRC_INT) |
__SHIFTIN(0x0037, HW_AUDIOOUT_DACSRR_SRC_FRAC));
break;
case 12000:
val |= (__SHIFTIN(0x1 ,HW_AUDIOOUT_DACSRR_BASEMULT) |
__SHIFTIN(0x3, HW_AUDIOOUT_DACSRR_SRC_HOLD) |
__SHIFTIN(0x0F, HW_AUDIOOUT_DACSRR_SRC_INT) |
__SHIFTIN(0x13FF, HW_AUDIOOUT_DACSRR_SRC_FRAC));
break;
case 16000:
val |= (__SHIFTIN(0x1 ,HW_AUDIOOUT_DACSRR_BASEMULT) |
__SHIFTIN(0x1, HW_AUDIOOUT_DACSRR_SRC_HOLD) |
__SHIFTIN(0x17, HW_AUDIOOUT_DACSRR_SRC_INT) |
__SHIFTIN(0x0E00, HW_AUDIOOUT_DACSRR_SRC_FRAC));
break;
case 22050:
val |= (__SHIFTIN(0x1 ,HW_AUDIOOUT_DACSRR_BASEMULT) |
__SHIFTIN(0x1, HW_AUDIOOUT_DACSRR_SRC_HOLD) |
__SHIFTIN(0x11, HW_AUDIOOUT_DACSRR_SRC_INT) |
__SHIFTIN(0x0037, HW_AUDIOOUT_DACSRR_SRC_FRAC));
break;
case 24000:
val |= (__SHIFTIN(0x1 ,HW_AUDIOOUT_DACSRR_BASEMULT) |
__SHIFTIN(0x1, HW_AUDIOOUT_DACSRR_SRC_HOLD) |
__SHIFTIN(0x0F, HW_AUDIOOUT_DACSRR_SRC_INT) |
__SHIFTIN(0x13FF, HW_AUDIOOUT_DACSRR_SRC_FRAC));
break;
case 32000:
val |= (__SHIFTIN(0x1 ,HW_AUDIOOUT_DACSRR_BASEMULT) |
__SHIFTIN(0x0, HW_AUDIOOUT_DACSRR_SRC_HOLD) |
__SHIFTIN(0x17, HW_AUDIOOUT_DACSRR_SRC_INT) |
__SHIFTIN(0x0E00, HW_AUDIOOUT_DACSRR_SRC_FRAC));
break;
default:
aprint_error_dev(sc->sc_dev, "uknown sample rate: %d\n", sr);
case 44100:
val |= (__SHIFTIN(0x1 ,HW_AUDIOOUT_DACSRR_BASEMULT) |
__SHIFTIN(0x0, HW_AUDIOOUT_DACSRR_SRC_HOLD) |
__SHIFTIN(0x11, HW_AUDIOOUT_DACSRR_SRC_INT) |
__SHIFTIN(0x0037, HW_AUDIOOUT_DACSRR_SRC_FRAC));
break;
}
AO_WR(sc, HW_AUDIOOUT_DACSRR, val);
val = AO_RD(sc, HW_AUDIOOUT_DACSRR);
return;
}
#if 0
/*
* Reset the AUDIOIN block.
*
* Inspired by i.MX23 RM "39.3.10 Correct Way to Soft Reset a Block"
*/
static void
digfilt_ai_reset(struct digfilt_softc *sc)
{
unsigned int loop;
/* Prepare for soft-reset by making sure that SFTRST is not currently
* asserted. Also clear CLKGATE so we can wait for its assertion below.
*/
AI_WR(sc, HW_AUDIOIN_CTRL_CLR, HW_AUDIOIN_CTRL_SFTRST);
/* Wait at least a microsecond for SFTRST to deassert. */
loop = 0;
while ((AI_RD(sc, HW_AUDIOIN_CTRL) & HW_AUDIOIN_CTRL_SFTRST) ||
(loop < DIGFILT_SOFT_RST_LOOP))
loop++;
/* Clear CLKGATE so we can wait for its assertion below. */
AI_WR(sc, HW_AUDIOIN_CTRL_CLR, HW_AUDIOIN_CTRL_CLKGATE);
/* Soft-reset the block. */
AI_WR(sc, HW_AUDIOIN_CTRL_SET, HW_AUDIOIN_CTRL_SFTRST);
/* Wait until clock is in the gated state. */
while (!(AI_RD(sc, HW_AUDIOIN_CTRL) & HW_AUDIOIN_CTRL_CLKGATE));
/* Bring block out of reset. */
AI_WR(sc, HW_AUDIOIN_CTRL_CLR, HW_AUDIOIN_CTRL_SFTRST);
loop = 0;
while ((AI_RD(sc, HW_AUDIOIN_CTRL) & HW_AUDIOIN_CTRL_SFTRST) ||
(loop < DIGFILT_SOFT_RST_LOOP))
loop++;
AI_WR(sc, HW_AUDIOIN_CTRL_CLR, HW_AUDIOIN_CTRL_CLKGATE);
/* Wait until clock is in the NON-gated state. */
while (AI_RD(sc, HW_AUDIOIN_CTRL) & HW_AUDIOIN_CTRL_CLKGATE);
return;
}
#endif