2130 lines
51 KiB
C
2130 lines
51 KiB
C
/* $NetBSD: crypto.c,v 1.105 2018/01/08 23:34:56 knakahara Exp $ */
|
|
/* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
|
|
/* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2008 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Coyote Point Systems, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
|
|
*
|
|
* This code was written by Angelos D. Keromytis in Athens, Greece, in
|
|
* February 2000. Network Security Technologies Inc. (NSTI) kindly
|
|
* supported the development of this code.
|
|
*
|
|
* Copyright (c) 2000, 2001 Angelos D. Keromytis
|
|
*
|
|
* Permission to use, copy, and modify this software with or without fee
|
|
* is hereby granted, provided that this entire notice is included in
|
|
* all source code copies of any software which is or includes a copy or
|
|
* modification of this software.
|
|
*
|
|
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
|
|
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
|
|
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
|
|
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
|
|
* PURPOSE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.105 2018/01/08 23:34:56 knakahara Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/once.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/intr.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/module.h>
|
|
#include <sys/xcall.h>
|
|
#include <sys/device.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/percpu.h>
|
|
#include <sys/kmem.h>
|
|
|
|
#if defined(_KERNEL_OPT)
|
|
#include "opt_ocf.h"
|
|
#endif
|
|
|
|
#include <opencrypto/cryptodev.h>
|
|
#include <opencrypto/xform.h> /* XXX for M_XDATA */
|
|
|
|
/*
|
|
* Crypto drivers register themselves by allocating a slot in the
|
|
* crypto_drivers table with crypto_get_driverid() and then registering
|
|
* each algorithm they support with crypto_register() and crypto_kregister().
|
|
*/
|
|
/* Don't directly access crypto_drivers[i], use crypto_checkdriver(i). */
|
|
static struct {
|
|
kmutex_t mtx;
|
|
int num;
|
|
struct cryptocap *list;
|
|
} crypto_drv __cacheline_aligned;
|
|
#define crypto_drv_mtx (crypto_drv.mtx)
|
|
#define crypto_drivers_num (crypto_drv.num)
|
|
#define crypto_drivers (crypto_drv.list)
|
|
|
|
static void *crypto_q_si;
|
|
static void *crypto_ret_si;
|
|
|
|
/*
|
|
* There are two queues for crypto requests; one for symmetric (e.g.
|
|
* cipher) operations and one for asymmetric (e.g. MOD) operations.
|
|
* See below for how synchronization is handled.
|
|
*/
|
|
TAILQ_HEAD(crypto_crp_q, cryptop);
|
|
TAILQ_HEAD(crypto_crp_kq, cryptkop);
|
|
struct crypto_crp_qs {
|
|
struct crypto_crp_q *crp_q;
|
|
struct crypto_crp_kq *crp_kq;
|
|
};
|
|
static percpu_t *crypto_crp_qs_percpu;
|
|
|
|
static inline struct crypto_crp_qs *
|
|
crypto_get_crp_qs(int *s)
|
|
{
|
|
|
|
KASSERT(s != NULL);
|
|
|
|
*s = splsoftnet();
|
|
return percpu_getref(crypto_crp_qs_percpu);
|
|
}
|
|
|
|
static inline void
|
|
crypto_put_crp_qs(int *s)
|
|
{
|
|
|
|
KASSERT(s != NULL);
|
|
|
|
percpu_putref(crypto_crp_qs_percpu);
|
|
splx(*s);
|
|
}
|
|
|
|
static void
|
|
crypto_crp_q_is_busy_pc(void *p, void *arg, struct cpu_info *ci __unused)
|
|
{
|
|
struct crypto_crp_qs *qs_pc = p;
|
|
bool *isempty = arg;
|
|
|
|
if (!TAILQ_EMPTY(qs_pc->crp_q) || !TAILQ_EMPTY(qs_pc->crp_kq))
|
|
*isempty = true;
|
|
}
|
|
|
|
static void
|
|
crypto_crp_qs_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
|
|
{
|
|
struct crypto_crp_qs *qs = p;
|
|
|
|
qs->crp_q = kmem_alloc(sizeof(struct crypto_crp_q), KM_SLEEP);
|
|
qs->crp_kq = kmem_alloc(sizeof(struct crypto_crp_kq), KM_SLEEP);
|
|
|
|
TAILQ_INIT(qs->crp_q);
|
|
TAILQ_INIT(qs->crp_kq);
|
|
}
|
|
|
|
/*
|
|
* There are two queues for processing completed crypto requests; one
|
|
* for the symmetric and one for the asymmetric ops. We only need one
|
|
* but have two to avoid type futzing (cryptop vs. cryptkop). See below
|
|
* for how synchronization is handled.
|
|
*/
|
|
TAILQ_HEAD(crypto_crp_ret_q, cryptop);
|
|
TAILQ_HEAD(crypto_crp_ret_kq, cryptkop);
|
|
struct crypto_crp_ret_qs {
|
|
kmutex_t crp_ret_q_mtx;
|
|
bool crp_ret_q_exit_flag;
|
|
|
|
struct crypto_crp_ret_q crp_ret_q;
|
|
int crp_ret_q_len;
|
|
int crp_ret_q_maxlen; /* queue length limit. <=0 means unlimited. */
|
|
int crp_ret_q_drops;
|
|
|
|
struct crypto_crp_ret_kq crp_ret_kq;
|
|
int crp_ret_kq_len;
|
|
int crp_ret_kq_maxlen; /* queue length limit. <=0 means unlimited. */
|
|
int crp_ret_kq_drops;
|
|
};
|
|
struct crypto_crp_ret_qs **crypto_crp_ret_qs_list;
|
|
|
|
|
|
static inline struct crypto_crp_ret_qs *
|
|
crypto_get_crp_ret_qs(struct cpu_info *ci)
|
|
{
|
|
u_int cpuid;
|
|
struct crypto_crp_ret_qs *qs;
|
|
|
|
KASSERT(ci != NULL);
|
|
|
|
cpuid = cpu_index(ci);
|
|
qs = crypto_crp_ret_qs_list[cpuid];
|
|
mutex_enter(&qs->crp_ret_q_mtx);
|
|
return qs;
|
|
}
|
|
|
|
static inline void
|
|
crypto_put_crp_ret_qs(struct cpu_info *ci)
|
|
{
|
|
u_int cpuid;
|
|
struct crypto_crp_ret_qs *qs;
|
|
|
|
KASSERT(ci != NULL);
|
|
|
|
cpuid = cpu_index(ci);
|
|
qs = crypto_crp_ret_qs_list[cpuid];
|
|
mutex_exit(&qs->crp_ret_q_mtx);
|
|
}
|
|
|
|
#ifndef CRYPTO_RET_Q_MAXLEN
|
|
#define CRYPTO_RET_Q_MAXLEN 0
|
|
#endif
|
|
#ifndef CRYPTO_RET_KQ_MAXLEN
|
|
#define CRYPTO_RET_KQ_MAXLEN 0
|
|
#endif
|
|
|
|
static int
|
|
sysctl_opencrypto_q_len(SYSCTLFN_ARGS)
|
|
{
|
|
int error, len = 0;
|
|
struct sysctlnode node = *rnode;
|
|
|
|
for (int i = 0; i < ncpu; i++) {
|
|
struct crypto_crp_ret_qs *qs;
|
|
struct cpu_info *ci = cpu_lookup(i);
|
|
|
|
qs = crypto_get_crp_ret_qs(ci);
|
|
len += qs->crp_ret_q_len;
|
|
crypto_put_crp_ret_qs(ci);
|
|
}
|
|
|
|
node.sysctl_data = &len;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return error;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sysctl_opencrypto_q_drops(SYSCTLFN_ARGS)
|
|
{
|
|
int error, drops = 0;
|
|
struct sysctlnode node = *rnode;
|
|
|
|
for (int i = 0; i < ncpu; i++) {
|
|
struct crypto_crp_ret_qs *qs;
|
|
struct cpu_info *ci = cpu_lookup(i);
|
|
|
|
qs = crypto_get_crp_ret_qs(ci);
|
|
drops += qs->crp_ret_q_drops;
|
|
crypto_put_crp_ret_qs(ci);
|
|
}
|
|
|
|
node.sysctl_data = &drops;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return error;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sysctl_opencrypto_q_maxlen(SYSCTLFN_ARGS)
|
|
{
|
|
int error, maxlen;
|
|
struct crypto_crp_ret_qs *qs;
|
|
struct sysctlnode node = *rnode;
|
|
|
|
/* each crp_ret_kq_maxlen is the same. */
|
|
qs = crypto_get_crp_ret_qs(curcpu());
|
|
maxlen = qs->crp_ret_q_maxlen;
|
|
crypto_put_crp_ret_qs(curcpu());
|
|
|
|
node.sysctl_data = &maxlen;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return error;
|
|
|
|
for (int i = 0; i < ncpu; i++) {
|
|
struct cpu_info *ci = cpu_lookup(i);
|
|
|
|
qs = crypto_get_crp_ret_qs(ci);
|
|
qs->crp_ret_q_maxlen = maxlen;
|
|
crypto_put_crp_ret_qs(ci);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sysctl_opencrypto_kq_len(SYSCTLFN_ARGS)
|
|
{
|
|
int error, len = 0;
|
|
struct sysctlnode node = *rnode;
|
|
|
|
for (int i = 0; i < ncpu; i++) {
|
|
struct crypto_crp_ret_qs *qs;
|
|
struct cpu_info *ci = cpu_lookup(i);
|
|
|
|
qs = crypto_get_crp_ret_qs(ci);
|
|
len += qs->crp_ret_kq_len;
|
|
crypto_put_crp_ret_qs(ci);
|
|
}
|
|
|
|
node.sysctl_data = &len;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return error;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sysctl_opencrypto_kq_drops(SYSCTLFN_ARGS)
|
|
{
|
|
int error, drops = 0;
|
|
struct sysctlnode node = *rnode;
|
|
|
|
for (int i = 0; i < ncpu; i++) {
|
|
struct crypto_crp_ret_qs *qs;
|
|
struct cpu_info *ci = cpu_lookup(i);
|
|
|
|
qs = crypto_get_crp_ret_qs(ci);
|
|
drops += qs->crp_ret_kq_drops;
|
|
crypto_put_crp_ret_qs(ci);
|
|
}
|
|
|
|
node.sysctl_data = &drops;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return error;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sysctl_opencrypto_kq_maxlen(SYSCTLFN_ARGS)
|
|
{
|
|
int error, maxlen;
|
|
struct crypto_crp_ret_qs *qs;
|
|
struct sysctlnode node = *rnode;
|
|
|
|
/* each crp_ret_kq_maxlen is the same. */
|
|
qs = crypto_get_crp_ret_qs(curcpu());
|
|
maxlen = qs->crp_ret_kq_maxlen;
|
|
crypto_put_crp_ret_qs(curcpu());
|
|
|
|
node.sysctl_data = &maxlen;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return error;
|
|
|
|
for (int i = 0; i < ncpu; i++) {
|
|
struct cpu_info *ci = cpu_lookup(i);
|
|
|
|
qs = crypto_get_crp_ret_qs(ci);
|
|
qs->crp_ret_kq_maxlen = maxlen;
|
|
crypto_put_crp_ret_qs(ci);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Crypto op and descriptor data structures are allocated
|
|
* from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
|
|
*/
|
|
static pool_cache_t cryptop_cache;
|
|
static pool_cache_t cryptodesc_cache;
|
|
static pool_cache_t cryptkop_cache;
|
|
|
|
int crypto_usercrypto = 1; /* userland may open /dev/crypto */
|
|
int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
|
|
/*
|
|
* cryptodevallowsoft is (intended to be) sysctl'able, controlling
|
|
* access to hardware versus software transforms as below:
|
|
*
|
|
* crypto_devallowsoft < 0: Force userlevel requests to use software
|
|
* transforms, always
|
|
* crypto_devallowsoft = 0: Use hardware if present, grant userlevel
|
|
* requests for non-accelerated transforms
|
|
* (handling the latter in software)
|
|
* crypto_devallowsoft > 0: Allow user requests only for transforms which
|
|
* are hardware-accelerated.
|
|
*/
|
|
int crypto_devallowsoft = 1; /* only use hardware crypto */
|
|
|
|
static void
|
|
sysctl_opencrypto_setup(struct sysctllog **clog)
|
|
{
|
|
const struct sysctlnode *ocnode;
|
|
const struct sysctlnode *retqnode, *retkqnode;
|
|
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "usercrypto",
|
|
SYSCTL_DESCR("Enable/disable user-mode access to "
|
|
"crypto support"),
|
|
NULL, 0, &crypto_usercrypto, 0,
|
|
CTL_KERN, CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "userasymcrypto",
|
|
SYSCTL_DESCR("Enable/disable user-mode access to "
|
|
"asymmetric crypto support"),
|
|
NULL, 0, &crypto_userasymcrypto, 0,
|
|
CTL_KERN, CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "cryptodevallowsoft",
|
|
SYSCTL_DESCR("Enable/disable use of software "
|
|
"asymmetric crypto support"),
|
|
NULL, 0, &crypto_devallowsoft, 0,
|
|
CTL_KERN, CTL_CREATE, CTL_EOL);
|
|
|
|
sysctl_createv(clog, 0, NULL, &ocnode,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "opencrypto",
|
|
SYSCTL_DESCR("opencrypto related entries"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
|
|
sysctl_createv(clog, 0, &ocnode, &retqnode,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "crypto_ret_q",
|
|
SYSCTL_DESCR("crypto_ret_q related entries"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(clog, 0, &retqnode, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
|
|
CTLTYPE_INT, "len",
|
|
SYSCTL_DESCR("Current queue length"),
|
|
sysctl_opencrypto_q_len, 0,
|
|
NULL, 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(clog, 0, &retqnode, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
|
|
CTLTYPE_INT, "drops",
|
|
SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
|
|
sysctl_opencrypto_q_drops, 0,
|
|
NULL, 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(clog, 0, &retqnode, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "maxlen",
|
|
SYSCTL_DESCR("Maximum allowed queue length"),
|
|
sysctl_opencrypto_q_maxlen, 0,
|
|
NULL, 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
|
|
|
|
sysctl_createv(clog, 0, &ocnode, &retkqnode,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "crypto_ret_kq",
|
|
SYSCTL_DESCR("crypto_ret_kq related entries"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(clog, 0, &retkqnode, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
|
|
CTLTYPE_INT, "len",
|
|
SYSCTL_DESCR("Current queue length"),
|
|
sysctl_opencrypto_kq_len, 0,
|
|
NULL, 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(clog, 0, &retkqnode, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
|
|
CTLTYPE_INT, "drops",
|
|
SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
|
|
sysctl_opencrypto_kq_drops, 0,
|
|
NULL, 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(clog, 0, &retkqnode, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "maxlen",
|
|
SYSCTL_DESCR("Maximum allowed queue length"),
|
|
sysctl_opencrypto_kq_maxlen, 0,
|
|
NULL, 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
}
|
|
|
|
/*
|
|
* Synchronization: read carefully, this is non-trivial.
|
|
*
|
|
* Crypto requests are submitted via crypto_dispatch. Typically
|
|
* these come in from network protocols at spl0 (output path) or
|
|
* spl[,soft]net (input path).
|
|
*
|
|
* Requests are typically passed on the driver directly, but they
|
|
* may also be queued for processing by a software interrupt thread,
|
|
* cryptointr, that runs at splsoftcrypto. This thread dispatches
|
|
* the requests to crypto drivers (h/w or s/w) who call crypto_done
|
|
* when a request is complete. Hardware crypto drivers are assumed
|
|
* to register their IRQ's as network devices so their interrupt handlers
|
|
* and subsequent "done callbacks" happen at spl[imp,net].
|
|
*
|
|
* Completed crypto ops are queued for a separate kernel thread that
|
|
* handles the callbacks at spl0. This decoupling insures the crypto
|
|
* driver interrupt service routine is not delayed while the callback
|
|
* takes place and that callbacks are delivered after a context switch
|
|
* (as opposed to a software interrupt that clients must block).
|
|
*
|
|
* This scheme is not intended for SMP machines.
|
|
*/
|
|
static void cryptointr(void *); /* swi thread to dispatch ops */
|
|
static void cryptoret_softint(void *); /* kernel thread for callbacks*/
|
|
static int crypto_destroy(bool);
|
|
static int crypto_invoke(struct cryptop *crp, int hint);
|
|
static int crypto_kinvoke(struct cryptkop *krp, int hint);
|
|
|
|
static struct cryptocap *crypto_checkdriver_lock(u_int32_t);
|
|
static struct cryptocap *crypto_checkdriver_uninit(u_int32_t);
|
|
static struct cryptocap *crypto_checkdriver(u_int32_t);
|
|
static void crypto_driver_lock(struct cryptocap *);
|
|
static void crypto_driver_unlock(struct cryptocap *);
|
|
static void crypto_driver_clear(struct cryptocap *);
|
|
|
|
static int crypto_init_finalize(device_t);
|
|
|
|
static struct cryptostats cryptostats;
|
|
#ifdef CRYPTO_TIMING
|
|
static int crypto_timing = 0;
|
|
#endif
|
|
|
|
static struct sysctllog *sysctl_opencrypto_clog;
|
|
|
|
static int
|
|
crypto_crp_ret_qs_init(void)
|
|
{
|
|
int i, j;
|
|
|
|
crypto_crp_ret_qs_list = kmem_alloc(sizeof(struct crypto_crp_ret_qs *) * ncpu,
|
|
KM_NOSLEEP);
|
|
if (crypto_crp_ret_qs_list == NULL) {
|
|
printf("crypto_init: crypto_crp_qs_list\n");
|
|
return ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < ncpu; i++) {
|
|
struct crypto_crp_ret_qs *qs;
|
|
qs = kmem_alloc(sizeof(struct crypto_crp_ret_qs), KM_NOSLEEP);
|
|
if (qs == NULL)
|
|
break;
|
|
|
|
mutex_init(&qs->crp_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
|
|
qs->crp_ret_q_exit_flag = false;
|
|
|
|
TAILQ_INIT(&qs->crp_ret_q);
|
|
qs->crp_ret_q_len = 0;
|
|
qs->crp_ret_q_maxlen = CRYPTO_RET_Q_MAXLEN;
|
|
qs->crp_ret_q_drops = 0;
|
|
|
|
TAILQ_INIT(&qs->crp_ret_kq);
|
|
qs->crp_ret_kq_len = 0;
|
|
qs->crp_ret_kq_maxlen = CRYPTO_RET_KQ_MAXLEN;
|
|
qs->crp_ret_kq_drops = 0;
|
|
|
|
crypto_crp_ret_qs_list[i] = qs;
|
|
}
|
|
if (i == ncpu)
|
|
return 0;
|
|
|
|
for (j = 0; j < i; j++) {
|
|
struct crypto_crp_ret_qs *qs = crypto_crp_ret_qs_list[j];
|
|
|
|
mutex_destroy(&qs->crp_ret_q_mtx);
|
|
kmem_free(qs, sizeof(struct crypto_crp_ret_qs));
|
|
}
|
|
kmem_free(crypto_crp_ret_qs_list, sizeof(struct crypto_crp_ret_qs *) * ncpu);
|
|
|
|
return ENOMEM;
|
|
}
|
|
|
|
static int
|
|
crypto_init0(void)
|
|
{
|
|
int error;
|
|
|
|
mutex_init(&crypto_drv_mtx, MUTEX_DEFAULT, IPL_NONE);
|
|
cryptop_cache = pool_cache_init(sizeof(struct cryptop),
|
|
coherency_unit, 0, 0, "cryptop", NULL, IPL_NET, NULL, NULL, NULL);
|
|
cryptodesc_cache = pool_cache_init(sizeof(struct cryptodesc),
|
|
coherency_unit, 0, 0, "cryptdesc", NULL, IPL_NET, NULL, NULL, NULL);
|
|
cryptkop_cache = pool_cache_init(sizeof(struct cryptkop),
|
|
coherency_unit, 0, 0, "cryptkop", NULL, IPL_NET, NULL, NULL, NULL);
|
|
|
|
crypto_crp_qs_percpu = percpu_alloc(sizeof(struct crypto_crp_qs));
|
|
percpu_foreach(crypto_crp_qs_percpu, crypto_crp_qs_init_pc, NULL);
|
|
|
|
error = crypto_crp_ret_qs_init();
|
|
if (error) {
|
|
printf("crypto_init: cannot malloc ret_q list\n");
|
|
return ENOMEM;
|
|
}
|
|
|
|
crypto_drivers = kmem_zalloc(CRYPTO_DRIVERS_INITIAL *
|
|
sizeof(struct cryptocap), KM_NOSLEEP);
|
|
if (crypto_drivers == NULL) {
|
|
printf("crypto_init: cannot malloc driver table\n");
|
|
return ENOMEM;
|
|
}
|
|
crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
|
|
|
|
crypto_q_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, cryptointr, NULL);
|
|
if (crypto_q_si == NULL) {
|
|
printf("crypto_init: cannot establish request queue handler\n");
|
|
return crypto_destroy(false);
|
|
}
|
|
|
|
/*
|
|
* Some encryption devices (such as mvcesa) are attached before
|
|
* ipi_sysinit(). That causes an assertion in ipi_register() as
|
|
* crypto_ret_si softint uses SOFTINT_RCPU.
|
|
*/
|
|
if (config_finalize_register(NULL, crypto_init_finalize) != 0) {
|
|
printf("crypto_init: cannot register crypto_init_finalize\n");
|
|
return crypto_destroy(false);
|
|
}
|
|
|
|
sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
crypto_init_finalize(device_t self __unused)
|
|
{
|
|
|
|
crypto_ret_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE|SOFTINT_RCPU,
|
|
&cryptoret_softint, NULL);
|
|
KASSERT(crypto_ret_si != NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
crypto_init(void)
|
|
{
|
|
static ONCE_DECL(crypto_init_once);
|
|
|
|
return RUN_ONCE(&crypto_init_once, crypto_init0);
|
|
}
|
|
|
|
static int
|
|
crypto_destroy(bool exit_kthread)
|
|
{
|
|
int i;
|
|
|
|
if (exit_kthread) {
|
|
struct cryptocap *cap = NULL;
|
|
uint64_t where;
|
|
bool is_busy = false;
|
|
|
|
/* if we have any in-progress requests, don't unload */
|
|
percpu_foreach(crypto_crp_qs_percpu, crypto_crp_q_is_busy_pc,
|
|
&is_busy);
|
|
if (is_busy)
|
|
return EBUSY;
|
|
/* FIXME:
|
|
* prohibit enqueue to crp_q and crp_kq after here.
|
|
*/
|
|
|
|
mutex_enter(&crypto_drv_mtx);
|
|
for (i = 0; i < crypto_drivers_num; i++) {
|
|
cap = crypto_checkdriver(i);
|
|
if (cap == NULL)
|
|
continue;
|
|
if (cap->cc_sessions != 0) {
|
|
mutex_exit(&crypto_drv_mtx);
|
|
return EBUSY;
|
|
}
|
|
}
|
|
mutex_exit(&crypto_drv_mtx);
|
|
/* FIXME:
|
|
* prohibit touch crypto_drivers[] and each element after here.
|
|
*/
|
|
|
|
/*
|
|
* Ensure cryptoret_softint() is never scheduled and then wait
|
|
* for last softint_execute().
|
|
*/
|
|
for (i = 0; i < ncpu; i++) {
|
|
struct crypto_crp_ret_qs *qs;
|
|
struct cpu_info *ci = cpu_lookup(i);
|
|
|
|
qs = crypto_get_crp_ret_qs(ci);
|
|
qs->crp_ret_q_exit_flag = true;
|
|
crypto_put_crp_ret_qs(ci);
|
|
}
|
|
where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
|
|
xc_wait(where);
|
|
}
|
|
|
|
if (sysctl_opencrypto_clog != NULL)
|
|
sysctl_teardown(&sysctl_opencrypto_clog);
|
|
|
|
if (crypto_ret_si != NULL)
|
|
softint_disestablish(crypto_ret_si);
|
|
|
|
if (crypto_q_si != NULL)
|
|
softint_disestablish(crypto_q_si);
|
|
|
|
mutex_enter(&crypto_drv_mtx);
|
|
if (crypto_drivers != NULL)
|
|
kmem_free(crypto_drivers,
|
|
crypto_drivers_num * sizeof(struct cryptocap));
|
|
mutex_exit(&crypto_drv_mtx);
|
|
|
|
percpu_free(crypto_crp_qs_percpu, sizeof(struct crypto_crp_qs));
|
|
|
|
pool_cache_destroy(cryptop_cache);
|
|
pool_cache_destroy(cryptodesc_cache);
|
|
pool_cache_destroy(cryptkop_cache);
|
|
|
|
mutex_destroy(&crypto_drv_mtx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
crypto_driver_suitable(struct cryptocap *cap, struct cryptoini *cri)
|
|
{
|
|
struct cryptoini *cr;
|
|
|
|
for (cr = cri; cr; cr = cr->cri_next)
|
|
if (cap->cc_alg[cr->cri_alg] == 0) {
|
|
DPRINTF("alg %d not supported\n", cr->cri_alg);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#define CRYPTO_ACCEPT_HARDWARE 0x1
|
|
#define CRYPTO_ACCEPT_SOFTWARE 0x2
|
|
/*
|
|
* The algorithm we use here is pretty stupid; just use the
|
|
* first driver that supports all the algorithms we need.
|
|
* If there are multiple drivers we choose the driver with
|
|
* the fewest active sessions. We prefer hardware-backed
|
|
* drivers to software ones.
|
|
*
|
|
* XXX We need more smarts here (in real life too, but that's
|
|
* XXX another story altogether).
|
|
*/
|
|
static struct cryptocap *
|
|
crypto_select_driver_lock(struct cryptoini *cri, int hard)
|
|
{
|
|
u_int32_t hid;
|
|
int accept;
|
|
struct cryptocap *cap, *best;
|
|
|
|
best = NULL;
|
|
/*
|
|
* hard == 0 can use both hardware and software drivers.
|
|
* We use hardware drivers prior to software drivers, so search
|
|
* hardware drivers at first time.
|
|
*/
|
|
if (hard >= 0)
|
|
accept = CRYPTO_ACCEPT_HARDWARE;
|
|
else
|
|
accept = CRYPTO_ACCEPT_SOFTWARE;
|
|
again:
|
|
for (hid = 0; hid < crypto_drivers_num; hid++) {
|
|
cap = crypto_checkdriver(hid);
|
|
if (cap == NULL)
|
|
continue;
|
|
|
|
crypto_driver_lock(cap);
|
|
|
|
/*
|
|
* If it's not initialized or has remaining sessions
|
|
* referencing it, skip.
|
|
*/
|
|
if (cap->cc_newsession == NULL ||
|
|
(cap->cc_flags & CRYPTOCAP_F_CLEANUP)) {
|
|
crypto_driver_unlock(cap);
|
|
continue;
|
|
}
|
|
|
|
/* Hardware required -- ignore software drivers. */
|
|
if ((accept & CRYPTO_ACCEPT_SOFTWARE) == 0
|
|
&& (cap->cc_flags & CRYPTOCAP_F_SOFTWARE)) {
|
|
crypto_driver_unlock(cap);
|
|
continue;
|
|
}
|
|
/* Software required -- ignore hardware drivers. */
|
|
if ((accept & CRYPTO_ACCEPT_HARDWARE) == 0
|
|
&& (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) {
|
|
crypto_driver_unlock(cap);
|
|
continue;
|
|
}
|
|
|
|
/* See if all the algorithms are supported. */
|
|
if (crypto_driver_suitable(cap, cri)) {
|
|
if (best == NULL) {
|
|
/* keep holding crypto_driver_lock(cap) */
|
|
best = cap;
|
|
continue;
|
|
} else if (cap->cc_sessions < best->cc_sessions) {
|
|
crypto_driver_unlock(best);
|
|
/* keep holding crypto_driver_lock(cap) */
|
|
best = cap;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
crypto_driver_unlock(cap);
|
|
}
|
|
if (best == NULL && hard == 0
|
|
&& (accept & CRYPTO_ACCEPT_SOFTWARE) == 0) {
|
|
accept = CRYPTO_ACCEPT_SOFTWARE;
|
|
goto again;
|
|
}
|
|
|
|
return best;
|
|
}
|
|
|
|
/*
|
|
* Create a new session.
|
|
*/
|
|
int
|
|
crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
|
|
{
|
|
struct cryptocap *cap;
|
|
int err = EINVAL;
|
|
|
|
mutex_enter(&crypto_drv_mtx);
|
|
|
|
cap = crypto_select_driver_lock(cri, hard);
|
|
if (cap != NULL) {
|
|
u_int32_t hid, lid;
|
|
|
|
hid = cap - crypto_drivers;
|
|
/*
|
|
* Can't do everything in one session.
|
|
*
|
|
* XXX Fix this. We need to inject a "virtual" session layer right
|
|
* XXX about here.
|
|
*/
|
|
|
|
/* Call the driver initialization routine. */
|
|
lid = hid; /* Pass the driver ID. */
|
|
crypto_driver_unlock(cap);
|
|
err = cap->cc_newsession(cap->cc_arg, &lid, cri);
|
|
crypto_driver_lock(cap);
|
|
if (err == 0) {
|
|
(*sid) = hid;
|
|
(*sid) <<= 32;
|
|
(*sid) |= (lid & 0xffffffff);
|
|
(cap->cc_sessions)++;
|
|
} else {
|
|
DPRINTF("crypto_drivers[%d].cc_newsession() failed. error=%d\n",
|
|
hid, err);
|
|
}
|
|
crypto_driver_unlock(cap);
|
|
}
|
|
|
|
mutex_exit(&crypto_drv_mtx);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Delete an existing session (or a reserved session on an unregistered
|
|
* driver).
|
|
*/
|
|
int
|
|
crypto_freesession(u_int64_t sid)
|
|
{
|
|
struct cryptocap *cap;
|
|
int err = 0;
|
|
|
|
/* Determine two IDs. */
|
|
cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(sid));
|
|
if (cap == NULL)
|
|
return ENOENT;
|
|
|
|
if (cap->cc_sessions)
|
|
(cap->cc_sessions)--;
|
|
|
|
/* Call the driver cleanup routine, if available. */
|
|
if (cap->cc_freesession)
|
|
err = cap->cc_freesession(cap->cc_arg, sid);
|
|
else
|
|
err = 0;
|
|
|
|
/*
|
|
* If this was the last session of a driver marked as invalid,
|
|
* make the entry available for reuse.
|
|
*/
|
|
if ((cap->cc_flags & CRYPTOCAP_F_CLEANUP) && cap->cc_sessions == 0)
|
|
crypto_driver_clear(cap);
|
|
|
|
crypto_driver_unlock(cap);
|
|
return err;
|
|
}
|
|
|
|
static bool
|
|
crypto_checkdriver_initialized(const struct cryptocap *cap)
|
|
{
|
|
|
|
return cap->cc_process != NULL ||
|
|
(cap->cc_flags & CRYPTOCAP_F_CLEANUP) != 0 ||
|
|
cap->cc_sessions != 0;
|
|
}
|
|
|
|
/*
|
|
* Return an unused driver id. Used by drivers prior to registering
|
|
* support for the algorithms they handle.
|
|
*/
|
|
int32_t
|
|
crypto_get_driverid(u_int32_t flags)
|
|
{
|
|
struct cryptocap *newdrv;
|
|
struct cryptocap *cap = NULL;
|
|
int i;
|
|
|
|
(void)crypto_init(); /* XXX oh, this is foul! */
|
|
|
|
mutex_enter(&crypto_drv_mtx);
|
|
for (i = 0; i < crypto_drivers_num; i++) {
|
|
cap = crypto_checkdriver_uninit(i);
|
|
if (cap == NULL || crypto_checkdriver_initialized(cap))
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
/* Out of entries, allocate some more. */
|
|
if (cap == NULL) {
|
|
/* Be careful about wrap-around. */
|
|
if (2 * crypto_drivers_num <= crypto_drivers_num) {
|
|
mutex_exit(&crypto_drv_mtx);
|
|
printf("crypto: driver count wraparound!\n");
|
|
return -1;
|
|
}
|
|
|
|
newdrv = kmem_zalloc(2 * crypto_drivers_num *
|
|
sizeof(struct cryptocap), KM_NOSLEEP);
|
|
if (newdrv == NULL) {
|
|
mutex_exit(&crypto_drv_mtx);
|
|
printf("crypto: no space to expand driver table!\n");
|
|
return -1;
|
|
}
|
|
|
|
memcpy(newdrv, crypto_drivers,
|
|
crypto_drivers_num * sizeof(struct cryptocap));
|
|
kmem_free(crypto_drivers,
|
|
crypto_drivers_num * sizeof(struct cryptocap));
|
|
|
|
crypto_drivers_num *= 2;
|
|
crypto_drivers = newdrv;
|
|
|
|
cap = crypto_checkdriver_uninit(i);
|
|
KASSERT(cap != NULL);
|
|
}
|
|
|
|
/* NB: state is zero'd on free */
|
|
cap->cc_sessions = 1; /* Mark */
|
|
cap->cc_flags = flags;
|
|
mutex_init(&cap->cc_lock, MUTEX_DEFAULT, IPL_NET);
|
|
|
|
if (bootverbose)
|
|
printf("crypto: assign driver %u, flags %u\n", i, flags);
|
|
|
|
mutex_exit(&crypto_drv_mtx);
|
|
|
|
return i;
|
|
}
|
|
|
|
static struct cryptocap *
|
|
crypto_checkdriver_lock(u_int32_t hid)
|
|
{
|
|
struct cryptocap *cap;
|
|
|
|
KASSERT(crypto_drivers != NULL);
|
|
|
|
if (hid >= crypto_drivers_num)
|
|
return NULL;
|
|
|
|
cap = &crypto_drivers[hid];
|
|
mutex_enter(&cap->cc_lock);
|
|
return cap;
|
|
}
|
|
|
|
/*
|
|
* Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
|
|
* situations
|
|
* - crypto_drivers[] may not be allocated
|
|
* - crypto_drivers[hid] may not be initialized
|
|
*/
|
|
static struct cryptocap *
|
|
crypto_checkdriver_uninit(u_int32_t hid)
|
|
{
|
|
|
|
KASSERT(mutex_owned(&crypto_drv_mtx));
|
|
|
|
if (crypto_drivers == NULL)
|
|
return NULL;
|
|
|
|
return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
|
|
}
|
|
|
|
/*
|
|
* Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
|
|
* situations
|
|
* - crypto_drivers[] may not be allocated
|
|
* - crypto_drivers[hid] may not be initialized
|
|
*/
|
|
static struct cryptocap *
|
|
crypto_checkdriver(u_int32_t hid)
|
|
{
|
|
|
|
KASSERT(mutex_owned(&crypto_drv_mtx));
|
|
|
|
if (crypto_drivers == NULL || hid >= crypto_drivers_num)
|
|
return NULL;
|
|
|
|
struct cryptocap *cap = &crypto_drivers[hid];
|
|
return crypto_checkdriver_initialized(cap) ? cap : NULL;
|
|
}
|
|
|
|
static inline void
|
|
crypto_driver_lock(struct cryptocap *cap)
|
|
{
|
|
|
|
KASSERT(cap != NULL);
|
|
|
|
mutex_enter(&cap->cc_lock);
|
|
}
|
|
|
|
static inline void
|
|
crypto_driver_unlock(struct cryptocap *cap)
|
|
{
|
|
|
|
KASSERT(cap != NULL);
|
|
|
|
mutex_exit(&cap->cc_lock);
|
|
}
|
|
|
|
static void
|
|
crypto_driver_clear(struct cryptocap *cap)
|
|
{
|
|
|
|
if (cap == NULL)
|
|
return;
|
|
|
|
KASSERT(mutex_owned(&cap->cc_lock));
|
|
|
|
cap->cc_sessions = 0;
|
|
memset(&cap->cc_max_op_len, 0, sizeof(cap->cc_max_op_len));
|
|
memset(&cap->cc_alg, 0, sizeof(cap->cc_alg));
|
|
memset(&cap->cc_kalg, 0, sizeof(cap->cc_kalg));
|
|
cap->cc_flags = 0;
|
|
cap->cc_qblocked = 0;
|
|
cap->cc_kqblocked = 0;
|
|
|
|
cap->cc_arg = NULL;
|
|
cap->cc_newsession = NULL;
|
|
cap->cc_process = NULL;
|
|
cap->cc_freesession = NULL;
|
|
cap->cc_kprocess = NULL;
|
|
}
|
|
|
|
/*
|
|
* Register support for a key-related algorithm. This routine
|
|
* is called once for each algorithm supported a driver.
|
|
*/
|
|
int
|
|
crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
|
|
int (*kprocess)(void *, struct cryptkop *, int),
|
|
void *karg)
|
|
{
|
|
struct cryptocap *cap;
|
|
int err;
|
|
|
|
mutex_enter(&crypto_drv_mtx);
|
|
|
|
cap = crypto_checkdriver_lock(driverid);
|
|
if (cap != NULL &&
|
|
(CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
|
|
/*
|
|
* XXX Do some performance testing to determine placing.
|
|
* XXX We probably need an auxiliary data structure that
|
|
* XXX describes relative performances.
|
|
*/
|
|
|
|
cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
|
|
if (bootverbose) {
|
|
printf("crypto: driver %u registers key alg %u "
|
|
" flags %u\n",
|
|
driverid,
|
|
kalg,
|
|
flags
|
|
);
|
|
}
|
|
|
|
if (cap->cc_kprocess == NULL) {
|
|
cap->cc_karg = karg;
|
|
cap->cc_kprocess = kprocess;
|
|
}
|
|
err = 0;
|
|
} else
|
|
err = EINVAL;
|
|
|
|
mutex_exit(&crypto_drv_mtx);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Register support for a non-key-related algorithm. This routine
|
|
* is called once for each such algorithm supported by a driver.
|
|
*/
|
|
int
|
|
crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
|
|
u_int32_t flags,
|
|
int (*newses)(void *, u_int32_t*, struct cryptoini*),
|
|
int (*freeses)(void *, u_int64_t),
|
|
int (*process)(void *, struct cryptop *, int),
|
|
void *arg)
|
|
{
|
|
struct cryptocap *cap;
|
|
int err;
|
|
|
|
cap = crypto_checkdriver_lock(driverid);
|
|
if (cap == NULL)
|
|
return EINVAL;
|
|
|
|
/* NB: algorithms are in the range [1..max] */
|
|
if (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) {
|
|
/*
|
|
* XXX Do some performance testing to determine placing.
|
|
* XXX We probably need an auxiliary data structure that
|
|
* XXX describes relative performances.
|
|
*/
|
|
|
|
cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
|
|
cap->cc_max_op_len[alg] = maxoplen;
|
|
if (bootverbose) {
|
|
printf("crypto: driver %u registers alg %u "
|
|
"flags %u maxoplen %u\n",
|
|
driverid,
|
|
alg,
|
|
flags,
|
|
maxoplen
|
|
);
|
|
}
|
|
|
|
if (cap->cc_process == NULL) {
|
|
cap->cc_arg = arg;
|
|
cap->cc_newsession = newses;
|
|
cap->cc_process = process;
|
|
cap->cc_freesession = freeses;
|
|
cap->cc_sessions = 0; /* Unmark */
|
|
}
|
|
err = 0;
|
|
} else
|
|
err = EINVAL;
|
|
|
|
crypto_driver_unlock(cap);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
crypto_unregister_locked(struct cryptocap *cap, int alg, bool all)
|
|
{
|
|
int i;
|
|
u_int32_t ses;
|
|
bool lastalg = true;
|
|
|
|
KASSERT(cap != NULL);
|
|
KASSERT(mutex_owned(&cap->cc_lock));
|
|
|
|
if (alg < CRYPTO_ALGORITHM_MIN || CRYPTO_ALGORITHM_MAX < alg)
|
|
return EINVAL;
|
|
|
|
if (!all && cap->cc_alg[alg] == 0)
|
|
return EINVAL;
|
|
|
|
cap->cc_alg[alg] = 0;
|
|
cap->cc_max_op_len[alg] = 0;
|
|
|
|
if (all) {
|
|
if (alg != CRYPTO_ALGORITHM_MAX)
|
|
lastalg = false;
|
|
} else {
|
|
/* Was this the last algorithm ? */
|
|
for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++)
|
|
if (cap->cc_alg[i] != 0) {
|
|
lastalg = false;
|
|
break;
|
|
}
|
|
}
|
|
if (lastalg) {
|
|
ses = cap->cc_sessions;
|
|
crypto_driver_clear(cap);
|
|
if (ses != 0) {
|
|
/*
|
|
* If there are pending sessions, just mark as invalid.
|
|
*/
|
|
cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
|
|
cap->cc_sessions = ses;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Unregister a crypto driver. If there are pending sessions using it,
|
|
* leave enough information around so that subsequent calls using those
|
|
* sessions will correctly detect the driver has been unregistered and
|
|
* reroute requests.
|
|
*/
|
|
int
|
|
crypto_unregister(u_int32_t driverid, int alg)
|
|
{
|
|
int err;
|
|
struct cryptocap *cap;
|
|
|
|
cap = crypto_checkdriver_lock(driverid);
|
|
err = crypto_unregister_locked(cap, alg, false);
|
|
crypto_driver_unlock(cap);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Unregister all algorithms associated with a crypto driver.
|
|
* If there are pending sessions using it, leave enough information
|
|
* around so that subsequent calls using those sessions will
|
|
* correctly detect the driver has been unregistered and reroute
|
|
* requests.
|
|
*/
|
|
int
|
|
crypto_unregister_all(u_int32_t driverid)
|
|
{
|
|
int err, i;
|
|
struct cryptocap *cap;
|
|
|
|
cap = crypto_checkdriver_lock(driverid);
|
|
for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
|
|
err = crypto_unregister_locked(cap, i, true);
|
|
if (err)
|
|
break;
|
|
}
|
|
crypto_driver_unlock(cap);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Clear blockage on a driver. The what parameter indicates whether
|
|
* the driver is now ready for cryptop's and/or cryptokop's.
|
|
*/
|
|
int
|
|
crypto_unblock(u_int32_t driverid, int what)
|
|
{
|
|
struct cryptocap *cap;
|
|
int needwakeup = 0;
|
|
|
|
cap = crypto_checkdriver_lock(driverid);
|
|
if (cap == NULL)
|
|
return EINVAL;
|
|
|
|
if (what & CRYPTO_SYMQ) {
|
|
needwakeup |= cap->cc_qblocked;
|
|
cap->cc_qblocked = 0;
|
|
}
|
|
if (what & CRYPTO_ASYMQ) {
|
|
needwakeup |= cap->cc_kqblocked;
|
|
cap->cc_kqblocked = 0;
|
|
}
|
|
crypto_driver_unlock(cap);
|
|
if (needwakeup) {
|
|
kpreempt_disable();
|
|
softint_schedule(crypto_q_si);
|
|
kpreempt_enable();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Dispatch a crypto request to a driver or queue
|
|
* it, to be processed by the kernel thread.
|
|
*/
|
|
int
|
|
crypto_dispatch(struct cryptop *crp)
|
|
{
|
|
int result, s;
|
|
struct cryptocap *cap;
|
|
struct crypto_crp_qs *crp_qs;
|
|
struct crypto_crp_q *crp_q;
|
|
|
|
KASSERT(crp != NULL);
|
|
|
|
DPRINTF("crp %p, alg %d\n", crp, crp->crp_desc->crd_alg);
|
|
|
|
cryptostats.cs_ops++;
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing)
|
|
nanouptime(&crp->crp_tstamp);
|
|
#endif
|
|
|
|
if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
|
|
int wasempty;
|
|
/*
|
|
* Caller marked the request as ``ok to delay'';
|
|
* queue it for the swi thread. This is desirable
|
|
* when the operation is low priority and/or suitable
|
|
* for batching.
|
|
*
|
|
* don't care list order in batch job.
|
|
*/
|
|
crp_qs = crypto_get_crp_qs(&s);
|
|
crp_q = crp_qs->crp_q;
|
|
wasempty = TAILQ_EMPTY(crp_q);
|
|
TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
|
|
crypto_put_crp_qs(&s);
|
|
crp_q = NULL;
|
|
if (wasempty) {
|
|
kpreempt_disable();
|
|
softint_schedule(crypto_q_si);
|
|
kpreempt_enable();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
crp_qs = crypto_get_crp_qs(&s);
|
|
crp_q = crp_qs->crp_q;
|
|
cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
|
|
/*
|
|
* TODO:
|
|
* If we can ensure the driver has been valid until the driver is
|
|
* done crypto_unregister(), this migrate operation is not required.
|
|
*/
|
|
if (cap == NULL) {
|
|
/*
|
|
* The driver must be detached, so this request will migrate
|
|
* to other drivers in cryptointr() later.
|
|
*/
|
|
TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
|
|
result = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (cap->cc_qblocked != 0) {
|
|
crypto_driver_unlock(cap);
|
|
/*
|
|
* The driver is blocked, just queue the op until
|
|
* it unblocks and the swi thread gets kicked.
|
|
*/
|
|
TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
|
|
result = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Caller marked the request to be processed
|
|
* immediately; dispatch it directly to the
|
|
* driver unless the driver is currently blocked.
|
|
*/
|
|
crypto_driver_unlock(cap);
|
|
result = crypto_invoke(crp, 0);
|
|
if (result == ERESTART) {
|
|
/*
|
|
* The driver ran out of resources, mark the
|
|
* driver ``blocked'' for cryptop's and put
|
|
* the op on the queue.
|
|
*/
|
|
crypto_driver_lock(cap);
|
|
cap->cc_qblocked = 1;
|
|
crypto_driver_unlock(cap);
|
|
TAILQ_INSERT_HEAD(crp_q, crp, crp_next);
|
|
cryptostats.cs_blocks++;
|
|
|
|
/*
|
|
* The crp is enqueued to crp_q, that is,
|
|
* no error occurs. So, this function should
|
|
* not return error.
|
|
*/
|
|
result = 0;
|
|
}
|
|
|
|
out:
|
|
crypto_put_crp_qs(&s);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Add an asymetric crypto request to a queue,
|
|
* to be processed by the kernel thread.
|
|
*/
|
|
int
|
|
crypto_kdispatch(struct cryptkop *krp)
|
|
{
|
|
int result, s;
|
|
struct cryptocap *cap;
|
|
struct crypto_crp_qs *crp_qs;
|
|
struct crypto_crp_kq *crp_kq;
|
|
|
|
KASSERT(krp != NULL);
|
|
|
|
cryptostats.cs_kops++;
|
|
|
|
crp_qs = crypto_get_crp_qs(&s);
|
|
crp_kq = crp_qs->crp_kq;
|
|
cap = crypto_checkdriver_lock(krp->krp_hid);
|
|
/*
|
|
* TODO:
|
|
* If we can ensure the driver has been valid until the driver is
|
|
* done crypto_unregister(), this migrate operation is not required.
|
|
*/
|
|
if (cap == NULL) {
|
|
TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
|
|
result = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (cap->cc_kqblocked != 0) {
|
|
crypto_driver_unlock(cap);
|
|
/*
|
|
* The driver is blocked, just queue the op until
|
|
* it unblocks and the swi thread gets kicked.
|
|
*/
|
|
TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
|
|
result = 0;
|
|
goto out;
|
|
}
|
|
|
|
crypto_driver_unlock(cap);
|
|
result = crypto_kinvoke(krp, 0);
|
|
if (result == ERESTART) {
|
|
/*
|
|
* The driver ran out of resources, mark the
|
|
* driver ``blocked'' for cryptop's and put
|
|
* the op on the queue.
|
|
*/
|
|
crypto_driver_lock(cap);
|
|
cap->cc_kqblocked = 1;
|
|
crypto_driver_unlock(cap);
|
|
TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
|
|
cryptostats.cs_kblocks++;
|
|
|
|
/*
|
|
* The krp is enqueued to crp_kq, that is,
|
|
* no error occurs. So, this function should
|
|
* not return error.
|
|
*/
|
|
result = 0;
|
|
}
|
|
|
|
out:
|
|
crypto_put_crp_qs(&s);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Dispatch an assymetric crypto request to the appropriate crypto devices.
|
|
*/
|
|
static int
|
|
crypto_kinvoke(struct cryptkop *krp, int hint)
|
|
{
|
|
struct cryptocap *cap = NULL;
|
|
u_int32_t hid;
|
|
int error;
|
|
|
|
KASSERT(krp != NULL);
|
|
|
|
/* Sanity checks. */
|
|
if (krp->krp_callback == NULL) {
|
|
cv_destroy(&krp->krp_cv);
|
|
crypto_kfreereq(krp);
|
|
return EINVAL;
|
|
}
|
|
|
|
mutex_enter(&crypto_drv_mtx);
|
|
for (hid = 0; hid < crypto_drivers_num; hid++) {
|
|
cap = crypto_checkdriver(hid);
|
|
if (cap == NULL)
|
|
continue;
|
|
crypto_driver_lock(cap);
|
|
if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
|
|
crypto_devallowsoft == 0) {
|
|
crypto_driver_unlock(cap);
|
|
continue;
|
|
}
|
|
if (cap->cc_kprocess == NULL) {
|
|
crypto_driver_unlock(cap);
|
|
continue;
|
|
}
|
|
if ((cap->cc_kalg[krp->krp_op] &
|
|
CRYPTO_ALG_FLAG_SUPPORTED) == 0) {
|
|
crypto_driver_unlock(cap);
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
mutex_exit(&crypto_drv_mtx);
|
|
if (cap != NULL) {
|
|
int (*process)(void *, struct cryptkop *, int);
|
|
void *arg;
|
|
|
|
process = cap->cc_kprocess;
|
|
arg = cap->cc_karg;
|
|
krp->krp_hid = hid;
|
|
krp->reqcpu = curcpu();
|
|
crypto_driver_unlock(cap);
|
|
error = (*process)(arg, krp, hint);
|
|
} else {
|
|
error = ENODEV;
|
|
}
|
|
|
|
if (error) {
|
|
krp->krp_status = error;
|
|
crypto_kdone(krp);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
static void
|
|
crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
|
|
{
|
|
struct timespec now, t;
|
|
|
|
nanouptime(&now);
|
|
t.tv_sec = now.tv_sec - tv->tv_sec;
|
|
t.tv_nsec = now.tv_nsec - tv->tv_nsec;
|
|
if (t.tv_nsec < 0) {
|
|
t.tv_sec--;
|
|
t.tv_nsec += 1000000000;
|
|
}
|
|
timespecadd(&ts->acc, &t, &t);
|
|
if (timespeccmp(&t, &ts->min, <))
|
|
ts->min = t;
|
|
if (timespeccmp(&t, &ts->max, >))
|
|
ts->max = t;
|
|
ts->count++;
|
|
|
|
*tv = now;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Dispatch a crypto request to the appropriate crypto devices.
|
|
*/
|
|
static int
|
|
crypto_invoke(struct cryptop *crp, int hint)
|
|
{
|
|
struct cryptocap *cap;
|
|
|
|
KASSERT(crp != NULL);
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing)
|
|
crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
|
|
#endif
|
|
/* Sanity checks. */
|
|
if (crp->crp_callback == NULL) {
|
|
return EINVAL;
|
|
}
|
|
if (crp->crp_desc == NULL) {
|
|
crp->crp_etype = EINVAL;
|
|
crypto_done(crp);
|
|
return 0;
|
|
}
|
|
|
|
cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
|
|
if (cap != NULL && (cap->cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
|
|
int (*process)(void *, struct cryptop *, int);
|
|
void *arg;
|
|
|
|
process = cap->cc_process;
|
|
arg = cap->cc_arg;
|
|
crp->reqcpu = curcpu();
|
|
|
|
/*
|
|
* Invoke the driver to process the request.
|
|
*/
|
|
DPRINTF("calling process for %p\n", crp);
|
|
crypto_driver_unlock(cap);
|
|
return (*process)(arg, crp, hint);
|
|
} else {
|
|
struct cryptodesc *crd;
|
|
u_int64_t nid = 0;
|
|
|
|
if (cap != NULL)
|
|
crypto_driver_unlock(cap);
|
|
|
|
/*
|
|
* Driver has unregistered; migrate the session and return
|
|
* an error to the caller so they'll resubmit the op.
|
|
*/
|
|
crypto_freesession(crp->crp_sid);
|
|
|
|
for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
|
|
crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
|
|
|
|
if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
|
|
crp->crp_sid = nid;
|
|
|
|
crp->crp_etype = EAGAIN;
|
|
|
|
crypto_done(crp);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Release a set of crypto descriptors.
|
|
*/
|
|
void
|
|
crypto_freereq(struct cryptop *crp)
|
|
{
|
|
struct cryptodesc *crd;
|
|
|
|
if (crp == NULL)
|
|
return;
|
|
DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
|
|
|
|
/* sanity check */
|
|
if (crp->crp_flags & CRYPTO_F_ONRETQ) {
|
|
panic("crypto_freereq() freeing crp on RETQ\n");
|
|
}
|
|
|
|
while ((crd = crp->crp_desc) != NULL) {
|
|
crp->crp_desc = crd->crd_next;
|
|
pool_cache_put(cryptodesc_cache, crd);
|
|
}
|
|
pool_cache_put(cryptop_cache, crp);
|
|
}
|
|
|
|
/*
|
|
* Acquire a set of crypto descriptors.
|
|
*/
|
|
struct cryptop *
|
|
crypto_getreq(int num)
|
|
{
|
|
struct cryptodesc *crd;
|
|
struct cryptop *crp;
|
|
struct crypto_crp_ret_qs *qs;
|
|
|
|
/*
|
|
* When crp_ret_q is full, we restrict here to avoid crp_ret_q overflow
|
|
* by error callback.
|
|
*/
|
|
qs = crypto_get_crp_ret_qs(curcpu());
|
|
if (qs->crp_ret_q_maxlen > 0
|
|
&& qs->crp_ret_q_len > qs->crp_ret_q_maxlen) {
|
|
qs->crp_ret_q_drops++;
|
|
crypto_put_crp_ret_qs(curcpu());
|
|
return NULL;
|
|
}
|
|
crypto_put_crp_ret_qs(curcpu());
|
|
|
|
crp = pool_cache_get(cryptop_cache, PR_NOWAIT);
|
|
if (crp == NULL) {
|
|
return NULL;
|
|
}
|
|
memset(crp, 0, sizeof(struct cryptop));
|
|
|
|
while (num--) {
|
|
crd = pool_cache_get(cryptodesc_cache, PR_NOWAIT);
|
|
if (crd == NULL) {
|
|
crypto_freereq(crp);
|
|
return NULL;
|
|
}
|
|
|
|
memset(crd, 0, sizeof(struct cryptodesc));
|
|
crd->crd_next = crp->crp_desc;
|
|
crp->crp_desc = crd;
|
|
}
|
|
|
|
return crp;
|
|
}
|
|
|
|
/*
|
|
* Release a set of asymmetric crypto descriptors.
|
|
* Currently, support one descriptor only.
|
|
*/
|
|
void
|
|
crypto_kfreereq(struct cryptkop *krp)
|
|
{
|
|
|
|
if (krp == NULL)
|
|
return;
|
|
|
|
DPRINTF("krp %p\n", krp);
|
|
|
|
/* sanity check */
|
|
if (krp->krp_flags & CRYPTO_F_ONRETQ) {
|
|
panic("crypto_kfreereq() freeing krp on RETQ\n");
|
|
}
|
|
|
|
pool_cache_put(cryptkop_cache, krp);
|
|
}
|
|
|
|
/*
|
|
* Acquire a set of asymmetric crypto descriptors.
|
|
* Currently, support one descriptor only.
|
|
*/
|
|
struct cryptkop *
|
|
crypto_kgetreq(int num __unused, int prflags)
|
|
{
|
|
struct cryptkop *krp;
|
|
struct crypto_crp_ret_qs *qs;
|
|
|
|
/*
|
|
* When crp_ret_kq is full, we restrict here to avoid crp_ret_kq
|
|
* overflow by error callback.
|
|
*/
|
|
qs = crypto_get_crp_ret_qs(curcpu());
|
|
if (qs->crp_ret_kq_maxlen > 0
|
|
&& qs->crp_ret_kq_len > qs->crp_ret_kq_maxlen) {
|
|
qs->crp_ret_kq_drops++;
|
|
crypto_put_crp_ret_qs(curcpu());
|
|
return NULL;
|
|
}
|
|
crypto_put_crp_ret_qs(curcpu());
|
|
|
|
krp = pool_cache_get(cryptkop_cache, prflags);
|
|
if (krp == NULL) {
|
|
return NULL;
|
|
}
|
|
memset(krp, 0, sizeof(struct cryptkop));
|
|
|
|
return krp;
|
|
}
|
|
|
|
/*
|
|
* Invoke the callback on behalf of the driver.
|
|
*/
|
|
void
|
|
crypto_done(struct cryptop *crp)
|
|
{
|
|
|
|
KASSERT(crp != NULL);
|
|
|
|
if (crp->crp_etype != 0)
|
|
cryptostats.cs_errs++;
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing)
|
|
crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
|
|
#endif
|
|
DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
|
|
|
|
/*
|
|
* Normal case; queue the callback for the thread.
|
|
*
|
|
* The return queue is manipulated by the swi thread
|
|
* and, potentially, by crypto device drivers calling
|
|
* back to mark operations completed. Thus we need
|
|
* to mask both while manipulating the return queue.
|
|
*/
|
|
if (crp->crp_flags & CRYPTO_F_CBIMM) {
|
|
/*
|
|
* Do the callback directly. This is ok when the
|
|
* callback routine does very little (e.g. the
|
|
* /dev/crypto callback method just does a wakeup).
|
|
*/
|
|
crp->crp_flags |= CRYPTO_F_DONE;
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing) {
|
|
/*
|
|
* NB: We must copy the timestamp before
|
|
* doing the callback as the cryptop is
|
|
* likely to be reclaimed.
|
|
*/
|
|
struct timespec t = crp->crp_tstamp;
|
|
crypto_tstat(&cryptostats.cs_cb, &t);
|
|
crp->crp_callback(crp);
|
|
crypto_tstat(&cryptostats.cs_finis, &t);
|
|
} else
|
|
#endif
|
|
crp->crp_callback(crp);
|
|
} else {
|
|
crp->crp_flags |= CRYPTO_F_DONE;
|
|
#if 0
|
|
if (crp->crp_flags & CRYPTO_F_USER) {
|
|
/*
|
|
* TODO:
|
|
* If crp->crp_flags & CRYPTO_F_USER and the used
|
|
* encryption driver does all the processing in
|
|
* the same context, we can skip enqueueing crp_ret_q
|
|
* and softint_schedule(crypto_ret_si).
|
|
*/
|
|
DPRINTF("lid[%u]: crp %p CRYPTO_F_USER\n",
|
|
CRYPTO_SESID2LID(crp->crp_sid), crp);
|
|
} else
|
|
#endif
|
|
{
|
|
int wasempty;
|
|
struct crypto_crp_ret_qs *qs;
|
|
struct crypto_crp_ret_q *crp_ret_q;;
|
|
|
|
qs = crypto_get_crp_ret_qs(crp->reqcpu);
|
|
crp_ret_q = &qs->crp_ret_q;
|
|
wasempty = TAILQ_EMPTY(crp_ret_q);
|
|
DPRINTF("lid[%u]: queueing %p\n",
|
|
CRYPTO_SESID2LID(crp->crp_sid), crp);
|
|
crp->crp_flags |= CRYPTO_F_ONRETQ;
|
|
TAILQ_INSERT_TAIL(crp_ret_q, crp, crp_next);
|
|
qs->crp_ret_q_len++;
|
|
if (wasempty && !qs->crp_ret_q_exit_flag) {
|
|
DPRINTF("lid[%u]: waking cryptoret,"
|
|
"crp %p hit empty queue\n.",
|
|
CRYPTO_SESID2LID(crp->crp_sid), crp);
|
|
softint_schedule_cpu(crypto_ret_si, crp->reqcpu);
|
|
}
|
|
crypto_put_crp_ret_qs(crp->reqcpu);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invoke the callback on behalf of the driver.
|
|
*/
|
|
void
|
|
crypto_kdone(struct cryptkop *krp)
|
|
{
|
|
|
|
KASSERT(krp != NULL);
|
|
|
|
if (krp->krp_status != 0)
|
|
cryptostats.cs_kerrs++;
|
|
|
|
krp->krp_flags |= CRYPTO_F_DONE;
|
|
|
|
/*
|
|
* The return queue is manipulated by the swi thread
|
|
* and, potentially, by crypto device drivers calling
|
|
* back to mark operations completed. Thus we need
|
|
* to mask both while manipulating the return queue.
|
|
*/
|
|
if (krp->krp_flags & CRYPTO_F_CBIMM) {
|
|
krp->krp_callback(krp);
|
|
} else {
|
|
int wasempty;
|
|
struct crypto_crp_ret_qs *qs;
|
|
struct crypto_crp_ret_kq *crp_ret_kq;;
|
|
|
|
qs = crypto_get_crp_ret_qs(krp->reqcpu);
|
|
crp_ret_kq = &qs->crp_ret_kq;
|
|
|
|
wasempty = TAILQ_EMPTY(crp_ret_kq);
|
|
krp->krp_flags |= CRYPTO_F_ONRETQ;
|
|
TAILQ_INSERT_TAIL(crp_ret_kq, krp, krp_next);
|
|
qs->crp_ret_kq_len++;
|
|
if (wasempty && !qs->crp_ret_q_exit_flag)
|
|
softint_schedule_cpu(crypto_ret_si, krp->reqcpu);
|
|
crypto_put_crp_ret_qs(krp->reqcpu);
|
|
}
|
|
}
|
|
|
|
int
|
|
crypto_getfeat(int *featp)
|
|
{
|
|
|
|
if (crypto_userasymcrypto == 0) {
|
|
*featp = 0;
|
|
return 0;
|
|
}
|
|
|
|
mutex_enter(&crypto_drv_mtx);
|
|
|
|
int feat = 0;
|
|
for (int hid = 0; hid < crypto_drivers_num; hid++) {
|
|
struct cryptocap *cap;
|
|
cap = crypto_checkdriver(hid);
|
|
if (cap == NULL)
|
|
continue;
|
|
|
|
crypto_driver_lock(cap);
|
|
|
|
if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
|
|
crypto_devallowsoft == 0)
|
|
goto unlock;
|
|
|
|
if (cap->cc_kprocess == NULL)
|
|
goto unlock;
|
|
|
|
for (int kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
|
|
if ((cap->cc_kalg[kalg] &
|
|
CRYPTO_ALG_FLAG_SUPPORTED) != 0)
|
|
feat |= 1 << kalg;
|
|
|
|
unlock: crypto_driver_unlock(cap);
|
|
}
|
|
|
|
mutex_exit(&crypto_drv_mtx);
|
|
*featp = feat;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Software interrupt thread to dispatch crypto requests.
|
|
*/
|
|
static void
|
|
cryptointr(void *arg __unused)
|
|
{
|
|
struct cryptop *crp, *submit, *cnext;
|
|
struct cryptkop *krp, *knext;
|
|
struct cryptocap *cap;
|
|
struct crypto_crp_qs *crp_qs;
|
|
struct crypto_crp_q *crp_q;
|
|
struct crypto_crp_kq *crp_kq;
|
|
int result, hint, s;
|
|
|
|
cryptostats.cs_intrs++;
|
|
crp_qs = crypto_get_crp_qs(&s);
|
|
crp_q = crp_qs->crp_q;
|
|
crp_kq = crp_qs->crp_kq;
|
|
do {
|
|
/*
|
|
* Find the first element in the queue that can be
|
|
* processed and look-ahead to see if multiple ops
|
|
* are ready for the same driver.
|
|
*/
|
|
submit = NULL;
|
|
hint = 0;
|
|
TAILQ_FOREACH_SAFE(crp, crp_q, crp_next, cnext) {
|
|
u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
|
|
cap = crypto_checkdriver_lock(hid);
|
|
if (cap == NULL || cap->cc_process == NULL) {
|
|
if (cap != NULL)
|
|
crypto_driver_unlock(cap);
|
|
/* Op needs to be migrated, process it. */
|
|
submit = crp;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* skip blocked crp regardless of CRYPTO_F_BATCH
|
|
*/
|
|
if (cap->cc_qblocked != 0) {
|
|
crypto_driver_unlock(cap);
|
|
continue;
|
|
}
|
|
crypto_driver_unlock(cap);
|
|
|
|
/*
|
|
* skip batch crp until the end of crp_q
|
|
*/
|
|
if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
|
|
if (submit == NULL) {
|
|
submit = crp;
|
|
} else {
|
|
if (CRYPTO_SESID2HID(submit->crp_sid)
|
|
== hid)
|
|
hint = CRYPTO_HINT_MORE;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* found first crp which is neither blocked nor batch.
|
|
*/
|
|
submit = crp;
|
|
/*
|
|
* batch crp can be processed much later, so clear hint.
|
|
*/
|
|
hint = 0;
|
|
break;
|
|
}
|
|
if (submit != NULL) {
|
|
TAILQ_REMOVE(crp_q, submit, crp_next);
|
|
result = crypto_invoke(submit, hint);
|
|
/* we must take here as the TAILQ op or kinvoke
|
|
may need this mutex below. sigh. */
|
|
if (result == ERESTART) {
|
|
/*
|
|
* The driver ran out of resources, mark the
|
|
* driver ``blocked'' for cryptop's and put
|
|
* the request back in the queue. It would
|
|
* best to put the request back where we got
|
|
* it but that's hard so for now we put it
|
|
* at the front. This should be ok; putting
|
|
* it at the end does not work.
|
|
*/
|
|
/* validate sid again */
|
|
cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(submit->crp_sid));
|
|
if (cap == NULL) {
|
|
/* migrate again, sigh... */
|
|
TAILQ_INSERT_TAIL(crp_q, submit, crp_next);
|
|
} else {
|
|
cap->cc_qblocked = 1;
|
|
crypto_driver_unlock(cap);
|
|
TAILQ_INSERT_HEAD(crp_q, submit, crp_next);
|
|
cryptostats.cs_blocks++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* As above, but for key ops */
|
|
TAILQ_FOREACH_SAFE(krp, crp_kq, krp_next, knext) {
|
|
cap = crypto_checkdriver_lock(krp->krp_hid);
|
|
if (cap == NULL || cap->cc_kprocess == NULL) {
|
|
if (cap != NULL)
|
|
crypto_driver_unlock(cap);
|
|
/* Op needs to be migrated, process it. */
|
|
break;
|
|
}
|
|
if (!cap->cc_kqblocked) {
|
|
crypto_driver_unlock(cap);
|
|
break;
|
|
}
|
|
crypto_driver_unlock(cap);
|
|
}
|
|
if (krp != NULL) {
|
|
TAILQ_REMOVE(crp_kq, krp, krp_next);
|
|
result = crypto_kinvoke(krp, 0);
|
|
/* the next iteration will want the mutex. :-/ */
|
|
if (result == ERESTART) {
|
|
/*
|
|
* The driver ran out of resources, mark the
|
|
* driver ``blocked'' for cryptkop's and put
|
|
* the request back in the queue. It would
|
|
* best to put the request back where we got
|
|
* it but that's hard so for now we put it
|
|
* at the front. This should be ok; putting
|
|
* it at the end does not work.
|
|
*/
|
|
/* validate sid again */
|
|
cap = crypto_checkdriver_lock(krp->krp_hid);
|
|
if (cap == NULL) {
|
|
/* migrate again, sigh... */
|
|
TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
|
|
} else {
|
|
cap->cc_kqblocked = 1;
|
|
crypto_driver_unlock(cap);
|
|
TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
|
|
cryptostats.cs_kblocks++;
|
|
}
|
|
}
|
|
}
|
|
} while (submit != NULL || krp != NULL);
|
|
crypto_put_crp_qs(&s);
|
|
}
|
|
|
|
/*
|
|
* softint handler to do callbacks.
|
|
*/
|
|
static void
|
|
cryptoret_softint(void *arg __unused)
|
|
{
|
|
struct crypto_crp_ret_qs *qs;
|
|
struct crypto_crp_ret_q *crp_ret_q;;
|
|
struct crypto_crp_ret_kq *crp_ret_kq;;
|
|
|
|
qs = crypto_get_crp_ret_qs(curcpu());
|
|
crp_ret_q = &qs->crp_ret_q;
|
|
crp_ret_kq = &qs->crp_ret_kq;
|
|
for (;;) {
|
|
struct cryptop *crp;
|
|
struct cryptkop *krp;
|
|
|
|
crp = TAILQ_FIRST(crp_ret_q);
|
|
if (crp != NULL) {
|
|
TAILQ_REMOVE(crp_ret_q, crp, crp_next);
|
|
qs->crp_ret_q_len--;
|
|
crp->crp_flags &= ~CRYPTO_F_ONRETQ;
|
|
}
|
|
krp = TAILQ_FIRST(crp_ret_kq);
|
|
if (krp != NULL) {
|
|
TAILQ_REMOVE(crp_ret_kq, krp, krp_next);
|
|
qs->crp_ret_q_len--;
|
|
krp->krp_flags &= ~CRYPTO_F_ONRETQ;
|
|
}
|
|
|
|
/* drop before calling any callbacks. */
|
|
if (crp == NULL && krp == NULL)
|
|
break;
|
|
|
|
mutex_spin_exit(&qs->crp_ret_q_mtx);
|
|
if (crp != NULL) {
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing) {
|
|
/*
|
|
* NB: We must copy the timestamp before
|
|
* doing the callback as the cryptop is
|
|
* likely to be reclaimed.
|
|
*/
|
|
struct timespec t = crp->crp_tstamp;
|
|
crypto_tstat(&cryptostats.cs_cb, &t);
|
|
crp->crp_callback(crp);
|
|
crypto_tstat(&cryptostats.cs_finis, &t);
|
|
} else
|
|
#endif
|
|
{
|
|
crp->crp_callback(crp);
|
|
}
|
|
}
|
|
if (krp != NULL)
|
|
krp->krp_callback(krp);
|
|
|
|
mutex_spin_enter(&qs->crp_ret_q_mtx);
|
|
}
|
|
crypto_put_crp_ret_qs(curcpu());
|
|
}
|
|
|
|
/* NetBSD module interface */
|
|
|
|
MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
|
|
|
|
static int
|
|
opencrypto_modcmd(modcmd_t cmd, void *opaque)
|
|
{
|
|
int error = 0;
|
|
|
|
switch (cmd) {
|
|
case MODULE_CMD_INIT:
|
|
#ifdef _MODULE
|
|
error = crypto_init();
|
|
#endif
|
|
break;
|
|
case MODULE_CMD_FINI:
|
|
#ifdef _MODULE
|
|
error = crypto_destroy(true);
|
|
#endif
|
|
break;
|
|
default:
|
|
error = ENOTTY;
|
|
}
|
|
return error;
|
|
}
|