17032 lines
445 KiB
C
17032 lines
445 KiB
C
/* $NetBSD: if_wm.c,v 1.704 2021/05/12 10:16:12 knakahara Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the NetBSD Project by
|
|
* Wasabi Systems, Inc.
|
|
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
|
|
* or promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*******************************************************************************
|
|
|
|
Copyright (c) 2001-2005, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*******************************************************************************/
|
|
/*
|
|
* Device driver for the Intel i8254x family of Gigabit Ethernet chips.
|
|
*
|
|
* TODO (in order of importance):
|
|
*
|
|
* - Check XXX'ed comments
|
|
* - TX Multi queue improvement (refine queue selection logic)
|
|
* - Split header buffer for newer descriptors
|
|
* - EEE (Energy Efficiency Ethernet) for I354
|
|
* - Virtual Function
|
|
* - Set LED correctly (based on contents in EEPROM)
|
|
* - Rework how parameters are loaded from the EEPROM.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.704 2021/05/12 10:16:12 knakahara Exp $");
|
|
|
|
#ifdef _KERNEL_OPT
|
|
#include "opt_net_mpsafe.h"
|
|
#include "opt_if_wm.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/device.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/interrupt.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/pcq.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/workqueue.h>
|
|
#include <sys/atomic.h>
|
|
|
|
#include <sys/rndsource.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <net/rss_config.h>
|
|
|
|
#include <netinet/in.h> /* XXX for struct ip */
|
|
#include <netinet/in_systm.h> /* XXX for struct ip */
|
|
#include <netinet/ip.h> /* XXX for struct ip */
|
|
#include <netinet/ip6.h> /* XXX for struct ip6_hdr */
|
|
#include <netinet/tcp.h> /* XXX for struct tcphdr */
|
|
|
|
#include <sys/bus.h>
|
|
#include <sys/intr.h>
|
|
#include <machine/endian.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/mdio.h>
|
|
#include <dev/mii/miivar.h>
|
|
#include <dev/mii/miidevs.h>
|
|
#include <dev/mii/mii_bitbang.h>
|
|
#include <dev/mii/ikphyreg.h>
|
|
#include <dev/mii/igphyreg.h>
|
|
#include <dev/mii/igphyvar.h>
|
|
#include <dev/mii/inbmphyreg.h>
|
|
#include <dev/mii/ihphyreg.h>
|
|
#include <dev/mii/makphyreg.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcidevs.h>
|
|
|
|
#include <dev/pci/if_wmreg.h>
|
|
#include <dev/pci/if_wmvar.h>
|
|
|
|
#ifdef WM_DEBUG
|
|
#define WM_DEBUG_LINK __BIT(0)
|
|
#define WM_DEBUG_TX __BIT(1)
|
|
#define WM_DEBUG_RX __BIT(2)
|
|
#define WM_DEBUG_GMII __BIT(3)
|
|
#define WM_DEBUG_MANAGE __BIT(4)
|
|
#define WM_DEBUG_NVM __BIT(5)
|
|
#define WM_DEBUG_INIT __BIT(6)
|
|
#define WM_DEBUG_LOCK __BIT(7)
|
|
|
|
#if 0
|
|
#define WM_DEBUG_DEFAULT WM_DEBUG_TX | WM_DEBUG_RX | WM_DEBUG_LINK | \
|
|
WM_DEBUG_GMII | WM_DEBUG_MANAGE | WM_DEBUG_NVM | WM_DEBUG_INIT | \
|
|
WM_DEBUG_LOCK
|
|
#endif
|
|
|
|
#define DPRINTF(sc, x, y) \
|
|
do { \
|
|
if ((sc)->sc_debug & (x)) \
|
|
printf y; \
|
|
} while (0)
|
|
#else
|
|
#define DPRINTF(sc, x, y) __nothing
|
|
#endif /* WM_DEBUG */
|
|
|
|
#ifdef NET_MPSAFE
|
|
#define WM_MPSAFE 1
|
|
#define WM_CALLOUT_FLAGS CALLOUT_MPSAFE
|
|
#define WM_SOFTINT_FLAGS SOFTINT_MPSAFE
|
|
#define WM_WORKQUEUE_FLAGS WQ_PERCPU | WQ_MPSAFE
|
|
#else
|
|
#define WM_CALLOUT_FLAGS 0
|
|
#define WM_SOFTINT_FLAGS 0
|
|
#define WM_WORKQUEUE_FLAGS WQ_PERCPU
|
|
#endif
|
|
|
|
#define WM_WORKQUEUE_PRI PRI_SOFTNET
|
|
|
|
/*
|
|
* This device driver's max interrupt numbers.
|
|
*/
|
|
#define WM_MAX_NQUEUEINTR 16
|
|
#define WM_MAX_NINTR (WM_MAX_NQUEUEINTR + 1)
|
|
|
|
#ifndef WM_DISABLE_MSI
|
|
#define WM_DISABLE_MSI 0
|
|
#endif
|
|
#ifndef WM_DISABLE_MSIX
|
|
#define WM_DISABLE_MSIX 0
|
|
#endif
|
|
|
|
int wm_disable_msi = WM_DISABLE_MSI;
|
|
int wm_disable_msix = WM_DISABLE_MSIX;
|
|
|
|
#ifndef WM_WATCHDOG_TIMEOUT
|
|
#define WM_WATCHDOG_TIMEOUT 5
|
|
#endif
|
|
static int wm_watchdog_timeout = WM_WATCHDOG_TIMEOUT;
|
|
|
|
/*
|
|
* Transmit descriptor list size. Due to errata, we can only have
|
|
* 256 hardware descriptors in the ring on < 82544, but we use 4096
|
|
* on >= 82544. We tell the upper layers that they can queue a lot
|
|
* of packets, and we go ahead and manage up to 64 (16 for the i82547)
|
|
* of them at a time.
|
|
*
|
|
* We allow up to 64 DMA segments per packet. Pathological packet
|
|
* chains containing many small mbufs have been observed in zero-copy
|
|
* situations with jumbo frames. If a mbuf chain has more than 64 DMA segments,
|
|
* m_defrag() is called to reduce it.
|
|
*/
|
|
#define WM_NTXSEGS 64
|
|
#define WM_IFQUEUELEN 256
|
|
#define WM_TXQUEUELEN_MAX 64
|
|
#define WM_TXQUEUELEN_MAX_82547 16
|
|
#define WM_TXQUEUELEN(txq) ((txq)->txq_num)
|
|
#define WM_TXQUEUELEN_MASK(txq) (WM_TXQUEUELEN(txq) - 1)
|
|
#define WM_TXQUEUE_GC(txq) (WM_TXQUEUELEN(txq) / 8)
|
|
#define WM_NTXDESC_82542 256
|
|
#define WM_NTXDESC_82544 4096
|
|
#define WM_NTXDESC(txq) ((txq)->txq_ndesc)
|
|
#define WM_NTXDESC_MASK(txq) (WM_NTXDESC(txq) - 1)
|
|
#define WM_TXDESCS_SIZE(txq) (WM_NTXDESC(txq) * (txq)->txq_descsize)
|
|
#define WM_NEXTTX(txq, x) (((x) + 1) & WM_NTXDESC_MASK(txq))
|
|
#define WM_NEXTTXS(txq, x) (((x) + 1) & WM_TXQUEUELEN_MASK(txq))
|
|
|
|
#define WM_MAXTXDMA (2 * round_page(IP_MAXPACKET)) /* for TSO */
|
|
|
|
#define WM_TXINTERQSIZE 256
|
|
|
|
#ifndef WM_TX_PROCESS_LIMIT_DEFAULT
|
|
#define WM_TX_PROCESS_LIMIT_DEFAULT 100U
|
|
#endif
|
|
#ifndef WM_TX_INTR_PROCESS_LIMIT_DEFAULT
|
|
#define WM_TX_INTR_PROCESS_LIMIT_DEFAULT 0U
|
|
#endif
|
|
|
|
/*
|
|
* Receive descriptor list size. We have one Rx buffer for normal
|
|
* sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
|
|
* packet. We allocate 256 receive descriptors, each with a 2k
|
|
* buffer (MCLBYTES), which gives us room for 50 jumbo packets.
|
|
*/
|
|
#define WM_NRXDESC 256U
|
|
#define WM_NRXDESC_MASK (WM_NRXDESC - 1)
|
|
#define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
|
|
#define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
|
|
|
|
#ifndef WM_RX_PROCESS_LIMIT_DEFAULT
|
|
#define WM_RX_PROCESS_LIMIT_DEFAULT 100U
|
|
#endif
|
|
#ifndef WM_RX_INTR_PROCESS_LIMIT_DEFAULT
|
|
#define WM_RX_INTR_PROCESS_LIMIT_DEFAULT 0U
|
|
#endif
|
|
|
|
typedef union txdescs {
|
|
wiseman_txdesc_t sctxu_txdescs[WM_NTXDESC_82544];
|
|
nq_txdesc_t sctxu_nq_txdescs[WM_NTXDESC_82544];
|
|
} txdescs_t;
|
|
|
|
typedef union rxdescs {
|
|
wiseman_rxdesc_t sctxu_rxdescs[WM_NRXDESC];
|
|
ext_rxdesc_t sctxu_ext_rxdescs[WM_NRXDESC]; /* 82574 only */
|
|
nq_rxdesc_t sctxu_nq_rxdescs[WM_NRXDESC]; /* 82575 and newer */
|
|
} rxdescs_t;
|
|
|
|
#define WM_CDTXOFF(txq, x) ((txq)->txq_descsize * (x))
|
|
#define WM_CDRXOFF(rxq, x) ((rxq)->rxq_descsize * (x))
|
|
|
|
/*
|
|
* Software state for transmit jobs.
|
|
*/
|
|
struct wm_txsoft {
|
|
struct mbuf *txs_mbuf; /* head of our mbuf chain */
|
|
bus_dmamap_t txs_dmamap; /* our DMA map */
|
|
int txs_firstdesc; /* first descriptor in packet */
|
|
int txs_lastdesc; /* last descriptor in packet */
|
|
int txs_ndesc; /* # of descriptors used */
|
|
};
|
|
|
|
/*
|
|
* Software state for receive buffers. Each descriptor gets a 2k (MCLBYTES)
|
|
* buffer and a DMA map. For packets which fill more than one buffer, we chain
|
|
* them together.
|
|
*/
|
|
struct wm_rxsoft {
|
|
struct mbuf *rxs_mbuf; /* head of our mbuf chain */
|
|
bus_dmamap_t rxs_dmamap; /* our DMA map */
|
|
};
|
|
|
|
#define WM_LINKUP_TIMEOUT 50
|
|
|
|
static uint16_t swfwphysem[] = {
|
|
SWFW_PHY0_SM,
|
|
SWFW_PHY1_SM,
|
|
SWFW_PHY2_SM,
|
|
SWFW_PHY3_SM
|
|
};
|
|
|
|
static const uint32_t wm_82580_rxpbs_table[] = {
|
|
36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140
|
|
};
|
|
|
|
struct wm_softc;
|
|
|
|
#if defined(_LP64) && !defined(WM_DISABLE_EVENT_COUNTERS)
|
|
#if !defined(WM_EVENT_COUNTERS)
|
|
#define WM_EVENT_COUNTERS 1
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef WM_EVENT_COUNTERS
|
|
#define WM_Q_EVCNT_DEFINE(qname, evname) \
|
|
char qname##_##evname##_evcnt_name[sizeof("qname##XX##evname")]; \
|
|
struct evcnt qname##_ev_##evname;
|
|
|
|
#define WM_Q_EVCNT_ATTACH(qname, evname, q, qnum, xname, evtype) \
|
|
do { \
|
|
snprintf((q)->qname##_##evname##_evcnt_name, \
|
|
sizeof((q)->qname##_##evname##_evcnt_name), \
|
|
"%s%02d%s", #qname, (qnum), #evname); \
|
|
evcnt_attach_dynamic(&(q)->qname##_ev_##evname, \
|
|
(evtype), NULL, (xname), \
|
|
(q)->qname##_##evname##_evcnt_name); \
|
|
} while (0)
|
|
|
|
#define WM_Q_MISC_EVCNT_ATTACH(qname, evname, q, qnum, xname) \
|
|
WM_Q_EVCNT_ATTACH(qname, evname, q, qnum, xname, EVCNT_TYPE_MISC)
|
|
|
|
#define WM_Q_INTR_EVCNT_ATTACH(qname, evname, q, qnum, xname) \
|
|
WM_Q_EVCNT_ATTACH(qname, evname, q, qnum, xname, EVCNT_TYPE_INTR)
|
|
|
|
#define WM_Q_EVCNT_DETACH(qname, evname, q, qnum) \
|
|
evcnt_detach(&(q)->qname##_ev_##evname);
|
|
#endif /* WM_EVENT_COUNTERS */
|
|
|
|
struct wm_txqueue {
|
|
kmutex_t *txq_lock; /* lock for tx operations */
|
|
|
|
struct wm_softc *txq_sc; /* shortcut (skip struct wm_queue) */
|
|
|
|
/* Software state for the transmit descriptors. */
|
|
int txq_num; /* must be a power of two */
|
|
struct wm_txsoft txq_soft[WM_TXQUEUELEN_MAX];
|
|
|
|
/* TX control data structures. */
|
|
int txq_ndesc; /* must be a power of two */
|
|
size_t txq_descsize; /* a tx descriptor size */
|
|
txdescs_t *txq_descs_u;
|
|
bus_dmamap_t txq_desc_dmamap; /* control data DMA map */
|
|
bus_dma_segment_t txq_desc_seg; /* control data segment */
|
|
int txq_desc_rseg; /* real number of control segment */
|
|
#define txq_desc_dma txq_desc_dmamap->dm_segs[0].ds_addr
|
|
#define txq_descs txq_descs_u->sctxu_txdescs
|
|
#define txq_nq_descs txq_descs_u->sctxu_nq_txdescs
|
|
|
|
bus_addr_t txq_tdt_reg; /* offset of TDT register */
|
|
|
|
int txq_free; /* number of free Tx descriptors */
|
|
int txq_next; /* next ready Tx descriptor */
|
|
|
|
int txq_sfree; /* number of free Tx jobs */
|
|
int txq_snext; /* next free Tx job */
|
|
int txq_sdirty; /* dirty Tx jobs */
|
|
|
|
/* These 4 variables are used only on the 82547. */
|
|
int txq_fifo_size; /* Tx FIFO size */
|
|
int txq_fifo_head; /* current head of FIFO */
|
|
uint32_t txq_fifo_addr; /* internal address of start of FIFO */
|
|
int txq_fifo_stall; /* Tx FIFO is stalled */
|
|
|
|
/*
|
|
* When ncpu > number of Tx queues, a Tx queue is shared by multiple
|
|
* CPUs. This queue intermediate them without block.
|
|
*/
|
|
pcq_t *txq_interq;
|
|
|
|
/*
|
|
* NEWQUEUE devices must use not ifp->if_flags but txq->txq_flags
|
|
* to manage Tx H/W queue's busy flag.
|
|
*/
|
|
int txq_flags; /* flags for H/W queue, see below */
|
|
#define WM_TXQ_NO_SPACE 0x1
|
|
#define WM_TXQ_LINKDOWN_DISCARD 0x2
|
|
|
|
bool txq_stopping;
|
|
|
|
bool txq_sending;
|
|
time_t txq_lastsent;
|
|
|
|
/* Checksum flags used for previous packet */
|
|
uint32_t txq_last_hw_cmd;
|
|
uint8_t txq_last_hw_fields;
|
|
uint16_t txq_last_hw_ipcs;
|
|
uint16_t txq_last_hw_tucs;
|
|
|
|
uint32_t txq_packets; /* for AIM */
|
|
uint32_t txq_bytes; /* for AIM */
|
|
#ifdef WM_EVENT_COUNTERS
|
|
/* TX event counters */
|
|
WM_Q_EVCNT_DEFINE(txq, txsstall) /* Stalled due to no txs */
|
|
WM_Q_EVCNT_DEFINE(txq, txdstall) /* Stalled due to no txd */
|
|
WM_Q_EVCNT_DEFINE(txq, fifo_stall) /* FIFO stalls (82547) */
|
|
WM_Q_EVCNT_DEFINE(txq, txdw) /* Tx descriptor interrupts */
|
|
WM_Q_EVCNT_DEFINE(txq, txqe) /* Tx queue empty interrupts */
|
|
/* XXX not used? */
|
|
|
|
WM_Q_EVCNT_DEFINE(txq, ipsum) /* IP checksums comp. */
|
|
WM_Q_EVCNT_DEFINE(txq, tusum) /* TCP/UDP cksums comp. */
|
|
WM_Q_EVCNT_DEFINE(txq, tusum6) /* TCP/UDP v6 cksums comp. */
|
|
WM_Q_EVCNT_DEFINE(txq, tso) /* TCP seg offload (IPv4) */
|
|
WM_Q_EVCNT_DEFINE(txq, tso6) /* TCP seg offload (IPv6) */
|
|
WM_Q_EVCNT_DEFINE(txq, tsopain) /* Painful header manip. for TSO */
|
|
WM_Q_EVCNT_DEFINE(txq, pcqdrop) /* Pkt dropped in pcq */
|
|
WM_Q_EVCNT_DEFINE(txq, descdrop) /* Pkt dropped in MAC desc ring */
|
|
/* other than toomanyseg */
|
|
|
|
WM_Q_EVCNT_DEFINE(txq, toomanyseg) /* Pkt dropped(toomany DMA segs) */
|
|
WM_Q_EVCNT_DEFINE(txq, defrag) /* m_defrag() */
|
|
WM_Q_EVCNT_DEFINE(txq, underrun) /* Tx underrun */
|
|
WM_Q_EVCNT_DEFINE(txq, skipcontext) /* Tx skip wring cksum context */
|
|
|
|
char txq_txseg_evcnt_names[WM_NTXSEGS][sizeof("txqXXtxsegXXX")];
|
|
struct evcnt txq_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
|
|
#endif /* WM_EVENT_COUNTERS */
|
|
};
|
|
|
|
struct wm_rxqueue {
|
|
kmutex_t *rxq_lock; /* lock for rx operations */
|
|
|
|
struct wm_softc *rxq_sc; /* shortcut (skip struct wm_queue) */
|
|
|
|
/* Software state for the receive descriptors. */
|
|
struct wm_rxsoft rxq_soft[WM_NRXDESC];
|
|
|
|
/* RX control data structures. */
|
|
int rxq_ndesc; /* must be a power of two */
|
|
size_t rxq_descsize; /* a rx descriptor size */
|
|
rxdescs_t *rxq_descs_u;
|
|
bus_dmamap_t rxq_desc_dmamap; /* control data DMA map */
|
|
bus_dma_segment_t rxq_desc_seg; /* control data segment */
|
|
int rxq_desc_rseg; /* real number of control segment */
|
|
#define rxq_desc_dma rxq_desc_dmamap->dm_segs[0].ds_addr
|
|
#define rxq_descs rxq_descs_u->sctxu_rxdescs
|
|
#define rxq_ext_descs rxq_descs_u->sctxu_ext_rxdescs
|
|
#define rxq_nq_descs rxq_descs_u->sctxu_nq_rxdescs
|
|
|
|
bus_addr_t rxq_rdt_reg; /* offset of RDT register */
|
|
|
|
int rxq_ptr; /* next ready Rx desc/queue ent */
|
|
int rxq_discard;
|
|
int rxq_len;
|
|
struct mbuf *rxq_head;
|
|
struct mbuf *rxq_tail;
|
|
struct mbuf **rxq_tailp;
|
|
|
|
bool rxq_stopping;
|
|
|
|
uint32_t rxq_packets; /* for AIM */
|
|
uint32_t rxq_bytes; /* for AIM */
|
|
#ifdef WM_EVENT_COUNTERS
|
|
/* RX event counters */
|
|
WM_Q_EVCNT_DEFINE(rxq, intr); /* Interrupts */
|
|
WM_Q_EVCNT_DEFINE(rxq, defer); /* Rx deferred processing */
|
|
|
|
WM_Q_EVCNT_DEFINE(rxq, ipsum); /* IP checksums checked */
|
|
WM_Q_EVCNT_DEFINE(rxq, tusum); /* TCP/UDP cksums checked */
|
|
#endif
|
|
};
|
|
|
|
struct wm_queue {
|
|
int wmq_id; /* index of TX/RX queues */
|
|
int wmq_intr_idx; /* index of MSI-X tables */
|
|
|
|
uint32_t wmq_itr; /* interrupt interval per queue. */
|
|
bool wmq_set_itr;
|
|
|
|
struct wm_txqueue wmq_txq;
|
|
struct wm_rxqueue wmq_rxq;
|
|
char sysctlname[32]; /* Name for sysctl */
|
|
|
|
bool wmq_txrx_use_workqueue;
|
|
struct work wmq_cookie;
|
|
void *wmq_si;
|
|
};
|
|
|
|
struct wm_phyop {
|
|
int (*acquire)(struct wm_softc *);
|
|
void (*release)(struct wm_softc *);
|
|
int (*readreg_locked)(device_t, int, int, uint16_t *);
|
|
int (*writereg_locked)(device_t, int, int, uint16_t);
|
|
int reset_delay_us;
|
|
bool no_errprint;
|
|
};
|
|
|
|
struct wm_nvmop {
|
|
int (*acquire)(struct wm_softc *);
|
|
void (*release)(struct wm_softc *);
|
|
int (*read)(struct wm_softc *, int, int, uint16_t *);
|
|
};
|
|
|
|
/*
|
|
* Software state per device.
|
|
*/
|
|
struct wm_softc {
|
|
device_t sc_dev; /* generic device information */
|
|
bus_space_tag_t sc_st; /* bus space tag */
|
|
bus_space_handle_t sc_sh; /* bus space handle */
|
|
bus_size_t sc_ss; /* bus space size */
|
|
bus_space_tag_t sc_iot; /* I/O space tag */
|
|
bus_space_handle_t sc_ioh; /* I/O space handle */
|
|
bus_size_t sc_ios; /* I/O space size */
|
|
bus_space_tag_t sc_flasht; /* flash registers space tag */
|
|
bus_space_handle_t sc_flashh; /* flash registers space handle */
|
|
bus_size_t sc_flashs; /* flash registers space size */
|
|
off_t sc_flashreg_offset; /*
|
|
* offset to flash registers from
|
|
* start of BAR
|
|
*/
|
|
bus_dma_tag_t sc_dmat; /* bus DMA tag */
|
|
|
|
struct ethercom sc_ethercom; /* ethernet common data */
|
|
struct mii_data sc_mii; /* MII/media information */
|
|
|
|
pci_chipset_tag_t sc_pc;
|
|
pcitag_t sc_pcitag;
|
|
int sc_bus_speed; /* PCI/PCIX bus speed */
|
|
int sc_pcixe_capoff; /* PCI[Xe] capability reg offset */
|
|
|
|
uint16_t sc_pcidevid; /* PCI device ID */
|
|
wm_chip_type sc_type; /* MAC type */
|
|
int sc_rev; /* MAC revision */
|
|
wm_phy_type sc_phytype; /* PHY type */
|
|
uint8_t sc_sfptype; /* SFP type */
|
|
uint32_t sc_mediatype; /* Media type (Copper, Fiber, SERDES)*/
|
|
#define WM_MEDIATYPE_UNKNOWN 0x00
|
|
#define WM_MEDIATYPE_FIBER 0x01
|
|
#define WM_MEDIATYPE_COPPER 0x02
|
|
#define WM_MEDIATYPE_SERDES 0x03 /* Internal SERDES */
|
|
int sc_funcid; /* unit number of the chip (0 to 3) */
|
|
int sc_flags; /* flags; see below */
|
|
u_short sc_if_flags; /* last if_flags */
|
|
int sc_ec_capenable; /* last ec_capenable */
|
|
int sc_flowflags; /* 802.3x flow control flags */
|
|
uint16_t eee_lp_ability; /* EEE link partner's ability */
|
|
int sc_align_tweak;
|
|
|
|
void *sc_ihs[WM_MAX_NINTR]; /*
|
|
* interrupt cookie.
|
|
* - legacy and msi use sc_ihs[0] only
|
|
* - msix use sc_ihs[0] to sc_ihs[nintrs-1]
|
|
*/
|
|
pci_intr_handle_t *sc_intrs; /*
|
|
* legacy and msi use sc_intrs[0] only
|
|
* msix use sc_intrs[0] to sc_ihs[nintrs-1]
|
|
*/
|
|
int sc_nintrs; /* number of interrupts */
|
|
|
|
int sc_link_intr_idx; /* index of MSI-X tables */
|
|
|
|
callout_t sc_tick_ch; /* tick callout */
|
|
bool sc_core_stopping;
|
|
|
|
int sc_nvm_ver_major;
|
|
int sc_nvm_ver_minor;
|
|
int sc_nvm_ver_build;
|
|
int sc_nvm_addrbits; /* NVM address bits */
|
|
unsigned int sc_nvm_wordsize; /* NVM word size */
|
|
int sc_ich8_flash_base;
|
|
int sc_ich8_flash_bank_size;
|
|
int sc_nvm_k1_enabled;
|
|
|
|
int sc_nqueues;
|
|
struct wm_queue *sc_queue;
|
|
u_int sc_tx_process_limit; /* Tx proc. repeat limit in softint */
|
|
u_int sc_tx_intr_process_limit; /* Tx proc. repeat limit in H/W intr */
|
|
u_int sc_rx_process_limit; /* Rx proc. repeat limit in softint */
|
|
u_int sc_rx_intr_process_limit; /* Rx proc. repeat limit in H/W intr */
|
|
struct workqueue *sc_queue_wq;
|
|
bool sc_txrx_use_workqueue;
|
|
|
|
int sc_affinity_offset;
|
|
|
|
#ifdef WM_EVENT_COUNTERS
|
|
/* Event counters. */
|
|
struct evcnt sc_ev_linkintr; /* Link interrupts */
|
|
|
|
/* WM_T_82542_2_1 only */
|
|
struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
|
|
struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
|
|
struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
|
|
struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
|
|
struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
|
|
#endif /* WM_EVENT_COUNTERS */
|
|
|
|
struct sysctllog *sc_sysctllog;
|
|
|
|
/* This variable are used only on the 82547. */
|
|
callout_t sc_txfifo_ch; /* Tx FIFO stall work-around timer */
|
|
|
|
uint32_t sc_ctrl; /* prototype CTRL register */
|
|
#if 0
|
|
uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
|
|
#endif
|
|
uint32_t sc_icr; /* prototype interrupt bits */
|
|
uint32_t sc_itr_init; /* prototype intr throttling reg */
|
|
uint32_t sc_tctl; /* prototype TCTL register */
|
|
uint32_t sc_rctl; /* prototype RCTL register */
|
|
uint32_t sc_txcw; /* prototype TXCW register */
|
|
uint32_t sc_tipg; /* prototype TIPG register */
|
|
uint32_t sc_fcrtl; /* prototype FCRTL register */
|
|
uint32_t sc_pba; /* prototype PBA register */
|
|
|
|
int sc_tbi_linkup; /* TBI link status */
|
|
int sc_tbi_serdes_anegticks; /* autonegotiation ticks */
|
|
int sc_tbi_serdes_ticks; /* tbi ticks */
|
|
|
|
int sc_mchash_type; /* multicast filter offset */
|
|
|
|
krndsource_t rnd_source; /* random source */
|
|
|
|
struct if_percpuq *sc_ipq; /* softint-based input queues */
|
|
|
|
kmutex_t *sc_core_lock; /* lock for softc operations */
|
|
kmutex_t *sc_ich_phymtx; /*
|
|
* 82574/82583/ICH/PCH specific PHY
|
|
* mutex. For 82574/82583, the mutex
|
|
* is used for both PHY and NVM.
|
|
*/
|
|
kmutex_t *sc_ich_nvmmtx; /* ICH/PCH specific NVM mutex */
|
|
|
|
struct wm_phyop phy;
|
|
struct wm_nvmop nvm;
|
|
#ifdef WM_DEBUG
|
|
uint32_t sc_debug;
|
|
#endif
|
|
};
|
|
|
|
#define WM_CORE_LOCK(_sc) \
|
|
if ((_sc)->sc_core_lock) mutex_enter((_sc)->sc_core_lock)
|
|
#define WM_CORE_UNLOCK(_sc) \
|
|
if ((_sc)->sc_core_lock) mutex_exit((_sc)->sc_core_lock)
|
|
#define WM_CORE_LOCKED(_sc) \
|
|
(!(_sc)->sc_core_lock || mutex_owned((_sc)->sc_core_lock))
|
|
|
|
#define WM_RXCHAIN_RESET(rxq) \
|
|
do { \
|
|
(rxq)->rxq_tailp = &(rxq)->rxq_head; \
|
|
*(rxq)->rxq_tailp = NULL; \
|
|
(rxq)->rxq_len = 0; \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
#define WM_RXCHAIN_LINK(rxq, m) \
|
|
do { \
|
|
*(rxq)->rxq_tailp = (rxq)->rxq_tail = (m); \
|
|
(rxq)->rxq_tailp = &(m)->m_next; \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
#ifdef WM_EVENT_COUNTERS
|
|
#ifdef __HAVE_ATOMIC64_LOADSTORE
|
|
#define WM_EVCNT_INCR(ev) \
|
|
atomic_store_relaxed(&((ev)->ev_count), \
|
|
atomic_load_relaxed(&(ev)->ev_count) + 1)
|
|
#define WM_EVCNT_ADD(ev, val) \
|
|
atomic_store_relaxed(&((ev)->ev_count), \
|
|
atomic_load_relaxed(&(ev)->ev_count) + (val))
|
|
#else
|
|
#define WM_EVCNT_INCR(ev) \
|
|
((ev)->ev_count)++
|
|
#define WM_EVCNT_ADD(ev, val) \
|
|
(ev)->ev_count += (val)
|
|
#endif
|
|
|
|
#define WM_Q_EVCNT_INCR(qname, evname) \
|
|
WM_EVCNT_INCR(&(qname)->qname##_ev_##evname)
|
|
#define WM_Q_EVCNT_ADD(qname, evname, val) \
|
|
WM_EVCNT_ADD(&(qname)->qname##_ev_##evname, (val))
|
|
#else /* !WM_EVENT_COUNTERS */
|
|
#define WM_EVCNT_INCR(ev) /* nothing */
|
|
#define WM_EVCNT_ADD(ev, val) /* nothing */
|
|
|
|
#define WM_Q_EVCNT_INCR(qname, evname) /* nothing */
|
|
#define WM_Q_EVCNT_ADD(qname, evname, val) /* nothing */
|
|
#endif /* !WM_EVENT_COUNTERS */
|
|
|
|
#define CSR_READ(sc, reg) \
|
|
bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
|
|
#define CSR_WRITE(sc, reg, val) \
|
|
bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
|
|
#define CSR_WRITE_FLUSH(sc) \
|
|
(void)CSR_READ((sc), WMREG_STATUS)
|
|
|
|
#define ICH8_FLASH_READ32(sc, reg) \
|
|
bus_space_read_4((sc)->sc_flasht, (sc)->sc_flashh, \
|
|
(reg) + sc->sc_flashreg_offset)
|
|
#define ICH8_FLASH_WRITE32(sc, reg, data) \
|
|
bus_space_write_4((sc)->sc_flasht, (sc)->sc_flashh, \
|
|
(reg) + sc->sc_flashreg_offset, (data))
|
|
|
|
#define ICH8_FLASH_READ16(sc, reg) \
|
|
bus_space_read_2((sc)->sc_flasht, (sc)->sc_flashh, \
|
|
(reg) + sc->sc_flashreg_offset)
|
|
#define ICH8_FLASH_WRITE16(sc, reg, data) \
|
|
bus_space_write_2((sc)->sc_flasht, (sc)->sc_flashh, \
|
|
(reg) + sc->sc_flashreg_offset, (data))
|
|
|
|
#define WM_CDTXADDR(txq, x) ((txq)->txq_desc_dma + WM_CDTXOFF((txq), (x)))
|
|
#define WM_CDRXADDR(rxq, x) ((rxq)->rxq_desc_dma + WM_CDRXOFF((rxq), (x)))
|
|
|
|
#define WM_CDTXADDR_LO(txq, x) (WM_CDTXADDR((txq), (x)) & 0xffffffffU)
|
|
#define WM_CDTXADDR_HI(txq, x) \
|
|
(sizeof(bus_addr_t) == 8 ? \
|
|
(uint64_t)WM_CDTXADDR((txq), (x)) >> 32 : 0)
|
|
|
|
#define WM_CDRXADDR_LO(rxq, x) (WM_CDRXADDR((rxq), (x)) & 0xffffffffU)
|
|
#define WM_CDRXADDR_HI(rxq, x) \
|
|
(sizeof(bus_addr_t) == 8 ? \
|
|
(uint64_t)WM_CDRXADDR((rxq), (x)) >> 32 : 0)
|
|
|
|
/*
|
|
* Register read/write functions.
|
|
* Other than CSR_{READ|WRITE}().
|
|
*/
|
|
#if 0
|
|
static inline uint32_t wm_io_read(struct wm_softc *, int);
|
|
#endif
|
|
static inline void wm_io_write(struct wm_softc *, int, uint32_t);
|
|
static inline void wm_82575_write_8bit_ctlr_reg(struct wm_softc *, uint32_t,
|
|
uint32_t, uint32_t);
|
|
static inline void wm_set_dma_addr(volatile wiseman_addr_t *, bus_addr_t);
|
|
|
|
/*
|
|
* Descriptor sync/init functions.
|
|
*/
|
|
static inline void wm_cdtxsync(struct wm_txqueue *, int, int, int);
|
|
static inline void wm_cdrxsync(struct wm_rxqueue *, int, int);
|
|
static inline void wm_init_rxdesc(struct wm_rxqueue *, int);
|
|
|
|
/*
|
|
* Device driver interface functions and commonly used functions.
|
|
* match, attach, detach, init, start, stop, ioctl, watchdog and so on.
|
|
*/
|
|
static const struct wm_product *wm_lookup(const struct pci_attach_args *);
|
|
static int wm_match(device_t, cfdata_t, void *);
|
|
static void wm_attach(device_t, device_t, void *);
|
|
static int wm_detach(device_t, int);
|
|
static bool wm_suspend(device_t, const pmf_qual_t *);
|
|
static bool wm_resume(device_t, const pmf_qual_t *);
|
|
static void wm_watchdog(struct ifnet *);
|
|
static void wm_watchdog_txq(struct ifnet *, struct wm_txqueue *,
|
|
uint16_t *);
|
|
static void wm_watchdog_txq_locked(struct ifnet *, struct wm_txqueue *,
|
|
uint16_t *);
|
|
static void wm_tick(void *);
|
|
static int wm_ifflags_cb(struct ethercom *);
|
|
static int wm_ioctl(struct ifnet *, u_long, void *);
|
|
/* MAC address related */
|
|
static uint16_t wm_check_alt_mac_addr(struct wm_softc *);
|
|
static int wm_read_mac_addr(struct wm_softc *, uint8_t *);
|
|
static void wm_set_ral(struct wm_softc *, const uint8_t *, int);
|
|
static uint32_t wm_mchash(struct wm_softc *, const uint8_t *);
|
|
static int wm_rar_count(struct wm_softc *);
|
|
static void wm_set_filter(struct wm_softc *);
|
|
/* Reset and init related */
|
|
static void wm_set_vlan(struct wm_softc *);
|
|
static void wm_set_pcie_completion_timeout(struct wm_softc *);
|
|
static void wm_get_auto_rd_done(struct wm_softc *);
|
|
static void wm_lan_init_done(struct wm_softc *);
|
|
static void wm_get_cfg_done(struct wm_softc *);
|
|
static int wm_phy_post_reset(struct wm_softc *);
|
|
static int wm_write_smbus_addr(struct wm_softc *);
|
|
static int wm_init_lcd_from_nvm(struct wm_softc *);
|
|
static int wm_oem_bits_config_ich8lan(struct wm_softc *, bool);
|
|
static void wm_initialize_hardware_bits(struct wm_softc *);
|
|
static uint32_t wm_rxpbs_adjust_82580(uint32_t);
|
|
static int wm_reset_phy(struct wm_softc *);
|
|
static void wm_flush_desc_rings(struct wm_softc *);
|
|
static void wm_reset(struct wm_softc *);
|
|
static int wm_add_rxbuf(struct wm_rxqueue *, int);
|
|
static void wm_rxdrain(struct wm_rxqueue *);
|
|
static void wm_init_rss(struct wm_softc *);
|
|
static void wm_adjust_qnum(struct wm_softc *, int);
|
|
static inline bool wm_is_using_msix(struct wm_softc *);
|
|
static inline bool wm_is_using_multiqueue(struct wm_softc *);
|
|
static int wm_softint_establish_queue(struct wm_softc *, int, int);
|
|
static int wm_setup_legacy(struct wm_softc *);
|
|
static int wm_setup_msix(struct wm_softc *);
|
|
static int wm_init(struct ifnet *);
|
|
static int wm_init_locked(struct ifnet *);
|
|
static void wm_init_sysctls(struct wm_softc *);
|
|
static void wm_unset_stopping_flags(struct wm_softc *);
|
|
static void wm_set_stopping_flags(struct wm_softc *);
|
|
static void wm_stop(struct ifnet *, int);
|
|
static void wm_stop_locked(struct ifnet *, bool, bool);
|
|
static void wm_dump_mbuf_chain(struct wm_softc *, struct mbuf *);
|
|
static void wm_82547_txfifo_stall(void *);
|
|
static int wm_82547_txfifo_bugchk(struct wm_softc *, struct mbuf *);
|
|
static void wm_itrs_writereg(struct wm_softc *, struct wm_queue *);
|
|
/* DMA related */
|
|
static int wm_alloc_tx_descs(struct wm_softc *, struct wm_txqueue *);
|
|
static void wm_free_tx_descs(struct wm_softc *, struct wm_txqueue *);
|
|
static void wm_init_tx_descs(struct wm_softc *, struct wm_txqueue *);
|
|
static void wm_init_tx_regs(struct wm_softc *, struct wm_queue *,
|
|
struct wm_txqueue *);
|
|
static int wm_alloc_rx_descs(struct wm_softc *, struct wm_rxqueue *);
|
|
static void wm_free_rx_descs(struct wm_softc *, struct wm_rxqueue *);
|
|
static void wm_init_rx_regs(struct wm_softc *, struct wm_queue *,
|
|
struct wm_rxqueue *);
|
|
static int wm_alloc_tx_buffer(struct wm_softc *, struct wm_txqueue *);
|
|
static void wm_free_tx_buffer(struct wm_softc *, struct wm_txqueue *);
|
|
static void wm_init_tx_buffer(struct wm_softc *, struct wm_txqueue *);
|
|
static int wm_alloc_rx_buffer(struct wm_softc *, struct wm_rxqueue *);
|
|
static void wm_free_rx_buffer(struct wm_softc *, struct wm_rxqueue *);
|
|
static int wm_init_rx_buffer(struct wm_softc *, struct wm_rxqueue *);
|
|
static void wm_init_tx_queue(struct wm_softc *, struct wm_queue *,
|
|
struct wm_txqueue *);
|
|
static int wm_init_rx_queue(struct wm_softc *, struct wm_queue *,
|
|
struct wm_rxqueue *);
|
|
static int wm_alloc_txrx_queues(struct wm_softc *);
|
|
static void wm_free_txrx_queues(struct wm_softc *);
|
|
static int wm_init_txrx_queues(struct wm_softc *);
|
|
/* Start */
|
|
static void wm_tx_offload(struct wm_softc *, struct wm_txqueue *,
|
|
struct wm_txsoft *, uint32_t *, uint8_t *);
|
|
static inline int wm_select_txqueue(struct ifnet *, struct mbuf *);
|
|
static void wm_start(struct ifnet *);
|
|
static void wm_start_locked(struct ifnet *);
|
|
static int wm_transmit(struct ifnet *, struct mbuf *);
|
|
static void wm_transmit_locked(struct ifnet *, struct wm_txqueue *);
|
|
static void wm_send_common_locked(struct ifnet *, struct wm_txqueue *,
|
|
bool);
|
|
static void wm_nq_tx_offload(struct wm_softc *, struct wm_txqueue *,
|
|
struct wm_txsoft *, uint32_t *, uint32_t *, bool *);
|
|
static void wm_nq_start(struct ifnet *);
|
|
static void wm_nq_start_locked(struct ifnet *);
|
|
static int wm_nq_transmit(struct ifnet *, struct mbuf *);
|
|
static void wm_nq_transmit_locked(struct ifnet *, struct wm_txqueue *);
|
|
static void wm_nq_send_common_locked(struct ifnet *, struct wm_txqueue *,
|
|
bool);
|
|
static void wm_deferred_start_locked(struct wm_txqueue *);
|
|
static void wm_handle_queue(void *);
|
|
static void wm_handle_queue_work(struct work *, void *);
|
|
/* Interrupt */
|
|
static bool wm_txeof(struct wm_txqueue *, u_int);
|
|
static bool wm_rxeof(struct wm_rxqueue *, u_int);
|
|
static void wm_linkintr_gmii(struct wm_softc *, uint32_t);
|
|
static void wm_linkintr_tbi(struct wm_softc *, uint32_t);
|
|
static void wm_linkintr_serdes(struct wm_softc *, uint32_t);
|
|
static void wm_linkintr(struct wm_softc *, uint32_t);
|
|
static int wm_intr_legacy(void *);
|
|
static inline void wm_txrxintr_disable(struct wm_queue *);
|
|
static inline void wm_txrxintr_enable(struct wm_queue *);
|
|
static void wm_itrs_calculate(struct wm_softc *, struct wm_queue *);
|
|
static int wm_txrxintr_msix(void *);
|
|
static int wm_linkintr_msix(void *);
|
|
|
|
/*
|
|
* Media related.
|
|
* GMII, SGMII, TBI, SERDES and SFP.
|
|
*/
|
|
/* Common */
|
|
static void wm_tbi_serdes_set_linkled(struct wm_softc *);
|
|
/* GMII related */
|
|
static void wm_gmii_reset(struct wm_softc *);
|
|
static void wm_gmii_setup_phytype(struct wm_softc *, uint32_t, uint16_t);
|
|
static int wm_get_phy_id_82575(struct wm_softc *);
|
|
static void wm_gmii_mediainit(struct wm_softc *, pci_product_id_t);
|
|
static int wm_gmii_mediachange(struct ifnet *);
|
|
static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
static void wm_i82543_mii_sendbits(struct wm_softc *, uint32_t, int);
|
|
static uint16_t wm_i82543_mii_recvbits(struct wm_softc *);
|
|
static int wm_gmii_i82543_readreg(device_t, int, int, uint16_t *);
|
|
static int wm_gmii_i82543_writereg(device_t, int, int, uint16_t);
|
|
static int wm_gmii_mdic_readreg(device_t, int, int, uint16_t *);
|
|
static int wm_gmii_mdic_writereg(device_t, int, int, uint16_t);
|
|
static int wm_gmii_i82544_readreg(device_t, int, int, uint16_t *);
|
|
static int wm_gmii_i82544_readreg_locked(device_t, int, int, uint16_t *);
|
|
static int wm_gmii_i82544_writereg(device_t, int, int, uint16_t);
|
|
static int wm_gmii_i82544_writereg_locked(device_t, int, int, uint16_t);
|
|
static int wm_gmii_i80003_readreg(device_t, int, int, uint16_t *);
|
|
static int wm_gmii_i80003_writereg(device_t, int, int, uint16_t);
|
|
static int wm_gmii_bm_readreg(device_t, int, int, uint16_t *);
|
|
static int wm_gmii_bm_writereg(device_t, int, int, uint16_t);
|
|
static int wm_enable_phy_wakeup_reg_access_bm(device_t, uint16_t *);
|
|
static int wm_disable_phy_wakeup_reg_access_bm(device_t, uint16_t *);
|
|
static int wm_access_phy_wakeup_reg_bm(device_t, int, int16_t *, int,
|
|
bool);
|
|
static int wm_gmii_hv_readreg(device_t, int, int, uint16_t *);
|
|
static int wm_gmii_hv_readreg_locked(device_t, int, int, uint16_t *);
|
|
static int wm_gmii_hv_writereg(device_t, int, int, uint16_t);
|
|
static int wm_gmii_hv_writereg_locked(device_t, int, int, uint16_t);
|
|
static int wm_gmii_82580_readreg(device_t, int, int, uint16_t *);
|
|
static int wm_gmii_82580_writereg(device_t, int, int, uint16_t);
|
|
static int wm_gmii_gs40g_readreg(device_t, int, int, uint16_t *);
|
|
static int wm_gmii_gs40g_writereg(device_t, int, int, uint16_t);
|
|
static void wm_gmii_statchg(struct ifnet *);
|
|
/*
|
|
* kumeran related (80003, ICH* and PCH*).
|
|
* These functions are not for accessing MII registers but for accessing
|
|
* kumeran specific registers.
|
|
*/
|
|
static int wm_kmrn_readreg(struct wm_softc *, int, uint16_t *);
|
|
static int wm_kmrn_readreg_locked(struct wm_softc *, int, uint16_t *);
|
|
static int wm_kmrn_writereg(struct wm_softc *, int, uint16_t);
|
|
static int wm_kmrn_writereg_locked(struct wm_softc *, int, uint16_t);
|
|
/* EMI register related */
|
|
static int wm_access_emi_reg_locked(device_t, int, uint16_t *, bool);
|
|
static int wm_read_emi_reg_locked(device_t, int, uint16_t *);
|
|
static int wm_write_emi_reg_locked(device_t, int, uint16_t);
|
|
/* SGMII */
|
|
static bool wm_sgmii_uses_mdio(struct wm_softc *);
|
|
static void wm_sgmii_sfp_preconfig(struct wm_softc *);
|
|
static int wm_sgmii_readreg(device_t, int, int, uint16_t *);
|
|
static int wm_sgmii_readreg_locked(device_t, int, int, uint16_t *);
|
|
static int wm_sgmii_writereg(device_t, int, int, uint16_t);
|
|
static int wm_sgmii_writereg_locked(device_t, int, int, uint16_t);
|
|
/* TBI related */
|
|
static bool wm_tbi_havesignal(struct wm_softc *, uint32_t);
|
|
static void wm_tbi_mediainit(struct wm_softc *);
|
|
static int wm_tbi_mediachange(struct ifnet *);
|
|
static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
static int wm_check_for_link(struct wm_softc *);
|
|
static void wm_tbi_tick(struct wm_softc *);
|
|
/* SERDES related */
|
|
static void wm_serdes_power_up_link_82575(struct wm_softc *);
|
|
static int wm_serdes_mediachange(struct ifnet *);
|
|
static void wm_serdes_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
static void wm_serdes_tick(struct wm_softc *);
|
|
/* SFP related */
|
|
static int wm_sfp_read_data_byte(struct wm_softc *, uint16_t, uint8_t *);
|
|
static uint32_t wm_sfp_get_media_type(struct wm_softc *);
|
|
|
|
/*
|
|
* NVM related.
|
|
* Microwire, SPI (w/wo EERD) and Flash.
|
|
*/
|
|
/* Misc functions */
|
|
static void wm_eeprom_sendbits(struct wm_softc *, uint32_t, int);
|
|
static void wm_eeprom_recvbits(struct wm_softc *, uint32_t *, int);
|
|
static int wm_nvm_set_addrbits_size_eecd(struct wm_softc *);
|
|
/* Microwire */
|
|
static int wm_nvm_read_uwire(struct wm_softc *, int, int, uint16_t *);
|
|
/* SPI */
|
|
static int wm_nvm_ready_spi(struct wm_softc *);
|
|
static int wm_nvm_read_spi(struct wm_softc *, int, int, uint16_t *);
|
|
/* Using with EERD */
|
|
static int wm_poll_eerd_eewr_done(struct wm_softc *, int);
|
|
static int wm_nvm_read_eerd(struct wm_softc *, int, int, uint16_t *);
|
|
/* Flash */
|
|
static int wm_nvm_valid_bank_detect_ich8lan(struct wm_softc *,
|
|
unsigned int *);
|
|
static int32_t wm_ich8_cycle_init(struct wm_softc *);
|
|
static int32_t wm_ich8_flash_cycle(struct wm_softc *, uint32_t);
|
|
static int32_t wm_read_ich8_data(struct wm_softc *, uint32_t, uint32_t,
|
|
uint32_t *);
|
|
static int32_t wm_read_ich8_byte(struct wm_softc *, uint32_t, uint8_t *);
|
|
static int32_t wm_read_ich8_word(struct wm_softc *, uint32_t, uint16_t *);
|
|
static int32_t wm_read_ich8_dword(struct wm_softc *, uint32_t, uint32_t *);
|
|
static int wm_nvm_read_ich8(struct wm_softc *, int, int, uint16_t *);
|
|
static int wm_nvm_read_spt(struct wm_softc *, int, int, uint16_t *);
|
|
/* iNVM */
|
|
static int wm_nvm_read_word_invm(struct wm_softc *, uint16_t, uint16_t *);
|
|
static int wm_nvm_read_invm(struct wm_softc *, int, int, uint16_t *);
|
|
/* Lock, detecting NVM type, validate checksum and read */
|
|
static int wm_nvm_is_onboard_eeprom(struct wm_softc *);
|
|
static int wm_nvm_flash_presence_i210(struct wm_softc *);
|
|
static int wm_nvm_validate_checksum(struct wm_softc *);
|
|
static void wm_nvm_version_invm(struct wm_softc *);
|
|
static void wm_nvm_version(struct wm_softc *);
|
|
static int wm_nvm_read(struct wm_softc *, int, int, uint16_t *);
|
|
|
|
/*
|
|
* Hardware semaphores.
|
|
* Very complexed...
|
|
*/
|
|
static int wm_get_null(struct wm_softc *);
|
|
static void wm_put_null(struct wm_softc *);
|
|
static int wm_get_eecd(struct wm_softc *);
|
|
static void wm_put_eecd(struct wm_softc *);
|
|
static int wm_get_swsm_semaphore(struct wm_softc *); /* 8257[123] */
|
|
static void wm_put_swsm_semaphore(struct wm_softc *);
|
|
static int wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
|
|
static void wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
|
|
static int wm_get_nvm_80003(struct wm_softc *);
|
|
static void wm_put_nvm_80003(struct wm_softc *);
|
|
static int wm_get_nvm_82571(struct wm_softc *);
|
|
static void wm_put_nvm_82571(struct wm_softc *);
|
|
static int wm_get_phy_82575(struct wm_softc *);
|
|
static void wm_put_phy_82575(struct wm_softc *);
|
|
static int wm_get_swfwhw_semaphore(struct wm_softc *); /* For 574/583 */
|
|
static void wm_put_swfwhw_semaphore(struct wm_softc *);
|
|
static int wm_get_swflag_ich8lan(struct wm_softc *); /* For PHY */
|
|
static void wm_put_swflag_ich8lan(struct wm_softc *);
|
|
static int wm_get_nvm_ich8lan(struct wm_softc *);
|
|
static void wm_put_nvm_ich8lan(struct wm_softc *);
|
|
static int wm_get_hw_semaphore_82573(struct wm_softc *);
|
|
static void wm_put_hw_semaphore_82573(struct wm_softc *);
|
|
|
|
/*
|
|
* Management mode and power management related subroutines.
|
|
* BMC, AMT, suspend/resume and EEE.
|
|
*/
|
|
#if 0
|
|
static int wm_check_mng_mode(struct wm_softc *);
|
|
static int wm_check_mng_mode_ich8lan(struct wm_softc *);
|
|
static int wm_check_mng_mode_82574(struct wm_softc *);
|
|
static int wm_check_mng_mode_generic(struct wm_softc *);
|
|
#endif
|
|
static int wm_enable_mng_pass_thru(struct wm_softc *);
|
|
static bool wm_phy_resetisblocked(struct wm_softc *);
|
|
static void wm_get_hw_control(struct wm_softc *);
|
|
static void wm_release_hw_control(struct wm_softc *);
|
|
static void wm_gate_hw_phy_config_ich8lan(struct wm_softc *, bool);
|
|
static int wm_init_phy_workarounds_pchlan(struct wm_softc *);
|
|
static void wm_init_manageability(struct wm_softc *);
|
|
static void wm_release_manageability(struct wm_softc *);
|
|
static void wm_get_wakeup(struct wm_softc *);
|
|
static int wm_ulp_disable(struct wm_softc *);
|
|
static int wm_enable_phy_wakeup(struct wm_softc *);
|
|
static void wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *);
|
|
static void wm_suspend_workarounds_ich8lan(struct wm_softc *);
|
|
static int wm_resume_workarounds_pchlan(struct wm_softc *);
|
|
static void wm_enable_wakeup(struct wm_softc *);
|
|
static void wm_disable_aspm(struct wm_softc *);
|
|
/* LPLU (Low Power Link Up) */
|
|
static void wm_lplu_d0_disable(struct wm_softc *);
|
|
/* EEE */
|
|
static int wm_set_eee_i350(struct wm_softc *);
|
|
static int wm_set_eee_pchlan(struct wm_softc *);
|
|
static int wm_set_eee(struct wm_softc *);
|
|
|
|
/*
|
|
* Workarounds (mainly PHY related).
|
|
* Basically, PHY's workarounds are in the PHY drivers.
|
|
*/
|
|
static int wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *);
|
|
static void wm_gig_downshift_workaround_ich8lan(struct wm_softc *);
|
|
static int wm_hv_phy_workarounds_ich8lan(struct wm_softc *);
|
|
static void wm_copy_rx_addrs_to_phy_ich8lan(struct wm_softc *);
|
|
static void wm_copy_rx_addrs_to_phy_ich8lan_locked(struct wm_softc *);
|
|
static int wm_lv_jumbo_workaround_ich8lan(struct wm_softc *, bool);
|
|
static int wm_lv_phy_workarounds_ich8lan(struct wm_softc *);
|
|
static int wm_k1_workaround_lpt_lp(struct wm_softc *, bool);
|
|
static int wm_k1_gig_workaround_hv(struct wm_softc *, int);
|
|
static int wm_k1_workaround_lv(struct wm_softc *);
|
|
static int wm_link_stall_workaround_hv(struct wm_softc *);
|
|
static int wm_set_mdio_slow_mode_hv(struct wm_softc *);
|
|
static void wm_configure_k1_ich8lan(struct wm_softc *, int);
|
|
static void wm_reset_init_script_82575(struct wm_softc *);
|
|
static void wm_reset_mdicnfg_82580(struct wm_softc *);
|
|
static bool wm_phy_is_accessible_pchlan(struct wm_softc *);
|
|
static void wm_toggle_lanphypc_pch_lpt(struct wm_softc *);
|
|
static int wm_platform_pm_pch_lpt(struct wm_softc *, bool);
|
|
static int wm_pll_workaround_i210(struct wm_softc *);
|
|
static void wm_legacy_irq_quirk_spt(struct wm_softc *);
|
|
static bool wm_phy_need_linkdown_discard(struct wm_softc *);
|
|
static void wm_set_linkdown_discard(struct wm_softc *);
|
|
static void wm_clear_linkdown_discard(struct wm_softc *);
|
|
|
|
#ifdef WM_DEBUG
|
|
static int wm_sysctl_debug(SYSCTLFN_PROTO);
|
|
#endif
|
|
|
|
CFATTACH_DECL3_NEW(wm, sizeof(struct wm_softc),
|
|
wm_match, wm_attach, wm_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
|
|
|
|
/*
|
|
* Devices supported by this driver.
|
|
*/
|
|
static const struct wm_product {
|
|
pci_vendor_id_t wmp_vendor;
|
|
pci_product_id_t wmp_product;
|
|
const char *wmp_name;
|
|
wm_chip_type wmp_type;
|
|
uint32_t wmp_flags;
|
|
#define WMP_F_UNKNOWN WM_MEDIATYPE_UNKNOWN
|
|
#define WMP_F_FIBER WM_MEDIATYPE_FIBER
|
|
#define WMP_F_COPPER WM_MEDIATYPE_COPPER
|
|
#define WMP_F_SERDES WM_MEDIATYPE_SERDES
|
|
#define WMP_MEDIATYPE(x) ((x) & 0x03)
|
|
} wm_products[] = {
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
|
|
"Intel i82542 1000BASE-X Ethernet",
|
|
WM_T_82542_2_1, WMP_F_FIBER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
|
|
"Intel i82543GC 1000BASE-X Ethernet",
|
|
WM_T_82543, WMP_F_FIBER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
|
|
"Intel i82543GC 1000BASE-T Ethernet",
|
|
WM_T_82543, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
|
|
"Intel i82544EI 1000BASE-T Ethernet",
|
|
WM_T_82544, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
|
|
"Intel i82544EI 1000BASE-X Ethernet",
|
|
WM_T_82544, WMP_F_FIBER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
|
|
"Intel i82544GC 1000BASE-T Ethernet",
|
|
WM_T_82544, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
|
|
"Intel i82544GC (LOM) 1000BASE-T Ethernet",
|
|
WM_T_82544, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
|
|
"Intel i82540EM 1000BASE-T Ethernet",
|
|
WM_T_82540, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
|
|
"Intel i82540EM (LOM) 1000BASE-T Ethernet",
|
|
WM_T_82540, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
|
|
"Intel i82540EP 1000BASE-T Ethernet",
|
|
WM_T_82540, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
|
|
"Intel i82540EP 1000BASE-T Ethernet",
|
|
WM_T_82540, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
|
|
"Intel i82540EP 1000BASE-T Ethernet",
|
|
WM_T_82540, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
|
|
"Intel i82545EM 1000BASE-T Ethernet",
|
|
WM_T_82545, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
|
|
"Intel i82545GM 1000BASE-T Ethernet",
|
|
WM_T_82545_3, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
|
|
"Intel i82545GM 1000BASE-X Ethernet",
|
|
WM_T_82545_3, WMP_F_FIBER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
|
|
"Intel i82545GM Gigabit Ethernet (SERDES)",
|
|
WM_T_82545_3, WMP_F_SERDES },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
|
|
"Intel i82546EB 1000BASE-T Ethernet",
|
|
WM_T_82546, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
|
|
"Intel i82546EB 1000BASE-T Ethernet",
|
|
WM_T_82546, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
|
|
"Intel i82545EM 1000BASE-X Ethernet",
|
|
WM_T_82545, WMP_F_FIBER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
|
|
"Intel i82546EB 1000BASE-X Ethernet",
|
|
WM_T_82546, WMP_F_FIBER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
|
|
"Intel i82546GB 1000BASE-T Ethernet",
|
|
WM_T_82546_3, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
|
|
"Intel i82546GB 1000BASE-X Ethernet",
|
|
WM_T_82546_3, WMP_F_FIBER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
|
|
"Intel i82546GB Gigabit Ethernet (SERDES)",
|
|
WM_T_82546_3, WMP_F_SERDES },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
|
|
"i82546GB quad-port Gigabit Ethernet",
|
|
WM_T_82546_3, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
|
|
"i82546GB quad-port Gigabit Ethernet (KSP3)",
|
|
WM_T_82546_3, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_PCIE,
|
|
"Intel PRO/1000MT (82546GB)",
|
|
WM_T_82546_3, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
|
|
"Intel i82541EI 1000BASE-T Ethernet",
|
|
WM_T_82541, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER_LOM,
|
|
"Intel i82541ER (LOM) 1000BASE-T Ethernet",
|
|
WM_T_82541, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
|
|
"Intel i82541EI Mobile 1000BASE-T Ethernet",
|
|
WM_T_82541, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
|
|
"Intel i82541ER 1000BASE-T Ethernet",
|
|
WM_T_82541_2, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
|
|
"Intel i82541GI 1000BASE-T Ethernet",
|
|
WM_T_82541_2, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
|
|
"Intel i82541GI Mobile 1000BASE-T Ethernet",
|
|
WM_T_82541_2, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
|
|
"Intel i82541PI 1000BASE-T Ethernet",
|
|
WM_T_82541_2, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
|
|
"Intel i82547EI 1000BASE-T Ethernet",
|
|
WM_T_82547, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI_MOBILE,
|
|
"Intel i82547EI Mobile 1000BASE-T Ethernet",
|
|
WM_T_82547, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
|
|
"Intel i82547GI 1000BASE-T Ethernet",
|
|
WM_T_82547_2, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_COPPER,
|
|
"Intel PRO/1000 PT (82571EB)",
|
|
WM_T_82571, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_FIBER,
|
|
"Intel PRO/1000 PF (82571EB)",
|
|
WM_T_82571, WMP_F_FIBER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SERDES,
|
|
"Intel PRO/1000 PB (82571EB)",
|
|
WM_T_82571, WMP_F_SERDES },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
|
|
"Intel PRO/1000 QT (82571EB)",
|
|
WM_T_82571, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER,
|
|
"Intel PRO/1000 PT Quad Port Server Adapter",
|
|
WM_T_82571, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571PT_QUAD_COPPER,
|
|
"Intel Gigabit PT Quad Port Server ExpressModule",
|
|
WM_T_82571, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_DUAL_SERDES,
|
|
"Intel 82571EB Dual Gigabit Ethernet (SERDES)",
|
|
WM_T_82571, WMP_F_SERDES },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_SERDES,
|
|
"Intel 82571EB Quad Gigabit Ethernet (SERDES)",
|
|
WM_T_82571, WMP_F_SERDES },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_FIBER,
|
|
"Intel 82571EB Quad 1000baseX Ethernet",
|
|
WM_T_82571, WMP_F_FIBER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_COPPER,
|
|
"Intel i82572EI 1000baseT Ethernet",
|
|
WM_T_82572, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_FIBER,
|
|
"Intel i82572EI 1000baseX Ethernet",
|
|
WM_T_82572, WMP_F_FIBER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_SERDES,
|
|
"Intel i82572EI Gigabit Ethernet (SERDES)",
|
|
WM_T_82572, WMP_F_SERDES },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI,
|
|
"Intel i82572EI 1000baseT Ethernet",
|
|
WM_T_82572, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E,
|
|
"Intel i82573E",
|
|
WM_T_82573, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E_IAMT,
|
|
"Intel i82573E IAMT",
|
|
WM_T_82573, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L,
|
|
"Intel i82573L Gigabit Ethernet",
|
|
WM_T_82573, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574L,
|
|
"Intel i82574L",
|
|
WM_T_82574, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574LA,
|
|
"Intel i82574L",
|
|
WM_T_82574, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82583V,
|
|
"Intel i82583V",
|
|
WM_T_82583, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
|
|
"i80003 dual 1000baseT Ethernet",
|
|
WM_T_80003, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
|
|
"i80003 dual 1000baseX Ethernet",
|
|
WM_T_80003, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
|
|
"Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
|
|
WM_T_80003, WMP_F_SERDES },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
|
|
"Intel i80003 1000baseT Ethernet",
|
|
WM_T_80003, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
|
|
"Intel i80003 Gigabit Ethernet (SERDES)",
|
|
WM_T_80003, WMP_F_SERDES },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_AMT,
|
|
"Intel i82801H (M_AMT) LAN Controller",
|
|
WM_T_ICH8, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_AMT,
|
|
"Intel i82801H (AMT) LAN Controller",
|
|
WM_T_ICH8, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_LAN,
|
|
"Intel i82801H LAN Controller",
|
|
WM_T_ICH8, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_LAN,
|
|
"Intel i82801H (IFE) 10/100 LAN Controller",
|
|
WM_T_ICH8, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_LAN,
|
|
"Intel i82801H (M) LAN Controller",
|
|
WM_T_ICH8, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_GT,
|
|
"Intel i82801H IFE (GT) 10/100 LAN Controller",
|
|
WM_T_ICH8, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_G,
|
|
"Intel i82801H IFE (G) 10/100 LAN Controller",
|
|
WM_T_ICH8, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_82567V_3,
|
|
"82567V-3 LAN Controller",
|
|
WM_T_ICH8, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_AMT,
|
|
"82801I (AMT) LAN Controller",
|
|
WM_T_ICH9, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE,
|
|
"82801I 10/100 LAN Controller",
|
|
WM_T_ICH9, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_G,
|
|
"82801I (G) 10/100 LAN Controller",
|
|
WM_T_ICH9, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_GT,
|
|
"82801I (GT) 10/100 LAN Controller",
|
|
WM_T_ICH9, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_C,
|
|
"82801I (C) LAN Controller",
|
|
WM_T_ICH9, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M,
|
|
"82801I mobile LAN Controller",
|
|
WM_T_ICH9, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M_V,
|
|
"82801I mobile (V) LAN Controller",
|
|
WM_T_ICH9, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M_AMT,
|
|
"82801I mobile (AMT) LAN Controller",
|
|
WM_T_ICH9, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_BM,
|
|
"82567LM-4 LAN Controller",
|
|
WM_T_ICH9, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_LM,
|
|
"82567LM-2 LAN Controller",
|
|
WM_T_ICH10, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_LF,
|
|
"82567LF-2 LAN Controller",
|
|
WM_T_ICH10, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_LM,
|
|
"82567LM-3 LAN Controller",
|
|
WM_T_ICH10, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_LF,
|
|
"82567LF-3 LAN Controller",
|
|
WM_T_ICH10, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_V,
|
|
"82567V-2 LAN Controller",
|
|
WM_T_ICH10, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_V,
|
|
"82567V-3? LAN Controller",
|
|
WM_T_ICH10, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_HANKSVILLE,
|
|
"HANKSVILLE LAN Controller",
|
|
WM_T_ICH10, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_M_LM,
|
|
"PCH LAN (82577LM) Controller",
|
|
WM_T_PCH, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_M_LC,
|
|
"PCH LAN (82577LC) Controller",
|
|
WM_T_PCH, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_D_DM,
|
|
"PCH LAN (82578DM) Controller",
|
|
WM_T_PCH, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_D_DC,
|
|
"PCH LAN (82578DC) Controller",
|
|
WM_T_PCH, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH2_LV_LM,
|
|
"PCH2 LAN (82579LM) Controller",
|
|
WM_T_PCH2, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH2_LV_V,
|
|
"PCH2 LAN (82579V) Controller",
|
|
WM_T_PCH2, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_COPPER,
|
|
"82575EB dual-1000baseT Ethernet",
|
|
WM_T_82575, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_FIBER_SERDES,
|
|
"82575EB dual-1000baseX Ethernet (SERDES)",
|
|
WM_T_82575, WMP_F_SERDES },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER,
|
|
"82575GB quad-1000baseT Ethernet",
|
|
WM_T_82575, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER_PM,
|
|
"82575GB quad-1000baseT Ethernet (PM)",
|
|
WM_T_82575, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_COPPER,
|
|
"82576 1000BaseT Ethernet",
|
|
WM_T_82576, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_FIBER,
|
|
"82576 1000BaseX Ethernet",
|
|
WM_T_82576, WMP_F_FIBER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES,
|
|
"82576 gigabit Ethernet (SERDES)",
|
|
WM_T_82576, WMP_F_SERDES },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_QUAD_COPPER,
|
|
"82576 quad-1000BaseT Ethernet",
|
|
WM_T_82576, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_QUAD_COPPER_ET2,
|
|
"82576 Gigabit ET2 Quad Port Server Adapter",
|
|
WM_T_82576, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS,
|
|
"82576 gigabit Ethernet",
|
|
WM_T_82576, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS_SERDES,
|
|
"82576 gigabit Ethernet (SERDES)",
|
|
WM_T_82576, WMP_F_SERDES },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES_QUAD,
|
|
"82576 quad-gigabit Ethernet (SERDES)",
|
|
WM_T_82576, WMP_F_SERDES },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER,
|
|
"82580 1000BaseT Ethernet",
|
|
WM_T_82580, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_FIBER,
|
|
"82580 1000BaseX Ethernet",
|
|
WM_T_82580, WMP_F_FIBER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SERDES,
|
|
"82580 1000BaseT Ethernet (SERDES)",
|
|
WM_T_82580, WMP_F_SERDES },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SGMII,
|
|
"82580 gigabit Ethernet (SGMII)",
|
|
WM_T_82580, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER_DUAL,
|
|
"82580 dual-1000BaseT Ethernet",
|
|
WM_T_82580, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_QUAD_FIBER,
|
|
"82580 quad-1000BaseX Ethernet",
|
|
WM_T_82580, WMP_F_FIBER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SGMII,
|
|
"DH89XXCC Gigabit Ethernet (SGMII)",
|
|
WM_T_82580, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SERDES,
|
|
"DH89XXCC Gigabit Ethernet (SERDES)",
|
|
WM_T_82580, WMP_F_SERDES },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_BPLANE,
|
|
"DH89XXCC 1000BASE-KX Ethernet",
|
|
WM_T_82580, WMP_F_SERDES },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SFP,
|
|
"DH89XXCC Gigabit Ethernet (SFP)",
|
|
WM_T_82580, WMP_F_SERDES },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_COPPER,
|
|
"I350 Gigabit Network Connection",
|
|
WM_T_I350, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_FIBER,
|
|
"I350 Gigabit Fiber Network Connection",
|
|
WM_T_I350, WMP_F_FIBER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SERDES,
|
|
"I350 Gigabit Backplane Connection",
|
|
WM_T_I350, WMP_F_SERDES },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_DA4,
|
|
"I350 Quad Port Gigabit Ethernet",
|
|
WM_T_I350, WMP_F_SERDES },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SGMII,
|
|
"I350 Gigabit Connection",
|
|
WM_T_I350, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_1000KX,
|
|
"I354 Gigabit Ethernet (KX)",
|
|
WM_T_I354, WMP_F_SERDES },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_SGMII,
|
|
"I354 Gigabit Ethernet (SGMII)",
|
|
WM_T_I354, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_25GBE,
|
|
"I354 Gigabit Ethernet (2.5G)",
|
|
WM_T_I354, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_T1,
|
|
"I210-T1 Ethernet Server Adapter",
|
|
WM_T_I210, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_OEM1,
|
|
"I210 Ethernet (Copper OEM)",
|
|
WM_T_I210, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_IT,
|
|
"I210 Ethernet (Copper IT)",
|
|
WM_T_I210, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_WOF,
|
|
"I210 Ethernet (Copper, FLASH less)",
|
|
WM_T_I210, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_FIBER,
|
|
"I210 Gigabit Ethernet (Fiber)",
|
|
WM_T_I210, WMP_F_FIBER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SERDES,
|
|
"I210 Gigabit Ethernet (SERDES)",
|
|
WM_T_I210, WMP_F_SERDES },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SERDES_WOF,
|
|
"I210 Gigabit Ethernet (SERDES, FLASH less)",
|
|
WM_T_I210, WMP_F_SERDES },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SGMII,
|
|
"I210 Gigabit Ethernet (SGMII)",
|
|
WM_T_I210, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SGMII_WOF,
|
|
"I210 Gigabit Ethernet (SGMII, FLASH less)",
|
|
WM_T_I210, WMP_F_COPPER },
|
|
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I211_COPPER,
|
|
"I211 Ethernet (COPPER)",
|
|
WM_T_I211, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_V,
|
|
"I217 V Ethernet Connection",
|
|
WM_T_PCH_LPT, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_LM,
|
|
"I217 LM Ethernet Connection",
|
|
WM_T_PCH_LPT, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V,
|
|
"I218 V Ethernet Connection",
|
|
WM_T_PCH_LPT, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V2,
|
|
"I218 V Ethernet Connection",
|
|
WM_T_PCH_LPT, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V3,
|
|
"I218 V Ethernet Connection",
|
|
WM_T_PCH_LPT, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM,
|
|
"I218 LM Ethernet Connection",
|
|
WM_T_PCH_LPT, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM2,
|
|
"I218 LM Ethernet Connection",
|
|
WM_T_PCH_LPT, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM3,
|
|
"I218 LM Ethernet Connection",
|
|
WM_T_PCH_LPT, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM,
|
|
"I219 LM Ethernet Connection",
|
|
WM_T_PCH_SPT, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM2,
|
|
"I219 LM Ethernet Connection",
|
|
WM_T_PCH_SPT, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM3,
|
|
"I219 LM Ethernet Connection",
|
|
WM_T_PCH_SPT, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM4,
|
|
"I219 LM Ethernet Connection",
|
|
WM_T_PCH_SPT, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM5,
|
|
"I219 LM Ethernet Connection",
|
|
WM_T_PCH_SPT, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM6,
|
|
"I219 LM Ethernet Connection",
|
|
WM_T_PCH_CNP, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM7,
|
|
"I219 LM Ethernet Connection",
|
|
WM_T_PCH_CNP, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM8,
|
|
"I219 LM Ethernet Connection",
|
|
WM_T_PCH_CNP, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM9,
|
|
"I219 LM Ethernet Connection",
|
|
WM_T_PCH_CNP, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM10,
|
|
"I219 LM Ethernet Connection",
|
|
WM_T_PCH_CNP, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM11,
|
|
"I219 LM Ethernet Connection",
|
|
WM_T_PCH_CNP, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM12,
|
|
"I219 LM Ethernet Connection",
|
|
WM_T_PCH_SPT, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM13,
|
|
"I219 LM Ethernet Connection",
|
|
WM_T_PCH_CNP, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM14,
|
|
"I219 LM Ethernet Connection",
|
|
WM_T_PCH_CNP, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM15,
|
|
"I219 LM Ethernet Connection",
|
|
WM_T_PCH_CNP, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V,
|
|
"I219 V Ethernet Connection",
|
|
WM_T_PCH_SPT, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V2,
|
|
"I219 V Ethernet Connection",
|
|
WM_T_PCH_SPT, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V4,
|
|
"I219 V Ethernet Connection",
|
|
WM_T_PCH_SPT, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V5,
|
|
"I219 V Ethernet Connection",
|
|
WM_T_PCH_SPT, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V6,
|
|
"I219 V Ethernet Connection",
|
|
WM_T_PCH_CNP, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V7,
|
|
"I219 V Ethernet Connection",
|
|
WM_T_PCH_CNP, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V8,
|
|
"I219 V Ethernet Connection",
|
|
WM_T_PCH_CNP, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V9,
|
|
"I219 V Ethernet Connection",
|
|
WM_T_PCH_CNP, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V10,
|
|
"I219 V Ethernet Connection",
|
|
WM_T_PCH_CNP, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V11,
|
|
"I219 V Ethernet Connection",
|
|
WM_T_PCH_CNP, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V12,
|
|
"I219 V Ethernet Connection",
|
|
WM_T_PCH_SPT, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V13,
|
|
"I219 V Ethernet Connection",
|
|
WM_T_PCH_CNP, WMP_F_COPPER },
|
|
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V14,
|
|
"I219 V Ethernet Connection",
|
|
WM_T_PCH_CNP, WMP_F_COPPER },
|
|
{ 0, 0,
|
|
NULL,
|
|
0, 0 },
|
|
};
|
|
|
|
/*
|
|
* Register read/write functions.
|
|
* Other than CSR_{READ|WRITE}().
|
|
*/
|
|
|
|
#if 0 /* Not currently used */
|
|
static inline uint32_t
|
|
wm_io_read(struct wm_softc *sc, int reg)
|
|
{
|
|
|
|
bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
|
|
return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
|
|
}
|
|
#endif
|
|
|
|
static inline void
|
|
wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
|
|
{
|
|
|
|
bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
|
|
bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
|
|
}
|
|
|
|
static inline void
|
|
wm_82575_write_8bit_ctlr_reg(struct wm_softc *sc, uint32_t reg, uint32_t off,
|
|
uint32_t data)
|
|
{
|
|
uint32_t regval;
|
|
int i;
|
|
|
|
regval = (data & SCTL_CTL_DATA_MASK) | (off << SCTL_CTL_ADDR_SHIFT);
|
|
|
|
CSR_WRITE(sc, reg, regval);
|
|
|
|
for (i = 0; i < SCTL_CTL_POLL_TIMEOUT; i++) {
|
|
delay(5);
|
|
if (CSR_READ(sc, reg) & SCTL_CTL_READY)
|
|
break;
|
|
}
|
|
if (i == SCTL_CTL_POLL_TIMEOUT) {
|
|
aprint_error("%s: WARNING:"
|
|
" i82575 reg 0x%08x setup did not indicate ready\n",
|
|
device_xname(sc->sc_dev), reg);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
|
|
{
|
|
wa->wa_low = htole32(v & 0xffffffffU);
|
|
if (sizeof(bus_addr_t) == 8)
|
|
wa->wa_high = htole32((uint64_t) v >> 32);
|
|
else
|
|
wa->wa_high = 0;
|
|
}
|
|
|
|
/*
|
|
* Descriptor sync/init functions.
|
|
*/
|
|
static inline void
|
|
wm_cdtxsync(struct wm_txqueue *txq, int start, int num, int ops)
|
|
{
|
|
struct wm_softc *sc = txq->txq_sc;
|
|
|
|
/* If it will wrap around, sync to the end of the ring. */
|
|
if ((start + num) > WM_NTXDESC(txq)) {
|
|
bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_dmamap,
|
|
WM_CDTXOFF(txq, start), txq->txq_descsize *
|
|
(WM_NTXDESC(txq) - start), ops);
|
|
num -= (WM_NTXDESC(txq) - start);
|
|
start = 0;
|
|
}
|
|
|
|
/* Now sync whatever is left. */
|
|
bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_dmamap,
|
|
WM_CDTXOFF(txq, start), txq->txq_descsize * num, ops);
|
|
}
|
|
|
|
static inline void
|
|
wm_cdrxsync(struct wm_rxqueue *rxq, int start, int ops)
|
|
{
|
|
struct wm_softc *sc = rxq->rxq_sc;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_dmamap,
|
|
WM_CDRXOFF(rxq, start), rxq->rxq_descsize, ops);
|
|
}
|
|
|
|
static inline void
|
|
wm_init_rxdesc(struct wm_rxqueue *rxq, int start)
|
|
{
|
|
struct wm_softc *sc = rxq->rxq_sc;
|
|
struct wm_rxsoft *rxs = &rxq->rxq_soft[start];
|
|
struct mbuf *m = rxs->rxs_mbuf;
|
|
|
|
/*
|
|
* Note: We scoot the packet forward 2 bytes in the buffer
|
|
* so that the payload after the Ethernet header is aligned
|
|
* to a 4-byte boundary.
|
|
|
|
* XXX BRAINDAMAGE ALERT!
|
|
* The stupid chip uses the same size for every buffer, which
|
|
* is set in the Receive Control register. We are using the 2K
|
|
* size option, but what we REALLY want is (2K - 2)! For this
|
|
* reason, we can't "scoot" packets longer than the standard
|
|
* Ethernet MTU. On strict-alignment platforms, if the total
|
|
* size exceeds (2K - 2) we set align_tweak to 0 and let
|
|
* the upper layer copy the headers.
|
|
*/
|
|
m->m_data = m->m_ext.ext_buf + sc->sc_align_tweak;
|
|
|
|
if (sc->sc_type == WM_T_82574) {
|
|
ext_rxdesc_t *rxd = &rxq->rxq_ext_descs[start];
|
|
rxd->erx_data.erxd_addr =
|
|
htole64(rxs->rxs_dmamap->dm_segs[0].ds_addr + sc->sc_align_tweak);
|
|
rxd->erx_data.erxd_dd = 0;
|
|
} else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
|
|
nq_rxdesc_t *rxd = &rxq->rxq_nq_descs[start];
|
|
|
|
rxd->nqrx_data.nrxd_paddr =
|
|
htole64(rxs->rxs_dmamap->dm_segs[0].ds_addr + sc->sc_align_tweak);
|
|
/* Currently, split header is not supported. */
|
|
rxd->nqrx_data.nrxd_haddr = 0;
|
|
} else {
|
|
wiseman_rxdesc_t *rxd = &rxq->rxq_descs[start];
|
|
|
|
wm_set_dma_addr(&rxd->wrx_addr,
|
|
rxs->rxs_dmamap->dm_segs[0].ds_addr + sc->sc_align_tweak);
|
|
rxd->wrx_len = 0;
|
|
rxd->wrx_cksum = 0;
|
|
rxd->wrx_status = 0;
|
|
rxd->wrx_errors = 0;
|
|
rxd->wrx_special = 0;
|
|
}
|
|
wm_cdrxsync(rxq, start, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
CSR_WRITE(sc, rxq->rxq_rdt_reg, start);
|
|
}
|
|
|
|
/*
|
|
* Device driver interface functions and commonly used functions.
|
|
* match, attach, detach, init, start, stop, ioctl, watchdog and so on.
|
|
*/
|
|
|
|
/* Lookup supported device table */
|
|
static const struct wm_product *
|
|
wm_lookup(const struct pci_attach_args *pa)
|
|
{
|
|
const struct wm_product *wmp;
|
|
|
|
for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
|
|
if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
|
|
PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
|
|
return wmp;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* The match function (ca_match) */
|
|
static int
|
|
wm_match(device_t parent, cfdata_t cf, void *aux)
|
|
{
|
|
struct pci_attach_args *pa = aux;
|
|
|
|
if (wm_lookup(pa) != NULL)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The attach function (ca_attach) */
|
|
static void
|
|
wm_attach(device_t parent, device_t self, void *aux)
|
|
{
|
|
struct wm_softc *sc = device_private(self);
|
|
struct pci_attach_args *pa = aux;
|
|
prop_dictionary_t dict;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
pci_chipset_tag_t pc = pa->pa_pc;
|
|
int counts[PCI_INTR_TYPE_SIZE];
|
|
pci_intr_type_t max_type;
|
|
const char *eetype, *xname;
|
|
bus_space_tag_t memt;
|
|
bus_space_handle_t memh;
|
|
bus_size_t memsize;
|
|
int memh_valid;
|
|
int i, error;
|
|
const struct wm_product *wmp;
|
|
prop_data_t ea;
|
|
prop_number_t pn;
|
|
uint8_t enaddr[ETHER_ADDR_LEN];
|
|
char buf[256];
|
|
char wqname[MAXCOMLEN];
|
|
uint16_t cfg1, cfg2, swdpin, nvmword;
|
|
pcireg_t preg, memtype;
|
|
uint16_t eeprom_data, apme_mask;
|
|
bool force_clear_smbi;
|
|
uint32_t link_mode;
|
|
uint32_t reg;
|
|
|
|
#if defined(WM_DEBUG) && defined(WM_DEBUG_DEFAULT)
|
|
sc->sc_debug = WM_DEBUG_DEFAULT;
|
|
#endif
|
|
sc->sc_dev = self;
|
|
callout_init(&sc->sc_tick_ch, WM_CALLOUT_FLAGS);
|
|
callout_setfunc(&sc->sc_tick_ch, wm_tick, sc);
|
|
sc->sc_core_stopping = false;
|
|
|
|
wmp = wm_lookup(pa);
|
|
#ifdef DIAGNOSTIC
|
|
if (wmp == NULL) {
|
|
printf("\n");
|
|
panic("wm_attach: impossible");
|
|
}
|
|
#endif
|
|
sc->sc_mediatype = WMP_MEDIATYPE(wmp->wmp_flags);
|
|
|
|
sc->sc_pc = pa->pa_pc;
|
|
sc->sc_pcitag = pa->pa_tag;
|
|
|
|
if (pci_dma64_available(pa))
|
|
sc->sc_dmat = pa->pa_dmat64;
|
|
else
|
|
sc->sc_dmat = pa->pa_dmat;
|
|
|
|
sc->sc_pcidevid = PCI_PRODUCT(pa->pa_id);
|
|
sc->sc_rev = PCI_REVISION(pci_conf_read(pc, pa->pa_tag,PCI_CLASS_REG));
|
|
pci_aprint_devinfo_fancy(pa, "Ethernet controller", wmp->wmp_name, 1);
|
|
|
|
sc->sc_type = wmp->wmp_type;
|
|
|
|
/* Set default function pointers */
|
|
sc->phy.acquire = sc->nvm.acquire = wm_get_null;
|
|
sc->phy.release = sc->nvm.release = wm_put_null;
|
|
sc->phy.reset_delay_us = (sc->sc_type >= WM_T_82571) ? 100 : 10000;
|
|
|
|
if (sc->sc_type < WM_T_82543) {
|
|
if (sc->sc_rev < 2) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"i82542 must be at least rev. 2\n");
|
|
return;
|
|
}
|
|
if (sc->sc_rev < 3)
|
|
sc->sc_type = WM_T_82542_2_0;
|
|
}
|
|
|
|
/*
|
|
* Disable MSI for Errata:
|
|
* "Message Signaled Interrupt Feature May Corrupt Write Transactions"
|
|
*
|
|
* 82544: Errata 25
|
|
* 82540: Errata 6 (easy to reproduce device timeout)
|
|
* 82545: Errata 4 (easy to reproduce device timeout)
|
|
* 82546: Errata 26 (easy to reproduce device timeout)
|
|
* 82541: Errata 7 (easy to reproduce device timeout)
|
|
*
|
|
* "Byte Enables 2 and 3 are not set on MSI writes"
|
|
*
|
|
* 82571 & 82572: Errata 63
|
|
*/
|
|
if ((sc->sc_type <= WM_T_82541_2) || (sc->sc_type == WM_T_82571)
|
|
|| (sc->sc_type == WM_T_82572))
|
|
pa->pa_flags &= ~PCI_FLAGS_MSI_OKAY;
|
|
|
|
if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
|
|
|| (sc->sc_type == WM_T_82580)
|
|
|| (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
|
|
|| (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211))
|
|
sc->sc_flags |= WM_F_NEWQUEUE;
|
|
|
|
/* Set device properties (mactype) */
|
|
dict = device_properties(sc->sc_dev);
|
|
prop_dictionary_set_uint32(dict, "mactype", sc->sc_type);
|
|
|
|
/*
|
|
* Map the device. All devices support memory-mapped acccess,
|
|
* and it is really required for normal operation.
|
|
*/
|
|
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
|
|
switch (memtype) {
|
|
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
|
|
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
|
|
memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
|
|
memtype, 0, &memt, &memh, NULL, &memsize) == 0);
|
|
break;
|
|
default:
|
|
memh_valid = 0;
|
|
break;
|
|
}
|
|
|
|
if (memh_valid) {
|
|
sc->sc_st = memt;
|
|
sc->sc_sh = memh;
|
|
sc->sc_ss = memsize;
|
|
} else {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to map device registers\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* In addition, i82544 and later support I/O mapped indirect
|
|
* register access. It is not desirable (nor supported in
|
|
* this driver) to use it for normal operation, though it is
|
|
* required to work around bugs in some chip versions.
|
|
*/
|
|
if (sc->sc_type >= WM_T_82544) {
|
|
/* First we have to find the I/O BAR. */
|
|
for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
|
|
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, i);
|
|
if (memtype == PCI_MAPREG_TYPE_IO)
|
|
break;
|
|
if (PCI_MAPREG_MEM_TYPE(memtype) ==
|
|
PCI_MAPREG_MEM_TYPE_64BIT)
|
|
i += 4; /* skip high bits, too */
|
|
}
|
|
if (i < PCI_MAPREG_END) {
|
|
/*
|
|
* We found PCI_MAPREG_TYPE_IO. Note that 82580
|
|
* (and newer?) chip has no PCI_MAPREG_TYPE_IO.
|
|
* It's no problem because newer chips has no this
|
|
* bug.
|
|
*
|
|
* The i8254x doesn't apparently respond when the
|
|
* I/O BAR is 0, which looks somewhat like it's not
|
|
* been configured.
|
|
*/
|
|
preg = pci_conf_read(pc, pa->pa_tag, i);
|
|
if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"WARNING: I/O BAR at zero.\n");
|
|
} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
|
|
0, &sc->sc_iot, &sc->sc_ioh,
|
|
NULL, &sc->sc_ios) == 0) {
|
|
sc->sc_flags |= WM_F_IOH_VALID;
|
|
} else
|
|
aprint_error_dev(sc->sc_dev,
|
|
"WARNING: unable to map I/O space\n");
|
|
}
|
|
|
|
}
|
|
|
|
/* Enable bus mastering. Disable MWI on the i82542 2.0. */
|
|
preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
|
|
preg |= PCI_COMMAND_MASTER_ENABLE;
|
|
if (sc->sc_type < WM_T_82542_2_1)
|
|
preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
|
|
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
|
|
|
|
/* Power up chip */
|
|
if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL))
|
|
&& error != EOPNOTSUPP) {
|
|
aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
|
|
return;
|
|
}
|
|
|
|
wm_adjust_qnum(sc, pci_msix_count(pa->pa_pc, pa->pa_tag));
|
|
/*
|
|
* Don't use MSI-X if we can use only one queue to save interrupt
|
|
* resource.
|
|
*/
|
|
if (sc->sc_nqueues > 1) {
|
|
max_type = PCI_INTR_TYPE_MSIX;
|
|
/*
|
|
* 82583 has a MSI-X capability in the PCI configuration space
|
|
* but it doesn't support it. At least the document doesn't
|
|
* say anything about MSI-X.
|
|
*/
|
|
counts[PCI_INTR_TYPE_MSIX]
|
|
= (sc->sc_type == WM_T_82583) ? 0 : sc->sc_nqueues + 1;
|
|
} else {
|
|
max_type = PCI_INTR_TYPE_MSI;
|
|
counts[PCI_INTR_TYPE_MSIX] = 0;
|
|
}
|
|
|
|
/* Allocation settings */
|
|
counts[PCI_INTR_TYPE_MSI] = 1;
|
|
counts[PCI_INTR_TYPE_INTX] = 1;
|
|
/* overridden by disable flags */
|
|
if (wm_disable_msi != 0) {
|
|
counts[PCI_INTR_TYPE_MSI] = 0;
|
|
if (wm_disable_msix != 0) {
|
|
max_type = PCI_INTR_TYPE_INTX;
|
|
counts[PCI_INTR_TYPE_MSIX] = 0;
|
|
}
|
|
} else if (wm_disable_msix != 0) {
|
|
max_type = PCI_INTR_TYPE_MSI;
|
|
counts[PCI_INTR_TYPE_MSIX] = 0;
|
|
}
|
|
|
|
alloc_retry:
|
|
if (pci_intr_alloc(pa, &sc->sc_intrs, counts, max_type) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "failed to allocate interrupt\n");
|
|
return;
|
|
}
|
|
|
|
if (pci_intr_type(pc, sc->sc_intrs[0]) == PCI_INTR_TYPE_MSIX) {
|
|
error = wm_setup_msix(sc);
|
|
if (error) {
|
|
pci_intr_release(pc, sc->sc_intrs,
|
|
counts[PCI_INTR_TYPE_MSIX]);
|
|
|
|
/* Setup for MSI: Disable MSI-X */
|
|
max_type = PCI_INTR_TYPE_MSI;
|
|
counts[PCI_INTR_TYPE_MSI] = 1;
|
|
counts[PCI_INTR_TYPE_INTX] = 1;
|
|
goto alloc_retry;
|
|
}
|
|
} else if (pci_intr_type(pc, sc->sc_intrs[0]) == PCI_INTR_TYPE_MSI) {
|
|
wm_adjust_qnum(sc, 0); /* Must not use multiqueue */
|
|
error = wm_setup_legacy(sc);
|
|
if (error) {
|
|
pci_intr_release(sc->sc_pc, sc->sc_intrs,
|
|
counts[PCI_INTR_TYPE_MSI]);
|
|
|
|
/* The next try is for INTx: Disable MSI */
|
|
max_type = PCI_INTR_TYPE_INTX;
|
|
counts[PCI_INTR_TYPE_INTX] = 1;
|
|
goto alloc_retry;
|
|
}
|
|
} else {
|
|
wm_adjust_qnum(sc, 0); /* Must not use multiqueue */
|
|
error = wm_setup_legacy(sc);
|
|
if (error) {
|
|
pci_intr_release(sc->sc_pc, sc->sc_intrs,
|
|
counts[PCI_INTR_TYPE_INTX]);
|
|
return;
|
|
}
|
|
}
|
|
|
|
snprintf(wqname, sizeof(wqname), "%sTxRx", device_xname(sc->sc_dev));
|
|
error = workqueue_create(&sc->sc_queue_wq, wqname,
|
|
wm_handle_queue_work, sc, WM_WORKQUEUE_PRI, IPL_NET,
|
|
WM_WORKQUEUE_FLAGS);
|
|
if (error) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to create workqueue\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Check the function ID (unit number of the chip).
|
|
*/
|
|
if ((sc->sc_type == WM_T_82546) || (sc->sc_type == WM_T_82546_3)
|
|
|| (sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_80003)
|
|
|| (sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
|
|
|| (sc->sc_type == WM_T_82580)
|
|
|| (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354))
|
|
sc->sc_funcid = (CSR_READ(sc, WMREG_STATUS)
|
|
>> STATUS_FUNCID_SHIFT) & STATUS_FUNCID_MASK;
|
|
else
|
|
sc->sc_funcid = 0;
|
|
|
|
/*
|
|
* Determine a few things about the bus we're connected to.
|
|
*/
|
|
if (sc->sc_type < WM_T_82543) {
|
|
/* We don't really know the bus characteristics here. */
|
|
sc->sc_bus_speed = 33;
|
|
} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
|
|
/*
|
|
* CSA (Communication Streaming Architecture) is about as fast
|
|
* a 32-bit 66MHz PCI Bus.
|
|
*/
|
|
sc->sc_flags |= WM_F_CSA;
|
|
sc->sc_bus_speed = 66;
|
|
aprint_verbose_dev(sc->sc_dev,
|
|
"Communication Streaming Architecture\n");
|
|
if (sc->sc_type == WM_T_82547) {
|
|
callout_init(&sc->sc_txfifo_ch, WM_CALLOUT_FLAGS);
|
|
callout_setfunc(&sc->sc_txfifo_ch,
|
|
wm_82547_txfifo_stall, sc);
|
|
aprint_verbose_dev(sc->sc_dev,
|
|
"using 82547 Tx FIFO stall work-around\n");
|
|
}
|
|
} else if (sc->sc_type >= WM_T_82571) {
|
|
sc->sc_flags |= WM_F_PCIE;
|
|
if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
|
|
&& (sc->sc_type != WM_T_ICH10)
|
|
&& (sc->sc_type != WM_T_PCH)
|
|
&& (sc->sc_type != WM_T_PCH2)
|
|
&& (sc->sc_type != WM_T_PCH_LPT)
|
|
&& (sc->sc_type != WM_T_PCH_SPT)
|
|
&& (sc->sc_type != WM_T_PCH_CNP)) {
|
|
/* ICH* and PCH* have no PCIe capability registers */
|
|
if (pci_get_capability(pa->pa_pc, pa->pa_tag,
|
|
PCI_CAP_PCIEXPRESS, &sc->sc_pcixe_capoff,
|
|
NULL) == 0)
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to find PCIe capability\n");
|
|
}
|
|
aprint_verbose_dev(sc->sc_dev, "PCI-Express bus\n");
|
|
} else {
|
|
reg = CSR_READ(sc, WMREG_STATUS);
|
|
if (reg & STATUS_BUS64)
|
|
sc->sc_flags |= WM_F_BUS64;
|
|
if ((reg & STATUS_PCIX_MODE) != 0) {
|
|
pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
|
|
|
|
sc->sc_flags |= WM_F_PCIX;
|
|
if (pci_get_capability(pa->pa_pc, pa->pa_tag,
|
|
PCI_CAP_PCIX, &sc->sc_pcixe_capoff, NULL) == 0)
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to find PCIX capability\n");
|
|
else if (sc->sc_type != WM_T_82545_3 &&
|
|
sc->sc_type != WM_T_82546_3) {
|
|
/*
|
|
* Work around a problem caused by the BIOS
|
|
* setting the max memory read byte count
|
|
* incorrectly.
|
|
*/
|
|
pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
|
|
sc->sc_pcixe_capoff + PCIX_CMD);
|
|
pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
|
|
sc->sc_pcixe_capoff + PCIX_STATUS);
|
|
|
|
bytecnt = (pcix_cmd & PCIX_CMD_BYTECNT_MASK) >>
|
|
PCIX_CMD_BYTECNT_SHIFT;
|
|
maxb = (pcix_sts & PCIX_STATUS_MAXB_MASK) >>
|
|
PCIX_STATUS_MAXB_SHIFT;
|
|
if (bytecnt > maxb) {
|
|
aprint_verbose_dev(sc->sc_dev,
|
|
"resetting PCI-X MMRBC: %d -> %d\n",
|
|
512 << bytecnt, 512 << maxb);
|
|
pcix_cmd = (pcix_cmd &
|
|
~PCIX_CMD_BYTECNT_MASK) |
|
|
(maxb << PCIX_CMD_BYTECNT_SHIFT);
|
|
pci_conf_write(pa->pa_pc, pa->pa_tag,
|
|
sc->sc_pcixe_capoff + PCIX_CMD,
|
|
pcix_cmd);
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* The quad port adapter is special; it has a PCIX-PCIX
|
|
* bridge on the board, and can run the secondary bus at
|
|
* a higher speed.
|
|
*/
|
|
if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
|
|
sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
|
|
: 66;
|
|
} else if (sc->sc_flags & WM_F_PCIX) {
|
|
switch (reg & STATUS_PCIXSPD_MASK) {
|
|
case STATUS_PCIXSPD_50_66:
|
|
sc->sc_bus_speed = 66;
|
|
break;
|
|
case STATUS_PCIXSPD_66_100:
|
|
sc->sc_bus_speed = 100;
|
|
break;
|
|
case STATUS_PCIXSPD_100_133:
|
|
sc->sc_bus_speed = 133;
|
|
break;
|
|
default:
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unknown PCIXSPD %d; assuming 66MHz\n",
|
|
reg & STATUS_PCIXSPD_MASK);
|
|
sc->sc_bus_speed = 66;
|
|
break;
|
|
}
|
|
} else
|
|
sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
|
|
aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
|
|
(sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
|
|
(sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
|
|
}
|
|
|
|
/* clear interesting stat counters */
|
|
CSR_READ(sc, WMREG_COLC);
|
|
CSR_READ(sc, WMREG_RXERRC);
|
|
|
|
if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583)
|
|
|| (sc->sc_type >= WM_T_ICH8))
|
|
sc->sc_ich_phymtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
|
|
if (sc->sc_type >= WM_T_ICH8)
|
|
sc->sc_ich_nvmmtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
|
|
|
|
/* Set PHY, NVM mutex related stuff */
|
|
switch (sc->sc_type) {
|
|
case WM_T_82542_2_0:
|
|
case WM_T_82542_2_1:
|
|
case WM_T_82543:
|
|
case WM_T_82544:
|
|
/* Microwire */
|
|
sc->nvm.read = wm_nvm_read_uwire;
|
|
sc->sc_nvm_wordsize = 64;
|
|
sc->sc_nvm_addrbits = 6;
|
|
break;
|
|
case WM_T_82540:
|
|
case WM_T_82545:
|
|
case WM_T_82545_3:
|
|
case WM_T_82546:
|
|
case WM_T_82546_3:
|
|
/* Microwire */
|
|
sc->nvm.read = wm_nvm_read_uwire;
|
|
reg = CSR_READ(sc, WMREG_EECD);
|
|
if (reg & EECD_EE_SIZE) {
|
|
sc->sc_nvm_wordsize = 256;
|
|
sc->sc_nvm_addrbits = 8;
|
|
} else {
|
|
sc->sc_nvm_wordsize = 64;
|
|
sc->sc_nvm_addrbits = 6;
|
|
}
|
|
sc->sc_flags |= WM_F_LOCK_EECD;
|
|
sc->nvm.acquire = wm_get_eecd;
|
|
sc->nvm.release = wm_put_eecd;
|
|
break;
|
|
case WM_T_82541:
|
|
case WM_T_82541_2:
|
|
case WM_T_82547:
|
|
case WM_T_82547_2:
|
|
reg = CSR_READ(sc, WMREG_EECD);
|
|
/*
|
|
* wm_nvm_set_addrbits_size_eecd() accesses SPI in it only
|
|
* on 8254[17], so set flags and functios before calling it.
|
|
*/
|
|
sc->sc_flags |= WM_F_LOCK_EECD;
|
|
sc->nvm.acquire = wm_get_eecd;
|
|
sc->nvm.release = wm_put_eecd;
|
|
if (reg & EECD_EE_TYPE) {
|
|
/* SPI */
|
|
sc->nvm.read = wm_nvm_read_spi;
|
|
sc->sc_flags |= WM_F_EEPROM_SPI;
|
|
wm_nvm_set_addrbits_size_eecd(sc);
|
|
} else {
|
|
/* Microwire */
|
|
sc->nvm.read = wm_nvm_read_uwire;
|
|
if ((reg & EECD_EE_ABITS) != 0) {
|
|
sc->sc_nvm_wordsize = 256;
|
|
sc->sc_nvm_addrbits = 8;
|
|
} else {
|
|
sc->sc_nvm_wordsize = 64;
|
|
sc->sc_nvm_addrbits = 6;
|
|
}
|
|
}
|
|
break;
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
/* SPI */
|
|
sc->nvm.read = wm_nvm_read_eerd;
|
|
/* Not use WM_F_LOCK_EECD because we use EERD */
|
|
sc->sc_flags |= WM_F_EEPROM_SPI;
|
|
wm_nvm_set_addrbits_size_eecd(sc);
|
|
sc->phy.acquire = wm_get_swsm_semaphore;
|
|
sc->phy.release = wm_put_swsm_semaphore;
|
|
sc->nvm.acquire = wm_get_nvm_82571;
|
|
sc->nvm.release = wm_put_nvm_82571;
|
|
break;
|
|
case WM_T_82573:
|
|
case WM_T_82574:
|
|
case WM_T_82583:
|
|
sc->nvm.read = wm_nvm_read_eerd;
|
|
/* Not use WM_F_LOCK_EECD because we use EERD */
|
|
if (sc->sc_type == WM_T_82573) {
|
|
sc->phy.acquire = wm_get_swsm_semaphore;
|
|
sc->phy.release = wm_put_swsm_semaphore;
|
|
sc->nvm.acquire = wm_get_nvm_82571;
|
|
sc->nvm.release = wm_put_nvm_82571;
|
|
} else {
|
|
/* Both PHY and NVM use the same semaphore. */
|
|
sc->phy.acquire = sc->nvm.acquire
|
|
= wm_get_swfwhw_semaphore;
|
|
sc->phy.release = sc->nvm.release
|
|
= wm_put_swfwhw_semaphore;
|
|
}
|
|
if (wm_nvm_is_onboard_eeprom(sc) == 0) {
|
|
sc->sc_flags |= WM_F_EEPROM_FLASH;
|
|
sc->sc_nvm_wordsize = 2048;
|
|
} else {
|
|
/* SPI */
|
|
sc->sc_flags |= WM_F_EEPROM_SPI;
|
|
wm_nvm_set_addrbits_size_eecd(sc);
|
|
}
|
|
break;
|
|
case WM_T_82575:
|
|
case WM_T_82576:
|
|
case WM_T_82580:
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
case WM_T_80003:
|
|
/* SPI */
|
|
sc->sc_flags |= WM_F_EEPROM_SPI;
|
|
wm_nvm_set_addrbits_size_eecd(sc);
|
|
if ((sc->sc_type == WM_T_80003)
|
|
|| (sc->sc_nvm_wordsize < (1 << 15))) {
|
|
sc->nvm.read = wm_nvm_read_eerd;
|
|
/* Don't use WM_F_LOCK_EECD because we use EERD */
|
|
} else {
|
|
sc->nvm.read = wm_nvm_read_spi;
|
|
sc->sc_flags |= WM_F_LOCK_EECD;
|
|
}
|
|
sc->phy.acquire = wm_get_phy_82575;
|
|
sc->phy.release = wm_put_phy_82575;
|
|
sc->nvm.acquire = wm_get_nvm_80003;
|
|
sc->nvm.release = wm_put_nvm_80003;
|
|
break;
|
|
case WM_T_ICH8:
|
|
case WM_T_ICH9:
|
|
case WM_T_ICH10:
|
|
case WM_T_PCH:
|
|
case WM_T_PCH2:
|
|
case WM_T_PCH_LPT:
|
|
sc->nvm.read = wm_nvm_read_ich8;
|
|
/* FLASH */
|
|
sc->sc_flags |= WM_F_EEPROM_FLASH;
|
|
sc->sc_nvm_wordsize = 2048;
|
|
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag,WM_ICH8_FLASH);
|
|
if (pci_mapreg_map(pa, WM_ICH8_FLASH, memtype, 0,
|
|
&sc->sc_flasht, &sc->sc_flashh, NULL, &sc->sc_flashs)) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"can't map FLASH registers\n");
|
|
goto out;
|
|
}
|
|
reg = ICH8_FLASH_READ32(sc, ICH_FLASH_GFPREG);
|
|
sc->sc_ich8_flash_base = (reg & ICH_GFPREG_BASE_MASK) *
|
|
ICH_FLASH_SECTOR_SIZE;
|
|
sc->sc_ich8_flash_bank_size =
|
|
((reg >> 16) & ICH_GFPREG_BASE_MASK) + 1;
|
|
sc->sc_ich8_flash_bank_size -= (reg & ICH_GFPREG_BASE_MASK);
|
|
sc->sc_ich8_flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
|
|
sc->sc_ich8_flash_bank_size /= 2 * sizeof(uint16_t);
|
|
sc->sc_flashreg_offset = 0;
|
|
sc->phy.acquire = wm_get_swflag_ich8lan;
|
|
sc->phy.release = wm_put_swflag_ich8lan;
|
|
sc->nvm.acquire = wm_get_nvm_ich8lan;
|
|
sc->nvm.release = wm_put_nvm_ich8lan;
|
|
break;
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
sc->nvm.read = wm_nvm_read_spt;
|
|
/* SPT has no GFPREG; flash registers mapped through BAR0 */
|
|
sc->sc_flags |= WM_F_EEPROM_FLASH;
|
|
sc->sc_flasht = sc->sc_st;
|
|
sc->sc_flashh = sc->sc_sh;
|
|
sc->sc_ich8_flash_base = 0;
|
|
sc->sc_nvm_wordsize =
|
|
(((CSR_READ(sc, WMREG_STRAP) >> 1) & 0x1F) + 1)
|
|
* NVM_SIZE_MULTIPLIER;
|
|
/* It is size in bytes, we want words */
|
|
sc->sc_nvm_wordsize /= 2;
|
|
/* Assume 2 banks */
|
|
sc->sc_ich8_flash_bank_size = sc->sc_nvm_wordsize / 2;
|
|
sc->sc_flashreg_offset = WM_PCH_SPT_FLASHOFFSET;
|
|
sc->phy.acquire = wm_get_swflag_ich8lan;
|
|
sc->phy.release = wm_put_swflag_ich8lan;
|
|
sc->nvm.acquire = wm_get_nvm_ich8lan;
|
|
sc->nvm.release = wm_put_nvm_ich8lan;
|
|
break;
|
|
case WM_T_I210:
|
|
case WM_T_I211:
|
|
/* Allow a single clear of the SW semaphore on I210 and newer*/
|
|
sc->sc_flags |= WM_F_WA_I210_CLSEM;
|
|
if (wm_nvm_flash_presence_i210(sc)) {
|
|
sc->nvm.read = wm_nvm_read_eerd;
|
|
/* Don't use WM_F_LOCK_EECD because we use EERD */
|
|
sc->sc_flags |= WM_F_EEPROM_FLASH_HW;
|
|
wm_nvm_set_addrbits_size_eecd(sc);
|
|
} else {
|
|
sc->nvm.read = wm_nvm_read_invm;
|
|
sc->sc_flags |= WM_F_EEPROM_INVM;
|
|
sc->sc_nvm_wordsize = INVM_SIZE;
|
|
}
|
|
sc->phy.acquire = wm_get_phy_82575;
|
|
sc->phy.release = wm_put_phy_82575;
|
|
sc->nvm.acquire = wm_get_nvm_80003;
|
|
sc->nvm.release = wm_put_nvm_80003;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Ensure the SMBI bit is clear before first NVM or PHY access */
|
|
switch (sc->sc_type) {
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
reg = CSR_READ(sc, WMREG_SWSM2);
|
|
if ((reg & SWSM2_LOCK) == 0) {
|
|
CSR_WRITE(sc, WMREG_SWSM2, reg | SWSM2_LOCK);
|
|
force_clear_smbi = true;
|
|
} else
|
|
force_clear_smbi = false;
|
|
break;
|
|
case WM_T_82573:
|
|
case WM_T_82574:
|
|
case WM_T_82583:
|
|
force_clear_smbi = true;
|
|
break;
|
|
default:
|
|
force_clear_smbi = false;
|
|
break;
|
|
}
|
|
if (force_clear_smbi) {
|
|
reg = CSR_READ(sc, WMREG_SWSM);
|
|
if ((reg & SWSM_SMBI) != 0)
|
|
aprint_error_dev(sc->sc_dev,
|
|
"Please update the Bootagent\n");
|
|
CSR_WRITE(sc, WMREG_SWSM, reg & ~SWSM_SMBI);
|
|
}
|
|
|
|
/*
|
|
* Defer printing the EEPROM type until after verifying the checksum
|
|
* This allows the EEPROM type to be printed correctly in the case
|
|
* that no EEPROM is attached.
|
|
*/
|
|
/*
|
|
* Validate the EEPROM checksum. If the checksum fails, flag
|
|
* this for later, so we can fail future reads from the EEPROM.
|
|
*/
|
|
if (wm_nvm_validate_checksum(sc)) {
|
|
/*
|
|
* Read twice again because some PCI-e parts fail the
|
|
* first check due to the link being in sleep state.
|
|
*/
|
|
if (wm_nvm_validate_checksum(sc))
|
|
sc->sc_flags |= WM_F_EEPROM_INVALID;
|
|
}
|
|
|
|
if (sc->sc_flags & WM_F_EEPROM_INVALID)
|
|
aprint_verbose_dev(sc->sc_dev, "No EEPROM");
|
|
else {
|
|
aprint_verbose_dev(sc->sc_dev, "%u words ",
|
|
sc->sc_nvm_wordsize);
|
|
if (sc->sc_flags & WM_F_EEPROM_INVM)
|
|
aprint_verbose("iNVM");
|
|
else if (sc->sc_flags & WM_F_EEPROM_FLASH_HW)
|
|
aprint_verbose("FLASH(HW)");
|
|
else if (sc->sc_flags & WM_F_EEPROM_FLASH)
|
|
aprint_verbose("FLASH");
|
|
else {
|
|
if (sc->sc_flags & WM_F_EEPROM_SPI)
|
|
eetype = "SPI";
|
|
else
|
|
eetype = "MicroWire";
|
|
aprint_verbose("(%d address bits) %s EEPROM",
|
|
sc->sc_nvm_addrbits, eetype);
|
|
}
|
|
}
|
|
wm_nvm_version(sc);
|
|
aprint_verbose("\n");
|
|
|
|
/*
|
|
* XXX The first call of wm_gmii_setup_phytype. The result might be
|
|
* incorrect.
|
|
*/
|
|
wm_gmii_setup_phytype(sc, 0, 0);
|
|
|
|
/* Check for WM_F_WOL on some chips before wm_reset() */
|
|
switch (sc->sc_type) {
|
|
case WM_T_ICH8:
|
|
case WM_T_ICH9:
|
|
case WM_T_ICH10:
|
|
case WM_T_PCH:
|
|
case WM_T_PCH2:
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
apme_mask = WUC_APME;
|
|
eeprom_data = CSR_READ(sc, WMREG_WUC);
|
|
if ((eeprom_data & apme_mask) != 0)
|
|
sc->sc_flags |= WM_F_WOL;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Reset the chip to a known state. */
|
|
wm_reset(sc);
|
|
|
|
/*
|
|
* Check for I21[01] PLL workaround.
|
|
*
|
|
* Three cases:
|
|
* a) Chip is I211.
|
|
* b) Chip is I210 and it uses INVM (not FLASH).
|
|
* c) Chip is I210 (and it uses FLASH) and the NVM image version < 3.25
|
|
*/
|
|
if (sc->sc_type == WM_T_I211)
|
|
sc->sc_flags |= WM_F_PLL_WA_I210;
|
|
if (sc->sc_type == WM_T_I210) {
|
|
if (!wm_nvm_flash_presence_i210(sc))
|
|
sc->sc_flags |= WM_F_PLL_WA_I210;
|
|
else if ((sc->sc_nvm_ver_major < 3)
|
|
|| ((sc->sc_nvm_ver_major == 3)
|
|
&& (sc->sc_nvm_ver_minor < 25))) {
|
|
aprint_verbose_dev(sc->sc_dev,
|
|
"ROM image version %d.%d is older than 3.25\n",
|
|
sc->sc_nvm_ver_major, sc->sc_nvm_ver_minor);
|
|
sc->sc_flags |= WM_F_PLL_WA_I210;
|
|
}
|
|
}
|
|
if ((sc->sc_flags & WM_F_PLL_WA_I210) != 0)
|
|
wm_pll_workaround_i210(sc);
|
|
|
|
wm_get_wakeup(sc);
|
|
|
|
/* Non-AMT based hardware can now take control from firmware */
|
|
if ((sc->sc_flags & WM_F_HAS_AMT) == 0)
|
|
wm_get_hw_control(sc);
|
|
|
|
/*
|
|
* Read the Ethernet address from the EEPROM, if not first found
|
|
* in device properties.
|
|
*/
|
|
ea = prop_dictionary_get(dict, "mac-address");
|
|
if (ea != NULL) {
|
|
KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
|
|
KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
|
|
memcpy(enaddr, prop_data_value(ea), ETHER_ADDR_LEN);
|
|
} else {
|
|
if (wm_read_mac_addr(sc, enaddr) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to read Ethernet address\n");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
|
|
ether_sprintf(enaddr));
|
|
|
|
/*
|
|
* Read the config info from the EEPROM, and set up various
|
|
* bits in the control registers based on their contents.
|
|
*/
|
|
pn = prop_dictionary_get(dict, "i82543-cfg1");
|
|
if (pn != NULL) {
|
|
KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
|
|
cfg1 = (uint16_t) prop_number_signed_value(pn);
|
|
} else {
|
|
if (wm_nvm_read(sc, NVM_OFF_CFG1, 1, &cfg1)) {
|
|
aprint_error_dev(sc->sc_dev, "unable to read CFG1\n");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
pn = prop_dictionary_get(dict, "i82543-cfg2");
|
|
if (pn != NULL) {
|
|
KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
|
|
cfg2 = (uint16_t) prop_number_signed_value(pn);
|
|
} else {
|
|
if (wm_nvm_read(sc, NVM_OFF_CFG2, 1, &cfg2)) {
|
|
aprint_error_dev(sc->sc_dev, "unable to read CFG2\n");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* check for WM_F_WOL */
|
|
switch (sc->sc_type) {
|
|
case WM_T_82542_2_0:
|
|
case WM_T_82542_2_1:
|
|
case WM_T_82543:
|
|
/* dummy? */
|
|
eeprom_data = 0;
|
|
apme_mask = NVM_CFG3_APME;
|
|
break;
|
|
case WM_T_82544:
|
|
apme_mask = NVM_CFG2_82544_APM_EN;
|
|
eeprom_data = cfg2;
|
|
break;
|
|
case WM_T_82546:
|
|
case WM_T_82546_3:
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
case WM_T_82573:
|
|
case WM_T_82574:
|
|
case WM_T_82583:
|
|
case WM_T_80003:
|
|
case WM_T_82575:
|
|
case WM_T_82576:
|
|
apme_mask = NVM_CFG3_APME;
|
|
wm_nvm_read(sc, (sc->sc_funcid == 1) ? NVM_OFF_CFG3_PORTB
|
|
: NVM_OFF_CFG3_PORTA, 1, &eeprom_data);
|
|
break;
|
|
case WM_T_82580:
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
case WM_T_I210:
|
|
case WM_T_I211:
|
|
apme_mask = NVM_CFG3_APME;
|
|
wm_nvm_read(sc,
|
|
NVM_OFF_LAN_FUNC_82580(sc->sc_funcid) + NVM_OFF_CFG3_PORTA,
|
|
1, &eeprom_data);
|
|
break;
|
|
case WM_T_ICH8:
|
|
case WM_T_ICH9:
|
|
case WM_T_ICH10:
|
|
case WM_T_PCH:
|
|
case WM_T_PCH2:
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
/* Already checked before wm_reset () */
|
|
apme_mask = eeprom_data = 0;
|
|
break;
|
|
default: /* XXX 82540 */
|
|
apme_mask = NVM_CFG3_APME;
|
|
wm_nvm_read(sc, NVM_OFF_CFG3_PORTA, 1, &eeprom_data);
|
|
break;
|
|
}
|
|
/* Check for WM_F_WOL flag after the setting of the EEPROM stuff */
|
|
if ((eeprom_data & apme_mask) != 0)
|
|
sc->sc_flags |= WM_F_WOL;
|
|
|
|
/*
|
|
* We have the eeprom settings, now apply the special cases
|
|
* where the eeprom may be wrong or the board won't support
|
|
* wake on lan on a particular port
|
|
*/
|
|
switch (sc->sc_pcidevid) {
|
|
case PCI_PRODUCT_INTEL_82546GB_PCIE:
|
|
sc->sc_flags &= ~WM_F_WOL;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_82546EB_FIBER:
|
|
case PCI_PRODUCT_INTEL_82546GB_FIBER:
|
|
/* Wake events only supported on port A for dual fiber
|
|
* regardless of eeprom setting */
|
|
if (sc->sc_funcid == 1)
|
|
sc->sc_flags &= ~WM_F_WOL;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3:
|
|
/* If quad port adapter, disable WoL on all but port A */
|
|
if (sc->sc_funcid != 0)
|
|
sc->sc_flags &= ~WM_F_WOL;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_82571EB_FIBER:
|
|
/* Wake events only supported on port A for dual fiber
|
|
* regardless of eeprom setting */
|
|
if (sc->sc_funcid == 1)
|
|
sc->sc_flags &= ~WM_F_WOL;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER:
|
|
case PCI_PRODUCT_INTEL_82571EB_QUAD_FIBER:
|
|
case PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER:
|
|
/* If quad port adapter, disable WoL on all but port A */
|
|
if (sc->sc_funcid != 0)
|
|
sc->sc_flags &= ~WM_F_WOL;
|
|
break;
|
|
}
|
|
|
|
if (sc->sc_type >= WM_T_82575) {
|
|
if (wm_nvm_read(sc, NVM_OFF_COMPAT, 1, &nvmword) == 0) {
|
|
aprint_debug_dev(sc->sc_dev, "COMPAT = %hx\n",
|
|
nvmword);
|
|
if ((sc->sc_type == WM_T_82575) ||
|
|
(sc->sc_type == WM_T_82576)) {
|
|
/* Check NVM for autonegotiation */
|
|
if ((nvmword & NVM_COMPAT_SERDES_FORCE_MODE)
|
|
!= 0)
|
|
sc->sc_flags |= WM_F_PCS_DIS_AUTONEGO;
|
|
}
|
|
if ((sc->sc_type == WM_T_82575) ||
|
|
(sc->sc_type == WM_T_I350)) {
|
|
if (nvmword & NVM_COMPAT_MAS_EN(sc->sc_funcid))
|
|
sc->sc_flags |= WM_F_MAS;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* XXX need special handling for some multiple port cards
|
|
* to disable a paticular port.
|
|
*/
|
|
|
|
if (sc->sc_type >= WM_T_82544) {
|
|
pn = prop_dictionary_get(dict, "i82543-swdpin");
|
|
if (pn != NULL) {
|
|
KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
|
|
swdpin = (uint16_t) prop_number_signed_value(pn);
|
|
} else {
|
|
if (wm_nvm_read(sc, NVM_OFF_SWDPIN, 1, &swdpin)) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to read SWDPIN\n");
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cfg1 & NVM_CFG1_ILOS)
|
|
sc->sc_ctrl |= CTRL_ILOS;
|
|
|
|
/*
|
|
* XXX
|
|
* This code isn't correct because pin 2 and 3 are located
|
|
* in different position on newer chips. Check all datasheet.
|
|
*
|
|
* Until resolve this problem, check if a chip < 82580
|
|
*/
|
|
if (sc->sc_type <= WM_T_82580) {
|
|
if (sc->sc_type >= WM_T_82544) {
|
|
sc->sc_ctrl |=
|
|
((swdpin >> NVM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
|
|
CTRL_SWDPIO_SHIFT;
|
|
sc->sc_ctrl |=
|
|
((swdpin >> NVM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
|
|
CTRL_SWDPINS_SHIFT;
|
|
} else {
|
|
sc->sc_ctrl |=
|
|
((cfg1 >> NVM_CFG1_SWDPIO_SHIFT) & 0xf) <<
|
|
CTRL_SWDPIO_SHIFT;
|
|
}
|
|
}
|
|
|
|
if ((sc->sc_type >= WM_T_82580) && (sc->sc_type <= WM_T_I211)) {
|
|
wm_nvm_read(sc,
|
|
NVM_OFF_LAN_FUNC_82580(sc->sc_funcid) + NVM_OFF_CFG3_PORTA,
|
|
1, &nvmword);
|
|
if (nvmword & NVM_CFG3_ILOS)
|
|
sc->sc_ctrl |= CTRL_ILOS;
|
|
}
|
|
|
|
#if 0
|
|
if (sc->sc_type >= WM_T_82544) {
|
|
if (cfg1 & NVM_CFG1_IPS0)
|
|
sc->sc_ctrl_ext |= CTRL_EXT_IPS;
|
|
if (cfg1 & NVM_CFG1_IPS1)
|
|
sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
|
|
sc->sc_ctrl_ext |=
|
|
((swdpin >> (NVM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
|
|
CTRL_EXT_SWDPIO_SHIFT;
|
|
sc->sc_ctrl_ext |=
|
|
((swdpin >> (NVM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
|
|
CTRL_EXT_SWDPINS_SHIFT;
|
|
} else {
|
|
sc->sc_ctrl_ext |=
|
|
((cfg2 >> NVM_CFG2_SWDPIO_SHIFT) & 0xf) <<
|
|
CTRL_EXT_SWDPIO_SHIFT;
|
|
}
|
|
#endif
|
|
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
#if 0
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
|
|
#endif
|
|
|
|
if (sc->sc_type == WM_T_PCH) {
|
|
uint16_t val;
|
|
|
|
/* Save the NVM K1 bit setting */
|
|
wm_nvm_read(sc, NVM_OFF_K1_CONFIG, 1, &val);
|
|
|
|
if ((val & NVM_K1_CONFIG_ENABLE) != 0)
|
|
sc->sc_nvm_k1_enabled = 1;
|
|
else
|
|
sc->sc_nvm_k1_enabled = 0;
|
|
}
|
|
|
|
/* Determine if we're GMII, TBI, SERDES or SGMII mode */
|
|
if (sc->sc_type == WM_T_ICH8 || sc->sc_type == WM_T_ICH9
|
|
|| sc->sc_type == WM_T_ICH10 || sc->sc_type == WM_T_PCH
|
|
|| sc->sc_type == WM_T_PCH2 || sc->sc_type == WM_T_PCH_LPT
|
|
|| sc->sc_type == WM_T_PCH_SPT || sc->sc_type == WM_T_PCH_CNP
|
|
|| sc->sc_type == WM_T_82573
|
|
|| sc->sc_type == WM_T_82574 || sc->sc_type == WM_T_82583) {
|
|
/* Copper only */
|
|
} else if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
|
|
|| (sc->sc_type ==WM_T_82580) || (sc->sc_type ==WM_T_I350)
|
|
|| (sc->sc_type ==WM_T_I354) || (sc->sc_type ==WM_T_I210)
|
|
|| (sc->sc_type ==WM_T_I211)) {
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
link_mode = reg & CTRL_EXT_LINK_MODE_MASK;
|
|
switch (link_mode) {
|
|
case CTRL_EXT_LINK_MODE_1000KX:
|
|
aprint_normal_dev(sc->sc_dev, "1000KX\n");
|
|
sc->sc_mediatype = WM_MEDIATYPE_SERDES;
|
|
break;
|
|
case CTRL_EXT_LINK_MODE_SGMII:
|
|
if (wm_sgmii_uses_mdio(sc)) {
|
|
aprint_normal_dev(sc->sc_dev,
|
|
"SGMII(MDIO)\n");
|
|
sc->sc_flags |= WM_F_SGMII;
|
|
sc->sc_mediatype = WM_MEDIATYPE_COPPER;
|
|
break;
|
|
}
|
|
aprint_verbose_dev(sc->sc_dev, "SGMII(I2C)\n");
|
|
/*FALLTHROUGH*/
|
|
case CTRL_EXT_LINK_MODE_PCIE_SERDES:
|
|
sc->sc_mediatype = wm_sfp_get_media_type(sc);
|
|
if (sc->sc_mediatype == WM_MEDIATYPE_UNKNOWN) {
|
|
if (link_mode
|
|
== CTRL_EXT_LINK_MODE_SGMII) {
|
|
sc->sc_mediatype = WM_MEDIATYPE_COPPER;
|
|
sc->sc_flags |= WM_F_SGMII;
|
|
aprint_verbose_dev(sc->sc_dev,
|
|
"SGMII\n");
|
|
} else {
|
|
sc->sc_mediatype = WM_MEDIATYPE_SERDES;
|
|
aprint_verbose_dev(sc->sc_dev,
|
|
"SERDES\n");
|
|
}
|
|
break;
|
|
}
|
|
if (sc->sc_mediatype == WM_MEDIATYPE_SERDES)
|
|
aprint_normal_dev(sc->sc_dev, "SERDES(SFP)\n");
|
|
else if (sc->sc_mediatype == WM_MEDIATYPE_COPPER) {
|
|
aprint_normal_dev(sc->sc_dev, "SGMII(SFP)\n");
|
|
sc->sc_flags |= WM_F_SGMII;
|
|
}
|
|
/* Do not change link mode for 100BaseFX */
|
|
if (sc->sc_sfptype == SFF_SFP_ETH_FLAGS_100FX)
|
|
break;
|
|
|
|
/* Change current link mode setting */
|
|
reg &= ~CTRL_EXT_LINK_MODE_MASK;
|
|
if (sc->sc_mediatype == WM_MEDIATYPE_COPPER)
|
|
reg |= CTRL_EXT_LINK_MODE_SGMII;
|
|
else
|
|
reg |= CTRL_EXT_LINK_MODE_PCIE_SERDES;
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
|
|
break;
|
|
case CTRL_EXT_LINK_MODE_GMII:
|
|
default:
|
|
aprint_normal_dev(sc->sc_dev, "Copper\n");
|
|
sc->sc_mediatype = WM_MEDIATYPE_COPPER;
|
|
break;
|
|
}
|
|
|
|
reg &= ~CTRL_EXT_I2C_ENA;
|
|
if ((sc->sc_flags & WM_F_SGMII) != 0)
|
|
reg |= CTRL_EXT_I2C_ENA;
|
|
else
|
|
reg &= ~CTRL_EXT_I2C_ENA;
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
|
|
if ((sc->sc_flags & WM_F_SGMII) != 0) {
|
|
if (!wm_sgmii_uses_mdio(sc))
|
|
wm_gmii_setup_phytype(sc, 0, 0);
|
|
wm_reset_mdicnfg_82580(sc);
|
|
}
|
|
} else if (sc->sc_type < WM_T_82543 ||
|
|
(CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
|
|
if (sc->sc_mediatype == WM_MEDIATYPE_COPPER) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"WARNING: TBIMODE set on 1000BASE-T product!\n");
|
|
sc->sc_mediatype = WM_MEDIATYPE_FIBER;
|
|
}
|
|
} else {
|
|
if (sc->sc_mediatype == WM_MEDIATYPE_FIBER) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"WARNING: TBIMODE clear on 1000BASE-X product!\n");
|
|
sc->sc_mediatype = WM_MEDIATYPE_COPPER;
|
|
}
|
|
}
|
|
|
|
if (sc->sc_type >= WM_T_PCH2)
|
|
sc->sc_flags |= WM_F_EEE;
|
|
else if ((sc->sc_type >= WM_T_I350) && (sc->sc_type <= WM_T_I211)
|
|
&& (sc->sc_mediatype == WM_MEDIATYPE_COPPER)) {
|
|
/* XXX: Need special handling for I354. (not yet) */
|
|
if (sc->sc_type != WM_T_I354)
|
|
sc->sc_flags |= WM_F_EEE;
|
|
}
|
|
|
|
/*
|
|
* The I350 has a bug where it always strips the CRC whether
|
|
* asked to or not. So ask for stripped CRC here and cope in rxeof
|
|
*/
|
|
if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
|
|
|| (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211))
|
|
sc->sc_flags |= WM_F_CRC_STRIP;
|
|
|
|
/* Set device properties (macflags) */
|
|
prop_dictionary_set_uint32(dict, "macflags", sc->sc_flags);
|
|
|
|
if (sc->sc_flags != 0) {
|
|
snprintb(buf, sizeof(buf), WM_FLAGS, sc->sc_flags);
|
|
aprint_verbose_dev(sc->sc_dev, "%s\n", buf);
|
|
}
|
|
|
|
#ifdef WM_MPSAFE
|
|
sc->sc_core_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
|
|
#else
|
|
sc->sc_core_lock = NULL;
|
|
#endif
|
|
|
|
/* Initialize the media structures accordingly. */
|
|
if (sc->sc_mediatype == WM_MEDIATYPE_COPPER)
|
|
wm_gmii_mediainit(sc, wmp->wmp_product);
|
|
else
|
|
wm_tbi_mediainit(sc); /* All others */
|
|
|
|
ifp = &sc->sc_ethercom.ec_if;
|
|
xname = device_xname(sc->sc_dev);
|
|
strlcpy(ifp->if_xname, xname, IFNAMSIZ);
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
#ifdef WM_MPSAFE
|
|
ifp->if_extflags = IFEF_MPSAFE;
|
|
#endif
|
|
ifp->if_ioctl = wm_ioctl;
|
|
if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
|
|
ifp->if_start = wm_nq_start;
|
|
/*
|
|
* When the number of CPUs is one and the controller can use
|
|
* MSI-X, wm(4) use MSI-X but *does not* use multiqueue.
|
|
* That is, wm(4) use two interrupts, one is used for Tx/Rx
|
|
* and the other is used for link status changing.
|
|
* In this situation, wm_nq_transmit() is disadvantageous
|
|
* because of wm_select_txqueue() and pcq(9) overhead.
|
|
*/
|
|
if (wm_is_using_multiqueue(sc))
|
|
ifp->if_transmit = wm_nq_transmit;
|
|
} else {
|
|
ifp->if_start = wm_start;
|
|
/*
|
|
* wm_transmit() has the same disadvantage as wm_transmit().
|
|
*/
|
|
if (wm_is_using_multiqueue(sc))
|
|
ifp->if_transmit = wm_transmit;
|
|
}
|
|
/* wm(4) doest not use ifp->if_watchdog, use wm_tick as watchdog. */
|
|
ifp->if_init = wm_init;
|
|
ifp->if_stop = wm_stop;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, uimax(WM_IFQUEUELEN, IFQ_MAXLEN));
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/* Check for jumbo frame */
|
|
switch (sc->sc_type) {
|
|
case WM_T_82573:
|
|
/* XXX limited to 9234 if ASPM is disabled */
|
|
wm_nvm_read(sc, NVM_OFF_INIT_3GIO_3, 1, &nvmword);
|
|
if ((nvmword & NVM_3GIO_3_ASPM_MASK) != 0)
|
|
sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
|
|
break;
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
case WM_T_82574:
|
|
case WM_T_82583:
|
|
case WM_T_82575:
|
|
case WM_T_82576:
|
|
case WM_T_82580:
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
case WM_T_I210:
|
|
case WM_T_I211:
|
|
case WM_T_80003:
|
|
case WM_T_ICH9:
|
|
case WM_T_ICH10:
|
|
case WM_T_PCH2: /* PCH2 supports 9K frame size */
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
/* XXX limited to 9234 */
|
|
sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
|
|
break;
|
|
case WM_T_PCH:
|
|
/* XXX limited to 4096 */
|
|
sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
|
|
break;
|
|
case WM_T_82542_2_0:
|
|
case WM_T_82542_2_1:
|
|
case WM_T_ICH8:
|
|
/* No support for jumbo frame */
|
|
break;
|
|
default:
|
|
/* ETHER_MAX_LEN_JUMBO */
|
|
sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
|
|
break;
|
|
}
|
|
|
|
/* If we're a i82543 or greater, we can support VLANs. */
|
|
if (sc->sc_type >= WM_T_82543) {
|
|
sc->sc_ethercom.ec_capabilities |=
|
|
ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
|
|
sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
|
|
}
|
|
|
|
if ((sc->sc_flags & WM_F_EEE) != 0)
|
|
sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
|
|
|
|
/*
|
|
* We can perform TCPv4 and UDPv4 checkums in-bound. Only
|
|
* on i82543 and later.
|
|
*/
|
|
if (sc->sc_type >= WM_T_82543) {
|
|
ifp->if_capabilities |=
|
|
IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
|
|
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
|
|
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
|
|
IFCAP_CSUM_TCPv6_Tx |
|
|
IFCAP_CSUM_UDPv6_Tx;
|
|
}
|
|
|
|
/*
|
|
* XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL.
|
|
*
|
|
* 82541GI (8086:1076) ... no
|
|
* 82572EI (8086:10b9) ... yes
|
|
*/
|
|
if (sc->sc_type >= WM_T_82571) {
|
|
ifp->if_capabilities |=
|
|
IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
|
|
}
|
|
|
|
/*
|
|
* If we're a i82544 or greater (except i82547), we can do
|
|
* TCP segmentation offload.
|
|
*/
|
|
if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) {
|
|
ifp->if_capabilities |= IFCAP_TSOv4;
|
|
}
|
|
|
|
if (sc->sc_type >= WM_T_82571) {
|
|
ifp->if_capabilities |= IFCAP_TSOv6;
|
|
}
|
|
|
|
sc->sc_tx_process_limit = WM_TX_PROCESS_LIMIT_DEFAULT;
|
|
sc->sc_tx_intr_process_limit = WM_TX_INTR_PROCESS_LIMIT_DEFAULT;
|
|
sc->sc_rx_process_limit = WM_RX_PROCESS_LIMIT_DEFAULT;
|
|
sc->sc_rx_intr_process_limit = WM_RX_INTR_PROCESS_LIMIT_DEFAULT;
|
|
|
|
/* Attach the interface. */
|
|
error = if_initialize(ifp);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
|
|
error);
|
|
return; /* Error */
|
|
}
|
|
sc->sc_ipq = if_percpuq_create(&sc->sc_ethercom.ec_if);
|
|
ether_ifattach(ifp, enaddr);
|
|
ether_set_ifflags_cb(&sc->sc_ethercom, wm_ifflags_cb);
|
|
if_register(ifp);
|
|
rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET,
|
|
RND_FLAG_DEFAULT);
|
|
|
|
#ifdef WM_EVENT_COUNTERS
|
|
/* Attach event counters. */
|
|
evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
|
|
NULL, xname, "linkintr");
|
|
|
|
evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
|
|
NULL, xname, "tx_xoff");
|
|
evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
|
|
NULL, xname, "tx_xon");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
|
|
NULL, xname, "rx_xoff");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
|
|
NULL, xname, "rx_xon");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
|
|
NULL, xname, "rx_macctl");
|
|
#endif /* WM_EVENT_COUNTERS */
|
|
|
|
sc->sc_txrx_use_workqueue = false;
|
|
|
|
if (wm_phy_need_linkdown_discard(sc))
|
|
wm_set_linkdown_discard(sc);
|
|
|
|
wm_init_sysctls(sc);
|
|
|
|
if (pmf_device_register(self, wm_suspend, wm_resume))
|
|
pmf_class_network_register(self, ifp);
|
|
else
|
|
aprint_error_dev(self, "couldn't establish power handler\n");
|
|
|
|
sc->sc_flags |= WM_F_ATTACHED;
|
|
out:
|
|
return;
|
|
}
|
|
|
|
/* The detach function (ca_detach) */
|
|
static int
|
|
wm_detach(device_t self, int flags __unused)
|
|
{
|
|
struct wm_softc *sc = device_private(self);
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
int i;
|
|
|
|
if ((sc->sc_flags & WM_F_ATTACHED) == 0)
|
|
return 0;
|
|
|
|
/* Stop the interface. Callouts are stopped in it. */
|
|
wm_stop(ifp, 1);
|
|
|
|
pmf_device_deregister(self);
|
|
|
|
sysctl_teardown(&sc->sc_sysctllog);
|
|
|
|
#ifdef WM_EVENT_COUNTERS
|
|
evcnt_detach(&sc->sc_ev_linkintr);
|
|
|
|
evcnt_detach(&sc->sc_ev_tx_xoff);
|
|
evcnt_detach(&sc->sc_ev_tx_xon);
|
|
evcnt_detach(&sc->sc_ev_rx_xoff);
|
|
evcnt_detach(&sc->sc_ev_rx_xon);
|
|
evcnt_detach(&sc->sc_ev_rx_macctl);
|
|
#endif /* WM_EVENT_COUNTERS */
|
|
|
|
rnd_detach_source(&sc->rnd_source);
|
|
|
|
/* Tell the firmware about the release */
|
|
WM_CORE_LOCK(sc);
|
|
wm_release_manageability(sc);
|
|
wm_release_hw_control(sc);
|
|
wm_enable_wakeup(sc);
|
|
WM_CORE_UNLOCK(sc);
|
|
|
|
mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
|
|
|
|
ether_ifdetach(ifp);
|
|
if_detach(ifp);
|
|
if_percpuq_destroy(sc->sc_ipq);
|
|
|
|
/* Delete all remaining media. */
|
|
ifmedia_fini(&sc->sc_mii.mii_media);
|
|
|
|
/* Unload RX dmamaps and free mbufs */
|
|
for (i = 0; i < sc->sc_nqueues; i++) {
|
|
struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
|
|
mutex_enter(rxq->rxq_lock);
|
|
wm_rxdrain(rxq);
|
|
mutex_exit(rxq->rxq_lock);
|
|
}
|
|
/* Must unlock here */
|
|
|
|
/* Disestablish the interrupt handler */
|
|
for (i = 0; i < sc->sc_nintrs; i++) {
|
|
if (sc->sc_ihs[i] != NULL) {
|
|
pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
|
|
sc->sc_ihs[i] = NULL;
|
|
}
|
|
}
|
|
pci_intr_release(sc->sc_pc, sc->sc_intrs, sc->sc_nintrs);
|
|
|
|
/* wm_stop() ensure workqueue is stopped. */
|
|
workqueue_destroy(sc->sc_queue_wq);
|
|
|
|
for (i = 0; i < sc->sc_nqueues; i++)
|
|
softint_disestablish(sc->sc_queue[i].wmq_si);
|
|
|
|
wm_free_txrx_queues(sc);
|
|
|
|
/* Unmap the registers */
|
|
if (sc->sc_ss) {
|
|
bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_ss);
|
|
sc->sc_ss = 0;
|
|
}
|
|
if (sc->sc_ios) {
|
|
bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
|
|
sc->sc_ios = 0;
|
|
}
|
|
if (sc->sc_flashs) {
|
|
bus_space_unmap(sc->sc_flasht, sc->sc_flashh, sc->sc_flashs);
|
|
sc->sc_flashs = 0;
|
|
}
|
|
|
|
if (sc->sc_core_lock)
|
|
mutex_obj_free(sc->sc_core_lock);
|
|
if (sc->sc_ich_phymtx)
|
|
mutex_obj_free(sc->sc_ich_phymtx);
|
|
if (sc->sc_ich_nvmmtx)
|
|
mutex_obj_free(sc->sc_ich_nvmmtx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
wm_suspend(device_t self, const pmf_qual_t *qual)
|
|
{
|
|
struct wm_softc *sc = device_private(self);
|
|
|
|
wm_release_manageability(sc);
|
|
wm_release_hw_control(sc);
|
|
wm_enable_wakeup(sc);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
wm_resume(device_t self, const pmf_qual_t *qual)
|
|
{
|
|
struct wm_softc *sc = device_private(self);
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
pcireg_t reg;
|
|
char buf[256];
|
|
|
|
reg = CSR_READ(sc, WMREG_WUS);
|
|
if (reg != 0) {
|
|
snprintb(buf, sizeof(buf), WUS_FLAGS, reg);
|
|
device_printf(sc->sc_dev, "wakeup status %s\n", buf);
|
|
CSR_WRITE(sc, WMREG_WUS, 0xffffffff); /* W1C */
|
|
}
|
|
|
|
if (sc->sc_type >= WM_T_PCH2)
|
|
wm_resume_workarounds_pchlan(sc);
|
|
if ((ifp->if_flags & IFF_UP) == 0) {
|
|
wm_reset(sc);
|
|
/* Non-AMT based hardware can now take control from firmware */
|
|
if ((sc->sc_flags & WM_F_HAS_AMT) == 0)
|
|
wm_get_hw_control(sc);
|
|
wm_init_manageability(sc);
|
|
} else {
|
|
/*
|
|
* We called pmf_class_network_register(), so if_init() is
|
|
* automatically called when IFF_UP. wm_reset(),
|
|
* wm_get_hw_control() and wm_init_manageability() are called
|
|
* via wm_init().
|
|
*/
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* wm_watchdog: [ifnet interface function]
|
|
*
|
|
* Watchdog timer handler.
|
|
*/
|
|
static void
|
|
wm_watchdog(struct ifnet *ifp)
|
|
{
|
|
int qid;
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
uint16_t hang_queue = 0; /* Max queue number of wm(4) is 82576's 16. */
|
|
|
|
for (qid = 0; qid < sc->sc_nqueues; qid++) {
|
|
struct wm_txqueue *txq = &sc->sc_queue[qid].wmq_txq;
|
|
|
|
wm_watchdog_txq(ifp, txq, &hang_queue);
|
|
}
|
|
|
|
/* IF any of queues hanged up, reset the interface. */
|
|
if (hang_queue != 0) {
|
|
(void)wm_init(ifp);
|
|
|
|
/*
|
|
* There are still some upper layer processing which call
|
|
* ifp->if_start(). e.g. ALTQ or one CPU system
|
|
*/
|
|
/* Try to get more packets going. */
|
|
ifp->if_start(ifp);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
wm_watchdog_txq(struct ifnet *ifp, struct wm_txqueue *txq, uint16_t *hang)
|
|
{
|
|
|
|
mutex_enter(txq->txq_lock);
|
|
if (txq->txq_sending &&
|
|
time_uptime - txq->txq_lastsent > wm_watchdog_timeout)
|
|
wm_watchdog_txq_locked(ifp, txq, hang);
|
|
|
|
mutex_exit(txq->txq_lock);
|
|
}
|
|
|
|
static void
|
|
wm_watchdog_txq_locked(struct ifnet *ifp, struct wm_txqueue *txq,
|
|
uint16_t *hang)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
struct wm_queue *wmq = container_of(txq, struct wm_queue, wmq_txq);
|
|
|
|
KASSERT(mutex_owned(txq->txq_lock));
|
|
|
|
/*
|
|
* Since we're using delayed interrupts, sweep up
|
|
* before we report an error.
|
|
*/
|
|
wm_txeof(txq, UINT_MAX);
|
|
|
|
if (txq->txq_sending)
|
|
*hang |= __BIT(wmq->wmq_id);
|
|
|
|
if (txq->txq_free == WM_NTXDESC(txq)) {
|
|
log(LOG_ERR, "%s: device timeout (lost interrupt)\n",
|
|
device_xname(sc->sc_dev));
|
|
} else {
|
|
#ifdef WM_DEBUG
|
|
int i, j;
|
|
struct wm_txsoft *txs;
|
|
#endif
|
|
log(LOG_ERR,
|
|
"%s: device timeout (txfree %d txsfree %d txnext %d)\n",
|
|
device_xname(sc->sc_dev), txq->txq_free, txq->txq_sfree,
|
|
txq->txq_next);
|
|
if_statinc(ifp, if_oerrors);
|
|
#ifdef WM_DEBUG
|
|
for (i = txq->txq_sdirty; i != txq->txq_snext;
|
|
i = WM_NEXTTXS(txq, i)) {
|
|
txs = &txq->txq_soft[i];
|
|
printf("txs %d tx %d -> %d\n",
|
|
i, txs->txs_firstdesc, txs->txs_lastdesc);
|
|
for (j = txs->txs_firstdesc; ; j = WM_NEXTTX(txq, j)) {
|
|
if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
|
|
printf("\tdesc %d: 0x%" PRIx64 "\n", j,
|
|
txq->txq_nq_descs[j].nqtx_data.nqtxd_addr);
|
|
printf("\t %#08x%08x\n",
|
|
txq->txq_nq_descs[j].nqtx_data.nqtxd_fields,
|
|
txq->txq_nq_descs[j].nqtx_data.nqtxd_cmdlen);
|
|
} else {
|
|
printf("\tdesc %d: 0x%" PRIx64 "\n", j,
|
|
(uint64_t)txq->txq_descs[j].wtx_addr.wa_high << 32 |
|
|
txq->txq_descs[j].wtx_addr.wa_low);
|
|
printf("\t %#04x%02x%02x%08x\n",
|
|
txq->txq_descs[j].wtx_fields.wtxu_vlan,
|
|
txq->txq_descs[j].wtx_fields.wtxu_options,
|
|
txq->txq_descs[j].wtx_fields.wtxu_status,
|
|
txq->txq_descs[j].wtx_cmdlen);
|
|
}
|
|
if (j == txs->txs_lastdesc)
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* wm_tick:
|
|
*
|
|
* One second timer, used to check link status, sweep up
|
|
* completed transmit jobs, etc.
|
|
*/
|
|
static void
|
|
wm_tick(void *arg)
|
|
{
|
|
struct wm_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
#ifndef WM_MPSAFE
|
|
int s = splnet();
|
|
#endif
|
|
|
|
WM_CORE_LOCK(sc);
|
|
|
|
if (sc->sc_core_stopping) {
|
|
WM_CORE_UNLOCK(sc);
|
|
#ifndef WM_MPSAFE
|
|
splx(s);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
if (sc->sc_type >= WM_T_82542_2_1) {
|
|
WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
|
|
WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
|
|
WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
|
|
WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
|
|
WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
|
|
}
|
|
|
|
net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
|
|
if_statadd_ref(nsr, if_collisions, CSR_READ(sc, WMREG_COLC));
|
|
if_statadd_ref(nsr, if_ierrors, 0ULL /* ensure quad_t */
|
|
+ CSR_READ(sc, WMREG_CRCERRS)
|
|
+ CSR_READ(sc, WMREG_ALGNERRC)
|
|
+ CSR_READ(sc, WMREG_SYMERRC)
|
|
+ CSR_READ(sc, WMREG_RXERRC)
|
|
+ CSR_READ(sc, WMREG_SEC)
|
|
+ CSR_READ(sc, WMREG_CEXTERR)
|
|
+ CSR_READ(sc, WMREG_RLEC));
|
|
/*
|
|
* WMREG_RNBC is incremented when there is no available buffers in host
|
|
* memory. It does not mean the number of dropped packet. Because
|
|
* ethernet controller can receive packets in such case if there is
|
|
* space in phy's FIFO.
|
|
*
|
|
* If you want to know the nubmer of WMREG_RMBC, you should use such as
|
|
* own EVCNT instead of if_iqdrops.
|
|
*/
|
|
if_statadd_ref(nsr, if_iqdrops, CSR_READ(sc, WMREG_MPC));
|
|
IF_STAT_PUTREF(ifp);
|
|
|
|
if (sc->sc_flags & WM_F_HAS_MII)
|
|
mii_tick(&sc->sc_mii);
|
|
else if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211)
|
|
&& (sc->sc_mediatype == WM_MEDIATYPE_SERDES))
|
|
wm_serdes_tick(sc);
|
|
else
|
|
wm_tbi_tick(sc);
|
|
|
|
WM_CORE_UNLOCK(sc);
|
|
|
|
wm_watchdog(ifp);
|
|
|
|
callout_schedule(&sc->sc_tick_ch, hz);
|
|
}
|
|
|
|
static int
|
|
wm_ifflags_cb(struct ethercom *ec)
|
|
{
|
|
struct ifnet *ifp = &ec->ec_if;
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
u_short iffchange;
|
|
int ecchange;
|
|
bool needreset = false;
|
|
int rc = 0;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
WM_CORE_LOCK(sc);
|
|
|
|
/*
|
|
* Check for if_flags.
|
|
* Main usage is to prevent linkdown when opening bpf.
|
|
*/
|
|
iffchange = ifp->if_flags ^ sc->sc_if_flags;
|
|
sc->sc_if_flags = ifp->if_flags;
|
|
if ((iffchange & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
|
|
needreset = true;
|
|
goto ec;
|
|
}
|
|
|
|
/* iff related updates */
|
|
if ((iffchange & IFF_PROMISC) != 0)
|
|
wm_set_filter(sc);
|
|
|
|
wm_set_vlan(sc);
|
|
|
|
ec:
|
|
/* Check for ec_capenable. */
|
|
ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
|
|
sc->sc_ec_capenable = ec->ec_capenable;
|
|
if ((ecchange & ~ETHERCAP_EEE) != 0) {
|
|
needreset = true;
|
|
goto out;
|
|
}
|
|
|
|
/* ec related updates */
|
|
wm_set_eee(sc);
|
|
|
|
out:
|
|
if (needreset)
|
|
rc = ENETRESET;
|
|
WM_CORE_UNLOCK(sc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static bool
|
|
wm_phy_need_linkdown_discard(struct wm_softc *sc)
|
|
{
|
|
|
|
switch (sc->sc_phytype) {
|
|
case WMPHY_82577: /* ihphy */
|
|
case WMPHY_82578: /* atphy */
|
|
case WMPHY_82579: /* ihphy */
|
|
case WMPHY_I217: /* ihphy */
|
|
case WMPHY_82580: /* ihphy */
|
|
case WMPHY_I350: /* ihphy */
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static void
|
|
wm_set_linkdown_discard(struct wm_softc *sc)
|
|
{
|
|
|
|
for (int i = 0; i < sc->sc_nqueues; i++) {
|
|
struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
|
|
|
|
mutex_enter(txq->txq_lock);
|
|
txq->txq_flags |= WM_TXQ_LINKDOWN_DISCARD;
|
|
mutex_exit(txq->txq_lock);
|
|
}
|
|
}
|
|
|
|
static void
|
|
wm_clear_linkdown_discard(struct wm_softc *sc)
|
|
{
|
|
|
|
for (int i = 0; i < sc->sc_nqueues; i++) {
|
|
struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
|
|
|
|
mutex_enter(txq->txq_lock);
|
|
txq->txq_flags &= ~WM_TXQ_LINKDOWN_DISCARD;
|
|
mutex_exit(txq->txq_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* wm_ioctl: [ifnet interface function]
|
|
*
|
|
* Handle control requests from the operator.
|
|
*/
|
|
static int
|
|
wm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
struct ifaddr *ifa = (struct ifaddr *)data;
|
|
struct sockaddr_dl *sdl;
|
|
int s, error;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
#ifndef WM_MPSAFE
|
|
s = splnet();
|
|
#endif
|
|
switch (cmd) {
|
|
case SIOCSIFMEDIA:
|
|
WM_CORE_LOCK(sc);
|
|
/* Flow control requires full-duplex mode. */
|
|
if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
|
|
(ifr->ifr_media & IFM_FDX) == 0)
|
|
ifr->ifr_media &= ~IFM_ETH_FMASK;
|
|
if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
|
|
if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
|
|
/* We can do both TXPAUSE and RXPAUSE. */
|
|
ifr->ifr_media |=
|
|
IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
|
|
}
|
|
sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
|
|
}
|
|
WM_CORE_UNLOCK(sc);
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
|
|
if (error == 0 && wm_phy_need_linkdown_discard(sc)) {
|
|
if (IFM_SUBTYPE(ifr->ifr_media) == IFM_NONE)
|
|
wm_set_linkdown_discard(sc);
|
|
else
|
|
wm_clear_linkdown_discard(sc);
|
|
}
|
|
break;
|
|
case SIOCINITIFADDR:
|
|
WM_CORE_LOCK(sc);
|
|
if (ifa->ifa_addr->sa_family == AF_LINK) {
|
|
sdl = satosdl(ifp->if_dl->ifa_addr);
|
|
(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len,
|
|
LLADDR(satosdl(ifa->ifa_addr)), ifp->if_addrlen);
|
|
/* Unicast address is the first multicast entry */
|
|
wm_set_filter(sc);
|
|
error = 0;
|
|
WM_CORE_UNLOCK(sc);
|
|
break;
|
|
}
|
|
WM_CORE_UNLOCK(sc);
|
|
if (((ifp->if_flags & IFF_UP) == 0) && wm_phy_need_linkdown_discard(sc))
|
|
wm_clear_linkdown_discard(sc);
|
|
/*FALLTHROUGH*/
|
|
default:
|
|
if (cmd == SIOCSIFFLAGS && wm_phy_need_linkdown_discard(sc)) {
|
|
if (((ifp->if_flags & IFF_UP) == 0) && ((ifr->ifr_flags & IFF_UP) != 0)) {
|
|
wm_clear_linkdown_discard(sc);
|
|
} else if (((ifp->if_flags & IFF_UP) != 0) && ((ifr->ifr_flags & IFF_UP) == 0)) {
|
|
wm_set_linkdown_discard(sc);
|
|
}
|
|
}
|
|
#ifdef WM_MPSAFE
|
|
s = splnet();
|
|
#endif
|
|
/* It may call wm_start, so unlock here */
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
#ifdef WM_MPSAFE
|
|
splx(s);
|
|
#endif
|
|
if (error != ENETRESET)
|
|
break;
|
|
|
|
error = 0;
|
|
|
|
if (cmd == SIOCSIFCAP)
|
|
error = (*ifp->if_init)(ifp);
|
|
else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
|
|
;
|
|
else if (ifp->if_flags & IFF_RUNNING) {
|
|
/*
|
|
* Multicast list has changed; set the hardware filter
|
|
* accordingly.
|
|
*/
|
|
WM_CORE_LOCK(sc);
|
|
wm_set_filter(sc);
|
|
WM_CORE_UNLOCK(sc);
|
|
}
|
|
break;
|
|
}
|
|
|
|
#ifndef WM_MPSAFE
|
|
splx(s);
|
|
#endif
|
|
return error;
|
|
}
|
|
|
|
/* MAC address related */
|
|
|
|
/*
|
|
* Get the offset of MAC address and return it.
|
|
* If error occured, use offset 0.
|
|
*/
|
|
static uint16_t
|
|
wm_check_alt_mac_addr(struct wm_softc *sc)
|
|
{
|
|
uint16_t myea[ETHER_ADDR_LEN / 2];
|
|
uint16_t offset = NVM_OFF_MACADDR;
|
|
|
|
/* Try to read alternative MAC address pointer */
|
|
if (wm_nvm_read(sc, NVM_OFF_ALT_MAC_ADDR_PTR, 1, &offset) != 0)
|
|
return 0;
|
|
|
|
/* Check pointer if it's valid or not. */
|
|
if ((offset == 0x0000) || (offset == 0xffff))
|
|
return 0;
|
|
|
|
offset += NVM_OFF_MACADDR_82571(sc->sc_funcid);
|
|
/*
|
|
* Check whether alternative MAC address is valid or not.
|
|
* Some cards have non 0xffff pointer but those don't use
|
|
* alternative MAC address in reality.
|
|
*
|
|
* Check whether the broadcast bit is set or not.
|
|
*/
|
|
if (wm_nvm_read(sc, offset, 1, myea) == 0)
|
|
if (((myea[0] & 0xff) & 0x01) == 0)
|
|
return offset; /* Found */
|
|
|
|
/* Not found */
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
wm_read_mac_addr(struct wm_softc *sc, uint8_t *enaddr)
|
|
{
|
|
uint16_t myea[ETHER_ADDR_LEN / 2];
|
|
uint16_t offset = NVM_OFF_MACADDR;
|
|
int do_invert = 0;
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_82580:
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
/* EEPROM Top Level Partitioning */
|
|
offset = NVM_OFF_LAN_FUNC_82580(sc->sc_funcid) + 0;
|
|
break;
|
|
case WM_T_82571:
|
|
case WM_T_82575:
|
|
case WM_T_82576:
|
|
case WM_T_80003:
|
|
case WM_T_I210:
|
|
case WM_T_I211:
|
|
offset = wm_check_alt_mac_addr(sc);
|
|
if (offset == 0)
|
|
if ((sc->sc_funcid & 0x01) == 1)
|
|
do_invert = 1;
|
|
break;
|
|
default:
|
|
if ((sc->sc_funcid & 0x01) == 1)
|
|
do_invert = 1;
|
|
break;
|
|
}
|
|
|
|
if (wm_nvm_read(sc, offset, sizeof(myea) / sizeof(myea[0]), myea) != 0)
|
|
goto bad;
|
|
|
|
enaddr[0] = myea[0] & 0xff;
|
|
enaddr[1] = myea[0] >> 8;
|
|
enaddr[2] = myea[1] & 0xff;
|
|
enaddr[3] = myea[1] >> 8;
|
|
enaddr[4] = myea[2] & 0xff;
|
|
enaddr[5] = myea[2] >> 8;
|
|
|
|
/*
|
|
* Toggle the LSB of the MAC address on the second port
|
|
* of some dual port cards.
|
|
*/
|
|
if (do_invert != 0)
|
|
enaddr[5] ^= 1;
|
|
|
|
return 0;
|
|
|
|
bad:
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* wm_set_ral:
|
|
*
|
|
* Set an entery in the receive address list.
|
|
*/
|
|
static void
|
|
wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
|
|
{
|
|
uint32_t ral_lo, ral_hi, addrl, addrh;
|
|
uint32_t wlock_mac;
|
|
int rv;
|
|
|
|
if (enaddr != NULL) {
|
|
ral_lo = (uint32_t)enaddr[0] | ((uint32_t)enaddr[1] << 8) |
|
|
((uint32_t)enaddr[2] << 16) | ((uint32_t)enaddr[3] << 24);
|
|
ral_hi = (uint32_t)enaddr[4] | ((uint32_t)enaddr[5] << 8);
|
|
ral_hi |= RAL_AV;
|
|
} else {
|
|
ral_lo = 0;
|
|
ral_hi = 0;
|
|
}
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_82542_2_0:
|
|
case WM_T_82542_2_1:
|
|
case WM_T_82543:
|
|
CSR_WRITE(sc, WMREG_RAL(idx), ral_lo);
|
|
CSR_WRITE_FLUSH(sc);
|
|
CSR_WRITE(sc, WMREG_RAH(idx), ral_hi);
|
|
CSR_WRITE_FLUSH(sc);
|
|
break;
|
|
case WM_T_PCH2:
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
if (idx == 0) {
|
|
CSR_WRITE(sc, WMREG_CORDOVA_RAL(idx), ral_lo);
|
|
CSR_WRITE_FLUSH(sc);
|
|
CSR_WRITE(sc, WMREG_CORDOVA_RAH(idx), ral_hi);
|
|
CSR_WRITE_FLUSH(sc);
|
|
return;
|
|
}
|
|
if (sc->sc_type != WM_T_PCH2) {
|
|
wlock_mac = __SHIFTOUT(CSR_READ(sc, WMREG_FWSM),
|
|
FWSM_WLOCK_MAC);
|
|
addrl = WMREG_SHRAL(idx - 1);
|
|
addrh = WMREG_SHRAH(idx - 1);
|
|
} else {
|
|
wlock_mac = 0;
|
|
addrl = WMREG_PCH_LPT_SHRAL(idx - 1);
|
|
addrh = WMREG_PCH_LPT_SHRAH(idx - 1);
|
|
}
|
|
|
|
if ((wlock_mac == 0) || (idx <= wlock_mac)) {
|
|
rv = wm_get_swflag_ich8lan(sc);
|
|
if (rv != 0)
|
|
return;
|
|
CSR_WRITE(sc, addrl, ral_lo);
|
|
CSR_WRITE_FLUSH(sc);
|
|
CSR_WRITE(sc, addrh, ral_hi);
|
|
CSR_WRITE_FLUSH(sc);
|
|
wm_put_swflag_ich8lan(sc);
|
|
}
|
|
|
|
break;
|
|
default:
|
|
CSR_WRITE(sc, WMREG_CORDOVA_RAL(idx), ral_lo);
|
|
CSR_WRITE_FLUSH(sc);
|
|
CSR_WRITE(sc, WMREG_CORDOVA_RAH(idx), ral_hi);
|
|
CSR_WRITE_FLUSH(sc);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* wm_mchash:
|
|
*
|
|
* Compute the hash of the multicast address for the 4096-bit
|
|
* multicast filter.
|
|
*/
|
|
static uint32_t
|
|
wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
|
|
{
|
|
static const int lo_shift[4] = { 4, 3, 2, 0 };
|
|
static const int hi_shift[4] = { 4, 5, 6, 8 };
|
|
static const int ich8_lo_shift[4] = { 6, 5, 4, 2 };
|
|
static const int ich8_hi_shift[4] = { 2, 3, 4, 6 };
|
|
uint32_t hash;
|
|
|
|
if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
|
|
|| (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
|
|
|| (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
|
|
|| (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP)){
|
|
hash = (enaddr[4] >> ich8_lo_shift[sc->sc_mchash_type]) |
|
|
(((uint16_t)enaddr[5]) << ich8_hi_shift[sc->sc_mchash_type]);
|
|
return (hash & 0x3ff);
|
|
}
|
|
hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
|
|
(((uint16_t)enaddr[5]) << hi_shift[sc->sc_mchash_type]);
|
|
|
|
return (hash & 0xfff);
|
|
}
|
|
|
|
/*
|
|
*
|
|
*
|
|
*/
|
|
static int
|
|
wm_rar_count(struct wm_softc *sc)
|
|
{
|
|
int size;
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_ICH8:
|
|
size = WM_RAL_TABSIZE_ICH8 -1;
|
|
break;
|
|
case WM_T_ICH9:
|
|
case WM_T_ICH10:
|
|
case WM_T_PCH:
|
|
size = WM_RAL_TABSIZE_ICH8;
|
|
break;
|
|
case WM_T_PCH2:
|
|
size = WM_RAL_TABSIZE_PCH2;
|
|
break;
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
size = WM_RAL_TABSIZE_PCH_LPT;
|
|
break;
|
|
case WM_T_82575:
|
|
case WM_T_I210:
|
|
case WM_T_I211:
|
|
size = WM_RAL_TABSIZE_82575;
|
|
break;
|
|
case WM_T_82576:
|
|
case WM_T_82580:
|
|
size = WM_RAL_TABSIZE_82576;
|
|
break;
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
size = WM_RAL_TABSIZE_I350;
|
|
break;
|
|
default:
|
|
size = WM_RAL_TABSIZE;
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
/*
|
|
* wm_set_filter:
|
|
*
|
|
* Set up the receive filter.
|
|
*/
|
|
static void
|
|
wm_set_filter(struct wm_softc *sc)
|
|
{
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
bus_addr_t mta_reg;
|
|
uint32_t hash, reg, bit;
|
|
int i, size, ralmax, rv;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if (sc->sc_type >= WM_T_82544)
|
|
mta_reg = WMREG_CORDOVA_MTA;
|
|
else
|
|
mta_reg = WMREG_MTA;
|
|
|
|
sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
|
|
|
|
if (ifp->if_flags & IFF_BROADCAST)
|
|
sc->sc_rctl |= RCTL_BAM;
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
sc->sc_rctl |= RCTL_UPE;
|
|
ETHER_LOCK(ec);
|
|
ec->ec_flags |= ETHER_F_ALLMULTI;
|
|
ETHER_UNLOCK(ec);
|
|
goto allmulti;
|
|
}
|
|
|
|
/*
|
|
* Set the station address in the first RAL slot, and
|
|
* clear the remaining slots.
|
|
*/
|
|
size = wm_rar_count(sc);
|
|
wm_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
|
|
|
|
if ((sc->sc_type == WM_T_PCH_LPT) || (sc->sc_type == WM_T_PCH_SPT)
|
|
|| (sc->sc_type == WM_T_PCH_CNP)) {
|
|
i = __SHIFTOUT(CSR_READ(sc, WMREG_FWSM), FWSM_WLOCK_MAC);
|
|
switch (i) {
|
|
case 0:
|
|
/* We can use all entries */
|
|
ralmax = size;
|
|
break;
|
|
case 1:
|
|
/* Only RAR[0] */
|
|
ralmax = 1;
|
|
break;
|
|
default:
|
|
/* Available SHRA + RAR[0] */
|
|
ralmax = i + 1;
|
|
}
|
|
} else
|
|
ralmax = size;
|
|
for (i = 1; i < size; i++) {
|
|
if (i < ralmax)
|
|
wm_set_ral(sc, NULL, i);
|
|
}
|
|
|
|
if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
|
|
|| (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
|
|
|| (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
|
|
|| (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP))
|
|
size = WM_ICH8_MC_TABSIZE;
|
|
else
|
|
size = WM_MC_TABSIZE;
|
|
/* Clear out the multicast table. */
|
|
for (i = 0; i < size; i++) {
|
|
CSR_WRITE(sc, mta_reg + (i << 2), 0);
|
|
CSR_WRITE_FLUSH(sc);
|
|
}
|
|
|
|
ETHER_LOCK(ec);
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
while (enm != NULL) {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
|
|
ec->ec_flags |= ETHER_F_ALLMULTI;
|
|
ETHER_UNLOCK(ec);
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
*/
|
|
goto allmulti;
|
|
}
|
|
|
|
hash = wm_mchash(sc, enm->enm_addrlo);
|
|
|
|
reg = (hash >> 5);
|
|
if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
|
|
|| (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
|
|
|| (sc->sc_type == WM_T_PCH2)
|
|
|| (sc->sc_type == WM_T_PCH_LPT)
|
|
|| (sc->sc_type == WM_T_PCH_SPT)
|
|
|| (sc->sc_type == WM_T_PCH_CNP))
|
|
reg &= 0x1f;
|
|
else
|
|
reg &= 0x7f;
|
|
bit = hash & 0x1f;
|
|
|
|
hash = CSR_READ(sc, mta_reg + (reg << 2));
|
|
hash |= 1U << bit;
|
|
|
|
if (sc->sc_type == WM_T_82544 && (reg & 1) != 0) {
|
|
/*
|
|
* 82544 Errata 9: Certain register cannot be written
|
|
* with particular alignments in PCI-X bus operation
|
|
* (FCAH, MTA and VFTA).
|
|
*/
|
|
bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
|
|
CSR_WRITE(sc, mta_reg + (reg << 2), hash);
|
|
CSR_WRITE_FLUSH(sc);
|
|
CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
|
|
CSR_WRITE_FLUSH(sc);
|
|
} else {
|
|
CSR_WRITE(sc, mta_reg + (reg << 2), hash);
|
|
CSR_WRITE_FLUSH(sc);
|
|
}
|
|
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
ec->ec_flags &= ~ETHER_F_ALLMULTI;
|
|
ETHER_UNLOCK(ec);
|
|
|
|
goto setit;
|
|
|
|
allmulti:
|
|
sc->sc_rctl |= RCTL_MPE;
|
|
|
|
setit:
|
|
if (sc->sc_type >= WM_T_PCH2) {
|
|
if (((ec->ec_capabilities & ETHERCAP_JUMBO_MTU) != 0)
|
|
&& (ifp->if_mtu > ETHERMTU))
|
|
rv = wm_lv_jumbo_workaround_ich8lan(sc, true);
|
|
else
|
|
rv = wm_lv_jumbo_workaround_ich8lan(sc, false);
|
|
if (rv != 0)
|
|
device_printf(sc->sc_dev,
|
|
"Failed to do workaround for jumbo frame.\n");
|
|
}
|
|
|
|
CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
|
|
}
|
|
|
|
/* Reset and init related */
|
|
|
|
static void
|
|
wm_set_vlan(struct wm_softc *sc)
|
|
{
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
/* Deal with VLAN enables. */
|
|
if (VLAN_ATTACHED(&sc->sc_ethercom))
|
|
sc->sc_ctrl |= CTRL_VME;
|
|
else
|
|
sc->sc_ctrl &= ~CTRL_VME;
|
|
|
|
/* Write the control registers. */
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
}
|
|
|
|
static void
|
|
wm_set_pcie_completion_timeout(struct wm_softc *sc)
|
|
{
|
|
uint32_t gcr;
|
|
pcireg_t ctrl2;
|
|
|
|
gcr = CSR_READ(sc, WMREG_GCR);
|
|
|
|
/* Only take action if timeout value is defaulted to 0 */
|
|
if ((gcr & GCR_CMPL_TMOUT_MASK) != 0)
|
|
goto out;
|
|
|
|
if ((gcr & GCR_CAP_VER2) == 0) {
|
|
gcr |= GCR_CMPL_TMOUT_10MS;
|
|
goto out;
|
|
}
|
|
|
|
ctrl2 = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
|
|
sc->sc_pcixe_capoff + PCIE_DCSR2);
|
|
ctrl2 |= WM_PCIE_DCSR2_16MS;
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag,
|
|
sc->sc_pcixe_capoff + PCIE_DCSR2, ctrl2);
|
|
|
|
out:
|
|
/* Disable completion timeout resend */
|
|
gcr &= ~GCR_CMPL_TMOUT_RESEND;
|
|
|
|
CSR_WRITE(sc, WMREG_GCR, gcr);
|
|
}
|
|
|
|
void
|
|
wm_get_auto_rd_done(struct wm_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
/* wait for eeprom to reload */
|
|
switch (sc->sc_type) {
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
case WM_T_82573:
|
|
case WM_T_82574:
|
|
case WM_T_82583:
|
|
case WM_T_82575:
|
|
case WM_T_82576:
|
|
case WM_T_82580:
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
case WM_T_I210:
|
|
case WM_T_I211:
|
|
case WM_T_80003:
|
|
case WM_T_ICH8:
|
|
case WM_T_ICH9:
|
|
for (i = 0; i < 10; i++) {
|
|
if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
|
|
break;
|
|
delay(1000);
|
|
}
|
|
if (i == 10) {
|
|
log(LOG_ERR, "%s: auto read from eeprom failed to "
|
|
"complete\n", device_xname(sc->sc_dev));
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
wm_lan_init_done(struct wm_softc *sc)
|
|
{
|
|
uint32_t reg = 0;
|
|
int i;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
/* Wait for eeprom to reload */
|
|
switch (sc->sc_type) {
|
|
case WM_T_ICH10:
|
|
case WM_T_PCH:
|
|
case WM_T_PCH2:
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
for (i = 0; i < WM_ICH8_LAN_INIT_TIMEOUT; i++) {
|
|
reg = CSR_READ(sc, WMREG_STATUS);
|
|
if ((reg & STATUS_LAN_INIT_DONE) != 0)
|
|
break;
|
|
delay(100);
|
|
}
|
|
if (i >= WM_ICH8_LAN_INIT_TIMEOUT) {
|
|
log(LOG_ERR, "%s: %s: lan_init_done failed to "
|
|
"complete\n", device_xname(sc->sc_dev), __func__);
|
|
}
|
|
break;
|
|
default:
|
|
panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
|
|
__func__);
|
|
break;
|
|
}
|
|
|
|
reg &= ~STATUS_LAN_INIT_DONE;
|
|
CSR_WRITE(sc, WMREG_STATUS, reg);
|
|
}
|
|
|
|
void
|
|
wm_get_cfg_done(struct wm_softc *sc)
|
|
{
|
|
int mask;
|
|
uint32_t reg;
|
|
int i;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
/* Wait for eeprom to reload */
|
|
switch (sc->sc_type) {
|
|
case WM_T_82542_2_0:
|
|
case WM_T_82542_2_1:
|
|
/* null */
|
|
break;
|
|
case WM_T_82543:
|
|
case WM_T_82544:
|
|
case WM_T_82540:
|
|
case WM_T_82545:
|
|
case WM_T_82545_3:
|
|
case WM_T_82546:
|
|
case WM_T_82546_3:
|
|
case WM_T_82541:
|
|
case WM_T_82541_2:
|
|
case WM_T_82547:
|
|
case WM_T_82547_2:
|
|
case WM_T_82573:
|
|
case WM_T_82574:
|
|
case WM_T_82583:
|
|
/* generic */
|
|
delay(10*1000);
|
|
break;
|
|
case WM_T_80003:
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
case WM_T_82575:
|
|
case WM_T_82576:
|
|
case WM_T_82580:
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
case WM_T_I210:
|
|
case WM_T_I211:
|
|
if (sc->sc_type == WM_T_82571) {
|
|
/* Only 82571 shares port 0 */
|
|
mask = EEMNGCTL_CFGDONE_0;
|
|
} else
|
|
mask = EEMNGCTL_CFGDONE_0 << sc->sc_funcid;
|
|
for (i = 0; i < WM_PHY_CFG_TIMEOUT; i++) {
|
|
if (CSR_READ(sc, WMREG_EEMNGCTL) & mask)
|
|
break;
|
|
delay(1000);
|
|
}
|
|
if (i >= WM_PHY_CFG_TIMEOUT)
|
|
DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s failed\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
break;
|
|
case WM_T_ICH8:
|
|
case WM_T_ICH9:
|
|
case WM_T_ICH10:
|
|
case WM_T_PCH:
|
|
case WM_T_PCH2:
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
delay(10*1000);
|
|
if (sc->sc_type >= WM_T_ICH10)
|
|
wm_lan_init_done(sc);
|
|
else
|
|
wm_get_auto_rd_done(sc);
|
|
|
|
/* Clear PHY Reset Asserted bit */
|
|
reg = CSR_READ(sc, WMREG_STATUS);
|
|
if ((reg & STATUS_PHYRA) != 0)
|
|
CSR_WRITE(sc, WMREG_STATUS, reg & ~STATUS_PHYRA);
|
|
break;
|
|
default:
|
|
panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
|
|
__func__);
|
|
break;
|
|
}
|
|
}
|
|
|
|
int
|
|
wm_phy_post_reset(struct wm_softc *sc)
|
|
{
|
|
device_t dev = sc->sc_dev;
|
|
uint16_t reg;
|
|
int rv = 0;
|
|
|
|
/* This function is only for ICH8 and newer. */
|
|
if (sc->sc_type < WM_T_ICH8)
|
|
return 0;
|
|
|
|
if (wm_phy_resetisblocked(sc)) {
|
|
/* XXX */
|
|
device_printf(dev, "PHY is blocked\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Allow time for h/w to get to quiescent state after reset */
|
|
delay(10*1000);
|
|
|
|
/* Perform any necessary post-reset workarounds */
|
|
if (sc->sc_type == WM_T_PCH)
|
|
rv = wm_hv_phy_workarounds_ich8lan(sc);
|
|
else if (sc->sc_type == WM_T_PCH2)
|
|
rv = wm_lv_phy_workarounds_ich8lan(sc);
|
|
if (rv != 0)
|
|
return rv;
|
|
|
|
/* Clear the host wakeup bit after lcd reset */
|
|
if (sc->sc_type >= WM_T_PCH) {
|
|
wm_gmii_hv_readreg(dev, 2, BM_PORT_GEN_CFG, ®);
|
|
reg &= ~BM_WUC_HOST_WU_BIT;
|
|
wm_gmii_hv_writereg(dev, 2, BM_PORT_GEN_CFG, reg);
|
|
}
|
|
|
|
/* Configure the LCD with the extended configuration region in NVM */
|
|
if ((rv = wm_init_lcd_from_nvm(sc)) != 0)
|
|
return rv;
|
|
|
|
/* Configure the LCD with the OEM bits in NVM */
|
|
rv = wm_oem_bits_config_ich8lan(sc, true);
|
|
|
|
if (sc->sc_type == WM_T_PCH2) {
|
|
/* Ungate automatic PHY configuration on non-managed 82579 */
|
|
if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) == 0) {
|
|
delay(10 * 1000);
|
|
wm_gate_hw_phy_config_ich8lan(sc, false);
|
|
}
|
|
/* Set EEE LPI Update Timer to 200usec */
|
|
rv = sc->phy.acquire(sc);
|
|
if (rv)
|
|
return rv;
|
|
rv = wm_write_emi_reg_locked(dev,
|
|
I82579_LPI_UPDATE_TIMER, 0x1387);
|
|
sc->phy.release(sc);
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
/* Only for PCH and newer */
|
|
static int
|
|
wm_write_smbus_addr(struct wm_softc *sc)
|
|
{
|
|
uint32_t strap, freq;
|
|
uint16_t phy_data;
|
|
int rv;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
KASSERT(CSR_READ(sc, WMREG_EXTCNFCTR) & EXTCNFCTR_MDIO_SW_OWNERSHIP);
|
|
|
|
strap = CSR_READ(sc, WMREG_STRAP);
|
|
freq = __SHIFTOUT(strap, STRAP_FREQ);
|
|
|
|
rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, HV_SMB_ADDR, &phy_data);
|
|
if (rv != 0)
|
|
return -1;
|
|
|
|
phy_data &= ~HV_SMB_ADDR_ADDR;
|
|
phy_data |= __SHIFTOUT(strap, STRAP_SMBUSADDR);
|
|
phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
|
|
|
|
if (sc->sc_phytype == WMPHY_I217) {
|
|
/* Restore SMBus frequency */
|
|
if (freq --) {
|
|
phy_data &= ~(HV_SMB_ADDR_FREQ_LOW
|
|
| HV_SMB_ADDR_FREQ_HIGH);
|
|
phy_data |= __SHIFTIN((freq & 0x01) != 0,
|
|
HV_SMB_ADDR_FREQ_LOW);
|
|
phy_data |= __SHIFTIN((freq & 0x02) != 0,
|
|
HV_SMB_ADDR_FREQ_HIGH);
|
|
} else
|
|
DPRINTF(sc, WM_DEBUG_INIT,
|
|
("%s: %s Unsupported SMB frequency in PHY\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
}
|
|
|
|
return wm_gmii_hv_writereg_locked(sc->sc_dev, 2, HV_SMB_ADDR,
|
|
phy_data);
|
|
}
|
|
|
|
static int
|
|
wm_init_lcd_from_nvm(struct wm_softc *sc)
|
|
{
|
|
uint32_t extcnfctr, sw_cfg_mask, cnf_size, word_addr, i, reg;
|
|
uint16_t phy_page = 0;
|
|
int rv = 0;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_ICH8:
|
|
if ((sc->sc_phytype == WMPHY_UNKNOWN)
|
|
|| (sc->sc_phytype != WMPHY_IGP_3))
|
|
return 0;
|
|
|
|
if ((sc->sc_pcidevid == PCI_PRODUCT_INTEL_82801H_AMT)
|
|
|| (sc->sc_pcidevid == PCI_PRODUCT_INTEL_82801H_LAN)) {
|
|
sw_cfg_mask = FEXTNVM_SW_CONFIG;
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case WM_T_PCH:
|
|
case WM_T_PCH2:
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
sw_cfg_mask = FEXTNVM_SW_CONFIG_ICH8M;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
if ((rv = sc->phy.acquire(sc)) != 0)
|
|
return rv;
|
|
|
|
reg = CSR_READ(sc, WMREG_FEXTNVM);
|
|
if ((reg & sw_cfg_mask) == 0)
|
|
goto release;
|
|
|
|
/*
|
|
* Make sure HW does not configure LCD from PHY extended configuration
|
|
* before SW configuration
|
|
*/
|
|
extcnfctr = CSR_READ(sc, WMREG_EXTCNFCTR);
|
|
if ((sc->sc_type < WM_T_PCH2)
|
|
&& ((extcnfctr & EXTCNFCTR_PCIE_WRITE_ENABLE) != 0))
|
|
goto release;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s: Configure LCD by software\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
/* word_addr is in DWORD */
|
|
word_addr = __SHIFTOUT(extcnfctr, EXTCNFCTR_EXT_CNF_POINTER) << 1;
|
|
|
|
reg = CSR_READ(sc, WMREG_EXTCNFSIZE);
|
|
cnf_size = __SHIFTOUT(reg, EXTCNFSIZE_LENGTH);
|
|
if (cnf_size == 0)
|
|
goto release;
|
|
|
|
if (((sc->sc_type == WM_T_PCH)
|
|
&& ((extcnfctr & EXTCNFCTR_OEM_WRITE_ENABLE) == 0))
|
|
|| (sc->sc_type > WM_T_PCH)) {
|
|
/*
|
|
* HW configures the SMBus address and LEDs when the OEM and
|
|
* LCD Write Enable bits are set in the NVM. When both NVM bits
|
|
* are cleared, SW will configure them instead.
|
|
*/
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s: Configure SMBus and LED\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
if ((rv = wm_write_smbus_addr(sc)) != 0)
|
|
goto release;
|
|
|
|
reg = CSR_READ(sc, WMREG_LEDCTL);
|
|
rv = wm_gmii_hv_writereg_locked(sc->sc_dev, 1, HV_LED_CONFIG,
|
|
(uint16_t)reg);
|
|
if (rv != 0)
|
|
goto release;
|
|
}
|
|
|
|
/* Configure LCD from extended configuration region. */
|
|
for (i = 0; i < cnf_size; i++) {
|
|
uint16_t reg_data, reg_addr;
|
|
|
|
if (wm_nvm_read(sc, (word_addr + i * 2), 1, ®_data) != 0)
|
|
goto release;
|
|
|
|
if (wm_nvm_read(sc, (word_addr + i * 2 + 1), 1, ®_addr) !=0)
|
|
goto release;
|
|
|
|
if (reg_addr == IGPHY_PAGE_SELECT)
|
|
phy_page = reg_data;
|
|
|
|
reg_addr &= IGPHY_MAXREGADDR;
|
|
reg_addr |= phy_page;
|
|
|
|
KASSERT(sc->phy.writereg_locked != NULL);
|
|
rv = sc->phy.writereg_locked(sc->sc_dev, 1, reg_addr,
|
|
reg_data);
|
|
}
|
|
|
|
release:
|
|
sc->phy.release(sc);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* wm_oem_bits_config_ich8lan - SW-based LCD Configuration
|
|
* @sc: pointer to the HW structure
|
|
* @d0_state: boolean if entering d0 or d3 device state
|
|
*
|
|
* SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
|
|
* collectively called OEM bits. The OEM Write Enable bit and SW Config bit
|
|
* in NVM determines whether HW should configure LPLU and Gbe Disable.
|
|
*/
|
|
int
|
|
wm_oem_bits_config_ich8lan(struct wm_softc *sc, bool d0_state)
|
|
{
|
|
uint32_t mac_reg;
|
|
uint16_t oem_reg;
|
|
int rv;
|
|
|
|
if (sc->sc_type < WM_T_PCH)
|
|
return 0;
|
|
|
|
rv = sc->phy.acquire(sc);
|
|
if (rv != 0)
|
|
return rv;
|
|
|
|
if (sc->sc_type == WM_T_PCH) {
|
|
mac_reg = CSR_READ(sc, WMREG_EXTCNFCTR);
|
|
if ((mac_reg & EXTCNFCTR_OEM_WRITE_ENABLE) != 0)
|
|
goto release;
|
|
}
|
|
|
|
mac_reg = CSR_READ(sc, WMREG_FEXTNVM);
|
|
if ((mac_reg & FEXTNVM_SW_CONFIG_ICH8M) == 0)
|
|
goto release;
|
|
|
|
mac_reg = CSR_READ(sc, WMREG_PHY_CTRL);
|
|
|
|
rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 1, HV_OEM_BITS, &oem_reg);
|
|
if (rv != 0)
|
|
goto release;
|
|
oem_reg &= ~(HV_OEM_BITS_A1KDIS | HV_OEM_BITS_LPLU);
|
|
|
|
if (d0_state) {
|
|
if ((mac_reg & PHY_CTRL_GBE_DIS) != 0)
|
|
oem_reg |= HV_OEM_BITS_A1KDIS;
|
|
if ((mac_reg & PHY_CTRL_D0A_LPLU) != 0)
|
|
oem_reg |= HV_OEM_BITS_LPLU;
|
|
} else {
|
|
if ((mac_reg & (PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS))
|
|
!= 0)
|
|
oem_reg |= HV_OEM_BITS_A1KDIS;
|
|
if ((mac_reg & (PHY_CTRL_D0A_LPLU | PHY_CTRL_NOND0A_LPLU))
|
|
!= 0)
|
|
oem_reg |= HV_OEM_BITS_LPLU;
|
|
}
|
|
|
|
/* Set Restart auto-neg to activate the bits */
|
|
if ((d0_state || (sc->sc_type != WM_T_PCH))
|
|
&& (wm_phy_resetisblocked(sc) == false))
|
|
oem_reg |= HV_OEM_BITS_ANEGNOW;
|
|
|
|
rv = wm_gmii_hv_writereg_locked(sc->sc_dev, 1, HV_OEM_BITS, oem_reg);
|
|
|
|
release:
|
|
sc->phy.release(sc);
|
|
|
|
return rv;
|
|
}
|
|
|
|
/* Init hardware bits */
|
|
void
|
|
wm_initialize_hardware_bits(struct wm_softc *sc)
|
|
{
|
|
uint32_t tarc0, tarc1, reg;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
/* For 82571 variant, 80003 and ICHs */
|
|
if (((sc->sc_type >= WM_T_82571) && (sc->sc_type <= WM_T_82583))
|
|
|| (sc->sc_type >= WM_T_80003)) {
|
|
|
|
/* Transmit Descriptor Control 0 */
|
|
reg = CSR_READ(sc, WMREG_TXDCTL(0));
|
|
reg |= TXDCTL_COUNT_DESC;
|
|
CSR_WRITE(sc, WMREG_TXDCTL(0), reg);
|
|
|
|
/* Transmit Descriptor Control 1 */
|
|
reg = CSR_READ(sc, WMREG_TXDCTL(1));
|
|
reg |= TXDCTL_COUNT_DESC;
|
|
CSR_WRITE(sc, WMREG_TXDCTL(1), reg);
|
|
|
|
/* TARC0 */
|
|
tarc0 = CSR_READ(sc, WMREG_TARC0);
|
|
switch (sc->sc_type) {
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
case WM_T_82573:
|
|
case WM_T_82574:
|
|
case WM_T_82583:
|
|
case WM_T_80003:
|
|
/* Clear bits 30..27 */
|
|
tarc0 &= ~__BITS(30, 27);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
tarc0 |= __BITS(26, 23); /* TARC0 bits 23-26 */
|
|
|
|
tarc1 = CSR_READ(sc, WMREG_TARC1);
|
|
tarc1 &= ~__BITS(30, 29); /* Clear bits 30 and 29 */
|
|
tarc1 |= __BITS(26, 24); /* TARC1 bits 26-24 */
|
|
/* 8257[12] Errata No.7 */
|
|
tarc1 |= __BIT(22); /* TARC1 bits 22 */
|
|
|
|
/* TARC1 bit 28 */
|
|
if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0)
|
|
tarc1 &= ~__BIT(28);
|
|
else
|
|
tarc1 |= __BIT(28);
|
|
CSR_WRITE(sc, WMREG_TARC1, tarc1);
|
|
|
|
/*
|
|
* 8257[12] Errata No.13
|
|
* Disable Dyamic Clock Gating.
|
|
*/
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
reg &= ~CTRL_EXT_DMA_DYN_CLK;
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
|
|
break;
|
|
case WM_T_82573:
|
|
case WM_T_82574:
|
|
case WM_T_82583:
|
|
if ((sc->sc_type == WM_T_82574)
|
|
|| (sc->sc_type == WM_T_82583))
|
|
tarc0 |= __BIT(26); /* TARC0 bit 26 */
|
|
|
|
/* Extended Device Control */
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
reg &= ~__BIT(23); /* Clear bit 23 */
|
|
reg |= __BIT(22); /* Set bit 22 */
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
|
|
|
|
/* Device Control */
|
|
sc->sc_ctrl &= ~__BIT(29); /* Clear bit 29 */
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
|
|
/* PCIe Control Register */
|
|
/*
|
|
* 82573 Errata (unknown).
|
|
*
|
|
* 82574 Errata 25 and 82583 Errata 12
|
|
* "Dropped Rx Packets":
|
|
* NVM Image Version 2.1.4 and newer has no this bug.
|
|
*/
|
|
reg = CSR_READ(sc, WMREG_GCR);
|
|
reg |= GCR_L1_ACT_WITHOUT_L0S_RX;
|
|
CSR_WRITE(sc, WMREG_GCR, reg);
|
|
|
|
if ((sc->sc_type == WM_T_82574)
|
|
|| (sc->sc_type == WM_T_82583)) {
|
|
/*
|
|
* Document says this bit must be set for
|
|
* proper operation.
|
|
*/
|
|
reg = CSR_READ(sc, WMREG_GCR);
|
|
reg |= __BIT(22);
|
|
CSR_WRITE(sc, WMREG_GCR, reg);
|
|
|
|
/*
|
|
* Apply workaround for hardware errata
|
|
* documented in errata docs Fixes issue where
|
|
* some error prone or unreliable PCIe
|
|
* completions are occurring, particularly
|
|
* with ASPM enabled. Without fix, issue can
|
|
* cause Tx timeouts.
|
|
*/
|
|
reg = CSR_READ(sc, WMREG_GCR2);
|
|
reg |= __BIT(0);
|
|
CSR_WRITE(sc, WMREG_GCR2, reg);
|
|
}
|
|
break;
|
|
case WM_T_80003:
|
|
/* TARC0 */
|
|
if ((sc->sc_mediatype == WM_MEDIATYPE_FIBER)
|
|
|| (sc->sc_mediatype == WM_MEDIATYPE_SERDES))
|
|
tarc0 &= ~__BIT(20); /* Clear bits 20 */
|
|
|
|
/* TARC1 bit 28 */
|
|
tarc1 = CSR_READ(sc, WMREG_TARC1);
|
|
if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0)
|
|
tarc1 &= ~__BIT(28);
|
|
else
|
|
tarc1 |= __BIT(28);
|
|
CSR_WRITE(sc, WMREG_TARC1, tarc1);
|
|
break;
|
|
case WM_T_ICH8:
|
|
case WM_T_ICH9:
|
|
case WM_T_ICH10:
|
|
case WM_T_PCH:
|
|
case WM_T_PCH2:
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
/* TARC0 */
|
|
if (sc->sc_type == WM_T_ICH8) {
|
|
/* Set TARC0 bits 29 and 28 */
|
|
tarc0 |= __BITS(29, 28);
|
|
} else if (sc->sc_type == WM_T_PCH_SPT) {
|
|
tarc0 |= __BIT(29);
|
|
/*
|
|
* Drop bit 28. From Linux.
|
|
* See I218/I219 spec update
|
|
* "5. Buffer Overrun While the I219 is
|
|
* Processing DMA Transactions"
|
|
*/
|
|
tarc0 &= ~__BIT(28);
|
|
}
|
|
/* Set TARC0 bits 23,24,26,27 */
|
|
tarc0 |= __BITS(27, 26) | __BITS(24, 23);
|
|
|
|
/* CTRL_EXT */
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
reg |= __BIT(22); /* Set bit 22 */
|
|
/*
|
|
* Enable PHY low-power state when MAC is at D3
|
|
* w/o WoL
|
|
*/
|
|
if (sc->sc_type >= WM_T_PCH)
|
|
reg |= CTRL_EXT_PHYPDEN;
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
|
|
|
|
/* TARC1 */
|
|
tarc1 = CSR_READ(sc, WMREG_TARC1);
|
|
/* bit 28 */
|
|
if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0)
|
|
tarc1 &= ~__BIT(28);
|
|
else
|
|
tarc1 |= __BIT(28);
|
|
tarc1 |= __BIT(24) | __BIT(26) | __BIT(30);
|
|
CSR_WRITE(sc, WMREG_TARC1, tarc1);
|
|
|
|
/* Device Status */
|
|
if (sc->sc_type == WM_T_ICH8) {
|
|
reg = CSR_READ(sc, WMREG_STATUS);
|
|
reg &= ~__BIT(31);
|
|
CSR_WRITE(sc, WMREG_STATUS, reg);
|
|
|
|
}
|
|
|
|
/* IOSFPC */
|
|
if (sc->sc_type == WM_T_PCH_SPT) {
|
|
reg = CSR_READ(sc, WMREG_IOSFPC);
|
|
reg |= RCTL_RDMTS_HEX; /* XXX RTCL bit? */
|
|
CSR_WRITE(sc, WMREG_IOSFPC, reg);
|
|
}
|
|
/*
|
|
* Work-around descriptor data corruption issue during
|
|
* NFS v2 UDP traffic, just disable the NFS filtering
|
|
* capability.
|
|
*/
|
|
reg = CSR_READ(sc, WMREG_RFCTL);
|
|
reg |= WMREG_RFCTL_NFSWDIS | WMREG_RFCTL_NFSRDIS;
|
|
CSR_WRITE(sc, WMREG_RFCTL, reg);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
CSR_WRITE(sc, WMREG_TARC0, tarc0);
|
|
|
|
switch (sc->sc_type) {
|
|
/*
|
|
* 8257[12] Errata No.52, 82573 Errata No.43 and some others.
|
|
* Avoid RSS Hash Value bug.
|
|
*/
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
case WM_T_82573:
|
|
case WM_T_80003:
|
|
case WM_T_ICH8:
|
|
reg = CSR_READ(sc, WMREG_RFCTL);
|
|
reg |= WMREG_RFCTL_NEWIPV6EXDIS |WMREG_RFCTL_IPV6EXDIS;
|
|
CSR_WRITE(sc, WMREG_RFCTL, reg);
|
|
break;
|
|
case WM_T_82574:
|
|
/* Use extened Rx descriptor. */
|
|
reg = CSR_READ(sc, WMREG_RFCTL);
|
|
reg |= WMREG_RFCTL_EXSTEN;
|
|
CSR_WRITE(sc, WMREG_RFCTL, reg);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211)) {
|
|
/*
|
|
* 82575 Errata XXX, 82576 Errata 46, 82580 Errata 24,
|
|
* I350 Errata 37, I210 Errata No. 31 and I211 Errata No. 11:
|
|
* "Certain Malformed IPv6 Extension Headers are Not Processed
|
|
* Correctly by the Device"
|
|
*
|
|
* I354(C2000) Errata AVR53:
|
|
* "Malformed IPv6 Extension Headers May Result in LAN Device
|
|
* Hang"
|
|
*/
|
|
reg = CSR_READ(sc, WMREG_RFCTL);
|
|
reg |= WMREG_RFCTL_IPV6EXDIS;
|
|
CSR_WRITE(sc, WMREG_RFCTL, reg);
|
|
}
|
|
}
|
|
|
|
static uint32_t
|
|
wm_rxpbs_adjust_82580(uint32_t val)
|
|
{
|
|
uint32_t rv = 0;
|
|
|
|
if (val < __arraycount(wm_82580_rxpbs_table))
|
|
rv = wm_82580_rxpbs_table[val];
|
|
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* wm_reset_phy:
|
|
*
|
|
* generic PHY reset function.
|
|
* Same as e1000_phy_hw_reset_generic()
|
|
*/
|
|
static int
|
|
wm_reset_phy(struct wm_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
if (wm_phy_resetisblocked(sc))
|
|
return -1;
|
|
|
|
sc->phy.acquire(sc);
|
|
|
|
reg = CSR_READ(sc, WMREG_CTRL);
|
|
CSR_WRITE(sc, WMREG_CTRL, reg | CTRL_PHY_RESET);
|
|
CSR_WRITE_FLUSH(sc);
|
|
|
|
delay(sc->phy.reset_delay_us);
|
|
|
|
CSR_WRITE(sc, WMREG_CTRL, reg);
|
|
CSR_WRITE_FLUSH(sc);
|
|
|
|
delay(150);
|
|
|
|
sc->phy.release(sc);
|
|
|
|
wm_get_cfg_done(sc);
|
|
wm_phy_post_reset(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Only used by WM_T_PCH_SPT which does not use multiqueue,
|
|
* so it is enough to check sc->sc_queue[0] only.
|
|
*/
|
|
static void
|
|
wm_flush_desc_rings(struct wm_softc *sc)
|
|
{
|
|
pcireg_t preg;
|
|
uint32_t reg;
|
|
struct wm_txqueue *txq;
|
|
wiseman_txdesc_t *txd;
|
|
int nexttx;
|
|
uint32_t rctl;
|
|
|
|
/* First, disable MULR fix in FEXTNVM11 */
|
|
reg = CSR_READ(sc, WMREG_FEXTNVM11);
|
|
reg |= FEXTNVM11_DIS_MULRFIX;
|
|
CSR_WRITE(sc, WMREG_FEXTNVM11, reg);
|
|
|
|
preg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, WM_PCI_DESCRING_STATUS);
|
|
reg = CSR_READ(sc, WMREG_TDLEN(0));
|
|
if (((preg & DESCRING_STATUS_FLUSH_REQ) == 0) || (reg == 0))
|
|
return;
|
|
|
|
/* TX */
|
|
device_printf(sc->sc_dev, "Need TX flush (reg = %08x, len = %u)\n",
|
|
preg, reg);
|
|
reg = CSR_READ(sc, WMREG_TCTL);
|
|
CSR_WRITE(sc, WMREG_TCTL, reg | TCTL_EN);
|
|
|
|
txq = &sc->sc_queue[0].wmq_txq;
|
|
nexttx = txq->txq_next;
|
|
txd = &txq->txq_descs[nexttx];
|
|
wm_set_dma_addr(&txd->wtx_addr, WM_CDTXADDR(txq, nexttx));
|
|
txd->wtx_cmdlen = htole32(WTX_CMD_IFCS | 512);
|
|
txd->wtx_fields.wtxu_status = 0;
|
|
txd->wtx_fields.wtxu_options = 0;
|
|
txd->wtx_fields.wtxu_vlan = 0;
|
|
|
|
bus_space_barrier(sc->sc_st, sc->sc_sh, 0, 0,
|
|
BUS_SPACE_BARRIER_WRITE);
|
|
|
|
txq->txq_next = WM_NEXTTX(txq, txq->txq_next);
|
|
CSR_WRITE(sc, WMREG_TDT(0), txq->txq_next);
|
|
bus_space_barrier(sc->sc_st, sc->sc_sh, 0, 0,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
delay(250);
|
|
|
|
preg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, WM_PCI_DESCRING_STATUS);
|
|
if ((preg & DESCRING_STATUS_FLUSH_REQ) == 0)
|
|
return;
|
|
|
|
/* RX */
|
|
device_printf(sc->sc_dev, "Need RX flush (reg = %08x)\n", preg);
|
|
rctl = CSR_READ(sc, WMREG_RCTL);
|
|
CSR_WRITE(sc, WMREG_RCTL, rctl & ~RCTL_EN);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(150);
|
|
|
|
reg = CSR_READ(sc, WMREG_RXDCTL(0));
|
|
/* Zero the lower 14 bits (prefetch and host thresholds) */
|
|
reg &= 0xffffc000;
|
|
/*
|
|
* Update thresholds: prefetch threshold to 31, host threshold
|
|
* to 1 and make sure the granularity is "descriptors" and not
|
|
* "cache lines"
|
|
*/
|
|
reg |= (0x1f | (1 << 8) | RXDCTL_GRAN);
|
|
CSR_WRITE(sc, WMREG_RXDCTL(0), reg);
|
|
|
|
/* Momentarily enable the RX ring for the changes to take effect */
|
|
CSR_WRITE(sc, WMREG_RCTL, rctl | RCTL_EN);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(150);
|
|
CSR_WRITE(sc, WMREG_RCTL, rctl & ~RCTL_EN);
|
|
}
|
|
|
|
/*
|
|
* wm_reset:
|
|
*
|
|
* Reset the i82542 chip.
|
|
*/
|
|
static void
|
|
wm_reset(struct wm_softc *sc)
|
|
{
|
|
int phy_reset = 0;
|
|
int i, error = 0;
|
|
uint32_t reg;
|
|
uint16_t kmreg;
|
|
int rv;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
KASSERT(sc->sc_type != 0);
|
|
|
|
/*
|
|
* Allocate on-chip memory according to the MTU size.
|
|
* The Packet Buffer Allocation register must be written
|
|
* before the chip is reset.
|
|
*/
|
|
switch (sc->sc_type) {
|
|
case WM_T_82547:
|
|
case WM_T_82547_2:
|
|
sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
|
|
PBA_22K : PBA_30K;
|
|
for (i = 0; i < sc->sc_nqueues; i++) {
|
|
struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
|
|
txq->txq_fifo_head = 0;
|
|
txq->txq_fifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
|
|
txq->txq_fifo_size =
|
|
(PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
|
|
txq->txq_fifo_stall = 0;
|
|
}
|
|
break;
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
case WM_T_82575: /* XXX need special handing for jumbo frames */
|
|
case WM_T_80003:
|
|
sc->sc_pba = PBA_32K;
|
|
break;
|
|
case WM_T_82573:
|
|
sc->sc_pba = PBA_12K;
|
|
break;
|
|
case WM_T_82574:
|
|
case WM_T_82583:
|
|
sc->sc_pba = PBA_20K;
|
|
break;
|
|
case WM_T_82576:
|
|
sc->sc_pba = CSR_READ(sc, WMREG_RXPBS);
|
|
sc->sc_pba &= RXPBS_SIZE_MASK_82576;
|
|
break;
|
|
case WM_T_82580:
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
sc->sc_pba = wm_rxpbs_adjust_82580(CSR_READ(sc, WMREG_RXPBS));
|
|
break;
|
|
case WM_T_I210:
|
|
case WM_T_I211:
|
|
sc->sc_pba = PBA_34K;
|
|
break;
|
|
case WM_T_ICH8:
|
|
/* Workaround for a bit corruption issue in FIFO memory */
|
|
sc->sc_pba = PBA_8K;
|
|
CSR_WRITE(sc, WMREG_PBS, PBA_16K);
|
|
break;
|
|
case WM_T_ICH9:
|
|
case WM_T_ICH10:
|
|
sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 4096 ?
|
|
PBA_14K : PBA_10K;
|
|
break;
|
|
case WM_T_PCH:
|
|
case WM_T_PCH2: /* XXX 14K? */
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 1500 ?
|
|
PBA_12K : PBA_26K;
|
|
break;
|
|
default:
|
|
sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
|
|
PBA_40K : PBA_48K;
|
|
break;
|
|
}
|
|
/*
|
|
* Only old or non-multiqueue devices have the PBA register
|
|
* XXX Need special handling for 82575.
|
|
*/
|
|
if (((sc->sc_flags & WM_F_NEWQUEUE) == 0)
|
|
|| (sc->sc_type == WM_T_82575))
|
|
CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
|
|
|
|
/* Prevent the PCI-E bus from sticking */
|
|
if (sc->sc_flags & WM_F_PCIE) {
|
|
int timeout = 800;
|
|
|
|
sc->sc_ctrl |= CTRL_GIO_M_DIS;
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
|
|
while (timeout--) {
|
|
if ((CSR_READ(sc, WMREG_STATUS) & STATUS_GIO_M_ENA)
|
|
== 0)
|
|
break;
|
|
delay(100);
|
|
}
|
|
if (timeout == 0)
|
|
device_printf(sc->sc_dev,
|
|
"failed to disable busmastering\n");
|
|
}
|
|
|
|
/* Set the completion timeout for interface */
|
|
if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
|
|
|| (sc->sc_type == WM_T_82580)
|
|
|| (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
|
|
|| (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211))
|
|
wm_set_pcie_completion_timeout(sc);
|
|
|
|
/* Clear interrupt */
|
|
CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
|
|
if (wm_is_using_msix(sc)) {
|
|
if (sc->sc_type != WM_T_82574) {
|
|
CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU);
|
|
CSR_WRITE(sc, WMREG_EIAC, 0);
|
|
} else
|
|
CSR_WRITE(sc, WMREG_EIAC_82574, 0);
|
|
}
|
|
|
|
/* Stop the transmit and receive processes. */
|
|
CSR_WRITE(sc, WMREG_RCTL, 0);
|
|
sc->sc_rctl &= ~RCTL_EN;
|
|
CSR_WRITE(sc, WMREG_TCTL, TCTL_PSP);
|
|
CSR_WRITE_FLUSH(sc);
|
|
|
|
/* XXX set_tbi_sbp_82543() */
|
|
|
|
delay(10*1000);
|
|
|
|
/* Must acquire the MDIO ownership before MAC reset */
|
|
switch (sc->sc_type) {
|
|
case WM_T_82573:
|
|
case WM_T_82574:
|
|
case WM_T_82583:
|
|
error = wm_get_hw_semaphore_82573(sc);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* 82541 Errata 29? & 82547 Errata 28?
|
|
* See also the description about PHY_RST bit in CTRL register
|
|
* in 8254x_GBe_SDM.pdf.
|
|
*/
|
|
if ((sc->sc_type == WM_T_82541) || (sc->sc_type == WM_T_82547)) {
|
|
CSR_WRITE(sc, WMREG_CTRL,
|
|
CSR_READ(sc, WMREG_CTRL) | CTRL_PHY_RESET);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(5000);
|
|
}
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_82544: /* XXX check whether WM_F_IOH_VALID is set */
|
|
case WM_T_82541:
|
|
case WM_T_82541_2:
|
|
case WM_T_82547:
|
|
case WM_T_82547_2:
|
|
/*
|
|
* On some chipsets, a reset through a memory-mapped write
|
|
* cycle can cause the chip to reset before completing the
|
|
* write cycle. This causes major headache that can be avoided
|
|
* by issuing the reset via indirect register writes through
|
|
* I/O space.
|
|
*
|
|
* So, if we successfully mapped the I/O BAR at attach time,
|
|
* use that. Otherwise, try our luck with a memory-mapped
|
|
* reset.
|
|
*/
|
|
if (sc->sc_flags & WM_F_IOH_VALID)
|
|
wm_io_write(sc, WMREG_CTRL, CTRL_RST);
|
|
else
|
|
CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
|
|
break;
|
|
case WM_T_82545_3:
|
|
case WM_T_82546_3:
|
|
/* Use the shadow control register on these chips. */
|
|
CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
|
|
break;
|
|
case WM_T_80003:
|
|
reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
|
|
sc->phy.acquire(sc);
|
|
CSR_WRITE(sc, WMREG_CTRL, reg);
|
|
sc->phy.release(sc);
|
|
break;
|
|
case WM_T_ICH8:
|
|
case WM_T_ICH9:
|
|
case WM_T_ICH10:
|
|
case WM_T_PCH:
|
|
case WM_T_PCH2:
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
|
|
if (wm_phy_resetisblocked(sc) == false) {
|
|
/*
|
|
* Gate automatic PHY configuration by hardware on
|
|
* non-managed 82579
|
|
*/
|
|
if ((sc->sc_type == WM_T_PCH2)
|
|
&& ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID)
|
|
== 0))
|
|
wm_gate_hw_phy_config_ich8lan(sc, true);
|
|
|
|
reg |= CTRL_PHY_RESET;
|
|
phy_reset = 1;
|
|
} else
|
|
device_printf(sc->sc_dev, "XXX reset is blocked!!!\n");
|
|
sc->phy.acquire(sc);
|
|
CSR_WRITE(sc, WMREG_CTRL, reg);
|
|
/* Don't insert a completion barrier when reset */
|
|
delay(20*1000);
|
|
mutex_exit(sc->sc_ich_phymtx);
|
|
break;
|
|
case WM_T_82580:
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
case WM_T_I210:
|
|
case WM_T_I211:
|
|
CSR_WRITE(sc, WMREG_CTRL, CSR_READ(sc, WMREG_CTRL) | CTRL_RST);
|
|
if (sc->sc_pcidevid != PCI_PRODUCT_INTEL_DH89XXCC_SGMII)
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(5000);
|
|
break;
|
|
case WM_T_82542_2_0:
|
|
case WM_T_82542_2_1:
|
|
case WM_T_82543:
|
|
case WM_T_82540:
|
|
case WM_T_82545:
|
|
case WM_T_82546:
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
case WM_T_82573:
|
|
case WM_T_82574:
|
|
case WM_T_82575:
|
|
case WM_T_82576:
|
|
case WM_T_82583:
|
|
default:
|
|
/* Everything else can safely use the documented method. */
|
|
CSR_WRITE(sc, WMREG_CTRL, CSR_READ(sc, WMREG_CTRL) | CTRL_RST);
|
|
break;
|
|
}
|
|
|
|
/* Must release the MDIO ownership after MAC reset */
|
|
switch (sc->sc_type) {
|
|
case WM_T_82573:
|
|
case WM_T_82574:
|
|
case WM_T_82583:
|
|
if (error == 0)
|
|
wm_put_hw_semaphore_82573(sc);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Set Phy Config Counter to 50msec */
|
|
if (sc->sc_type == WM_T_PCH2) {
|
|
reg = CSR_READ(sc, WMREG_FEXTNVM3);
|
|
reg &= ~FEXTNVM3_PHY_CFG_COUNTER_MASK;
|
|
reg |= FEXTNVM3_PHY_CFG_COUNTER_50MS;
|
|
CSR_WRITE(sc, WMREG_FEXTNVM3, reg);
|
|
}
|
|
|
|
if (phy_reset != 0)
|
|
wm_get_cfg_done(sc);
|
|
|
|
/* Reload EEPROM */
|
|
switch (sc->sc_type) {
|
|
case WM_T_82542_2_0:
|
|
case WM_T_82542_2_1:
|
|
case WM_T_82543:
|
|
case WM_T_82544:
|
|
delay(10);
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(2000);
|
|
break;
|
|
case WM_T_82540:
|
|
case WM_T_82545:
|
|
case WM_T_82545_3:
|
|
case WM_T_82546:
|
|
case WM_T_82546_3:
|
|
delay(5*1000);
|
|
/* XXX Disable HW ARPs on ASF enabled adapters */
|
|
break;
|
|
case WM_T_82541:
|
|
case WM_T_82541_2:
|
|
case WM_T_82547:
|
|
case WM_T_82547_2:
|
|
delay(20000);
|
|
/* XXX Disable HW ARPs on ASF enabled adapters */
|
|
break;
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
case WM_T_82573:
|
|
case WM_T_82574:
|
|
case WM_T_82583:
|
|
if (sc->sc_flags & WM_F_EEPROM_FLASH) {
|
|
delay(10);
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
|
|
CSR_WRITE_FLUSH(sc);
|
|
}
|
|
/* check EECD_EE_AUTORD */
|
|
wm_get_auto_rd_done(sc);
|
|
/*
|
|
* Phy configuration from NVM just starts after EECD_AUTO_RD
|
|
* is set.
|
|
*/
|
|
if ((sc->sc_type == WM_T_82573) || (sc->sc_type == WM_T_82574)
|
|
|| (sc->sc_type == WM_T_82583))
|
|
delay(25*1000);
|
|
break;
|
|
case WM_T_82575:
|
|
case WM_T_82576:
|
|
case WM_T_82580:
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
case WM_T_I210:
|
|
case WM_T_I211:
|
|
case WM_T_80003:
|
|
/* check EECD_EE_AUTORD */
|
|
wm_get_auto_rd_done(sc);
|
|
break;
|
|
case WM_T_ICH8:
|
|
case WM_T_ICH9:
|
|
case WM_T_ICH10:
|
|
case WM_T_PCH:
|
|
case WM_T_PCH2:
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
break;
|
|
default:
|
|
panic("%s: unknown type\n", __func__);
|
|
}
|
|
|
|
/* Check whether EEPROM is present or not */
|
|
switch (sc->sc_type) {
|
|
case WM_T_82575:
|
|
case WM_T_82576:
|
|
case WM_T_82580:
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
case WM_T_ICH8:
|
|
case WM_T_ICH9:
|
|
if ((CSR_READ(sc, WMREG_EECD) & EECD_EE_PRES) == 0) {
|
|
/* Not found */
|
|
sc->sc_flags |= WM_F_EEPROM_INVALID;
|
|
if (sc->sc_type == WM_T_82575)
|
|
wm_reset_init_script_82575(sc);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (phy_reset != 0)
|
|
wm_phy_post_reset(sc);
|
|
|
|
if ((sc->sc_type == WM_T_82580)
|
|
|| (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)) {
|
|
/* Clear global device reset status bit */
|
|
CSR_WRITE(sc, WMREG_STATUS, STATUS_DEV_RST_SET);
|
|
}
|
|
|
|
/* Clear any pending interrupt events. */
|
|
CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
|
|
reg = CSR_READ(sc, WMREG_ICR);
|
|
if (wm_is_using_msix(sc)) {
|
|
if (sc->sc_type != WM_T_82574) {
|
|
CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU);
|
|
CSR_WRITE(sc, WMREG_EIAC, 0);
|
|
} else
|
|
CSR_WRITE(sc, WMREG_EIAC_82574, 0);
|
|
}
|
|
|
|
if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
|
|
|| (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
|
|
|| (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
|
|
|| (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP)){
|
|
reg = CSR_READ(sc, WMREG_KABGTXD);
|
|
reg |= KABGTXD_BGSQLBIAS;
|
|
CSR_WRITE(sc, WMREG_KABGTXD, reg);
|
|
}
|
|
|
|
/* Reload sc_ctrl */
|
|
sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
|
|
|
|
wm_set_eee(sc);
|
|
|
|
/*
|
|
* For PCH, this write will make sure that any noise will be detected
|
|
* as a CRC error and be dropped rather than show up as a bad packet
|
|
* to the DMA engine
|
|
*/
|
|
if (sc->sc_type == WM_T_PCH)
|
|
CSR_WRITE(sc, WMREG_CRC_OFFSET, 0x65656565);
|
|
|
|
if (sc->sc_type >= WM_T_82544)
|
|
CSR_WRITE(sc, WMREG_WUC, 0);
|
|
|
|
if (sc->sc_type < WM_T_82575)
|
|
wm_disable_aspm(sc); /* Workaround for some chips */
|
|
|
|
wm_reset_mdicnfg_82580(sc);
|
|
|
|
if ((sc->sc_flags & WM_F_PLL_WA_I210) != 0)
|
|
wm_pll_workaround_i210(sc);
|
|
|
|
if (sc->sc_type == WM_T_80003) {
|
|
/* Default to TRUE to enable the MDIC W/A */
|
|
sc->sc_flags |= WM_F_80003_MDIC_WA;
|
|
|
|
rv = wm_kmrn_readreg(sc,
|
|
KUMCTRLSTA_OFFSET >> KUMCTRLSTA_OFFSET_SHIFT, &kmreg);
|
|
if (rv == 0) {
|
|
if ((kmreg & KUMCTRLSTA_OPMODE_MASK)
|
|
== KUMCTRLSTA_OPMODE_INBAND_MDIO)
|
|
sc->sc_flags &= ~WM_F_80003_MDIC_WA;
|
|
else
|
|
sc->sc_flags |= WM_F_80003_MDIC_WA;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* wm_add_rxbuf:
|
|
*
|
|
* Add a receive buffer to the indiciated descriptor.
|
|
*/
|
|
static int
|
|
wm_add_rxbuf(struct wm_rxqueue *rxq, int idx)
|
|
{
|
|
struct wm_softc *sc = rxq->rxq_sc;
|
|
struct wm_rxsoft *rxs = &rxq->rxq_soft[idx];
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
KASSERT(mutex_owned(rxq->rxq_lock));
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return ENOBUFS;
|
|
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
if (rxs->rxs_mbuf != NULL)
|
|
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
|
|
|
|
rxs->rxs_mbuf = m;
|
|
|
|
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
|
|
/*
|
|
* Cannot use bus_dmamap_load_mbuf() here because m_data may be
|
|
* sc_align_tweak'd between bus_dmamap_load() and bus_dmamap_sync().
|
|
*/
|
|
error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, m->m_ext.ext_buf,
|
|
m->m_ext.ext_size, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
/* XXX XXX XXX */
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to load rx DMA map %d, error = %d\n", idx, error);
|
|
panic("wm_add_rxbuf");
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
|
|
if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
|
|
if ((sc->sc_rctl & RCTL_EN) != 0)
|
|
wm_init_rxdesc(rxq, idx);
|
|
} else
|
|
wm_init_rxdesc(rxq, idx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* wm_rxdrain:
|
|
*
|
|
* Drain the receive queue.
|
|
*/
|
|
static void
|
|
wm_rxdrain(struct wm_rxqueue *rxq)
|
|
{
|
|
struct wm_softc *sc = rxq->rxq_sc;
|
|
struct wm_rxsoft *rxs;
|
|
int i;
|
|
|
|
KASSERT(mutex_owned(rxq->rxq_lock));
|
|
|
|
for (i = 0; i < WM_NRXDESC; i++) {
|
|
rxs = &rxq->rxq_soft[i];
|
|
if (rxs->rxs_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
|
|
m_freem(rxs->rxs_mbuf);
|
|
rxs->rxs_mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup registers for RSS.
|
|
*
|
|
* XXX not yet VMDq support
|
|
*/
|
|
static void
|
|
wm_init_rss(struct wm_softc *sc)
|
|
{
|
|
uint32_t mrqc, reta_reg, rss_key[RSSRK_NUM_REGS];
|
|
int i;
|
|
|
|
CTASSERT(sizeof(rss_key) == RSS_KEYSIZE);
|
|
|
|
for (i = 0; i < RETA_NUM_ENTRIES; i++) {
|
|
unsigned int qid, reta_ent;
|
|
|
|
qid = i % sc->sc_nqueues;
|
|
switch (sc->sc_type) {
|
|
case WM_T_82574:
|
|
reta_ent = __SHIFTIN(qid,
|
|
RETA_ENT_QINDEX_MASK_82574);
|
|
break;
|
|
case WM_T_82575:
|
|
reta_ent = __SHIFTIN(qid,
|
|
RETA_ENT_QINDEX1_MASK_82575);
|
|
break;
|
|
default:
|
|
reta_ent = __SHIFTIN(qid, RETA_ENT_QINDEX_MASK);
|
|
break;
|
|
}
|
|
|
|
reta_reg = CSR_READ(sc, WMREG_RETA_Q(i));
|
|
reta_reg &= ~RETA_ENTRY_MASK_Q(i);
|
|
reta_reg |= __SHIFTIN(reta_ent, RETA_ENTRY_MASK_Q(i));
|
|
CSR_WRITE(sc, WMREG_RETA_Q(i), reta_reg);
|
|
}
|
|
|
|
rss_getkey((uint8_t *)rss_key);
|
|
for (i = 0; i < RSSRK_NUM_REGS; i++)
|
|
CSR_WRITE(sc, WMREG_RSSRK(i), rss_key[i]);
|
|
|
|
if (sc->sc_type == WM_T_82574)
|
|
mrqc = MRQC_ENABLE_RSS_MQ_82574;
|
|
else
|
|
mrqc = MRQC_ENABLE_RSS_MQ;
|
|
|
|
/*
|
|
* MRQC_RSS_FIELD_IPV6_EX is not set because of an errata.
|
|
* See IPV6EXDIS bit in wm_initialize_hardware_bits().
|
|
*/
|
|
mrqc |= (MRQC_RSS_FIELD_IPV4 | MRQC_RSS_FIELD_IPV4_TCP);
|
|
mrqc |= (MRQC_RSS_FIELD_IPV6 | MRQC_RSS_FIELD_IPV6_TCP);
|
|
#if 0
|
|
mrqc |= (MRQC_RSS_FIELD_IPV4_UDP | MRQC_RSS_FIELD_IPV6_UDP);
|
|
mrqc |= MRQC_RSS_FIELD_IPV6_UDP_EX;
|
|
#endif
|
|
mrqc |= MRQC_RSS_FIELD_IPV6_TCP_EX;
|
|
|
|
CSR_WRITE(sc, WMREG_MRQC, mrqc);
|
|
}
|
|
|
|
/*
|
|
* Adjust TX and RX queue numbers which the system actulally uses.
|
|
*
|
|
* The numbers are affected by below parameters.
|
|
* - The nubmer of hardware queues
|
|
* - The number of MSI-X vectors (= "nvectors" argument)
|
|
* - ncpu
|
|
*/
|
|
static void
|
|
wm_adjust_qnum(struct wm_softc *sc, int nvectors)
|
|
{
|
|
int hw_ntxqueues, hw_nrxqueues, hw_nqueues;
|
|
|
|
if (nvectors < 2) {
|
|
sc->sc_nqueues = 1;
|
|
return;
|
|
}
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_82572:
|
|
hw_ntxqueues = 2;
|
|
hw_nrxqueues = 2;
|
|
break;
|
|
case WM_T_82574:
|
|
hw_ntxqueues = 2;
|
|
hw_nrxqueues = 2;
|
|
break;
|
|
case WM_T_82575:
|
|
hw_ntxqueues = 4;
|
|
hw_nrxqueues = 4;
|
|
break;
|
|
case WM_T_82576:
|
|
hw_ntxqueues = 16;
|
|
hw_nrxqueues = 16;
|
|
break;
|
|
case WM_T_82580:
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
hw_ntxqueues = 8;
|
|
hw_nrxqueues = 8;
|
|
break;
|
|
case WM_T_I210:
|
|
hw_ntxqueues = 4;
|
|
hw_nrxqueues = 4;
|
|
break;
|
|
case WM_T_I211:
|
|
hw_ntxqueues = 2;
|
|
hw_nrxqueues = 2;
|
|
break;
|
|
/*
|
|
* As below ethernet controllers does not support MSI-X,
|
|
* this driver let them not use multiqueue.
|
|
* - WM_T_80003
|
|
* - WM_T_ICH8
|
|
* - WM_T_ICH9
|
|
* - WM_T_ICH10
|
|
* - WM_T_PCH
|
|
* - WM_T_PCH2
|
|
* - WM_T_PCH_LPT
|
|
*/
|
|
default:
|
|
hw_ntxqueues = 1;
|
|
hw_nrxqueues = 1;
|
|
break;
|
|
}
|
|
|
|
hw_nqueues = uimin(hw_ntxqueues, hw_nrxqueues);
|
|
|
|
/*
|
|
* As queues more than MSI-X vectors cannot improve scaling, we limit
|
|
* the number of queues used actually.
|
|
*/
|
|
if (nvectors < hw_nqueues + 1)
|
|
sc->sc_nqueues = nvectors - 1;
|
|
else
|
|
sc->sc_nqueues = hw_nqueues;
|
|
|
|
/*
|
|
* As queues more then cpus cannot improve scaling, we limit
|
|
* the number of queues used actually.
|
|
*/
|
|
if (ncpu < sc->sc_nqueues)
|
|
sc->sc_nqueues = ncpu;
|
|
}
|
|
|
|
static inline bool
|
|
wm_is_using_msix(struct wm_softc *sc)
|
|
{
|
|
|
|
return (sc->sc_nintrs > 1);
|
|
}
|
|
|
|
static inline bool
|
|
wm_is_using_multiqueue(struct wm_softc *sc)
|
|
{
|
|
|
|
return (sc->sc_nqueues > 1);
|
|
}
|
|
|
|
static int
|
|
wm_softint_establish_queue(struct wm_softc *sc, int qidx, int intr_idx)
|
|
{
|
|
struct wm_queue *wmq = &sc->sc_queue[qidx];
|
|
|
|
wmq->wmq_id = qidx;
|
|
wmq->wmq_intr_idx = intr_idx;
|
|
wmq->wmq_si = softint_establish(SOFTINT_NET | WM_SOFTINT_FLAGS,
|
|
wm_handle_queue, wmq);
|
|
if (wmq->wmq_si != NULL)
|
|
return 0;
|
|
|
|
aprint_error_dev(sc->sc_dev, "unable to establish queue[%d] handler\n",
|
|
wmq->wmq_id);
|
|
pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[wmq->wmq_intr_idx]);
|
|
sc->sc_ihs[wmq->wmq_intr_idx] = NULL;
|
|
return ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Both single interrupt MSI and INTx can use this function.
|
|
*/
|
|
static int
|
|
wm_setup_legacy(struct wm_softc *sc)
|
|
{
|
|
pci_chipset_tag_t pc = sc->sc_pc;
|
|
const char *intrstr = NULL;
|
|
char intrbuf[PCI_INTRSTR_LEN];
|
|
int error;
|
|
|
|
error = wm_alloc_txrx_queues(sc);
|
|
if (error) {
|
|
aprint_error_dev(sc->sc_dev, "cannot allocate queues %d\n",
|
|
error);
|
|
return ENOMEM;
|
|
}
|
|
intrstr = pci_intr_string(pc, sc->sc_intrs[0], intrbuf,
|
|
sizeof(intrbuf));
|
|
#ifdef WM_MPSAFE
|
|
pci_intr_setattr(pc, &sc->sc_intrs[0], PCI_INTR_MPSAFE, true);
|
|
#endif
|
|
sc->sc_ihs[0] = pci_intr_establish_xname(pc, sc->sc_intrs[0],
|
|
IPL_NET, wm_intr_legacy, sc, device_xname(sc->sc_dev));
|
|
if (sc->sc_ihs[0] == NULL) {
|
|
aprint_error_dev(sc->sc_dev,"unable to establish %s\n",
|
|
(pci_intr_type(pc, sc->sc_intrs[0])
|
|
== PCI_INTR_TYPE_MSI) ? "MSI" : "INTx");
|
|
return ENOMEM;
|
|
}
|
|
|
|
aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
|
|
sc->sc_nintrs = 1;
|
|
|
|
return wm_softint_establish_queue(sc, 0, 0);
|
|
}
|
|
|
|
static int
|
|
wm_setup_msix(struct wm_softc *sc)
|
|
{
|
|
void *vih;
|
|
kcpuset_t *affinity;
|
|
int qidx, error, intr_idx, txrx_established;
|
|
pci_chipset_tag_t pc = sc->sc_pc;
|
|
const char *intrstr = NULL;
|
|
char intrbuf[PCI_INTRSTR_LEN];
|
|
char intr_xname[INTRDEVNAMEBUF];
|
|
|
|
if (sc->sc_nqueues < ncpu) {
|
|
/*
|
|
* To avoid other devices' interrupts, the affinity of Tx/Rx
|
|
* interrupts start from CPU#1.
|
|
*/
|
|
sc->sc_affinity_offset = 1;
|
|
} else {
|
|
/*
|
|
* In this case, this device use all CPUs. So, we unify
|
|
* affinitied cpu_index to msix vector number for readability.
|
|
*/
|
|
sc->sc_affinity_offset = 0;
|
|
}
|
|
|
|
error = wm_alloc_txrx_queues(sc);
|
|
if (error) {
|
|
aprint_error_dev(sc->sc_dev, "cannot allocate queues %d\n",
|
|
error);
|
|
return ENOMEM;
|
|
}
|
|
|
|
kcpuset_create(&affinity, false);
|
|
intr_idx = 0;
|
|
|
|
/*
|
|
* TX and RX
|
|
*/
|
|
txrx_established = 0;
|
|
for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
|
|
struct wm_queue *wmq = &sc->sc_queue[qidx];
|
|
int affinity_to = (sc->sc_affinity_offset + intr_idx) % ncpu;
|
|
|
|
intrstr = pci_intr_string(pc, sc->sc_intrs[intr_idx], intrbuf,
|
|
sizeof(intrbuf));
|
|
#ifdef WM_MPSAFE
|
|
pci_intr_setattr(pc, &sc->sc_intrs[intr_idx],
|
|
PCI_INTR_MPSAFE, true);
|
|
#endif
|
|
memset(intr_xname, 0, sizeof(intr_xname));
|
|
snprintf(intr_xname, sizeof(intr_xname), "%sTXRX%d",
|
|
device_xname(sc->sc_dev), qidx);
|
|
vih = pci_intr_establish_xname(pc, sc->sc_intrs[intr_idx],
|
|
IPL_NET, wm_txrxintr_msix, wmq, intr_xname);
|
|
if (vih == NULL) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to establish MSI-X(for TX and RX)%s%s\n",
|
|
intrstr ? " at " : "",
|
|
intrstr ? intrstr : "");
|
|
|
|
goto fail;
|
|
}
|
|
kcpuset_zero(affinity);
|
|
/* Round-robin affinity */
|
|
kcpuset_set(affinity, affinity_to);
|
|
error = interrupt_distribute(vih, affinity, NULL);
|
|
if (error == 0) {
|
|
aprint_normal_dev(sc->sc_dev,
|
|
"for TX and RX interrupting at %s affinity to %u\n",
|
|
intrstr, affinity_to);
|
|
} else {
|
|
aprint_normal_dev(sc->sc_dev,
|
|
"for TX and RX interrupting at %s\n", intrstr);
|
|
}
|
|
sc->sc_ihs[intr_idx] = vih;
|
|
if (wm_softint_establish_queue(sc, qidx, intr_idx) != 0)
|
|
goto fail;
|
|
txrx_established++;
|
|
intr_idx++;
|
|
}
|
|
|
|
/* LINK */
|
|
intrstr = pci_intr_string(pc, sc->sc_intrs[intr_idx], intrbuf,
|
|
sizeof(intrbuf));
|
|
#ifdef WM_MPSAFE
|
|
pci_intr_setattr(pc, &sc->sc_intrs[intr_idx], PCI_INTR_MPSAFE, true);
|
|
#endif
|
|
memset(intr_xname, 0, sizeof(intr_xname));
|
|
snprintf(intr_xname, sizeof(intr_xname), "%sLINK",
|
|
device_xname(sc->sc_dev));
|
|
vih = pci_intr_establish_xname(pc, sc->sc_intrs[intr_idx],
|
|
IPL_NET, wm_linkintr_msix, sc, intr_xname);
|
|
if (vih == NULL) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to establish MSI-X(for LINK)%s%s\n",
|
|
intrstr ? " at " : "",
|
|
intrstr ? intrstr : "");
|
|
|
|
goto fail;
|
|
}
|
|
/* Keep default affinity to LINK interrupt */
|
|
aprint_normal_dev(sc->sc_dev,
|
|
"for LINK interrupting at %s\n", intrstr);
|
|
sc->sc_ihs[intr_idx] = vih;
|
|
sc->sc_link_intr_idx = intr_idx;
|
|
|
|
sc->sc_nintrs = sc->sc_nqueues + 1;
|
|
kcpuset_destroy(affinity);
|
|
return 0;
|
|
|
|
fail:
|
|
for (qidx = 0; qidx < txrx_established; qidx++) {
|
|
struct wm_queue *wmq = &sc->sc_queue[qidx];
|
|
pci_intr_disestablish(sc->sc_pc,sc->sc_ihs[wmq->wmq_intr_idx]);
|
|
sc->sc_ihs[wmq->wmq_intr_idx] = NULL;
|
|
}
|
|
|
|
kcpuset_destroy(affinity);
|
|
return ENOMEM;
|
|
}
|
|
|
|
static void
|
|
wm_unset_stopping_flags(struct wm_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
KASSERT(WM_CORE_LOCKED(sc));
|
|
|
|
/* Must unset stopping flags in ascending order. */
|
|
for (i = 0; i < sc->sc_nqueues; i++) {
|
|
struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
|
|
struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
|
|
|
|
mutex_enter(txq->txq_lock);
|
|
txq->txq_stopping = false;
|
|
mutex_exit(txq->txq_lock);
|
|
|
|
mutex_enter(rxq->rxq_lock);
|
|
rxq->rxq_stopping = false;
|
|
mutex_exit(rxq->rxq_lock);
|
|
}
|
|
|
|
sc->sc_core_stopping = false;
|
|
}
|
|
|
|
static void
|
|
wm_set_stopping_flags(struct wm_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
KASSERT(WM_CORE_LOCKED(sc));
|
|
|
|
sc->sc_core_stopping = true;
|
|
|
|
/* Must set stopping flags in ascending order. */
|
|
for (i = 0; i < sc->sc_nqueues; i++) {
|
|
struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
|
|
struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
|
|
|
|
mutex_enter(rxq->rxq_lock);
|
|
rxq->rxq_stopping = true;
|
|
mutex_exit(rxq->rxq_lock);
|
|
|
|
mutex_enter(txq->txq_lock);
|
|
txq->txq_stopping = true;
|
|
mutex_exit(txq->txq_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write interrupt interval value to ITR or EITR
|
|
*/
|
|
static void
|
|
wm_itrs_writereg(struct wm_softc *sc, struct wm_queue *wmq)
|
|
{
|
|
|
|
if (!wmq->wmq_set_itr)
|
|
return;
|
|
|
|
if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
|
|
uint32_t eitr = __SHIFTIN(wmq->wmq_itr, EITR_ITR_INT_MASK);
|
|
|
|
/*
|
|
* 82575 doesn't have CNT_INGR field.
|
|
* So, overwrite counter field by software.
|
|
*/
|
|
if (sc->sc_type == WM_T_82575)
|
|
eitr |= __SHIFTIN(wmq->wmq_itr, EITR_COUNTER_MASK_82575);
|
|
else
|
|
eitr |= EITR_CNT_INGR;
|
|
|
|
CSR_WRITE(sc, WMREG_EITR(wmq->wmq_intr_idx), eitr);
|
|
} else if (sc->sc_type == WM_T_82574 && wm_is_using_msix(sc)) {
|
|
/*
|
|
* 82574 has both ITR and EITR. SET EITR when we use
|
|
* the multi queue function with MSI-X.
|
|
*/
|
|
CSR_WRITE(sc, WMREG_EITR_82574(wmq->wmq_intr_idx),
|
|
wmq->wmq_itr & EITR_ITR_INT_MASK_82574);
|
|
} else {
|
|
KASSERT(wmq->wmq_id == 0);
|
|
CSR_WRITE(sc, WMREG_ITR, wmq->wmq_itr);
|
|
}
|
|
|
|
wmq->wmq_set_itr = false;
|
|
}
|
|
|
|
/*
|
|
* TODO
|
|
* Below dynamic calculation of itr is almost the same as linux igb,
|
|
* however it does not fit to wm(4). So, we will have been disable AIM
|
|
* until we will find appropriate calculation of itr.
|
|
*/
|
|
/*
|
|
* calculate interrupt interval value to be going to write register in
|
|
* wm_itrs_writereg(). This function does not write ITR/EITR register.
|
|
*/
|
|
static void
|
|
wm_itrs_calculate(struct wm_softc *sc, struct wm_queue *wmq)
|
|
{
|
|
#ifdef NOTYET
|
|
struct wm_rxqueue *rxq = &wmq->wmq_rxq;
|
|
struct wm_txqueue *txq = &wmq->wmq_txq;
|
|
uint32_t avg_size = 0;
|
|
uint32_t new_itr;
|
|
|
|
if (rxq->rxq_packets)
|
|
avg_size = rxq->rxq_bytes / rxq->rxq_packets;
|
|
if (txq->txq_packets)
|
|
avg_size = uimax(avg_size, txq->txq_bytes / txq->txq_packets);
|
|
|
|
if (avg_size == 0) {
|
|
new_itr = 450; /* restore default value */
|
|
goto out;
|
|
}
|
|
|
|
/* Add 24 bytes to size to account for CRC, preamble, and gap */
|
|
avg_size += 24;
|
|
|
|
/* Don't starve jumbo frames */
|
|
avg_size = uimin(avg_size, 3000);
|
|
|
|
/* Give a little boost to mid-size frames */
|
|
if ((avg_size > 300) && (avg_size < 1200))
|
|
new_itr = avg_size / 3;
|
|
else
|
|
new_itr = avg_size / 2;
|
|
|
|
out:
|
|
/*
|
|
* The usage of 82574 and 82575 EITR is different from otther NEWQUEUE
|
|
* controllers. See sc->sc_itr_init setting in wm_init_locked().
|
|
*/
|
|
if ((sc->sc_flags & WM_F_NEWQUEUE) == 0 || sc->sc_type != WM_T_82575)
|
|
new_itr *= 4;
|
|
|
|
if (new_itr != wmq->wmq_itr) {
|
|
wmq->wmq_itr = new_itr;
|
|
wmq->wmq_set_itr = true;
|
|
} else
|
|
wmq->wmq_set_itr = false;
|
|
|
|
rxq->rxq_packets = 0;
|
|
rxq->rxq_bytes = 0;
|
|
txq->txq_packets = 0;
|
|
txq->txq_bytes = 0;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
wm_init_sysctls(struct wm_softc *sc)
|
|
{
|
|
struct sysctllog **log;
|
|
const struct sysctlnode *rnode, *qnode, *cnode;
|
|
int i, rv;
|
|
const char *dvname;
|
|
|
|
log = &sc->sc_sysctllog;
|
|
dvname = device_xname(sc->sc_dev);
|
|
|
|
rv = sysctl_createv(log, 0, NULL, &rnode,
|
|
0, CTLTYPE_NODE, dvname,
|
|
SYSCTL_DESCR("wm information and settings"),
|
|
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
|
|
if (rv != 0)
|
|
goto err;
|
|
|
|
rv = sysctl_createv(log, 0, &rnode, &cnode, CTLFLAG_READWRITE,
|
|
CTLTYPE_BOOL, "txrx_workqueue", SYSCTL_DESCR("Use workqueue for packet processing"),
|
|
NULL, 0, &sc->sc_txrx_use_workqueue, 0, CTL_CREATE, CTL_EOL);
|
|
if (rv != 0)
|
|
goto teardown;
|
|
|
|
for (i = 0; i < sc->sc_nqueues; i++) {
|
|
struct wm_queue *wmq = &sc->sc_queue[i];
|
|
struct wm_txqueue *txq = &wmq->wmq_txq;
|
|
struct wm_rxqueue *rxq = &wmq->wmq_rxq;
|
|
|
|
snprintf(sc->sc_queue[i].sysctlname,
|
|
sizeof(sc->sc_queue[i].sysctlname), "q%d", i);
|
|
|
|
if (sysctl_createv(log, 0, &rnode, &qnode,
|
|
0, CTLTYPE_NODE,
|
|
sc->sc_queue[i].sysctlname, SYSCTL_DESCR("Queue Name"),
|
|
NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL) != 0)
|
|
break;
|
|
if (sysctl_createv(log, 0, &qnode, &cnode,
|
|
CTLFLAG_READONLY, CTLTYPE_INT,
|
|
"txq_free", SYSCTL_DESCR("TX queue free"),
|
|
NULL, 0, &txq->txq_free,
|
|
0, CTL_CREATE, CTL_EOL) != 0)
|
|
break;
|
|
if (sysctl_createv(log, 0, &qnode, &cnode,
|
|
CTLFLAG_READONLY, CTLTYPE_INT,
|
|
"txq_next", SYSCTL_DESCR("TX queue next"),
|
|
NULL, 0, &txq->txq_next,
|
|
0, CTL_CREATE, CTL_EOL) != 0)
|
|
break;
|
|
|
|
if (sysctl_createv(log, 0, &qnode, &cnode,
|
|
CTLFLAG_READONLY, CTLTYPE_INT,
|
|
"rxq_ptr", SYSCTL_DESCR("RX queue pointer"),
|
|
NULL, 0, &rxq->rxq_ptr,
|
|
0, CTL_CREATE, CTL_EOL) != 0)
|
|
break;
|
|
}
|
|
|
|
#ifdef WM_DEBUG
|
|
rv = sysctl_createv(log, 0, &rnode, &cnode, CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "debug_flags",
|
|
SYSCTL_DESCR(
|
|
"Debug flags:\n" \
|
|
"\t0x01 LINK\n" \
|
|
"\t0x02 TX\n" \
|
|
"\t0x04 RX\n" \
|
|
"\t0x08 GMII\n" \
|
|
"\t0x10 MANAGE\n" \
|
|
"\t0x20 NVM\n" \
|
|
"\t0x40 INIT\n" \
|
|
"\t0x80 LOCK"),
|
|
wm_sysctl_debug, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL);
|
|
if (rv != 0)
|
|
goto teardown;
|
|
#endif
|
|
|
|
return;
|
|
|
|
teardown:
|
|
sysctl_teardown(log);
|
|
err:
|
|
sc->sc_sysctllog = NULL;
|
|
device_printf(sc->sc_dev, "%s: sysctl_createv failed, rv = %d\n",
|
|
__func__, rv);
|
|
}
|
|
|
|
/*
|
|
* wm_init: [ifnet interface function]
|
|
*
|
|
* Initialize the interface.
|
|
*/
|
|
static int
|
|
wm_init(struct ifnet *ifp)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
int ret;
|
|
|
|
WM_CORE_LOCK(sc);
|
|
ret = wm_init_locked(ifp);
|
|
WM_CORE_UNLOCK(sc);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
wm_init_locked(struct ifnet *ifp)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
int i, j, trynum, error = 0;
|
|
uint32_t reg, sfp_mask = 0;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
KASSERT(WM_CORE_LOCKED(sc));
|
|
|
|
/*
|
|
* *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
|
|
* There is a small but measurable benefit to avoiding the adjusment
|
|
* of the descriptor so that the headers are aligned, for normal mtu,
|
|
* on such platforms. One possibility is that the DMA itself is
|
|
* slightly more efficient if the front of the entire packet (instead
|
|
* of the front of the headers) is aligned.
|
|
*
|
|
* Note we must always set align_tweak to 0 if we are using
|
|
* jumbo frames.
|
|
*/
|
|
#ifdef __NO_STRICT_ALIGNMENT
|
|
sc->sc_align_tweak = 0;
|
|
#else
|
|
if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
|
|
sc->sc_align_tweak = 0;
|
|
else
|
|
sc->sc_align_tweak = 2;
|
|
#endif /* __NO_STRICT_ALIGNMENT */
|
|
|
|
/* Cancel any pending I/O. */
|
|
wm_stop_locked(ifp, false, false);
|
|
|
|
/* Update statistics before reset */
|
|
if_statadd2(ifp, if_collisions, CSR_READ(sc, WMREG_COLC),
|
|
if_ierrors, CSR_READ(sc, WMREG_RXERRC));
|
|
|
|
/* PCH_SPT hardware workaround */
|
|
if (sc->sc_type == WM_T_PCH_SPT)
|
|
wm_flush_desc_rings(sc);
|
|
|
|
/* Reset the chip to a known state. */
|
|
wm_reset(sc);
|
|
|
|
/*
|
|
* AMT based hardware can now take control from firmware
|
|
* Do this after reset.
|
|
*/
|
|
if ((sc->sc_flags & WM_F_HAS_AMT) != 0)
|
|
wm_get_hw_control(sc);
|
|
|
|
if ((sc->sc_type >= WM_T_PCH_SPT) &&
|
|
pci_intr_type(sc->sc_pc, sc->sc_intrs[0]) == PCI_INTR_TYPE_INTX)
|
|
wm_legacy_irq_quirk_spt(sc);
|
|
|
|
/* Init hardware bits */
|
|
wm_initialize_hardware_bits(sc);
|
|
|
|
/* Reset the PHY. */
|
|
if (sc->sc_flags & WM_F_HAS_MII)
|
|
wm_gmii_reset(sc);
|
|
|
|
if (sc->sc_type >= WM_T_ICH8) {
|
|
reg = CSR_READ(sc, WMREG_GCR);
|
|
/*
|
|
* ICH8 No-snoop bits are opposite polarity. Set to snoop by
|
|
* default after reset.
|
|
*/
|
|
if (sc->sc_type == WM_T_ICH8)
|
|
reg |= GCR_NO_SNOOP_ALL;
|
|
else
|
|
reg &= ~GCR_NO_SNOOP_ALL;
|
|
CSR_WRITE(sc, WMREG_GCR, reg);
|
|
}
|
|
|
|
if ((sc->sc_type >= WM_T_ICH8)
|
|
|| (sc->sc_pcidevid == PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER)
|
|
|| (sc->sc_pcidevid == PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3)) {
|
|
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
reg |= CTRL_EXT_RO_DIS;
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
|
|
}
|
|
|
|
/* Calculate (E)ITR value */
|
|
if ((sc->sc_flags & WM_F_NEWQUEUE) != 0 && sc->sc_type != WM_T_82575) {
|
|
/*
|
|
* For NEWQUEUE's EITR (except for 82575).
|
|
* 82575's EITR should be set same throttling value as other
|
|
* old controllers' ITR because the interrupt/sec calculation
|
|
* is the same, that is, 1,000,000,000 / (N * 256).
|
|
*
|
|
* 82574's EITR should be set same throttling value as ITR.
|
|
*
|
|
* For N interrupts/sec, set this value to:
|
|
* 1,000,000 / N in contrast to ITR throttoling value.
|
|
*/
|
|
sc->sc_itr_init = 450;
|
|
} else if (sc->sc_type >= WM_T_82543) {
|
|
/*
|
|
* Set up the interrupt throttling register (units of 256ns)
|
|
* Note that a footnote in Intel's documentation says this
|
|
* ticker runs at 1/4 the rate when the chip is in 100Mbit
|
|
* or 10Mbit mode. Empirically, it appears to be the case
|
|
* that that is also true for the 1024ns units of the other
|
|
* interrupt-related timer registers -- so, really, we ought
|
|
* to divide this value by 4 when the link speed is low.
|
|
*
|
|
* XXX implement this division at link speed change!
|
|
*/
|
|
|
|
/*
|
|
* For N interrupts/sec, set this value to:
|
|
* 1,000,000,000 / (N * 256). Note that we set the
|
|
* absolute and packet timer values to this value
|
|
* divided by 4 to get "simple timer" behavior.
|
|
*/
|
|
sc->sc_itr_init = 1500; /* 2604 ints/sec */
|
|
}
|
|
|
|
error = wm_init_txrx_queues(sc);
|
|
if (error)
|
|
goto out;
|
|
|
|
if (((sc->sc_flags & WM_F_SGMII) == 0) &&
|
|
(sc->sc_mediatype == WM_MEDIATYPE_SERDES) &&
|
|
(sc->sc_type >= WM_T_82575))
|
|
wm_serdes_power_up_link_82575(sc);
|
|
|
|
/* Clear out the VLAN table -- we don't use it (yet). */
|
|
CSR_WRITE(sc, WMREG_VET, 0);
|
|
if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354))
|
|
trynum = 10; /* Due to hw errata */
|
|
else
|
|
trynum = 1;
|
|
for (i = 0; i < WM_VLAN_TABSIZE; i++)
|
|
for (j = 0; j < trynum; j++)
|
|
CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
|
|
|
|
/*
|
|
* Set up flow-control parameters.
|
|
*
|
|
* XXX Values could probably stand some tuning.
|
|
*/
|
|
if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
|
|
&& (sc->sc_type != WM_T_ICH10) && (sc->sc_type != WM_T_PCH)
|
|
&& (sc->sc_type != WM_T_PCH2) && (sc->sc_type != WM_T_PCH_LPT)
|
|
&& (sc->sc_type != WM_T_PCH_SPT) && (sc->sc_type != WM_T_PCH_CNP)){
|
|
CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
|
|
CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
|
|
CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
|
|
}
|
|
|
|
sc->sc_fcrtl = FCRTL_DFLT;
|
|
if (sc->sc_type < WM_T_82543) {
|
|
CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
|
|
CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
|
|
} else {
|
|
CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
|
|
CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
|
|
}
|
|
|
|
if (sc->sc_type == WM_T_80003)
|
|
CSR_WRITE(sc, WMREG_FCTTV, 0xffff);
|
|
else
|
|
CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
|
|
|
|
/* Writes the control register. */
|
|
wm_set_vlan(sc);
|
|
|
|
if (sc->sc_flags & WM_F_HAS_MII) {
|
|
uint16_t kmreg;
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_80003:
|
|
case WM_T_ICH8:
|
|
case WM_T_ICH9:
|
|
case WM_T_ICH10:
|
|
case WM_T_PCH:
|
|
case WM_T_PCH2:
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
/*
|
|
* Set the mac to wait the maximum time between each
|
|
* iteration and increase the max iterations when
|
|
* polling the phy; this fixes erroneous timeouts at
|
|
* 10Mbps.
|
|
*/
|
|
wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS,
|
|
0xFFFF);
|
|
wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_INB_PARAM,
|
|
&kmreg);
|
|
kmreg |= 0x3F;
|
|
wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_INB_PARAM,
|
|
kmreg);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (sc->sc_type == WM_T_80003) {
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
reg &= ~CTRL_EXT_LINK_MODE_MASK;
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
|
|
|
|
/* Bypass RX and TX FIFO's */
|
|
wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
|
|
KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
|
|
| KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
|
|
wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
|
|
KUMCTRLSTA_INB_CTRL_DIS_PADDING |
|
|
KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
|
|
}
|
|
}
|
|
#if 0
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
|
|
#endif
|
|
|
|
/* Set up checksum offload parameters. */
|
|
reg = CSR_READ(sc, WMREG_RXCSUM);
|
|
reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL);
|
|
if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
|
|
reg |= RXCSUM_IPOFL;
|
|
if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
|
|
reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
|
|
if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
|
|
reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL;
|
|
CSR_WRITE(sc, WMREG_RXCSUM, reg);
|
|
|
|
/* Set registers about MSI-X */
|
|
if (wm_is_using_msix(sc)) {
|
|
uint32_t ivar, qintr_idx;
|
|
struct wm_queue *wmq;
|
|
unsigned int qid;
|
|
|
|
if (sc->sc_type == WM_T_82575) {
|
|
/* Interrupt control */
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
reg |= CTRL_EXT_PBA | CTRL_EXT_EIAME | CTRL_EXT_NSICR;
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
|
|
|
|
/* TX and RX */
|
|
for (i = 0; i < sc->sc_nqueues; i++) {
|
|
wmq = &sc->sc_queue[i];
|
|
CSR_WRITE(sc, WMREG_MSIXBM(wmq->wmq_intr_idx),
|
|
EITR_TX_QUEUE(wmq->wmq_id)
|
|
| EITR_RX_QUEUE(wmq->wmq_id));
|
|
}
|
|
/* Link status */
|
|
CSR_WRITE(sc, WMREG_MSIXBM(sc->sc_link_intr_idx),
|
|
EITR_OTHER);
|
|
} else if (sc->sc_type == WM_T_82574) {
|
|
/* Interrupt control */
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
reg |= CTRL_EXT_PBA | CTRL_EXT_EIAME;
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
|
|
|
|
/*
|
|
* Workaround issue with spurious interrupts
|
|
* in MSI-X mode.
|
|
* At wm_initialize_hardware_bits(), sc_nintrs has not
|
|
* initialized yet. So re-initialize WMREG_RFCTL here.
|
|
*/
|
|
reg = CSR_READ(sc, WMREG_RFCTL);
|
|
reg |= WMREG_RFCTL_ACKDIS;
|
|
CSR_WRITE(sc, WMREG_RFCTL, reg);
|
|
|
|
ivar = 0;
|
|
/* TX and RX */
|
|
for (i = 0; i < sc->sc_nqueues; i++) {
|
|
wmq = &sc->sc_queue[i];
|
|
qid = wmq->wmq_id;
|
|
qintr_idx = wmq->wmq_intr_idx;
|
|
|
|
ivar |= __SHIFTIN((IVAR_VALID_82574|qintr_idx),
|
|
IVAR_TX_MASK_Q_82574(qid));
|
|
ivar |= __SHIFTIN((IVAR_VALID_82574|qintr_idx),
|
|
IVAR_RX_MASK_Q_82574(qid));
|
|
}
|
|
/* Link status */
|
|
ivar |= __SHIFTIN((IVAR_VALID_82574
|
|
| sc->sc_link_intr_idx), IVAR_OTHER_MASK);
|
|
CSR_WRITE(sc, WMREG_IVAR, ivar | IVAR_INT_ON_ALL_WB);
|
|
} else {
|
|
/* Interrupt control */
|
|
CSR_WRITE(sc, WMREG_GPIE, GPIE_NSICR | GPIE_MULTI_MSIX
|
|
| GPIE_EIAME | GPIE_PBA);
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_82580:
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
case WM_T_I210:
|
|
case WM_T_I211:
|
|
/* TX and RX */
|
|
for (i = 0; i < sc->sc_nqueues; i++) {
|
|
wmq = &sc->sc_queue[i];
|
|
qid = wmq->wmq_id;
|
|
qintr_idx = wmq->wmq_intr_idx;
|
|
|
|
ivar = CSR_READ(sc, WMREG_IVAR_Q(qid));
|
|
ivar &= ~IVAR_TX_MASK_Q(qid);
|
|
ivar |= __SHIFTIN((qintr_idx
|
|
| IVAR_VALID),
|
|
IVAR_TX_MASK_Q(qid));
|
|
ivar &= ~IVAR_RX_MASK_Q(qid);
|
|
ivar |= __SHIFTIN((qintr_idx
|
|
| IVAR_VALID),
|
|
IVAR_RX_MASK_Q(qid));
|
|
CSR_WRITE(sc, WMREG_IVAR_Q(qid), ivar);
|
|
}
|
|
break;
|
|
case WM_T_82576:
|
|
/* TX and RX */
|
|
for (i = 0; i < sc->sc_nqueues; i++) {
|
|
wmq = &sc->sc_queue[i];
|
|
qid = wmq->wmq_id;
|
|
qintr_idx = wmq->wmq_intr_idx;
|
|
|
|
ivar = CSR_READ(sc,
|
|
WMREG_IVAR_Q_82576(qid));
|
|
ivar &= ~IVAR_TX_MASK_Q_82576(qid);
|
|
ivar |= __SHIFTIN((qintr_idx
|
|
| IVAR_VALID),
|
|
IVAR_TX_MASK_Q_82576(qid));
|
|
ivar &= ~IVAR_RX_MASK_Q_82576(qid);
|
|
ivar |= __SHIFTIN((qintr_idx
|
|
| IVAR_VALID),
|
|
IVAR_RX_MASK_Q_82576(qid));
|
|
CSR_WRITE(sc, WMREG_IVAR_Q_82576(qid),
|
|
ivar);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Link status */
|
|
ivar = __SHIFTIN((sc->sc_link_intr_idx | IVAR_VALID),
|
|
IVAR_MISC_OTHER);
|
|
CSR_WRITE(sc, WMREG_IVAR_MISC, ivar);
|
|
}
|
|
|
|
if (wm_is_using_multiqueue(sc)) {
|
|
wm_init_rss(sc);
|
|
|
|
/*
|
|
** NOTE: Receive Full-Packet Checksum Offload
|
|
** is mutually exclusive with Multiqueue. However
|
|
** this is not the same as TCP/IP checksums which
|
|
** still work.
|
|
*/
|
|
reg = CSR_READ(sc, WMREG_RXCSUM);
|
|
reg |= RXCSUM_PCSD;
|
|
CSR_WRITE(sc, WMREG_RXCSUM, reg);
|
|
}
|
|
}
|
|
|
|
/* Set up the interrupt registers. */
|
|
CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
|
|
|
|
/* Enable SFP module insertion interrupt if it's required */
|
|
if ((sc->sc_flags & WM_F_SFP) != 0) {
|
|
sc->sc_ctrl |= CTRL_EXTLINK_EN;
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
sfp_mask = ICR_GPI(0);
|
|
}
|
|
|
|
if (wm_is_using_msix(sc)) {
|
|
uint32_t mask;
|
|
struct wm_queue *wmq;
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_82574:
|
|
mask = 0;
|
|
for (i = 0; i < sc->sc_nqueues; i++) {
|
|
wmq = &sc->sc_queue[i];
|
|
mask |= ICR_TXQ(wmq->wmq_id);
|
|
mask |= ICR_RXQ(wmq->wmq_id);
|
|
}
|
|
mask |= ICR_OTHER;
|
|
CSR_WRITE(sc, WMREG_EIAC_82574, mask);
|
|
CSR_WRITE(sc, WMREG_IMS, mask | ICR_LSC);
|
|
break;
|
|
default:
|
|
if (sc->sc_type == WM_T_82575) {
|
|
mask = 0;
|
|
for (i = 0; i < sc->sc_nqueues; i++) {
|
|
wmq = &sc->sc_queue[i];
|
|
mask |= EITR_TX_QUEUE(wmq->wmq_id);
|
|
mask |= EITR_RX_QUEUE(wmq->wmq_id);
|
|
}
|
|
mask |= EITR_OTHER;
|
|
} else {
|
|
mask = 0;
|
|
for (i = 0; i < sc->sc_nqueues; i++) {
|
|
wmq = &sc->sc_queue[i];
|
|
mask |= 1 << wmq->wmq_intr_idx;
|
|
}
|
|
mask |= 1 << sc->sc_link_intr_idx;
|
|
}
|
|
CSR_WRITE(sc, WMREG_EIAC, mask);
|
|
CSR_WRITE(sc, WMREG_EIAM, mask);
|
|
CSR_WRITE(sc, WMREG_EIMS, mask);
|
|
|
|
/* For other interrupts */
|
|
CSR_WRITE(sc, WMREG_IMS, ICR_LSC | sfp_mask);
|
|
break;
|
|
}
|
|
} else {
|
|
sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
|
|
ICR_RXO | ICR_RXT0 | sfp_mask;
|
|
CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
|
|
}
|
|
|
|
/* Set up the inter-packet gap. */
|
|
CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
|
|
|
|
if (sc->sc_type >= WM_T_82543) {
|
|
for (int qidx = 0; qidx < sc->sc_nqueues; qidx++) {
|
|
struct wm_queue *wmq = &sc->sc_queue[qidx];
|
|
wm_itrs_writereg(sc, wmq);
|
|
}
|
|
/*
|
|
* Link interrupts occur much less than TX
|
|
* interrupts and RX interrupts. So, we don't
|
|
* tune EINTR(WM_MSIX_LINKINTR_IDX) value like
|
|
* FreeBSD's if_igb.
|
|
*/
|
|
}
|
|
|
|
/* Set the VLAN ethernetype. */
|
|
CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
|
|
|
|
/*
|
|
* Set up the transmit control register; we start out with
|
|
* a collision distance suitable for FDX, but update it whe
|
|
* we resolve the media type.
|
|
*/
|
|
sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_RTLC
|
|
| TCTL_CT(TX_COLLISION_THRESHOLD)
|
|
| TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
|
|
if (sc->sc_type >= WM_T_82571)
|
|
sc->sc_tctl |= TCTL_MULR;
|
|
CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
|
|
|
|
if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
|
|
/* Write TDT after TCTL.EN is set. See the document. */
|
|
CSR_WRITE(sc, WMREG_TDT(0), 0);
|
|
}
|
|
|
|
if (sc->sc_type == WM_T_80003) {
|
|
reg = CSR_READ(sc, WMREG_TCTL_EXT);
|
|
reg &= ~TCTL_EXT_GCEX_MASK;
|
|
reg |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
|
|
CSR_WRITE(sc, WMREG_TCTL_EXT, reg);
|
|
}
|
|
|
|
/* Set the media. */
|
|
if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
|
|
goto out;
|
|
|
|
/* Configure for OS presence */
|
|
wm_init_manageability(sc);
|
|
|
|
/*
|
|
* Set up the receive control register; we actually program the
|
|
* register when we set the receive filter. Use multicast address
|
|
* offset type 0.
|
|
*
|
|
* Only the i82544 has the ability to strip the incoming CRC, so we
|
|
* don't enable that feature.
|
|
*/
|
|
sc->sc_mchash_type = 0;
|
|
sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
|
|
| __SHIFTIN(sc->sc_mchash_type, RCTL_MO);
|
|
|
|
/* 82574 use one buffer extended Rx descriptor. */
|
|
if (sc->sc_type == WM_T_82574)
|
|
sc->sc_rctl |= RCTL_DTYP_ONEBUF;
|
|
|
|
if ((sc->sc_flags & WM_F_CRC_STRIP) != 0)
|
|
sc->sc_rctl |= RCTL_SECRC;
|
|
|
|
if (((ec->ec_capabilities & ETHERCAP_JUMBO_MTU) != 0)
|
|
&& (ifp->if_mtu > ETHERMTU)) {
|
|
sc->sc_rctl |= RCTL_LPE;
|
|
if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
|
|
CSR_WRITE(sc, WMREG_RLPML, ETHER_MAX_LEN_JUMBO);
|
|
}
|
|
|
|
if (MCLBYTES == 2048)
|
|
sc->sc_rctl |= RCTL_2k;
|
|
else {
|
|
if (sc->sc_type >= WM_T_82543) {
|
|
switch (MCLBYTES) {
|
|
case 4096:
|
|
sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
|
|
break;
|
|
case 8192:
|
|
sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
|
|
break;
|
|
case 16384:
|
|
sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
|
|
break;
|
|
default:
|
|
panic("wm_init: MCLBYTES %d unsupported",
|
|
MCLBYTES);
|
|
break;
|
|
}
|
|
} else
|
|
panic("wm_init: i82542 requires MCLBYTES = 2048");
|
|
}
|
|
|
|
/* Enable ECC */
|
|
switch (sc->sc_type) {
|
|
case WM_T_82571:
|
|
reg = CSR_READ(sc, WMREG_PBA_ECC);
|
|
reg |= PBA_ECC_CORR_EN;
|
|
CSR_WRITE(sc, WMREG_PBA_ECC, reg);
|
|
break;
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
reg = CSR_READ(sc, WMREG_PBECCSTS);
|
|
reg |= PBECCSTS_UNCORR_ECC_ENABLE;
|
|
CSR_WRITE(sc, WMREG_PBECCSTS, reg);
|
|
|
|
sc->sc_ctrl |= CTRL_MEHE;
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Set the receive filter.
|
|
*
|
|
* For 82575 and 82576, the RX descriptors must be initialized after
|
|
* the setting of RCTL.EN in wm_set_filter()
|
|
*/
|
|
wm_set_filter(sc);
|
|
|
|
/* On 575 and later set RDT only if RX enabled */
|
|
if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
|
|
int qidx;
|
|
for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
|
|
struct wm_rxqueue *rxq = &sc->sc_queue[qidx].wmq_rxq;
|
|
for (i = 0; i < WM_NRXDESC; i++) {
|
|
mutex_enter(rxq->rxq_lock);
|
|
wm_init_rxdesc(rxq, i);
|
|
mutex_exit(rxq->rxq_lock);
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
wm_unset_stopping_flags(sc);
|
|
|
|
/* Start the one second link check clock. */
|
|
callout_schedule(&sc->sc_tick_ch, hz);
|
|
|
|
/* ...all done! */
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
|
|
out:
|
|
/* Save last flags for the callback */
|
|
sc->sc_if_flags = ifp->if_flags;
|
|
sc->sc_ec_capenable = ec->ec_capenable;
|
|
if (error)
|
|
log(LOG_ERR, "%s: interface not running\n",
|
|
device_xname(sc->sc_dev));
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* wm_stop: [ifnet interface function]
|
|
*
|
|
* Stop transmission on the interface.
|
|
*/
|
|
static void
|
|
wm_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
|
|
ASSERT_SLEEPABLE();
|
|
|
|
WM_CORE_LOCK(sc);
|
|
wm_stop_locked(ifp, disable ? true : false, true);
|
|
WM_CORE_UNLOCK(sc);
|
|
|
|
/*
|
|
* After wm_set_stopping_flags(), it is guaranteed
|
|
* wm_handle_queue_work() does not call workqueue_enqueue().
|
|
* However, workqueue_wait() cannot call in wm_stop_locked()
|
|
* because it can sleep...
|
|
* so, call workqueue_wait() here.
|
|
*/
|
|
for (int i = 0; i < sc->sc_nqueues; i++)
|
|
workqueue_wait(sc->sc_queue_wq, &sc->sc_queue[i].wmq_cookie);
|
|
}
|
|
|
|
static void
|
|
wm_stop_locked(struct ifnet *ifp, bool disable, bool wait)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
struct wm_txsoft *txs;
|
|
int i, qidx;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
KASSERT(WM_CORE_LOCKED(sc));
|
|
|
|
wm_set_stopping_flags(sc);
|
|
|
|
if (sc->sc_flags & WM_F_HAS_MII) {
|
|
/* Down the MII. */
|
|
mii_down(&sc->sc_mii);
|
|
} else {
|
|
#if 0
|
|
/* Should we clear PHY's status properly? */
|
|
wm_reset(sc);
|
|
#endif
|
|
}
|
|
|
|
/* Stop the transmit and receive processes. */
|
|
CSR_WRITE(sc, WMREG_TCTL, 0);
|
|
CSR_WRITE(sc, WMREG_RCTL, 0);
|
|
sc->sc_rctl &= ~RCTL_EN;
|
|
|
|
/*
|
|
* Clear the interrupt mask to ensure the device cannot assert its
|
|
* interrupt line.
|
|
* Clear sc->sc_icr to ensure wm_intr_legacy() makes no attempt to
|
|
* service any currently pending or shared interrupt.
|
|
*/
|
|
CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
|
|
sc->sc_icr = 0;
|
|
if (wm_is_using_msix(sc)) {
|
|
if (sc->sc_type != WM_T_82574) {
|
|
CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU);
|
|
CSR_WRITE(sc, WMREG_EIAC, 0);
|
|
} else
|
|
CSR_WRITE(sc, WMREG_EIAC_82574, 0);
|
|
}
|
|
|
|
/*
|
|
* Stop callouts after interrupts are disabled; if we have
|
|
* to wait for them, we will be releasing the CORE_LOCK
|
|
* briefly, which will unblock interrupts on the current CPU.
|
|
*/
|
|
|
|
/* Stop the one second clock. */
|
|
if (wait)
|
|
callout_halt(&sc->sc_tick_ch, sc->sc_core_lock);
|
|
else
|
|
callout_stop(&sc->sc_tick_ch);
|
|
|
|
/* Stop the 82547 Tx FIFO stall check timer. */
|
|
if (sc->sc_type == WM_T_82547) {
|
|
if (wait)
|
|
callout_halt(&sc->sc_txfifo_ch, sc->sc_core_lock);
|
|
else
|
|
callout_stop(&sc->sc_txfifo_ch);
|
|
}
|
|
|
|
/* Release any queued transmit buffers. */
|
|
for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
|
|
struct wm_queue *wmq = &sc->sc_queue[qidx];
|
|
struct wm_txqueue *txq = &wmq->wmq_txq;
|
|
struct mbuf *m;
|
|
|
|
mutex_enter(txq->txq_lock);
|
|
txq->txq_sending = false; /* Ensure watchdog disabled */
|
|
for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
|
|
txs = &txq->txq_soft[i];
|
|
if (txs->txs_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat,txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
}
|
|
/* Drain txq_interq */
|
|
while ((m = pcq_get(txq->txq_interq)) != NULL)
|
|
m_freem(m);
|
|
mutex_exit(txq->txq_lock);
|
|
}
|
|
|
|
/* Mark the interface as down and cancel the watchdog timer. */
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
|
|
if (disable) {
|
|
for (i = 0; i < sc->sc_nqueues; i++) {
|
|
struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
|
|
mutex_enter(rxq->rxq_lock);
|
|
wm_rxdrain(rxq);
|
|
mutex_exit(rxq->rxq_lock);
|
|
}
|
|
}
|
|
|
|
#if 0 /* notyet */
|
|
if (sc->sc_type >= WM_T_82544)
|
|
CSR_WRITE(sc, WMREG_WUC, 0);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
|
|
{
|
|
struct mbuf *m;
|
|
int i;
|
|
|
|
log(LOG_DEBUG, "%s: mbuf chain:\n", device_xname(sc->sc_dev));
|
|
for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
|
|
log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
|
|
"m_flags = 0x%08x\n", device_xname(sc->sc_dev),
|
|
m->m_data, m->m_len, m->m_flags);
|
|
log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", device_xname(sc->sc_dev),
|
|
i, i == 1 ? "" : "s");
|
|
}
|
|
|
|
/*
|
|
* wm_82547_txfifo_stall:
|
|
*
|
|
* Callout used to wait for the 82547 Tx FIFO to drain,
|
|
* reset the FIFO pointers, and restart packet transmission.
|
|
*/
|
|
static void
|
|
wm_82547_txfifo_stall(void *arg)
|
|
{
|
|
struct wm_softc *sc = arg;
|
|
struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
|
|
|
|
mutex_enter(txq->txq_lock);
|
|
|
|
if (txq->txq_stopping)
|
|
goto out;
|
|
|
|
if (txq->txq_fifo_stall) {
|
|
if (CSR_READ(sc, WMREG_TDT(0)) == CSR_READ(sc, WMREG_TDH(0)) &&
|
|
CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
|
|
CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
|
|
/*
|
|
* Packets have drained. Stop transmitter, reset
|
|
* FIFO pointers, restart transmitter, and kick
|
|
* the packet queue.
|
|
*/
|
|
uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
|
|
CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
|
|
CSR_WRITE(sc, WMREG_TDFT, txq->txq_fifo_addr);
|
|
CSR_WRITE(sc, WMREG_TDFH, txq->txq_fifo_addr);
|
|
CSR_WRITE(sc, WMREG_TDFTS, txq->txq_fifo_addr);
|
|
CSR_WRITE(sc, WMREG_TDFHS, txq->txq_fifo_addr);
|
|
CSR_WRITE(sc, WMREG_TCTL, tctl);
|
|
CSR_WRITE_FLUSH(sc);
|
|
|
|
txq->txq_fifo_head = 0;
|
|
txq->txq_fifo_stall = 0;
|
|
wm_start_locked(&sc->sc_ethercom.ec_if);
|
|
} else {
|
|
/*
|
|
* Still waiting for packets to drain; try again in
|
|
* another tick.
|
|
*/
|
|
callout_schedule(&sc->sc_txfifo_ch, 1);
|
|
}
|
|
}
|
|
|
|
out:
|
|
mutex_exit(txq->txq_lock);
|
|
}
|
|
|
|
/*
|
|
* wm_82547_txfifo_bugchk:
|
|
*
|
|
* Check for bug condition in the 82547 Tx FIFO. We need to
|
|
* prevent enqueueing a packet that would wrap around the end
|
|
* if the Tx FIFO ring buffer, otherwise the chip will croak.
|
|
*
|
|
* We do this by checking the amount of space before the end
|
|
* of the Tx FIFO buffer. If the packet will not fit, we "stall"
|
|
* the Tx FIFO, wait for all remaining packets to drain, reset
|
|
* the internal FIFO pointers to the beginning, and restart
|
|
* transmission on the interface.
|
|
*/
|
|
#define WM_FIFO_HDR 0x10
|
|
#define WM_82547_PAD_LEN 0x3e0
|
|
static int
|
|
wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
|
|
{
|
|
struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
|
|
int space = txq->txq_fifo_size - txq->txq_fifo_head;
|
|
int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
|
|
|
|
/* Just return if already stalled. */
|
|
if (txq->txq_fifo_stall)
|
|
return 1;
|
|
|
|
if (sc->sc_mii.mii_media_active & IFM_FDX) {
|
|
/* Stall only occurs in half-duplex mode. */
|
|
goto send_packet;
|
|
}
|
|
|
|
if (len >= WM_82547_PAD_LEN + space) {
|
|
txq->txq_fifo_stall = 1;
|
|
callout_schedule(&sc->sc_txfifo_ch, 1);
|
|
return 1;
|
|
}
|
|
|
|
send_packet:
|
|
txq->txq_fifo_head += len;
|
|
if (txq->txq_fifo_head >= txq->txq_fifo_size)
|
|
txq->txq_fifo_head -= txq->txq_fifo_size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
wm_alloc_tx_descs(struct wm_softc *sc, struct wm_txqueue *txq)
|
|
{
|
|
int error;
|
|
|
|
/*
|
|
* Allocate the control data structures, and create and load the
|
|
* DMA map for it.
|
|
*
|
|
* NOTE: All Tx descriptors must be in the same 4G segment of
|
|
* memory. So must Rx descriptors. We simplify by allocating
|
|
* both sets within the same 4G segment.
|
|
*/
|
|
if (sc->sc_type < WM_T_82544)
|
|
WM_NTXDESC(txq) = WM_NTXDESC_82542;
|
|
else
|
|
WM_NTXDESC(txq) = WM_NTXDESC_82544;
|
|
if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
|
|
txq->txq_descsize = sizeof(nq_txdesc_t);
|
|
else
|
|
txq->txq_descsize = sizeof(wiseman_txdesc_t);
|
|
|
|
if ((error = bus_dmamem_alloc(sc->sc_dmat, WM_TXDESCS_SIZE(txq),
|
|
PAGE_SIZE, (bus_size_t) 0x100000000ULL, &txq->txq_desc_seg,
|
|
1, &txq->txq_desc_rseg, 0)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to allocate TX control data, error = %d\n",
|
|
error);
|
|
goto fail_0;
|
|
}
|
|
|
|
if ((error = bus_dmamem_map(sc->sc_dmat, &txq->txq_desc_seg,
|
|
txq->txq_desc_rseg, WM_TXDESCS_SIZE(txq),
|
|
(void **)&txq->txq_descs_u, BUS_DMA_COHERENT)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to map TX control data, error = %d\n", error);
|
|
goto fail_1;
|
|
}
|
|
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, WM_TXDESCS_SIZE(txq), 1,
|
|
WM_TXDESCS_SIZE(txq), 0, 0, &txq->txq_desc_dmamap)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to create TX control data DMA map, error = %d\n",
|
|
error);
|
|
goto fail_2;
|
|
}
|
|
|
|
if ((error = bus_dmamap_load(sc->sc_dmat, txq->txq_desc_dmamap,
|
|
txq->txq_descs_u, WM_TXDESCS_SIZE(txq), NULL, 0)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to load TX control data DMA map, error = %d\n",
|
|
error);
|
|
goto fail_3;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_3:
|
|
bus_dmamap_destroy(sc->sc_dmat, txq->txq_desc_dmamap);
|
|
fail_2:
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)txq->txq_descs_u,
|
|
WM_TXDESCS_SIZE(txq));
|
|
fail_1:
|
|
bus_dmamem_free(sc->sc_dmat, &txq->txq_desc_seg, txq->txq_desc_rseg);
|
|
fail_0:
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
wm_free_tx_descs(struct wm_softc *sc, struct wm_txqueue *txq)
|
|
{
|
|
|
|
bus_dmamap_unload(sc->sc_dmat, txq->txq_desc_dmamap);
|
|
bus_dmamap_destroy(sc->sc_dmat, txq->txq_desc_dmamap);
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)txq->txq_descs_u,
|
|
WM_TXDESCS_SIZE(txq));
|
|
bus_dmamem_free(sc->sc_dmat, &txq->txq_desc_seg, txq->txq_desc_rseg);
|
|
}
|
|
|
|
static int
|
|
wm_alloc_rx_descs(struct wm_softc *sc, struct wm_rxqueue *rxq)
|
|
{
|
|
int error;
|
|
size_t rxq_descs_size;
|
|
|
|
/*
|
|
* Allocate the control data structures, and create and load the
|
|
* DMA map for it.
|
|
*
|
|
* NOTE: All Tx descriptors must be in the same 4G segment of
|
|
* memory. So must Rx descriptors. We simplify by allocating
|
|
* both sets within the same 4G segment.
|
|
*/
|
|
rxq->rxq_ndesc = WM_NRXDESC;
|
|
if (sc->sc_type == WM_T_82574)
|
|
rxq->rxq_descsize = sizeof(ext_rxdesc_t);
|
|
else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
|
|
rxq->rxq_descsize = sizeof(nq_rxdesc_t);
|
|
else
|
|
rxq->rxq_descsize = sizeof(wiseman_rxdesc_t);
|
|
rxq_descs_size = rxq->rxq_descsize * rxq->rxq_ndesc;
|
|
|
|
if ((error = bus_dmamem_alloc(sc->sc_dmat, rxq_descs_size,
|
|
PAGE_SIZE, (bus_size_t) 0x100000000ULL, &rxq->rxq_desc_seg,
|
|
1, &rxq->rxq_desc_rseg, 0)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to allocate RX control data, error = %d\n",
|
|
error);
|
|
goto fail_0;
|
|
}
|
|
|
|
if ((error = bus_dmamem_map(sc->sc_dmat, &rxq->rxq_desc_seg,
|
|
rxq->rxq_desc_rseg, rxq_descs_size,
|
|
(void **)&rxq->rxq_descs_u, BUS_DMA_COHERENT)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to map RX control data, error = %d\n", error);
|
|
goto fail_1;
|
|
}
|
|
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, rxq_descs_size, 1,
|
|
rxq_descs_size, 0, 0, &rxq->rxq_desc_dmamap)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to create RX control data DMA map, error = %d\n",
|
|
error);
|
|
goto fail_2;
|
|
}
|
|
|
|
if ((error = bus_dmamap_load(sc->sc_dmat, rxq->rxq_desc_dmamap,
|
|
rxq->rxq_descs_u, rxq_descs_size, NULL, 0)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to load RX control data DMA map, error = %d\n",
|
|
error);
|
|
goto fail_3;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_3:
|
|
bus_dmamap_destroy(sc->sc_dmat, rxq->rxq_desc_dmamap);
|
|
fail_2:
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->rxq_descs_u,
|
|
rxq_descs_size);
|
|
fail_1:
|
|
bus_dmamem_free(sc->sc_dmat, &rxq->rxq_desc_seg, rxq->rxq_desc_rseg);
|
|
fail_0:
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
wm_free_rx_descs(struct wm_softc *sc, struct wm_rxqueue *rxq)
|
|
{
|
|
|
|
bus_dmamap_unload(sc->sc_dmat, rxq->rxq_desc_dmamap);
|
|
bus_dmamap_destroy(sc->sc_dmat, rxq->rxq_desc_dmamap);
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->rxq_descs_u,
|
|
rxq->rxq_descsize * rxq->rxq_ndesc);
|
|
bus_dmamem_free(sc->sc_dmat, &rxq->rxq_desc_seg, rxq->rxq_desc_rseg);
|
|
}
|
|
|
|
|
|
static int
|
|
wm_alloc_tx_buffer(struct wm_softc *sc, struct wm_txqueue *txq)
|
|
{
|
|
int i, error;
|
|
|
|
/* Create the transmit buffer DMA maps. */
|
|
WM_TXQUEUELEN(txq) =
|
|
(sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
|
|
WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
|
|
for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
|
|
WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
|
|
&txq->txq_soft[i].txs_dmamap)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to create Tx DMA map %d, error = %d\n",
|
|
i, error);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
|
|
if (txq->txq_soft[i].txs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
txq->txq_soft[i].txs_dmamap);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
wm_free_tx_buffer(struct wm_softc *sc, struct wm_txqueue *txq)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
|
|
if (txq->txq_soft[i].txs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
txq->txq_soft[i].txs_dmamap);
|
|
}
|
|
}
|
|
|
|
static int
|
|
wm_alloc_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq)
|
|
{
|
|
int i, error;
|
|
|
|
/* Create the receive buffer DMA maps. */
|
|
for (i = 0; i < rxq->rxq_ndesc; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
|
|
MCLBYTES, 0, 0,
|
|
&rxq->rxq_soft[i].rxs_dmamap)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to create Rx DMA map %d error = %d\n",
|
|
i, error);
|
|
goto fail;
|
|
}
|
|
rxq->rxq_soft[i].rxs_mbuf = NULL;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
for (i = 0; i < rxq->rxq_ndesc; i++) {
|
|
if (rxq->rxq_soft[i].rxs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
rxq->rxq_soft[i].rxs_dmamap);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
wm_free_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < rxq->rxq_ndesc; i++) {
|
|
if (rxq->rxq_soft[i].rxs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
rxq->rxq_soft[i].rxs_dmamap);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* wm_alloc_quques:
|
|
* Allocate {tx,rx}descs and {tx,rx} buffers
|
|
*/
|
|
static int
|
|
wm_alloc_txrx_queues(struct wm_softc *sc)
|
|
{
|
|
int i, error, tx_done, rx_done;
|
|
|
|
sc->sc_queue = kmem_zalloc(sizeof(struct wm_queue) * sc->sc_nqueues,
|
|
KM_SLEEP);
|
|
if (sc->sc_queue == NULL) {
|
|
aprint_error_dev(sc->sc_dev,"unable to allocate wm_queue\n");
|
|
error = ENOMEM;
|
|
goto fail_0;
|
|
}
|
|
|
|
/* For transmission */
|
|
error = 0;
|
|
tx_done = 0;
|
|
for (i = 0; i < sc->sc_nqueues; i++) {
|
|
#ifdef WM_EVENT_COUNTERS
|
|
int j;
|
|
const char *xname;
|
|
#endif
|
|
struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
|
|
txq->txq_sc = sc;
|
|
txq->txq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
|
|
|
|
error = wm_alloc_tx_descs(sc, txq);
|
|
if (error)
|
|
break;
|
|
error = wm_alloc_tx_buffer(sc, txq);
|
|
if (error) {
|
|
wm_free_tx_descs(sc, txq);
|
|
break;
|
|
}
|
|
txq->txq_interq = pcq_create(WM_TXINTERQSIZE, KM_SLEEP);
|
|
if (txq->txq_interq == NULL) {
|
|
wm_free_tx_descs(sc, txq);
|
|
wm_free_tx_buffer(sc, txq);
|
|
error = ENOMEM;
|
|
break;
|
|
}
|
|
|
|
#ifdef WM_EVENT_COUNTERS
|
|
xname = device_xname(sc->sc_dev);
|
|
|
|
WM_Q_MISC_EVCNT_ATTACH(txq, txsstall, txq, i, xname);
|
|
WM_Q_MISC_EVCNT_ATTACH(txq, txdstall, txq, i, xname);
|
|
WM_Q_MISC_EVCNT_ATTACH(txq, fifo_stall, txq, i, xname);
|
|
WM_Q_INTR_EVCNT_ATTACH(txq, txdw, txq, i, xname);
|
|
WM_Q_INTR_EVCNT_ATTACH(txq, txqe, txq, i, xname);
|
|
WM_Q_MISC_EVCNT_ATTACH(txq, ipsum, txq, i, xname);
|
|
WM_Q_MISC_EVCNT_ATTACH(txq, tusum, txq, i, xname);
|
|
WM_Q_MISC_EVCNT_ATTACH(txq, tusum6, txq, i, xname);
|
|
WM_Q_MISC_EVCNT_ATTACH(txq, tso, txq, i, xname);
|
|
WM_Q_MISC_EVCNT_ATTACH(txq, tso6, txq, i, xname);
|
|
WM_Q_MISC_EVCNT_ATTACH(txq, tsopain, txq, i, xname);
|
|
|
|
for (j = 0; j < WM_NTXSEGS; j++) {
|
|
snprintf(txq->txq_txseg_evcnt_names[j],
|
|
sizeof(txq->txq_txseg_evcnt_names[j]), "txq%02dtxseg%d", i, j);
|
|
evcnt_attach_dynamic(&txq->txq_ev_txseg[j], EVCNT_TYPE_MISC,
|
|
NULL, xname, txq->txq_txseg_evcnt_names[j]);
|
|
}
|
|
|
|
WM_Q_MISC_EVCNT_ATTACH(txq, pcqdrop, txq, i, xname);
|
|
WM_Q_MISC_EVCNT_ATTACH(txq, descdrop, txq, i, xname);
|
|
WM_Q_MISC_EVCNT_ATTACH(txq, toomanyseg, txq, i, xname);
|
|
WM_Q_MISC_EVCNT_ATTACH(txq, defrag, txq, i, xname);
|
|
WM_Q_MISC_EVCNT_ATTACH(txq, underrun, txq, i, xname);
|
|
WM_Q_MISC_EVCNT_ATTACH(txq, skipcontext, txq, i, xname);
|
|
#endif /* WM_EVENT_COUNTERS */
|
|
|
|
tx_done++;
|
|
}
|
|
if (error)
|
|
goto fail_1;
|
|
|
|
/* For receive */
|
|
error = 0;
|
|
rx_done = 0;
|
|
for (i = 0; i < sc->sc_nqueues; i++) {
|
|
#ifdef WM_EVENT_COUNTERS
|
|
const char *xname;
|
|
#endif
|
|
struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
|
|
rxq->rxq_sc = sc;
|
|
rxq->rxq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
|
|
|
|
error = wm_alloc_rx_descs(sc, rxq);
|
|
if (error)
|
|
break;
|
|
|
|
error = wm_alloc_rx_buffer(sc, rxq);
|
|
if (error) {
|
|
wm_free_rx_descs(sc, rxq);
|
|
break;
|
|
}
|
|
|
|
#ifdef WM_EVENT_COUNTERS
|
|
xname = device_xname(sc->sc_dev);
|
|
|
|
WM_Q_INTR_EVCNT_ATTACH(rxq, intr, rxq, i, xname);
|
|
WM_Q_INTR_EVCNT_ATTACH(rxq, defer, rxq, i, xname);
|
|
|
|
WM_Q_MISC_EVCNT_ATTACH(rxq, ipsum, rxq, i, xname);
|
|
WM_Q_MISC_EVCNT_ATTACH(rxq, tusum, rxq, i, xname);
|
|
#endif /* WM_EVENT_COUNTERS */
|
|
|
|
rx_done++;
|
|
}
|
|
if (error)
|
|
goto fail_2;
|
|
|
|
return 0;
|
|
|
|
fail_2:
|
|
for (i = 0; i < rx_done; i++) {
|
|
struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
|
|
wm_free_rx_buffer(sc, rxq);
|
|
wm_free_rx_descs(sc, rxq);
|
|
if (rxq->rxq_lock)
|
|
mutex_obj_free(rxq->rxq_lock);
|
|
}
|
|
fail_1:
|
|
for (i = 0; i < tx_done; i++) {
|
|
struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
|
|
pcq_destroy(txq->txq_interq);
|
|
wm_free_tx_buffer(sc, txq);
|
|
wm_free_tx_descs(sc, txq);
|
|
if (txq->txq_lock)
|
|
mutex_obj_free(txq->txq_lock);
|
|
}
|
|
|
|
kmem_free(sc->sc_queue,
|
|
sizeof(struct wm_queue) * sc->sc_nqueues);
|
|
fail_0:
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* wm_free_quques:
|
|
* Free {tx,rx}descs and {tx,rx} buffers
|
|
*/
|
|
static void
|
|
wm_free_txrx_queues(struct wm_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < sc->sc_nqueues; i++) {
|
|
struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
|
|
|
|
#ifdef WM_EVENT_COUNTERS
|
|
WM_Q_EVCNT_DETACH(rxq, intr, rxq, i);
|
|
WM_Q_EVCNT_DETACH(rxq, defer, rxq, i);
|
|
WM_Q_EVCNT_DETACH(rxq, ipsum, rxq, i);
|
|
WM_Q_EVCNT_DETACH(rxq, tusum, rxq, i);
|
|
#endif /* WM_EVENT_COUNTERS */
|
|
|
|
wm_free_rx_buffer(sc, rxq);
|
|
wm_free_rx_descs(sc, rxq);
|
|
if (rxq->rxq_lock)
|
|
mutex_obj_free(rxq->rxq_lock);
|
|
}
|
|
|
|
for (i = 0; i < sc->sc_nqueues; i++) {
|
|
struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
|
|
struct mbuf *m;
|
|
#ifdef WM_EVENT_COUNTERS
|
|
int j;
|
|
|
|
WM_Q_EVCNT_DETACH(txq, txsstall, txq, i);
|
|
WM_Q_EVCNT_DETACH(txq, txdstall, txq, i);
|
|
WM_Q_EVCNT_DETACH(txq, fifo_stall, txq, i);
|
|
WM_Q_EVCNT_DETACH(txq, txdw, txq, i);
|
|
WM_Q_EVCNT_DETACH(txq, txqe, txq, i);
|
|
WM_Q_EVCNT_DETACH(txq, ipsum, txq, i);
|
|
WM_Q_EVCNT_DETACH(txq, tusum, txq, i);
|
|
WM_Q_EVCNT_DETACH(txq, tusum6, txq, i);
|
|
WM_Q_EVCNT_DETACH(txq, tso, txq, i);
|
|
WM_Q_EVCNT_DETACH(txq, tso6, txq, i);
|
|
WM_Q_EVCNT_DETACH(txq, tsopain, txq, i);
|
|
|
|
for (j = 0; j < WM_NTXSEGS; j++)
|
|
evcnt_detach(&txq->txq_ev_txseg[j]);
|
|
|
|
WM_Q_EVCNT_DETACH(txq, pcqdrop, txq, i);
|
|
WM_Q_EVCNT_DETACH(txq, descdrop, txq, i);
|
|
WM_Q_EVCNT_DETACH(txq, toomanyseg, txq, i);
|
|
WM_Q_EVCNT_DETACH(txq, defrag, txq, i);
|
|
WM_Q_EVCNT_DETACH(txq, underrun, txq, i);
|
|
WM_Q_EVCNT_DETACH(txq, skipcontext, txq, i);
|
|
#endif /* WM_EVENT_COUNTERS */
|
|
|
|
/* Drain txq_interq */
|
|
while ((m = pcq_get(txq->txq_interq)) != NULL)
|
|
m_freem(m);
|
|
pcq_destroy(txq->txq_interq);
|
|
|
|
wm_free_tx_buffer(sc, txq);
|
|
wm_free_tx_descs(sc, txq);
|
|
if (txq->txq_lock)
|
|
mutex_obj_free(txq->txq_lock);
|
|
}
|
|
|
|
kmem_free(sc->sc_queue, sizeof(struct wm_queue) * sc->sc_nqueues);
|
|
}
|
|
|
|
static void
|
|
wm_init_tx_descs(struct wm_softc *sc __unused, struct wm_txqueue *txq)
|
|
{
|
|
|
|
KASSERT(mutex_owned(txq->txq_lock));
|
|
|
|
/* Initialize the transmit descriptor ring. */
|
|
memset(txq->txq_descs, 0, WM_TXDESCS_SIZE(txq));
|
|
wm_cdtxsync(txq, 0, WM_NTXDESC(txq),
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
txq->txq_free = WM_NTXDESC(txq);
|
|
txq->txq_next = 0;
|
|
}
|
|
|
|
static void
|
|
wm_init_tx_regs(struct wm_softc *sc, struct wm_queue *wmq,
|
|
struct wm_txqueue *txq)
|
|
{
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
KASSERT(mutex_owned(txq->txq_lock));
|
|
|
|
if (sc->sc_type < WM_T_82543) {
|
|
CSR_WRITE(sc, WMREG_OLD_TDBAH, WM_CDTXADDR_HI(txq, 0));
|
|
CSR_WRITE(sc, WMREG_OLD_TDBAL, WM_CDTXADDR_LO(txq, 0));
|
|
CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCS_SIZE(txq));
|
|
CSR_WRITE(sc, WMREG_OLD_TDH, 0);
|
|
CSR_WRITE(sc, WMREG_OLD_TDT, 0);
|
|
CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
|
|
} else {
|
|
int qid = wmq->wmq_id;
|
|
|
|
CSR_WRITE(sc, WMREG_TDBAH(qid), WM_CDTXADDR_HI(txq, 0));
|
|
CSR_WRITE(sc, WMREG_TDBAL(qid), WM_CDTXADDR_LO(txq, 0));
|
|
CSR_WRITE(sc, WMREG_TDLEN(qid), WM_TXDESCS_SIZE(txq));
|
|
CSR_WRITE(sc, WMREG_TDH(qid), 0);
|
|
|
|
if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
|
|
/*
|
|
* Don't write TDT before TCTL.EN is set.
|
|
* See the document.
|
|
*/
|
|
CSR_WRITE(sc, WMREG_TXDCTL(qid), TXDCTL_QUEUE_ENABLE
|
|
| TXDCTL_PTHRESH(0) | TXDCTL_HTHRESH(0)
|
|
| TXDCTL_WTHRESH(0));
|
|
else {
|
|
/* XXX should update with AIM? */
|
|
CSR_WRITE(sc, WMREG_TIDV, wmq->wmq_itr / 4);
|
|
if (sc->sc_type >= WM_T_82540) {
|
|
/* Should be the same */
|
|
CSR_WRITE(sc, WMREG_TADV, wmq->wmq_itr / 4);
|
|
}
|
|
|
|
CSR_WRITE(sc, WMREG_TDT(qid), 0);
|
|
CSR_WRITE(sc, WMREG_TXDCTL(qid), TXDCTL_PTHRESH(0) |
|
|
TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
wm_init_tx_buffer(struct wm_softc *sc __unused, struct wm_txqueue *txq)
|
|
{
|
|
int i;
|
|
|
|
KASSERT(mutex_owned(txq->txq_lock));
|
|
|
|
/* Initialize the transmit job descriptors. */
|
|
for (i = 0; i < WM_TXQUEUELEN(txq); i++)
|
|
txq->txq_soft[i].txs_mbuf = NULL;
|
|
txq->txq_sfree = WM_TXQUEUELEN(txq);
|
|
txq->txq_snext = 0;
|
|
txq->txq_sdirty = 0;
|
|
}
|
|
|
|
static void
|
|
wm_init_tx_queue(struct wm_softc *sc, struct wm_queue *wmq,
|
|
struct wm_txqueue *txq)
|
|
{
|
|
|
|
KASSERT(mutex_owned(txq->txq_lock));
|
|
|
|
/*
|
|
* Set up some register offsets that are different between
|
|
* the i82542 and the i82543 and later chips.
|
|
*/
|
|
if (sc->sc_type < WM_T_82543)
|
|
txq->txq_tdt_reg = WMREG_OLD_TDT;
|
|
else
|
|
txq->txq_tdt_reg = WMREG_TDT(wmq->wmq_id);
|
|
|
|
wm_init_tx_descs(sc, txq);
|
|
wm_init_tx_regs(sc, wmq, txq);
|
|
wm_init_tx_buffer(sc, txq);
|
|
|
|
txq->txq_flags = 0; /* Clear WM_TXQ_NO_SPACE */
|
|
txq->txq_sending = false;
|
|
}
|
|
|
|
static void
|
|
wm_init_rx_regs(struct wm_softc *sc, struct wm_queue *wmq,
|
|
struct wm_rxqueue *rxq)
|
|
{
|
|
|
|
KASSERT(mutex_owned(rxq->rxq_lock));
|
|
|
|
/*
|
|
* Initialize the receive descriptor and receive job
|
|
* descriptor rings.
|
|
*/
|
|
if (sc->sc_type < WM_T_82543) {
|
|
CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(rxq, 0));
|
|
CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(rxq, 0));
|
|
CSR_WRITE(sc, WMREG_OLD_RDLEN0,
|
|
rxq->rxq_descsize * rxq->rxq_ndesc);
|
|
CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
|
|
CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
|
|
CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
|
|
|
|
CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
|
|
CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
|
|
CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
|
|
CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
|
|
CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
|
|
CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
|
|
} else {
|
|
int qid = wmq->wmq_id;
|
|
|
|
CSR_WRITE(sc, WMREG_RDBAH(qid), WM_CDRXADDR_HI(rxq, 0));
|
|
CSR_WRITE(sc, WMREG_RDBAL(qid), WM_CDRXADDR_LO(rxq, 0));
|
|
CSR_WRITE(sc, WMREG_RDLEN(qid),
|
|
rxq->rxq_descsize * rxq->rxq_ndesc);
|
|
|
|
if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
|
|
if (MCLBYTES & ((1 << SRRCTL_BSIZEPKT_SHIFT) - 1))
|
|
panic("%s: MCLBYTES %d unsupported for 82575 or higher\n", __func__, MCLBYTES);
|
|
|
|
/* Currently, support SRRCTL_DESCTYPE_ADV_ONEBUF only. */
|
|
CSR_WRITE(sc, WMREG_SRRCTL(qid), SRRCTL_DESCTYPE_ADV_ONEBUF
|
|
| (MCLBYTES >> SRRCTL_BSIZEPKT_SHIFT));
|
|
CSR_WRITE(sc, WMREG_RXDCTL(qid), RXDCTL_QUEUE_ENABLE
|
|
| RXDCTL_PTHRESH(16) | RXDCTL_HTHRESH(8)
|
|
| RXDCTL_WTHRESH(1));
|
|
CSR_WRITE(sc, WMREG_RDH(qid), 0);
|
|
CSR_WRITE(sc, WMREG_RDT(qid), 0);
|
|
} else {
|
|
CSR_WRITE(sc, WMREG_RDH(qid), 0);
|
|
CSR_WRITE(sc, WMREG_RDT(qid), 0);
|
|
/* XXX should update with AIM? */
|
|
CSR_WRITE(sc, WMREG_RDTR,
|
|
(wmq->wmq_itr / 4) | RDTR_FPD);
|
|
/* MUST be same */
|
|
CSR_WRITE(sc, WMREG_RADV, wmq->wmq_itr / 4);
|
|
CSR_WRITE(sc, WMREG_RXDCTL(qid), RXDCTL_PTHRESH(0) |
|
|
RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
wm_init_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq)
|
|
{
|
|
struct wm_rxsoft *rxs;
|
|
int error, i;
|
|
|
|
KASSERT(mutex_owned(rxq->rxq_lock));
|
|
|
|
for (i = 0; i < rxq->rxq_ndesc; i++) {
|
|
rxs = &rxq->rxq_soft[i];
|
|
if (rxs->rxs_mbuf == NULL) {
|
|
if ((error = wm_add_rxbuf(rxq, i)) != 0) {
|
|
log(LOG_ERR, "%s: unable to allocate or map "
|
|
"rx buffer %d, error = %d\n",
|
|
device_xname(sc->sc_dev), i, error);
|
|
/*
|
|
* XXX Should attempt to run with fewer receive
|
|
* XXX buffers instead of just failing.
|
|
*/
|
|
wm_rxdrain(rxq);
|
|
return ENOMEM;
|
|
}
|
|
} else {
|
|
/*
|
|
* For 82575 and 82576, the RX descriptors must be
|
|
* initialized after the setting of RCTL.EN in
|
|
* wm_set_filter()
|
|
*/
|
|
if ((sc->sc_flags & WM_F_NEWQUEUE) == 0)
|
|
wm_init_rxdesc(rxq, i);
|
|
}
|
|
}
|
|
rxq->rxq_ptr = 0;
|
|
rxq->rxq_discard = 0;
|
|
WM_RXCHAIN_RESET(rxq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
wm_init_rx_queue(struct wm_softc *sc, struct wm_queue *wmq,
|
|
struct wm_rxqueue *rxq)
|
|
{
|
|
|
|
KASSERT(mutex_owned(rxq->rxq_lock));
|
|
|
|
/*
|
|
* Set up some register offsets that are different between
|
|
* the i82542 and the i82543 and later chips.
|
|
*/
|
|
if (sc->sc_type < WM_T_82543)
|
|
rxq->rxq_rdt_reg = WMREG_OLD_RDT0;
|
|
else
|
|
rxq->rxq_rdt_reg = WMREG_RDT(wmq->wmq_id);
|
|
|
|
wm_init_rx_regs(sc, wmq, rxq);
|
|
return wm_init_rx_buffer(sc, rxq);
|
|
}
|
|
|
|
/*
|
|
* wm_init_quques:
|
|
* Initialize {tx,rx}descs and {tx,rx} buffers
|
|
*/
|
|
static int
|
|
wm_init_txrx_queues(struct wm_softc *sc)
|
|
{
|
|
int i, error = 0;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
for (i = 0; i < sc->sc_nqueues; i++) {
|
|
struct wm_queue *wmq = &sc->sc_queue[i];
|
|
struct wm_txqueue *txq = &wmq->wmq_txq;
|
|
struct wm_rxqueue *rxq = &wmq->wmq_rxq;
|
|
|
|
/*
|
|
* TODO
|
|
* Currently, use constant variable instead of AIM.
|
|
* Furthermore, the interrupt interval of multiqueue which use
|
|
* polling mode is less than default value.
|
|
* More tuning and AIM are required.
|
|
*/
|
|
if (wm_is_using_multiqueue(sc))
|
|
wmq->wmq_itr = 50;
|
|
else
|
|
wmq->wmq_itr = sc->sc_itr_init;
|
|
wmq->wmq_set_itr = true;
|
|
|
|
mutex_enter(txq->txq_lock);
|
|
wm_init_tx_queue(sc, wmq, txq);
|
|
mutex_exit(txq->txq_lock);
|
|
|
|
mutex_enter(rxq->rxq_lock);
|
|
error = wm_init_rx_queue(sc, wmq, rxq);
|
|
mutex_exit(rxq->rxq_lock);
|
|
if (error)
|
|
break;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* wm_tx_offload:
|
|
*
|
|
* Set up TCP/IP checksumming parameters for the
|
|
* specified packet.
|
|
*/
|
|
static void
|
|
wm_tx_offload(struct wm_softc *sc, struct wm_txqueue *txq,
|
|
struct wm_txsoft *txs, uint32_t *cmdp, uint8_t *fieldsp)
|
|
{
|
|
struct mbuf *m0 = txs->txs_mbuf;
|
|
struct livengood_tcpip_ctxdesc *t;
|
|
uint32_t ipcs, tucs, cmd, cmdlen, seg;
|
|
uint32_t ipcse;
|
|
struct ether_header *eh;
|
|
int offset, iphl;
|
|
uint8_t fields;
|
|
|
|
/*
|
|
* XXX It would be nice if the mbuf pkthdr had offset
|
|
* fields for the protocol headers.
|
|
*/
|
|
|
|
eh = mtod(m0, struct ether_header *);
|
|
switch (htons(eh->ether_type)) {
|
|
case ETHERTYPE_IP:
|
|
case ETHERTYPE_IPV6:
|
|
offset = ETHER_HDR_LEN;
|
|
break;
|
|
|
|
case ETHERTYPE_VLAN:
|
|
offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
break;
|
|
|
|
default:
|
|
/* Don't support this protocol or encapsulation. */
|
|
txq->txq_last_hw_cmd = txq->txq_last_hw_fields = 0;
|
|
txq->txq_last_hw_ipcs = 0;
|
|
txq->txq_last_hw_tucs = 0;
|
|
*fieldsp = 0;
|
|
*cmdp = 0;
|
|
return;
|
|
}
|
|
|
|
if ((m0->m_pkthdr.csum_flags &
|
|
(M_CSUM_TSOv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_IPv4)) != 0) {
|
|
iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
|
|
} else
|
|
iphl = M_CSUM_DATA_IPv6_IPHL(m0->m_pkthdr.csum_data);
|
|
|
|
ipcse = offset + iphl - 1;
|
|
|
|
cmd = WTX_CMD_DEXT | WTX_DTYP_D;
|
|
cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
|
|
seg = 0;
|
|
fields = 0;
|
|
|
|
if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
|
|
int hlen = offset + iphl;
|
|
bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
|
|
|
|
if (__predict_false(m0->m_len <
|
|
(hlen + sizeof(struct tcphdr)))) {
|
|
/*
|
|
* TCP/IP headers are not in the first mbuf; we need
|
|
* to do this the slow and painful way. Let's just
|
|
* hope this doesn't happen very often.
|
|
*/
|
|
struct tcphdr th;
|
|
|
|
WM_Q_EVCNT_INCR(txq, tsopain);
|
|
|
|
m_copydata(m0, hlen, sizeof(th), &th);
|
|
if (v4) {
|
|
struct ip ip;
|
|
|
|
m_copydata(m0, offset, sizeof(ip), &ip);
|
|
ip.ip_len = 0;
|
|
m_copyback(m0,
|
|
offset + offsetof(struct ip, ip_len),
|
|
sizeof(ip.ip_len), &ip.ip_len);
|
|
th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
|
|
ip.ip_dst.s_addr, htons(IPPROTO_TCP));
|
|
} else {
|
|
struct ip6_hdr ip6;
|
|
|
|
m_copydata(m0, offset, sizeof(ip6), &ip6);
|
|
ip6.ip6_plen = 0;
|
|
m_copyback(m0,
|
|
offset + offsetof(struct ip6_hdr, ip6_plen),
|
|
sizeof(ip6.ip6_plen), &ip6.ip6_plen);
|
|
th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
|
|
&ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
|
|
}
|
|
m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
|
|
sizeof(th.th_sum), &th.th_sum);
|
|
|
|
hlen += th.th_off << 2;
|
|
} else {
|
|
/*
|
|
* TCP/IP headers are in the first mbuf; we can do
|
|
* this the easy way.
|
|
*/
|
|
struct tcphdr *th;
|
|
|
|
if (v4) {
|
|
struct ip *ip =
|
|
(void *)(mtod(m0, char *) + offset);
|
|
th = (void *)(mtod(m0, char *) + hlen);
|
|
|
|
ip->ip_len = 0;
|
|
th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
|
|
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
|
|
} else {
|
|
struct ip6_hdr *ip6 =
|
|
(void *)(mtod(m0, char *) + offset);
|
|
th = (void *)(mtod(m0, char *) + hlen);
|
|
|
|
ip6->ip6_plen = 0;
|
|
th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
|
|
&ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
|
|
}
|
|
hlen += th->th_off << 2;
|
|
}
|
|
|
|
if (v4) {
|
|
WM_Q_EVCNT_INCR(txq, tso);
|
|
cmdlen |= WTX_TCPIP_CMD_IP;
|
|
} else {
|
|
WM_Q_EVCNT_INCR(txq, tso6);
|
|
ipcse = 0;
|
|
}
|
|
cmd |= WTX_TCPIP_CMD_TSE;
|
|
cmdlen |= WTX_TCPIP_CMD_TSE |
|
|
WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
|
|
seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
|
|
WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
|
|
}
|
|
|
|
/*
|
|
* NOTE: Even if we're not using the IP or TCP/UDP checksum
|
|
* offload feature, if we load the context descriptor, we
|
|
* MUST provide valid values for IPCSS and TUCSS fields.
|
|
*/
|
|
|
|
ipcs = WTX_TCPIP_IPCSS(offset) |
|
|
WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
|
|
WTX_TCPIP_IPCSE(ipcse);
|
|
if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4 | M_CSUM_TSOv4)) {
|
|
WM_Q_EVCNT_INCR(txq, ipsum);
|
|
fields |= WTX_IXSM;
|
|
}
|
|
|
|
offset += iphl;
|
|
|
|
if (m0->m_pkthdr.csum_flags &
|
|
(M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TSOv4)) {
|
|
WM_Q_EVCNT_INCR(txq, tusum);
|
|
fields |= WTX_TXSM;
|
|
tucs = WTX_TCPIP_TUCSS(offset) |
|
|
WTX_TCPIP_TUCSO(offset +
|
|
M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
|
|
WTX_TCPIP_TUCSE(0) /* Rest of packet */;
|
|
} else if ((m0->m_pkthdr.csum_flags &
|
|
(M_CSUM_TCPv6 | M_CSUM_UDPv6 | M_CSUM_TSOv6)) != 0) {
|
|
WM_Q_EVCNT_INCR(txq, tusum6);
|
|
fields |= WTX_TXSM;
|
|
tucs = WTX_TCPIP_TUCSS(offset) |
|
|
WTX_TCPIP_TUCSO(offset +
|
|
M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
|
|
WTX_TCPIP_TUCSE(0) /* Rest of packet */;
|
|
} else {
|
|
/* Just initialize it to a valid TCP context. */
|
|
tucs = WTX_TCPIP_TUCSS(offset) |
|
|
WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
|
|
WTX_TCPIP_TUCSE(0) /* Rest of packet */;
|
|
}
|
|
|
|
*cmdp = cmd;
|
|
*fieldsp = fields;
|
|
|
|
/*
|
|
* We don't have to write context descriptor for every packet
|
|
* except for 82574. For 82574, we must write context descriptor
|
|
* for every packet when we use two descriptor queues.
|
|
*
|
|
* The 82574L can only remember the *last* context used
|
|
* regardless of queue that it was use for. We cannot reuse
|
|
* contexts on this hardware platform and must generate a new
|
|
* context every time. 82574L hardware spec, section 7.2.6,
|
|
* second note.
|
|
*/
|
|
if (sc->sc_nqueues < 2) {
|
|
/*
|
|
* Setting up new checksum offload context for every
|
|
* frames takes a lot of processing time for hardware.
|
|
* This also reduces performance a lot for small sized
|
|
* frames so avoid it if driver can use previously
|
|
* configured checksum offload context.
|
|
* For TSO, in theory we can use the same TSO context only if
|
|
* frame is the same type(IP/TCP) and the same MSS. However
|
|
* checking whether a frame has the same IP/TCP structure is
|
|
* hard thing so just ignore that and always restablish a
|
|
* new TSO context.
|
|
*/
|
|
if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6))
|
|
== 0) {
|
|
if (txq->txq_last_hw_cmd == cmd &&
|
|
txq->txq_last_hw_fields == fields &&
|
|
txq->txq_last_hw_ipcs == (ipcs & 0xffff) &&
|
|
txq->txq_last_hw_tucs == (tucs & 0xffff)) {
|
|
WM_Q_EVCNT_INCR(txq, skipcontext);
|
|
return;
|
|
}
|
|
}
|
|
|
|
txq->txq_last_hw_cmd = cmd;
|
|
txq->txq_last_hw_fields = fields;
|
|
txq->txq_last_hw_ipcs = (ipcs & 0xffff);
|
|
txq->txq_last_hw_tucs = (tucs & 0xffff);
|
|
}
|
|
|
|
/* Fill in the context descriptor. */
|
|
t = (struct livengood_tcpip_ctxdesc *)
|
|
&txq->txq_descs[txq->txq_next];
|
|
t->tcpip_ipcs = htole32(ipcs);
|
|
t->tcpip_tucs = htole32(tucs);
|
|
t->tcpip_cmdlen = htole32(cmdlen);
|
|
t->tcpip_seg = htole32(seg);
|
|
wm_cdtxsync(txq, txq->txq_next, 1, BUS_DMASYNC_PREWRITE);
|
|
|
|
txq->txq_next = WM_NEXTTX(txq, txq->txq_next);
|
|
txs->txs_ndesc++;
|
|
}
|
|
|
|
static inline int
|
|
wm_select_txqueue(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
u_int cpuid = cpu_index(curcpu());
|
|
|
|
/*
|
|
* Currently, simple distribute strategy.
|
|
* TODO:
|
|
* distribute by flowid(RSS has value).
|
|
*/
|
|
return ((cpuid + ncpu - sc->sc_affinity_offset) % ncpu) % sc->sc_nqueues;
|
|
}
|
|
|
|
static inline bool
|
|
wm_linkdown_discard(struct wm_txqueue *txq)
|
|
{
|
|
|
|
if ((txq->txq_flags & WM_TXQ_LINKDOWN_DISCARD) != 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* wm_start: [ifnet interface function]
|
|
*
|
|
* Start packet transmission on the interface.
|
|
*/
|
|
static void
|
|
wm_start(struct ifnet *ifp)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
|
|
|
|
#ifdef WM_MPSAFE
|
|
KASSERT(if_is_mpsafe(ifp));
|
|
#endif
|
|
/*
|
|
* if_obytes and if_omcasts are added in if_transmit()@if.c.
|
|
*/
|
|
|
|
mutex_enter(txq->txq_lock);
|
|
if (!txq->txq_stopping)
|
|
wm_start_locked(ifp);
|
|
mutex_exit(txq->txq_lock);
|
|
}
|
|
|
|
static void
|
|
wm_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
|
|
|
|
wm_send_common_locked(ifp, txq, false);
|
|
}
|
|
|
|
static int
|
|
wm_transmit(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
int qid;
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
struct wm_txqueue *txq;
|
|
|
|
qid = wm_select_txqueue(ifp, m);
|
|
txq = &sc->sc_queue[qid].wmq_txq;
|
|
|
|
if (__predict_false(!pcq_put(txq->txq_interq, m))) {
|
|
m_freem(m);
|
|
WM_Q_EVCNT_INCR(txq, pcqdrop);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
|
|
if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
|
|
if (m->m_flags & M_MCAST)
|
|
if_statinc_ref(nsr, if_omcasts);
|
|
IF_STAT_PUTREF(ifp);
|
|
|
|
if (mutex_tryenter(txq->txq_lock)) {
|
|
if (!txq->txq_stopping)
|
|
wm_transmit_locked(ifp, txq);
|
|
mutex_exit(txq->txq_lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
wm_transmit_locked(struct ifnet *ifp, struct wm_txqueue *txq)
|
|
{
|
|
|
|
wm_send_common_locked(ifp, txq, true);
|
|
}
|
|
|
|
static void
|
|
wm_send_common_locked(struct ifnet *ifp, struct wm_txqueue *txq,
|
|
bool is_transmit)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
struct mbuf *m0;
|
|
struct wm_txsoft *txs;
|
|
bus_dmamap_t dmamap;
|
|
int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
|
|
bus_addr_t curaddr;
|
|
bus_size_t seglen, curlen;
|
|
uint32_t cksumcmd;
|
|
uint8_t cksumfields;
|
|
bool remap = true;
|
|
|
|
KASSERT(mutex_owned(txq->txq_lock));
|
|
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0)
|
|
return;
|
|
if ((txq->txq_flags & WM_TXQ_NO_SPACE) != 0)
|
|
return;
|
|
|
|
if (__predict_false(wm_linkdown_discard(txq))) {
|
|
do {
|
|
if (is_transmit)
|
|
m0 = pcq_get(txq->txq_interq);
|
|
else
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
/*
|
|
* increment successed packet counter as in the case
|
|
* which the packet is discarded by link down PHY.
|
|
*/
|
|
if (m0 != NULL)
|
|
if_statinc(ifp, if_opackets);
|
|
m_freem(m0);
|
|
} while (m0 != NULL);
|
|
return;
|
|
}
|
|
|
|
/* Remember the previous number of free descriptors. */
|
|
ofree = txq->txq_free;
|
|
|
|
/*
|
|
* Loop through the send queue, setting up transmit descriptors
|
|
* until we drain the queue, or use up all available transmit
|
|
* descriptors.
|
|
*/
|
|
for (;;) {
|
|
m0 = NULL;
|
|
|
|
/* Get a work queue entry. */
|
|
if (txq->txq_sfree < WM_TXQUEUE_GC(txq)) {
|
|
wm_txeof(txq, UINT_MAX);
|
|
if (txq->txq_sfree == 0) {
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: no free job descriptors\n",
|
|
device_xname(sc->sc_dev)));
|
|
WM_Q_EVCNT_INCR(txq, txsstall);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Grab a packet off the queue. */
|
|
if (is_transmit)
|
|
m0 = pcq_get(txq->txq_interq);
|
|
else
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: have packet to transmit: %p\n",
|
|
device_xname(sc->sc_dev), m0));
|
|
|
|
txs = &txq->txq_soft[txq->txq_snext];
|
|
dmamap = txs->txs_dmamap;
|
|
|
|
use_tso = (m0->m_pkthdr.csum_flags &
|
|
(M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
|
|
|
|
/*
|
|
* So says the Linux driver:
|
|
* The controller does a simple calculation to make sure
|
|
* there is enough room in the FIFO before initiating the
|
|
* DMA for each buffer. The calc is:
|
|
* 4 = ceil(buffer len / MSS)
|
|
* To make sure we don't overrun the FIFO, adjust the max
|
|
* buffer len if the MSS drops.
|
|
*/
|
|
dmamap->dm_maxsegsz =
|
|
(use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
|
|
? m0->m_pkthdr.segsz << 2
|
|
: WTX_MAX_LEN;
|
|
|
|
/*
|
|
* Load the DMA map. If this fails, the packet either
|
|
* didn't fit in the allotted number of segments, or we
|
|
* were short on resources. For the too-many-segments
|
|
* case, we simply report an error and drop the packet,
|
|
* since we can't sanely copy a jumbo packet to a single
|
|
* buffer.
|
|
*/
|
|
retry:
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
|
|
BUS_DMA_WRITE | BUS_DMA_NOWAIT);
|
|
if (__predict_false(error)) {
|
|
if (error == EFBIG) {
|
|
if (remap == true) {
|
|
struct mbuf *m;
|
|
|
|
remap = false;
|
|
m = m_defrag(m0, M_NOWAIT);
|
|
if (m != NULL) {
|
|
WM_Q_EVCNT_INCR(txq, defrag);
|
|
m0 = m;
|
|
goto retry;
|
|
}
|
|
}
|
|
WM_Q_EVCNT_INCR(txq, toomanyseg);
|
|
log(LOG_ERR, "%s: Tx packet consumes too many "
|
|
"DMA segments, dropping...\n",
|
|
device_xname(sc->sc_dev));
|
|
wm_dump_mbuf_chain(sc, m0);
|
|
m_freem(m0);
|
|
continue;
|
|
}
|
|
/* Short on resources, just stop for now. */
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: dmamap load failed: %d\n",
|
|
device_xname(sc->sc_dev), error));
|
|
break;
|
|
}
|
|
|
|
segs_needed = dmamap->dm_nsegs;
|
|
if (use_tso) {
|
|
/* For sentinel descriptor; see below. */
|
|
segs_needed++;
|
|
}
|
|
|
|
/*
|
|
* Ensure we have enough descriptors free to describe
|
|
* the packet. Note, we always reserve one descriptor
|
|
* at the end of the ring due to the semantics of the
|
|
* TDT register, plus one more in the event we need
|
|
* to load offload context.
|
|
*/
|
|
if (segs_needed > txq->txq_free - 2) {
|
|
/*
|
|
* Not enough free descriptors to transmit this
|
|
* packet. We haven't committed anything yet,
|
|
* so just unload the DMA map, put the packet
|
|
* pack on the queue, and punt. Notify the upper
|
|
* layer that there are no more slots left.
|
|
*/
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: need %d (%d) descriptors, have %d\n",
|
|
device_xname(sc->sc_dev), dmamap->dm_nsegs,
|
|
segs_needed, txq->txq_free - 1));
|
|
txq->txq_flags |= WM_TXQ_NO_SPACE;
|
|
bus_dmamap_unload(sc->sc_dmat, dmamap);
|
|
WM_Q_EVCNT_INCR(txq, txdstall);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Check for 82547 Tx FIFO bug. We need to do this
|
|
* once we know we can transmit the packet, since we
|
|
* do some internal FIFO space accounting here.
|
|
*/
|
|
if (sc->sc_type == WM_T_82547 &&
|
|
wm_82547_txfifo_bugchk(sc, m0)) {
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: 82547 Tx FIFO bug detected\n",
|
|
device_xname(sc->sc_dev)));
|
|
txq->txq_flags |= WM_TXQ_NO_SPACE;
|
|
bus_dmamap_unload(sc->sc_dmat, dmamap);
|
|
WM_Q_EVCNT_INCR(txq, fifo_stall);
|
|
break;
|
|
}
|
|
|
|
/* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */
|
|
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: packet has %d (%d) DMA segments\n",
|
|
device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
|
|
|
|
WM_EVCNT_INCR(&txq->txq_ev_txseg[dmamap->dm_nsegs - 1]);
|
|
|
|
/*
|
|
* Store a pointer to the packet so that we can free it
|
|
* later.
|
|
*
|
|
* Initially, we consider the number of descriptors the
|
|
* packet uses the number of DMA segments. This may be
|
|
* incremented by 1 if we do checksum offload (a descriptor
|
|
* is used to set the checksum context).
|
|
*/
|
|
txs->txs_mbuf = m0;
|
|
txs->txs_firstdesc = txq->txq_next;
|
|
txs->txs_ndesc = segs_needed;
|
|
|
|
/* Set up offload parameters for this packet. */
|
|
if (m0->m_pkthdr.csum_flags &
|
|
(M_CSUM_TSOv4 | M_CSUM_TSOv6 |
|
|
M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4 |
|
|
M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
|
|
wm_tx_offload(sc, txq, txs, &cksumcmd, &cksumfields);
|
|
} else {
|
|
txq->txq_last_hw_cmd = txq->txq_last_hw_fields = 0;
|
|
txq->txq_last_hw_ipcs = txq->txq_last_hw_tucs = 0;
|
|
cksumcmd = 0;
|
|
cksumfields = 0;
|
|
}
|
|
|
|
cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
|
|
|
|
/* Sync the DMA map. */
|
|
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Initialize the transmit descriptor. */
|
|
for (nexttx = txq->txq_next, seg = 0;
|
|
seg < dmamap->dm_nsegs; seg++) {
|
|
for (seglen = dmamap->dm_segs[seg].ds_len,
|
|
curaddr = dmamap->dm_segs[seg].ds_addr;
|
|
seglen != 0;
|
|
curaddr += curlen, seglen -= curlen,
|
|
nexttx = WM_NEXTTX(txq, nexttx)) {
|
|
curlen = seglen;
|
|
|
|
/*
|
|
* So says the Linux driver:
|
|
* Work around for premature descriptor
|
|
* write-backs in TSO mode. Append a
|
|
* 4-byte sentinel descriptor.
|
|
*/
|
|
if (use_tso && seg == dmamap->dm_nsegs - 1 &&
|
|
curlen > 8)
|
|
curlen -= 4;
|
|
|
|
wm_set_dma_addr(
|
|
&txq->txq_descs[nexttx].wtx_addr, curaddr);
|
|
txq->txq_descs[nexttx].wtx_cmdlen
|
|
= htole32(cksumcmd | curlen);
|
|
txq->txq_descs[nexttx].wtx_fields.wtxu_status
|
|
= 0;
|
|
txq->txq_descs[nexttx].wtx_fields.wtxu_options
|
|
= cksumfields;
|
|
txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =0;
|
|
lasttx = nexttx;
|
|
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: desc %d: low %#" PRIx64 ", "
|
|
"len %#04zx\n",
|
|
device_xname(sc->sc_dev), nexttx,
|
|
(uint64_t)curaddr, curlen));
|
|
}
|
|
}
|
|
|
|
KASSERT(lasttx != -1);
|
|
|
|
/*
|
|
* Set up the command byte on the last descriptor of
|
|
* the packet. If we're in the interrupt delay window,
|
|
* delay the interrupt.
|
|
*/
|
|
txq->txq_descs[lasttx].wtx_cmdlen |=
|
|
htole32(WTX_CMD_EOP | WTX_CMD_RS);
|
|
|
|
/*
|
|
* If VLANs are enabled and the packet has a VLAN tag, set
|
|
* up the descriptor to encapsulate the packet for us.
|
|
*
|
|
* This is only valid on the last descriptor of the packet.
|
|
*/
|
|
if (vlan_has_tag(m0)) {
|
|
txq->txq_descs[lasttx].wtx_cmdlen |=
|
|
htole32(WTX_CMD_VLE);
|
|
txq->txq_descs[lasttx].wtx_fields.wtxu_vlan
|
|
= htole16(vlan_get_tag(m0));
|
|
}
|
|
|
|
txs->txs_lastdesc = lasttx;
|
|
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: desc %d: cmdlen 0x%08x\n",
|
|
device_xname(sc->sc_dev),
|
|
lasttx, le32toh(txq->txq_descs[lasttx].wtx_cmdlen)));
|
|
|
|
/* Sync the descriptors we're using. */
|
|
wm_cdtxsync(txq, txq->txq_next, txs->txs_ndesc,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Give the packet to the chip. */
|
|
CSR_WRITE(sc, txq->txq_tdt_reg, nexttx);
|
|
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
|
|
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: finished transmitting packet, job %d\n",
|
|
device_xname(sc->sc_dev), txq->txq_snext));
|
|
|
|
/* Advance the tx pointer. */
|
|
txq->txq_free -= txs->txs_ndesc;
|
|
txq->txq_next = nexttx;
|
|
|
|
txq->txq_sfree--;
|
|
txq->txq_snext = WM_NEXTTXS(txq, txq->txq_snext);
|
|
|
|
/* Pass the packet to any BPF listeners. */
|
|
bpf_mtap(ifp, m0, BPF_D_OUT);
|
|
}
|
|
|
|
if (m0 != NULL) {
|
|
txq->txq_flags |= WM_TXQ_NO_SPACE;
|
|
WM_Q_EVCNT_INCR(txq, descdrop);
|
|
DPRINTF(sc, WM_DEBUG_TX, ("%s: TX: error after IFQ_DEQUEUE\n",
|
|
__func__));
|
|
m_freem(m0);
|
|
}
|
|
|
|
if (txq->txq_sfree == 0 || txq->txq_free <= 2) {
|
|
/* No more slots; notify upper layer. */
|
|
txq->txq_flags |= WM_TXQ_NO_SPACE;
|
|
}
|
|
|
|
if (txq->txq_free != ofree) {
|
|
/* Set a watchdog timer in case the chip flakes out. */
|
|
txq->txq_lastsent = time_uptime;
|
|
txq->txq_sending = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* wm_nq_tx_offload:
|
|
*
|
|
* Set up TCP/IP checksumming parameters for the
|
|
* specified packet, for NEWQUEUE devices
|
|
*/
|
|
static void
|
|
wm_nq_tx_offload(struct wm_softc *sc, struct wm_txqueue *txq,
|
|
struct wm_txsoft *txs, uint32_t *cmdlenp, uint32_t *fieldsp, bool *do_csum)
|
|
{
|
|
struct mbuf *m0 = txs->txs_mbuf;
|
|
uint32_t vl_len, mssidx, cmdc;
|
|
struct ether_header *eh;
|
|
int offset, iphl;
|
|
|
|
/*
|
|
* XXX It would be nice if the mbuf pkthdr had offset
|
|
* fields for the protocol headers.
|
|
*/
|
|
*cmdlenp = 0;
|
|
*fieldsp = 0;
|
|
|
|
eh = mtod(m0, struct ether_header *);
|
|
switch (htons(eh->ether_type)) {
|
|
case ETHERTYPE_IP:
|
|
case ETHERTYPE_IPV6:
|
|
offset = ETHER_HDR_LEN;
|
|
break;
|
|
|
|
case ETHERTYPE_VLAN:
|
|
offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
break;
|
|
|
|
default:
|
|
/* Don't support this protocol or encapsulation. */
|
|
*do_csum = false;
|
|
return;
|
|
}
|
|
*do_csum = true;
|
|
*cmdlenp = NQTX_DTYP_D | NQTX_CMD_DEXT | NQTX_CMD_IFCS;
|
|
cmdc = NQTX_DTYP_C | NQTX_CMD_DEXT;
|
|
|
|
vl_len = (offset << NQTXC_VLLEN_MACLEN_SHIFT);
|
|
KASSERT((offset & ~NQTXC_VLLEN_MACLEN_MASK) == 0);
|
|
|
|
if ((m0->m_pkthdr.csum_flags &
|
|
(M_CSUM_TSOv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_IPv4)) != 0) {
|
|
iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
|
|
} else {
|
|
iphl = M_CSUM_DATA_IPv6_IPHL(m0->m_pkthdr.csum_data);
|
|
}
|
|
vl_len |= (iphl << NQTXC_VLLEN_IPLEN_SHIFT);
|
|
KASSERT((iphl & ~NQTXC_VLLEN_IPLEN_MASK) == 0);
|
|
|
|
if (vlan_has_tag(m0)) {
|
|
vl_len |= ((vlan_get_tag(m0) & NQTXC_VLLEN_VLAN_MASK)
|
|
<< NQTXC_VLLEN_VLAN_SHIFT);
|
|
*cmdlenp |= NQTX_CMD_VLE;
|
|
}
|
|
|
|
mssidx = 0;
|
|
|
|
if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
|
|
int hlen = offset + iphl;
|
|
int tcp_hlen;
|
|
bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
|
|
|
|
if (__predict_false(m0->m_len <
|
|
(hlen + sizeof(struct tcphdr)))) {
|
|
/*
|
|
* TCP/IP headers are not in the first mbuf; we need
|
|
* to do this the slow and painful way. Let's just
|
|
* hope this doesn't happen very often.
|
|
*/
|
|
struct tcphdr th;
|
|
|
|
WM_Q_EVCNT_INCR(txq, tsopain);
|
|
|
|
m_copydata(m0, hlen, sizeof(th), &th);
|
|
if (v4) {
|
|
struct ip ip;
|
|
|
|
m_copydata(m0, offset, sizeof(ip), &ip);
|
|
ip.ip_len = 0;
|
|
m_copyback(m0,
|
|
offset + offsetof(struct ip, ip_len),
|
|
sizeof(ip.ip_len), &ip.ip_len);
|
|
th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
|
|
ip.ip_dst.s_addr, htons(IPPROTO_TCP));
|
|
} else {
|
|
struct ip6_hdr ip6;
|
|
|
|
m_copydata(m0, offset, sizeof(ip6), &ip6);
|
|
ip6.ip6_plen = 0;
|
|
m_copyback(m0,
|
|
offset + offsetof(struct ip6_hdr, ip6_plen),
|
|
sizeof(ip6.ip6_plen), &ip6.ip6_plen);
|
|
th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
|
|
&ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
|
|
}
|
|
m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
|
|
sizeof(th.th_sum), &th.th_sum);
|
|
|
|
tcp_hlen = th.th_off << 2;
|
|
} else {
|
|
/*
|
|
* TCP/IP headers are in the first mbuf; we can do
|
|
* this the easy way.
|
|
*/
|
|
struct tcphdr *th;
|
|
|
|
if (v4) {
|
|
struct ip *ip =
|
|
(void *)(mtod(m0, char *) + offset);
|
|
th = (void *)(mtod(m0, char *) + hlen);
|
|
|
|
ip->ip_len = 0;
|
|
th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
|
|
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
|
|
} else {
|
|
struct ip6_hdr *ip6 =
|
|
(void *)(mtod(m0, char *) + offset);
|
|
th = (void *)(mtod(m0, char *) + hlen);
|
|
|
|
ip6->ip6_plen = 0;
|
|
th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
|
|
&ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
|
|
}
|
|
tcp_hlen = th->th_off << 2;
|
|
}
|
|
hlen += tcp_hlen;
|
|
*cmdlenp |= NQTX_CMD_TSE;
|
|
|
|
if (v4) {
|
|
WM_Q_EVCNT_INCR(txq, tso);
|
|
*fieldsp |= NQTXD_FIELDS_IXSM | NQTXD_FIELDS_TUXSM;
|
|
} else {
|
|
WM_Q_EVCNT_INCR(txq, tso6);
|
|
*fieldsp |= NQTXD_FIELDS_TUXSM;
|
|
}
|
|
*fieldsp |= ((m0->m_pkthdr.len - hlen) << NQTXD_FIELDS_PAYLEN_SHIFT);
|
|
KASSERT(((m0->m_pkthdr.len - hlen) & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
|
|
mssidx |= (m0->m_pkthdr.segsz << NQTXC_MSSIDX_MSS_SHIFT);
|
|
KASSERT((m0->m_pkthdr.segsz & ~NQTXC_MSSIDX_MSS_MASK) == 0);
|
|
mssidx |= (tcp_hlen << NQTXC_MSSIDX_L4LEN_SHIFT);
|
|
KASSERT((tcp_hlen & ~NQTXC_MSSIDX_L4LEN_MASK) == 0);
|
|
} else {
|
|
*fieldsp |= (m0->m_pkthdr.len << NQTXD_FIELDS_PAYLEN_SHIFT);
|
|
KASSERT((m0->m_pkthdr.len & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
|
|
}
|
|
|
|
if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
|
|
*fieldsp |= NQTXD_FIELDS_IXSM;
|
|
cmdc |= NQTXC_CMD_IP4;
|
|
}
|
|
|
|
if (m0->m_pkthdr.csum_flags &
|
|
(M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_TSOv4)) {
|
|
WM_Q_EVCNT_INCR(txq, tusum);
|
|
if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_TSOv4))
|
|
cmdc |= NQTXC_CMD_TCP;
|
|
else
|
|
cmdc |= NQTXC_CMD_UDP;
|
|
|
|
cmdc |= NQTXC_CMD_IP4;
|
|
*fieldsp |= NQTXD_FIELDS_TUXSM;
|
|
}
|
|
if (m0->m_pkthdr.csum_flags &
|
|
(M_CSUM_UDPv6 | M_CSUM_TCPv6 | M_CSUM_TSOv6)) {
|
|
WM_Q_EVCNT_INCR(txq, tusum6);
|
|
if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv6 | M_CSUM_TSOv6))
|
|
cmdc |= NQTXC_CMD_TCP;
|
|
else
|
|
cmdc |= NQTXC_CMD_UDP;
|
|
|
|
cmdc |= NQTXC_CMD_IP6;
|
|
*fieldsp |= NQTXD_FIELDS_TUXSM;
|
|
}
|
|
|
|
/*
|
|
* We don't have to write context descriptor for every packet to
|
|
* NEWQUEUE controllers, that is 82575, 82576, 82580, I350, I354,
|
|
* I210 and I211. It is enough to write once per a Tx queue for these
|
|
* controllers.
|
|
* It would be overhead to write context descriptor for every packet,
|
|
* however it does not cause problems.
|
|
*/
|
|
/* Fill in the context descriptor. */
|
|
txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_vl_len =
|
|
htole32(vl_len);
|
|
txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_sn = 0;
|
|
txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_cmd =
|
|
htole32(cmdc);
|
|
txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_mssidx =
|
|
htole32(mssidx);
|
|
wm_cdtxsync(txq, txq->txq_next, 1, BUS_DMASYNC_PREWRITE);
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: context desc %d 0x%08x%08x\n", device_xname(sc->sc_dev),
|
|
txq->txq_next, 0, vl_len));
|
|
DPRINTF(sc, WM_DEBUG_TX, ("\t0x%08x%08x\n", mssidx, cmdc));
|
|
txq->txq_next = WM_NEXTTX(txq, txq->txq_next);
|
|
txs->txs_ndesc++;
|
|
}
|
|
|
|
/*
|
|
* wm_nq_start: [ifnet interface function]
|
|
*
|
|
* Start packet transmission on the interface for NEWQUEUE devices
|
|
*/
|
|
static void
|
|
wm_nq_start(struct ifnet *ifp)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
|
|
|
|
#ifdef WM_MPSAFE
|
|
KASSERT(if_is_mpsafe(ifp));
|
|
#endif
|
|
/*
|
|
* if_obytes and if_omcasts are added in if_transmit()@if.c.
|
|
*/
|
|
|
|
mutex_enter(txq->txq_lock);
|
|
if (!txq->txq_stopping)
|
|
wm_nq_start_locked(ifp);
|
|
mutex_exit(txq->txq_lock);
|
|
}
|
|
|
|
static void
|
|
wm_nq_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
|
|
|
|
wm_nq_send_common_locked(ifp, txq, false);
|
|
}
|
|
|
|
static int
|
|
wm_nq_transmit(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
int qid;
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
struct wm_txqueue *txq;
|
|
|
|
qid = wm_select_txqueue(ifp, m);
|
|
txq = &sc->sc_queue[qid].wmq_txq;
|
|
|
|
if (__predict_false(!pcq_put(txq->txq_interq, m))) {
|
|
m_freem(m);
|
|
WM_Q_EVCNT_INCR(txq, pcqdrop);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
|
|
if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
|
|
if (m->m_flags & M_MCAST)
|
|
if_statinc_ref(nsr, if_omcasts);
|
|
IF_STAT_PUTREF(ifp);
|
|
|
|
/*
|
|
* The situations which this mutex_tryenter() fails at running time
|
|
* are below two patterns.
|
|
* (1) contention with interrupt handler(wm_txrxintr_msix())
|
|
* (2) contention with deferred if_start softint(wm_handle_queue())
|
|
* In the case of (1), the last packet enqueued to txq->txq_interq is
|
|
* dequeued by wm_deferred_start_locked(). So, it does not get stuck.
|
|
* In the case of (2), the last packet enqueued to txq->txq_interq is
|
|
* also dequeued by wm_deferred_start_locked(). So, it does not get
|
|
* stuck, either.
|
|
*/
|
|
if (mutex_tryenter(txq->txq_lock)) {
|
|
if (!txq->txq_stopping)
|
|
wm_nq_transmit_locked(ifp, txq);
|
|
mutex_exit(txq->txq_lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
wm_nq_transmit_locked(struct ifnet *ifp, struct wm_txqueue *txq)
|
|
{
|
|
|
|
wm_nq_send_common_locked(ifp, txq, true);
|
|
}
|
|
|
|
static void
|
|
wm_nq_send_common_locked(struct ifnet *ifp, struct wm_txqueue *txq,
|
|
bool is_transmit)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
struct mbuf *m0;
|
|
struct wm_txsoft *txs;
|
|
bus_dmamap_t dmamap;
|
|
int error, nexttx, lasttx = -1, seg, segs_needed;
|
|
bool do_csum, sent;
|
|
bool remap = true;
|
|
|
|
KASSERT(mutex_owned(txq->txq_lock));
|
|
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0)
|
|
return;
|
|
if ((txq->txq_flags & WM_TXQ_NO_SPACE) != 0)
|
|
return;
|
|
|
|
if (__predict_false(wm_linkdown_discard(txq))) {
|
|
do {
|
|
if (is_transmit)
|
|
m0 = pcq_get(txq->txq_interq);
|
|
else
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
/*
|
|
* increment successed packet counter as in the case
|
|
* which the packet is discarded by link down PHY.
|
|
*/
|
|
if (m0 != NULL)
|
|
if_statinc(ifp, if_opackets);
|
|
m_freem(m0);
|
|
} while (m0 != NULL);
|
|
return;
|
|
}
|
|
|
|
sent = false;
|
|
|
|
/*
|
|
* Loop through the send queue, setting up transmit descriptors
|
|
* until we drain the queue, or use up all available transmit
|
|
* descriptors.
|
|
*/
|
|
for (;;) {
|
|
m0 = NULL;
|
|
|
|
/* Get a work queue entry. */
|
|
if (txq->txq_sfree < WM_TXQUEUE_GC(txq)) {
|
|
wm_txeof(txq, UINT_MAX);
|
|
if (txq->txq_sfree == 0) {
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: no free job descriptors\n",
|
|
device_xname(sc->sc_dev)));
|
|
WM_Q_EVCNT_INCR(txq, txsstall);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Grab a packet off the queue. */
|
|
if (is_transmit)
|
|
m0 = pcq_get(txq->txq_interq);
|
|
else
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: have packet to transmit: %p\n",
|
|
device_xname(sc->sc_dev), m0));
|
|
|
|
txs = &txq->txq_soft[txq->txq_snext];
|
|
dmamap = txs->txs_dmamap;
|
|
|
|
/*
|
|
* Load the DMA map. If this fails, the packet either
|
|
* didn't fit in the allotted number of segments, or we
|
|
* were short on resources. For the too-many-segments
|
|
* case, we simply report an error and drop the packet,
|
|
* since we can't sanely copy a jumbo packet to a single
|
|
* buffer.
|
|
*/
|
|
retry:
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
|
|
BUS_DMA_WRITE | BUS_DMA_NOWAIT);
|
|
if (__predict_false(error)) {
|
|
if (error == EFBIG) {
|
|
if (remap == true) {
|
|
struct mbuf *m;
|
|
|
|
remap = false;
|
|
m = m_defrag(m0, M_NOWAIT);
|
|
if (m != NULL) {
|
|
WM_Q_EVCNT_INCR(txq, defrag);
|
|
m0 = m;
|
|
goto retry;
|
|
}
|
|
}
|
|
WM_Q_EVCNT_INCR(txq, toomanyseg);
|
|
log(LOG_ERR, "%s: Tx packet consumes too many "
|
|
"DMA segments, dropping...\n",
|
|
device_xname(sc->sc_dev));
|
|
wm_dump_mbuf_chain(sc, m0);
|
|
m_freem(m0);
|
|
continue;
|
|
}
|
|
/* Short on resources, just stop for now. */
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: dmamap load failed: %d\n",
|
|
device_xname(sc->sc_dev), error));
|
|
break;
|
|
}
|
|
|
|
segs_needed = dmamap->dm_nsegs;
|
|
|
|
/*
|
|
* Ensure we have enough descriptors free to describe
|
|
* the packet. Note, we always reserve one descriptor
|
|
* at the end of the ring due to the semantics of the
|
|
* TDT register, plus one more in the event we need
|
|
* to load offload context.
|
|
*/
|
|
if (segs_needed > txq->txq_free - 2) {
|
|
/*
|
|
* Not enough free descriptors to transmit this
|
|
* packet. We haven't committed anything yet,
|
|
* so just unload the DMA map, put the packet
|
|
* pack on the queue, and punt. Notify the upper
|
|
* layer that there are no more slots left.
|
|
*/
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: need %d (%d) descriptors, have %d\n",
|
|
device_xname(sc->sc_dev), dmamap->dm_nsegs,
|
|
segs_needed, txq->txq_free - 1));
|
|
txq->txq_flags |= WM_TXQ_NO_SPACE;
|
|
bus_dmamap_unload(sc->sc_dmat, dmamap);
|
|
WM_Q_EVCNT_INCR(txq, txdstall);
|
|
break;
|
|
}
|
|
|
|
/* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */
|
|
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: packet has %d (%d) DMA segments\n",
|
|
device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
|
|
|
|
WM_EVCNT_INCR(&txq->txq_ev_txseg[dmamap->dm_nsegs - 1]);
|
|
|
|
/*
|
|
* Store a pointer to the packet so that we can free it
|
|
* later.
|
|
*
|
|
* Initially, we consider the number of descriptors the
|
|
* packet uses the number of DMA segments. This may be
|
|
* incremented by 1 if we do checksum offload (a descriptor
|
|
* is used to set the checksum context).
|
|
*/
|
|
txs->txs_mbuf = m0;
|
|
txs->txs_firstdesc = txq->txq_next;
|
|
txs->txs_ndesc = segs_needed;
|
|
|
|
/* Set up offload parameters for this packet. */
|
|
uint32_t cmdlen, fields, dcmdlen;
|
|
if (m0->m_pkthdr.csum_flags &
|
|
(M_CSUM_TSOv4 | M_CSUM_TSOv6 |
|
|
M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4 |
|
|
M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
|
|
wm_nq_tx_offload(sc, txq, txs, &cmdlen, &fields,
|
|
&do_csum);
|
|
} else {
|
|
do_csum = false;
|
|
cmdlen = 0;
|
|
fields = 0;
|
|
}
|
|
|
|
/* Sync the DMA map. */
|
|
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Initialize the first transmit descriptor. */
|
|
nexttx = txq->txq_next;
|
|
if (!do_csum) {
|
|
/* Setup a legacy descriptor */
|
|
wm_set_dma_addr(&txq->txq_descs[nexttx].wtx_addr,
|
|
dmamap->dm_segs[0].ds_addr);
|
|
txq->txq_descs[nexttx].wtx_cmdlen =
|
|
htole32(WTX_CMD_IFCS | dmamap->dm_segs[0].ds_len);
|
|
txq->txq_descs[nexttx].wtx_fields.wtxu_status = 0;
|
|
txq->txq_descs[nexttx].wtx_fields.wtxu_options = 0;
|
|
if (vlan_has_tag(m0)) {
|
|
txq->txq_descs[nexttx].wtx_cmdlen |=
|
|
htole32(WTX_CMD_VLE);
|
|
txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =
|
|
htole16(vlan_get_tag(m0));
|
|
} else
|
|
txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =0;
|
|
|
|
dcmdlen = 0;
|
|
} else {
|
|
/* Setup an advanced data descriptor */
|
|
txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_addr =
|
|
htole64(dmamap->dm_segs[0].ds_addr);
|
|
KASSERT((dmamap->dm_segs[0].ds_len & cmdlen) == 0);
|
|
txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_cmdlen =
|
|
htole32(dmamap->dm_segs[0].ds_len | cmdlen);
|
|
txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_fields =
|
|
htole32(fields);
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: adv data desc %d 0x%" PRIx64 "\n",
|
|
device_xname(sc->sc_dev), nexttx,
|
|
(uint64_t)dmamap->dm_segs[0].ds_addr));
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("\t 0x%08x%08x\n", fields,
|
|
(uint32_t)dmamap->dm_segs[0].ds_len | cmdlen));
|
|
dcmdlen = NQTX_DTYP_D | NQTX_CMD_DEXT;
|
|
}
|
|
|
|
lasttx = nexttx;
|
|
nexttx = WM_NEXTTX(txq, nexttx);
|
|
/*
|
|
* Fill in the next descriptors. legacy or advanced format
|
|
* is the same here
|
|
*/
|
|
for (seg = 1; seg < dmamap->dm_nsegs;
|
|
seg++, nexttx = WM_NEXTTX(txq, nexttx)) {
|
|
txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_addr =
|
|
htole64(dmamap->dm_segs[seg].ds_addr);
|
|
txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_cmdlen =
|
|
htole32(dcmdlen | dmamap->dm_segs[seg].ds_len);
|
|
KASSERT((dcmdlen & dmamap->dm_segs[seg].ds_len) == 0);
|
|
txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_fields = 0;
|
|
lasttx = nexttx;
|
|
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: desc %d: %#" PRIx64 ", len %#04zx\n",
|
|
device_xname(sc->sc_dev), nexttx,
|
|
(uint64_t)dmamap->dm_segs[seg].ds_addr,
|
|
dmamap->dm_segs[seg].ds_len));
|
|
}
|
|
|
|
KASSERT(lasttx != -1);
|
|
|
|
/*
|
|
* Set up the command byte on the last descriptor of
|
|
* the packet. If we're in the interrupt delay window,
|
|
* delay the interrupt.
|
|
*/
|
|
KASSERT((WTX_CMD_EOP | WTX_CMD_RS) ==
|
|
(NQTX_CMD_EOP | NQTX_CMD_RS));
|
|
txq->txq_descs[lasttx].wtx_cmdlen |=
|
|
htole32(WTX_CMD_EOP | WTX_CMD_RS);
|
|
|
|
txs->txs_lastdesc = lasttx;
|
|
|
|
DPRINTF(sc, WM_DEBUG_TX, ("%s: TX: desc %d: cmdlen 0x%08x\n",
|
|
device_xname(sc->sc_dev),
|
|
lasttx, le32toh(txq->txq_descs[lasttx].wtx_cmdlen)));
|
|
|
|
/* Sync the descriptors we're using. */
|
|
wm_cdtxsync(txq, txq->txq_next, txs->txs_ndesc,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Give the packet to the chip. */
|
|
CSR_WRITE(sc, txq->txq_tdt_reg, nexttx);
|
|
sent = true;
|
|
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
|
|
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: finished transmitting packet, job %d\n",
|
|
device_xname(sc->sc_dev), txq->txq_snext));
|
|
|
|
/* Advance the tx pointer. */
|
|
txq->txq_free -= txs->txs_ndesc;
|
|
txq->txq_next = nexttx;
|
|
|
|
txq->txq_sfree--;
|
|
txq->txq_snext = WM_NEXTTXS(txq, txq->txq_snext);
|
|
|
|
/* Pass the packet to any BPF listeners. */
|
|
bpf_mtap(ifp, m0, BPF_D_OUT);
|
|
}
|
|
|
|
if (m0 != NULL) {
|
|
txq->txq_flags |= WM_TXQ_NO_SPACE;
|
|
WM_Q_EVCNT_INCR(txq, descdrop);
|
|
DPRINTF(sc, WM_DEBUG_TX, ("%s: TX: error after IFQ_DEQUEUE\n",
|
|
__func__));
|
|
m_freem(m0);
|
|
}
|
|
|
|
if (txq->txq_sfree == 0 || txq->txq_free <= 2) {
|
|
/* No more slots; notify upper layer. */
|
|
txq->txq_flags |= WM_TXQ_NO_SPACE;
|
|
}
|
|
|
|
if (sent) {
|
|
/* Set a watchdog timer in case the chip flakes out. */
|
|
txq->txq_lastsent = time_uptime;
|
|
txq->txq_sending = true;
|
|
}
|
|
}
|
|
|
|
static void
|
|
wm_deferred_start_locked(struct wm_txqueue *txq)
|
|
{
|
|
struct wm_softc *sc = txq->txq_sc;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct wm_queue *wmq = container_of(txq, struct wm_queue, wmq_txq);
|
|
int qid = wmq->wmq_id;
|
|
|
|
KASSERT(mutex_owned(txq->txq_lock));
|
|
|
|
if (txq->txq_stopping) {
|
|
mutex_exit(txq->txq_lock);
|
|
return;
|
|
}
|
|
|
|
if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
|
|
/* XXX need for ALTQ or one CPU system */
|
|
if (qid == 0)
|
|
wm_nq_start_locked(ifp);
|
|
wm_nq_transmit_locked(ifp, txq);
|
|
} else {
|
|
/* XXX need for ALTQ or one CPU system */
|
|
if (qid == 0)
|
|
wm_start_locked(ifp);
|
|
wm_transmit_locked(ifp, txq);
|
|
}
|
|
}
|
|
|
|
/* Interrupt */
|
|
|
|
/*
|
|
* wm_txeof:
|
|
*
|
|
* Helper; handle transmit interrupts.
|
|
*/
|
|
static bool
|
|
wm_txeof(struct wm_txqueue *txq, u_int limit)
|
|
{
|
|
struct wm_softc *sc = txq->txq_sc;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct wm_txsoft *txs;
|
|
int count = 0;
|
|
int i;
|
|
uint8_t status;
|
|
bool more = false;
|
|
|
|
KASSERT(mutex_owned(txq->txq_lock));
|
|
|
|
if (txq->txq_stopping)
|
|
return false;
|
|
|
|
txq->txq_flags &= ~WM_TXQ_NO_SPACE;
|
|
|
|
/*
|
|
* Go through the Tx list and free mbufs for those
|
|
* frames which have been transmitted.
|
|
*/
|
|
for (i = txq->txq_sdirty; txq->txq_sfree != WM_TXQUEUELEN(txq);
|
|
i = WM_NEXTTXS(txq, i), txq->txq_sfree++) {
|
|
if (limit-- == 0) {
|
|
more = true;
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: loop limited, job %d is not processed\n",
|
|
device_xname(sc->sc_dev), i));
|
|
break;
|
|
}
|
|
|
|
txs = &txq->txq_soft[i];
|
|
|
|
DPRINTF(sc, WM_DEBUG_TX, ("%s: TX: checking job %d\n",
|
|
device_xname(sc->sc_dev), i));
|
|
|
|
wm_cdtxsync(txq, txs->txs_firstdesc, txs->txs_ndesc,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
status =
|
|
txq->txq_descs[txs->txs_lastdesc].wtx_fields.wtxu_status;
|
|
if ((status & WTX_ST_DD) == 0) {
|
|
wm_cdtxsync(txq, txs->txs_lastdesc, 1,
|
|
BUS_DMASYNC_PREREAD);
|
|
break;
|
|
}
|
|
|
|
count++;
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: job %d done: descs %d..%d\n",
|
|
device_xname(sc->sc_dev), i, txs->txs_firstdesc,
|
|
txs->txs_lastdesc));
|
|
|
|
/*
|
|
* XXX We should probably be using the statistics
|
|
* XXX registers, but I don't know if they exist
|
|
* XXX on chips before the i82544.
|
|
*/
|
|
|
|
#ifdef WM_EVENT_COUNTERS
|
|
if (status & WTX_ST_TU)
|
|
WM_Q_EVCNT_INCR(txq, underrun);
|
|
#endif /* WM_EVENT_COUNTERS */
|
|
|
|
/*
|
|
* 82574 and newer's document says the status field has neither
|
|
* EC (Excessive Collision) bit nor LC (Late Collision) bit
|
|
* (reserved). Refer "PCIe GbE Controller Open Source Software
|
|
* Developer's Manual", 82574 datasheet and newer.
|
|
*
|
|
* XXX I saw the LC bit was set on I218 even though the media
|
|
* was full duplex, so the bit might be used for other
|
|
* meaning ...(I have no document).
|
|
*/
|
|
|
|
if (((status & (WTX_ST_EC | WTX_ST_LC)) != 0)
|
|
&& ((sc->sc_type < WM_T_82574)
|
|
|| (sc->sc_type == WM_T_80003))) {
|
|
if_statinc(ifp, if_oerrors);
|
|
if (status & WTX_ST_LC)
|
|
log(LOG_WARNING, "%s: late collision\n",
|
|
device_xname(sc->sc_dev));
|
|
else if (status & WTX_ST_EC) {
|
|
if_statadd(ifp, if_collisions,
|
|
TX_COLLISION_THRESHOLD + 1);
|
|
log(LOG_WARNING, "%s: excessive collisions\n",
|
|
device_xname(sc->sc_dev));
|
|
}
|
|
} else
|
|
if_statinc(ifp, if_opackets);
|
|
|
|
txq->txq_packets++;
|
|
txq->txq_bytes += txs->txs_mbuf->m_pkthdr.len;
|
|
|
|
txq->txq_free += txs->txs_ndesc;
|
|
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
|
|
0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
|
|
/* Update the dirty transmit buffer pointer. */
|
|
txq->txq_sdirty = i;
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
|
|
|
|
if (count != 0)
|
|
rnd_add_uint32(&sc->rnd_source, count);
|
|
|
|
/*
|
|
* If there are no more pending transmissions, cancel the watchdog
|
|
* timer.
|
|
*/
|
|
if (txq->txq_sfree == WM_TXQUEUELEN(txq))
|
|
txq->txq_sending = false;
|
|
|
|
return more;
|
|
}
|
|
|
|
static inline uint32_t
|
|
wm_rxdesc_get_status(struct wm_rxqueue *rxq, int idx)
|
|
{
|
|
struct wm_softc *sc = rxq->rxq_sc;
|
|
|
|
if (sc->sc_type == WM_T_82574)
|
|
return EXTRXC_STATUS(
|
|
le32toh(rxq->rxq_ext_descs[idx].erx_ctx.erxc_err_stat));
|
|
else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
|
|
return NQRXC_STATUS(
|
|
le32toh(rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_err_stat));
|
|
else
|
|
return rxq->rxq_descs[idx].wrx_status;
|
|
}
|
|
|
|
static inline uint32_t
|
|
wm_rxdesc_get_errors(struct wm_rxqueue *rxq, int idx)
|
|
{
|
|
struct wm_softc *sc = rxq->rxq_sc;
|
|
|
|
if (sc->sc_type == WM_T_82574)
|
|
return EXTRXC_ERROR(
|
|
le32toh(rxq->rxq_ext_descs[idx].erx_ctx.erxc_err_stat));
|
|
else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
|
|
return NQRXC_ERROR(
|
|
le32toh(rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_err_stat));
|
|
else
|
|
return rxq->rxq_descs[idx].wrx_errors;
|
|
}
|
|
|
|
static inline uint16_t
|
|
wm_rxdesc_get_vlantag(struct wm_rxqueue *rxq, int idx)
|
|
{
|
|
struct wm_softc *sc = rxq->rxq_sc;
|
|
|
|
if (sc->sc_type == WM_T_82574)
|
|
return rxq->rxq_ext_descs[idx].erx_ctx.erxc_vlan;
|
|
else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
|
|
return rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_vlan;
|
|
else
|
|
return rxq->rxq_descs[idx].wrx_special;
|
|
}
|
|
|
|
static inline int
|
|
wm_rxdesc_get_pktlen(struct wm_rxqueue *rxq, int idx)
|
|
{
|
|
struct wm_softc *sc = rxq->rxq_sc;
|
|
|
|
if (sc->sc_type == WM_T_82574)
|
|
return rxq->rxq_ext_descs[idx].erx_ctx.erxc_pktlen;
|
|
else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
|
|
return rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_pktlen;
|
|
else
|
|
return rxq->rxq_descs[idx].wrx_len;
|
|
}
|
|
|
|
#ifdef WM_DEBUG
|
|
static inline uint32_t
|
|
wm_rxdesc_get_rsshash(struct wm_rxqueue *rxq, int idx)
|
|
{
|
|
struct wm_softc *sc = rxq->rxq_sc;
|
|
|
|
if (sc->sc_type == WM_T_82574)
|
|
return rxq->rxq_ext_descs[idx].erx_ctx.erxc_rsshash;
|
|
else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
|
|
return rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_rsshash;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static inline uint8_t
|
|
wm_rxdesc_get_rsstype(struct wm_rxqueue *rxq, int idx)
|
|
{
|
|
struct wm_softc *sc = rxq->rxq_sc;
|
|
|
|
if (sc->sc_type == WM_T_82574)
|
|
return EXTRXC_RSS_TYPE(rxq->rxq_ext_descs[idx].erx_ctx.erxc_mrq);
|
|
else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
|
|
return NQRXC_RSS_TYPE(rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_misc);
|
|
else
|
|
return 0;
|
|
}
|
|
#endif /* WM_DEBUG */
|
|
|
|
static inline bool
|
|
wm_rxdesc_is_set_status(struct wm_softc *sc, uint32_t status,
|
|
uint32_t legacy_bit, uint32_t ext_bit, uint32_t nq_bit)
|
|
{
|
|
|
|
if (sc->sc_type == WM_T_82574)
|
|
return (status & ext_bit) != 0;
|
|
else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
|
|
return (status & nq_bit) != 0;
|
|
else
|
|
return (status & legacy_bit) != 0;
|
|
}
|
|
|
|
static inline bool
|
|
wm_rxdesc_is_set_error(struct wm_softc *sc, uint32_t error,
|
|
uint32_t legacy_bit, uint32_t ext_bit, uint32_t nq_bit)
|
|
{
|
|
|
|
if (sc->sc_type == WM_T_82574)
|
|
return (error & ext_bit) != 0;
|
|
else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
|
|
return (error & nq_bit) != 0;
|
|
else
|
|
return (error & legacy_bit) != 0;
|
|
}
|
|
|
|
static inline bool
|
|
wm_rxdesc_is_eop(struct wm_rxqueue *rxq, uint32_t status)
|
|
{
|
|
|
|
if (wm_rxdesc_is_set_status(rxq->rxq_sc, status,
|
|
WRX_ST_EOP, EXTRXC_STATUS_EOP, NQRXC_STATUS_EOP))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
static inline bool
|
|
wm_rxdesc_has_errors(struct wm_rxqueue *rxq, uint32_t errors)
|
|
{
|
|
struct wm_softc *sc = rxq->rxq_sc;
|
|
|
|
/* XXX missing error bit for newqueue? */
|
|
if (wm_rxdesc_is_set_error(sc, errors,
|
|
WRX_ER_CE | WRX_ER_SE | WRX_ER_SEQ | WRX_ER_CXE | WRX_ER_RXE,
|
|
EXTRXC_ERROR_CE | EXTRXC_ERROR_SE | EXTRXC_ERROR_SEQ
|
|
| EXTRXC_ERROR_CXE | EXTRXC_ERROR_RXE,
|
|
NQRXC_ERROR_RXE)) {
|
|
if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_SE,
|
|
EXTRXC_ERROR_SE, 0))
|
|
log(LOG_WARNING, "%s: symbol error\n",
|
|
device_xname(sc->sc_dev));
|
|
else if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_SEQ,
|
|
EXTRXC_ERROR_SEQ, 0))
|
|
log(LOG_WARNING, "%s: receive sequence error\n",
|
|
device_xname(sc->sc_dev));
|
|
else if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_CE,
|
|
EXTRXC_ERROR_CE, 0))
|
|
log(LOG_WARNING, "%s: CRC error\n",
|
|
device_xname(sc->sc_dev));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline bool
|
|
wm_rxdesc_dd(struct wm_rxqueue *rxq, int idx, uint32_t status)
|
|
{
|
|
struct wm_softc *sc = rxq->rxq_sc;
|
|
|
|
if (!wm_rxdesc_is_set_status(sc, status, WRX_ST_DD, EXTRXC_STATUS_DD,
|
|
NQRXC_STATUS_DD)) {
|
|
/* We have processed all of the receive descriptors. */
|
|
wm_cdrxsync(rxq, idx, BUS_DMASYNC_PREREAD);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool
|
|
wm_rxdesc_input_vlantag(struct wm_rxqueue *rxq, uint32_t status,
|
|
uint16_t vlantag, struct mbuf *m)
|
|
{
|
|
|
|
if (wm_rxdesc_is_set_status(rxq->rxq_sc, status,
|
|
WRX_ST_VP, EXTRXC_STATUS_VP, NQRXC_STATUS_VP)) {
|
|
vlan_set_tag(m, le16toh(vlantag));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline void
|
|
wm_rxdesc_ensure_checksum(struct wm_rxqueue *rxq, uint32_t status,
|
|
uint32_t errors, struct mbuf *m)
|
|
{
|
|
struct wm_softc *sc = rxq->rxq_sc;
|
|
|
|
if (!wm_rxdesc_is_set_status(sc, status, WRX_ST_IXSM, 0, 0)) {
|
|
if (wm_rxdesc_is_set_status(sc, status,
|
|
WRX_ST_IPCS, EXTRXC_STATUS_IPCS, NQRXC_STATUS_IPCS)) {
|
|
WM_Q_EVCNT_INCR(rxq, ipsum);
|
|
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
|
|
if (wm_rxdesc_is_set_error(sc, errors,
|
|
WRX_ER_IPE, EXTRXC_ERROR_IPE, NQRXC_ERROR_IPE))
|
|
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
|
|
}
|
|
if (wm_rxdesc_is_set_status(sc, status,
|
|
WRX_ST_TCPCS, EXTRXC_STATUS_TCPCS, NQRXC_STATUS_L4I)) {
|
|
/*
|
|
* Note: we don't know if this was TCP or UDP,
|
|
* so we just set both bits, and expect the
|
|
* upper layers to deal.
|
|
*/
|
|
WM_Q_EVCNT_INCR(rxq, tusum);
|
|
m->m_pkthdr.csum_flags |=
|
|
M_CSUM_TCPv4 | M_CSUM_UDPv4 |
|
|
M_CSUM_TCPv6 | M_CSUM_UDPv6;
|
|
if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_TCPE,
|
|
EXTRXC_ERROR_TCPE, NQRXC_ERROR_L4E))
|
|
m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* wm_rxeof:
|
|
*
|
|
* Helper; handle receive interrupts.
|
|
*/
|
|
static bool
|
|
wm_rxeof(struct wm_rxqueue *rxq, u_int limit)
|
|
{
|
|
struct wm_softc *sc = rxq->rxq_sc;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct wm_rxsoft *rxs;
|
|
struct mbuf *m;
|
|
int i, len;
|
|
int count = 0;
|
|
uint32_t status, errors;
|
|
uint16_t vlantag;
|
|
bool more = false;
|
|
|
|
KASSERT(mutex_owned(rxq->rxq_lock));
|
|
|
|
for (i = rxq->rxq_ptr;; i = WM_NEXTRX(i)) {
|
|
if (limit-- == 0) {
|
|
more = true;
|
|
DPRINTF(sc, WM_DEBUG_RX,
|
|
("%s: RX: loop limited, descriptor %d is not processed\n",
|
|
device_xname(sc->sc_dev), i));
|
|
break;
|
|
}
|
|
|
|
rxs = &rxq->rxq_soft[i];
|
|
|
|
DPRINTF(sc, WM_DEBUG_RX,
|
|
("%s: RX: checking descriptor %d\n",
|
|
device_xname(sc->sc_dev), i));
|
|
wm_cdrxsync(rxq, i,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
status = wm_rxdesc_get_status(rxq, i);
|
|
errors = wm_rxdesc_get_errors(rxq, i);
|
|
len = le16toh(wm_rxdesc_get_pktlen(rxq, i));
|
|
vlantag = wm_rxdesc_get_vlantag(rxq, i);
|
|
#ifdef WM_DEBUG
|
|
uint32_t rsshash = le32toh(wm_rxdesc_get_rsshash(rxq, i));
|
|
uint8_t rsstype = wm_rxdesc_get_rsstype(rxq, i);
|
|
#endif
|
|
|
|
if (!wm_rxdesc_dd(rxq, i, status)) {
|
|
break;
|
|
}
|
|
|
|
count++;
|
|
if (__predict_false(rxq->rxq_discard)) {
|
|
DPRINTF(sc, WM_DEBUG_RX,
|
|
("%s: RX: discarding contents of descriptor %d\n",
|
|
device_xname(sc->sc_dev), i));
|
|
wm_init_rxdesc(rxq, i);
|
|
if (wm_rxdesc_is_eop(rxq, status)) {
|
|
/* Reset our state. */
|
|
DPRINTF(sc, WM_DEBUG_RX,
|
|
("%s: RX: resetting rxdiscard -> 0\n",
|
|
device_xname(sc->sc_dev)));
|
|
rxq->rxq_discard = 0;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
|
|
m = rxs->rxs_mbuf;
|
|
|
|
/*
|
|
* Add a new receive buffer to the ring, unless of
|
|
* course the length is zero. Treat the latter as a
|
|
* failed mapping.
|
|
*/
|
|
if ((len == 0) || (wm_add_rxbuf(rxq, i) != 0)) {
|
|
/*
|
|
* Failed, throw away what we've done so
|
|
* far, and discard the rest of the packet.
|
|
*/
|
|
if_statinc(ifp, if_ierrors);
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
wm_init_rxdesc(rxq, i);
|
|
if (!wm_rxdesc_is_eop(rxq, status))
|
|
rxq->rxq_discard = 1;
|
|
if (rxq->rxq_head != NULL)
|
|
m_freem(rxq->rxq_head);
|
|
WM_RXCHAIN_RESET(rxq);
|
|
DPRINTF(sc, WM_DEBUG_RX,
|
|
("%s: RX: Rx buffer allocation failed, "
|
|
"dropping packet%s\n", device_xname(sc->sc_dev),
|
|
rxq->rxq_discard ? " (discard)" : ""));
|
|
continue;
|
|
}
|
|
|
|
m->m_len = len;
|
|
rxq->rxq_len += len;
|
|
DPRINTF(sc, WM_DEBUG_RX,
|
|
("%s: RX: buffer at %p len %d\n",
|
|
device_xname(sc->sc_dev), m->m_data, len));
|
|
|
|
/* If this is not the end of the packet, keep looking. */
|
|
if (!wm_rxdesc_is_eop(rxq, status)) {
|
|
WM_RXCHAIN_LINK(rxq, m);
|
|
DPRINTF(sc, WM_DEBUG_RX,
|
|
("%s: RX: not yet EOP, rxlen -> %d\n",
|
|
device_xname(sc->sc_dev), rxq->rxq_len));
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Okay, we have the entire packet now. The chip is
|
|
* configured to include the FCS except I35[04], I21[01].
|
|
* (not all chips can be configured to strip it), so we need
|
|
* to trim it. Those chips have an eratta, the RCTL_SECRC bit
|
|
* in RCTL register is always set, so we don't trim it.
|
|
* PCH2 and newer chip also not include FCS when jumbo
|
|
* frame is used to do workaround an errata.
|
|
* May need to adjust length of previous mbuf in the
|
|
* chain if the current mbuf is too short.
|
|
*/
|
|
if ((sc->sc_flags & WM_F_CRC_STRIP) == 0) {
|
|
if (m->m_len < ETHER_CRC_LEN) {
|
|
rxq->rxq_tail->m_len
|
|
-= (ETHER_CRC_LEN - m->m_len);
|
|
m->m_len = 0;
|
|
} else
|
|
m->m_len -= ETHER_CRC_LEN;
|
|
len = rxq->rxq_len - ETHER_CRC_LEN;
|
|
} else
|
|
len = rxq->rxq_len;
|
|
|
|
WM_RXCHAIN_LINK(rxq, m);
|
|
|
|
*rxq->rxq_tailp = NULL;
|
|
m = rxq->rxq_head;
|
|
|
|
WM_RXCHAIN_RESET(rxq);
|
|
|
|
DPRINTF(sc, WM_DEBUG_RX,
|
|
("%s: RX: have entire packet, len -> %d\n",
|
|
device_xname(sc->sc_dev), len));
|
|
|
|
/* If an error occurred, update stats and drop the packet. */
|
|
if (wm_rxdesc_has_errors(rxq, errors)) {
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
|
|
/* No errors. Receive the packet. */
|
|
m_set_rcvif(m, ifp);
|
|
m->m_pkthdr.len = len;
|
|
/*
|
|
* TODO
|
|
* should be save rsshash and rsstype to this mbuf.
|
|
*/
|
|
DPRINTF(sc, WM_DEBUG_RX,
|
|
("%s: RX: RSS type=%" PRIu8 ", RSS hash=%" PRIu32 "\n",
|
|
device_xname(sc->sc_dev), rsstype, rsshash));
|
|
|
|
/*
|
|
* If VLANs are enabled, VLAN packets have been unwrapped
|
|
* for us. Associate the tag with the packet.
|
|
*/
|
|
if (!wm_rxdesc_input_vlantag(rxq, status, vlantag, m))
|
|
continue;
|
|
|
|
/* Set up checksum info for this packet. */
|
|
wm_rxdesc_ensure_checksum(rxq, status, errors, m);
|
|
|
|
rxq->rxq_packets++;
|
|
rxq->rxq_bytes += len;
|
|
/* Pass it on. */
|
|
if_percpuq_enqueue(sc->sc_ipq, m);
|
|
|
|
if (rxq->rxq_stopping)
|
|
break;
|
|
}
|
|
rxq->rxq_ptr = i;
|
|
|
|
if (count != 0)
|
|
rnd_add_uint32(&sc->rnd_source, count);
|
|
|
|
DPRINTF(sc, WM_DEBUG_RX,
|
|
("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
|
|
|
|
return more;
|
|
}
|
|
|
|
/*
|
|
* wm_linkintr_gmii:
|
|
*
|
|
* Helper; handle link interrupts for GMII.
|
|
*/
|
|
static void
|
|
wm_linkintr_gmii(struct wm_softc *sc, uint32_t icr)
|
|
{
|
|
device_t dev = sc->sc_dev;
|
|
uint32_t status, reg;
|
|
bool link;
|
|
int rv;
|
|
|
|
KASSERT(WM_CORE_LOCKED(sc));
|
|
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s:\n", device_xname(dev),
|
|
__func__));
|
|
|
|
if ((icr & ICR_LSC) == 0) {
|
|
if (icr & ICR_RXSEQ)
|
|
DPRINTF(sc, WM_DEBUG_LINK,
|
|
("%s: LINK Receive sequence error\n",
|
|
device_xname(dev)));
|
|
return;
|
|
}
|
|
|
|
/* Link status changed */
|
|
status = CSR_READ(sc, WMREG_STATUS);
|
|
link = status & STATUS_LU;
|
|
if (link) {
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
|
|
device_xname(dev),
|
|
(status & STATUS_FD) ? "FDX" : "HDX"));
|
|
if (wm_phy_need_linkdown_discard(sc))
|
|
wm_clear_linkdown_discard(sc);
|
|
} else {
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
|
|
device_xname(dev)));
|
|
if (wm_phy_need_linkdown_discard(sc))
|
|
wm_set_linkdown_discard(sc);
|
|
}
|
|
if ((sc->sc_type == WM_T_ICH8) && (link == false))
|
|
wm_gig_downshift_workaround_ich8lan(sc);
|
|
|
|
if ((sc->sc_type == WM_T_ICH8)
|
|
&& (sc->sc_phytype == WMPHY_IGP_3)) {
|
|
wm_kmrn_lock_loss_workaround_ich8lan(sc);
|
|
}
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> mii_pollstat\n",
|
|
device_xname(dev)));
|
|
mii_pollstat(&sc->sc_mii);
|
|
if (sc->sc_type == WM_T_82543) {
|
|
int miistatus, active;
|
|
|
|
/*
|
|
* With 82543, we need to force speed and
|
|
* duplex on the MAC equal to what the PHY
|
|
* speed and duplex configuration is.
|
|
*/
|
|
miistatus = sc->sc_mii.mii_media_status;
|
|
|
|
if (miistatus & IFM_ACTIVE) {
|
|
active = sc->sc_mii.mii_media_active;
|
|
sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
|
|
switch (IFM_SUBTYPE(active)) {
|
|
case IFM_10_T:
|
|
sc->sc_ctrl |= CTRL_SPEED_10;
|
|
break;
|
|
case IFM_100_TX:
|
|
sc->sc_ctrl |= CTRL_SPEED_100;
|
|
break;
|
|
case IFM_1000_T:
|
|
sc->sc_ctrl |= CTRL_SPEED_1000;
|
|
break;
|
|
default:
|
|
/*
|
|
* Fiber?
|
|
* Shoud not enter here.
|
|
*/
|
|
device_printf(dev, "unknown media (%x)\n",
|
|
active);
|
|
break;
|
|
}
|
|
if (active & IFM_FDX)
|
|
sc->sc_ctrl |= CTRL_FD;
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
}
|
|
} else if (sc->sc_type == WM_T_PCH) {
|
|
wm_k1_gig_workaround_hv(sc,
|
|
((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0));
|
|
}
|
|
|
|
/*
|
|
* When connected at 10Mbps half-duplex, some parts are excessively
|
|
* aggressive resulting in many collisions. To avoid this, increase
|
|
* the IPG and reduce Rx latency in the PHY.
|
|
*/
|
|
if ((sc->sc_type >= WM_T_PCH2) && (sc->sc_type <= WM_T_PCH_CNP)
|
|
&& link) {
|
|
uint32_t tipg_reg;
|
|
uint32_t speed = __SHIFTOUT(status, STATUS_SPEED);
|
|
bool fdx;
|
|
uint16_t emi_addr, emi_val;
|
|
|
|
tipg_reg = CSR_READ(sc, WMREG_TIPG);
|
|
tipg_reg &= ~TIPG_IPGT_MASK;
|
|
fdx = status & STATUS_FD;
|
|
|
|
if (!fdx && (speed == STATUS_SPEED_10)) {
|
|
tipg_reg |= 0xff;
|
|
/* Reduce Rx latency in analog PHY */
|
|
emi_val = 0;
|
|
} else if ((sc->sc_type >= WM_T_PCH_SPT) &&
|
|
fdx && speed != STATUS_SPEED_1000) {
|
|
tipg_reg |= 0xc;
|
|
emi_val = 1;
|
|
} else {
|
|
/* Roll back the default values */
|
|
tipg_reg |= 0x08;
|
|
emi_val = 1;
|
|
}
|
|
|
|
CSR_WRITE(sc, WMREG_TIPG, tipg_reg);
|
|
|
|
rv = sc->phy.acquire(sc);
|
|
if (rv)
|
|
return;
|
|
|
|
if (sc->sc_type == WM_T_PCH2)
|
|
emi_addr = I82579_RX_CONFIG;
|
|
else
|
|
emi_addr = I217_RX_CONFIG;
|
|
rv = wm_write_emi_reg_locked(dev, emi_addr, emi_val);
|
|
|
|
if (sc->sc_type >= WM_T_PCH_LPT) {
|
|
uint16_t phy_reg;
|
|
|
|
sc->phy.readreg_locked(dev, 2,
|
|
I217_PLL_CLOCK_GATE_REG, &phy_reg);
|
|
phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
|
|
if (speed == STATUS_SPEED_100
|
|
|| speed == STATUS_SPEED_10)
|
|
phy_reg |= 0x3e8;
|
|
else
|
|
phy_reg |= 0xfa;
|
|
sc->phy.writereg_locked(dev, 2,
|
|
I217_PLL_CLOCK_GATE_REG, phy_reg);
|
|
|
|
if (speed == STATUS_SPEED_1000) {
|
|
sc->phy.readreg_locked(dev, 2,
|
|
HV_PM_CTRL, &phy_reg);
|
|
|
|
phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
|
|
|
|
sc->phy.writereg_locked(dev, 2,
|
|
HV_PM_CTRL, phy_reg);
|
|
}
|
|
}
|
|
sc->phy.release(sc);
|
|
|
|
if (rv)
|
|
return;
|
|
|
|
if (sc->sc_type >= WM_T_PCH_SPT) {
|
|
uint16_t data, ptr_gap;
|
|
|
|
if (speed == STATUS_SPEED_1000) {
|
|
rv = sc->phy.acquire(sc);
|
|
if (rv)
|
|
return;
|
|
|
|
rv = sc->phy.readreg_locked(dev, 2,
|
|
I82579_UNKNOWN1, &data);
|
|
if (rv) {
|
|
sc->phy.release(sc);
|
|
return;
|
|
}
|
|
|
|
ptr_gap = (data & (0x3ff << 2)) >> 2;
|
|
if (ptr_gap < 0x18) {
|
|
data &= ~(0x3ff << 2);
|
|
data |= (0x18 << 2);
|
|
rv = sc->phy.writereg_locked(dev,
|
|
2, I82579_UNKNOWN1, data);
|
|
}
|
|
sc->phy.release(sc);
|
|
if (rv)
|
|
return;
|
|
} else {
|
|
rv = sc->phy.acquire(sc);
|
|
if (rv)
|
|
return;
|
|
|
|
rv = sc->phy.writereg_locked(dev, 2,
|
|
I82579_UNKNOWN1, 0xc023);
|
|
sc->phy.release(sc);
|
|
if (rv)
|
|
return;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* I217 Packet Loss issue:
|
|
* ensure that FEXTNVM4 Beacon Duration is set correctly
|
|
* on power up.
|
|
* Set the Beacon Duration for I217 to 8 usec
|
|
*/
|
|
if (sc->sc_type >= WM_T_PCH_LPT) {
|
|
reg = CSR_READ(sc, WMREG_FEXTNVM4);
|
|
reg &= ~FEXTNVM4_BEACON_DURATION;
|
|
reg |= FEXTNVM4_BEACON_DURATION_8US;
|
|
CSR_WRITE(sc, WMREG_FEXTNVM4, reg);
|
|
}
|
|
|
|
/* Work-around I218 hang issue */
|
|
if ((sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_LM) ||
|
|
(sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_V) ||
|
|
(sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_LM3) ||
|
|
(sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_V3))
|
|
wm_k1_workaround_lpt_lp(sc, link);
|
|
|
|
if (sc->sc_type >= WM_T_PCH_LPT) {
|
|
/*
|
|
* Set platform power management values for Latency
|
|
* Tolerance Reporting (LTR)
|
|
*/
|
|
wm_platform_pm_pch_lpt(sc,
|
|
((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0));
|
|
}
|
|
|
|
/* Clear link partner's EEE ability */
|
|
sc->eee_lp_ability = 0;
|
|
|
|
/* FEXTNVM6 K1-off workaround */
|
|
if (sc->sc_type == WM_T_PCH_SPT) {
|
|
reg = CSR_READ(sc, WMREG_FEXTNVM6);
|
|
if (CSR_READ(sc, WMREG_PCIEANACFG) & FEXTNVM6_K1_OFF_ENABLE)
|
|
reg |= FEXTNVM6_K1_OFF_ENABLE;
|
|
else
|
|
reg &= ~FEXTNVM6_K1_OFF_ENABLE;
|
|
CSR_WRITE(sc, WMREG_FEXTNVM6, reg);
|
|
}
|
|
|
|
if (!link)
|
|
return;
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_PCH2:
|
|
wm_k1_workaround_lv(sc);
|
|
/* FALLTHROUGH */
|
|
case WM_T_PCH:
|
|
if (sc->sc_phytype == WMPHY_82578)
|
|
wm_link_stall_workaround_hv(sc);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Enable/Disable EEE after link up */
|
|
if (sc->sc_phytype > WMPHY_82579)
|
|
wm_set_eee_pchlan(sc);
|
|
}
|
|
|
|
/*
|
|
* wm_linkintr_tbi:
|
|
*
|
|
* Helper; handle link interrupts for TBI mode.
|
|
*/
|
|
static void
|
|
wm_linkintr_tbi(struct wm_softc *sc, uint32_t icr)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
uint32_t status;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
|
|
__func__));
|
|
|
|
status = CSR_READ(sc, WMREG_STATUS);
|
|
if (icr & ICR_LSC) {
|
|
wm_check_for_link(sc);
|
|
if (status & STATUS_LU) {
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
|
|
device_xname(sc->sc_dev),
|
|
(status & STATUS_FD) ? "FDX" : "HDX"));
|
|
/*
|
|
* NOTE: CTRL will update TFCE and RFCE automatically,
|
|
* so we should update sc->sc_ctrl
|
|
*/
|
|
|
|
sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
|
|
sc->sc_tctl &= ~TCTL_COLD(0x3ff);
|
|
sc->sc_fcrtl &= ~FCRTL_XONE;
|
|
if (status & STATUS_FD)
|
|
sc->sc_tctl |=
|
|
TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
|
|
else
|
|
sc->sc_tctl |=
|
|
TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
|
|
if (sc->sc_ctrl & CTRL_TFCE)
|
|
sc->sc_fcrtl |= FCRTL_XONE;
|
|
CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
|
|
CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
|
|
WMREG_OLD_FCRTL : WMREG_FCRTL, sc->sc_fcrtl);
|
|
sc->sc_tbi_linkup = 1;
|
|
if_link_state_change(ifp, LINK_STATE_UP);
|
|
} else {
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
|
|
device_xname(sc->sc_dev)));
|
|
sc->sc_tbi_linkup = 0;
|
|
if_link_state_change(ifp, LINK_STATE_DOWN);
|
|
}
|
|
/* Update LED */
|
|
wm_tbi_serdes_set_linkled(sc);
|
|
} else if (icr & ICR_RXSEQ)
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: Receive sequence error\n",
|
|
device_xname(sc->sc_dev)));
|
|
}
|
|
|
|
/*
|
|
* wm_linkintr_serdes:
|
|
*
|
|
* Helper; handle link interrupts for TBI mode.
|
|
*/
|
|
static void
|
|
wm_linkintr_serdes(struct wm_softc *sc, uint32_t icr)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
|
|
uint32_t pcs_adv, pcs_lpab, reg;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
|
|
__func__));
|
|
|
|
if (icr & ICR_LSC) {
|
|
/* Check PCS */
|
|
reg = CSR_READ(sc, WMREG_PCS_LSTS);
|
|
if ((reg & PCS_LSTS_LINKOK) != 0) {
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
|
|
device_xname(sc->sc_dev)));
|
|
mii->mii_media_status |= IFM_ACTIVE;
|
|
sc->sc_tbi_linkup = 1;
|
|
if_link_state_change(ifp, LINK_STATE_UP);
|
|
} else {
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
|
|
device_xname(sc->sc_dev)));
|
|
mii->mii_media_status |= IFM_NONE;
|
|
sc->sc_tbi_linkup = 0;
|
|
if_link_state_change(ifp, LINK_STATE_DOWN);
|
|
wm_tbi_serdes_set_linkled(sc);
|
|
return;
|
|
}
|
|
mii->mii_media_active |= IFM_1000_SX;
|
|
if ((reg & PCS_LSTS_FDX) != 0)
|
|
mii->mii_media_active |= IFM_FDX;
|
|
else
|
|
mii->mii_media_active |= IFM_HDX;
|
|
if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
|
|
/* Check flow */
|
|
reg = CSR_READ(sc, WMREG_PCS_LSTS);
|
|
if ((reg & PCS_LSTS_AN_COMP) == 0) {
|
|
DPRINTF(sc, WM_DEBUG_LINK,
|
|
("XXX LINKOK but not ACOMP\n"));
|
|
return;
|
|
}
|
|
pcs_adv = CSR_READ(sc, WMREG_PCS_ANADV);
|
|
pcs_lpab = CSR_READ(sc, WMREG_PCS_LPAB);
|
|
DPRINTF(sc, WM_DEBUG_LINK,
|
|
("XXX AN result %08x, %08x\n", pcs_adv, pcs_lpab));
|
|
if ((pcs_adv & TXCW_SYM_PAUSE)
|
|
&& (pcs_lpab & TXCW_SYM_PAUSE)) {
|
|
mii->mii_media_active |= IFM_FLOW
|
|
| IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
|
|
} else if (((pcs_adv & TXCW_SYM_PAUSE) == 0)
|
|
&& (pcs_adv & TXCW_ASYM_PAUSE)
|
|
&& (pcs_lpab & TXCW_SYM_PAUSE)
|
|
&& (pcs_lpab & TXCW_ASYM_PAUSE))
|
|
mii->mii_media_active |= IFM_FLOW
|
|
| IFM_ETH_TXPAUSE;
|
|
else if ((pcs_adv & TXCW_SYM_PAUSE)
|
|
&& (pcs_adv & TXCW_ASYM_PAUSE)
|
|
&& ((pcs_lpab & TXCW_SYM_PAUSE) == 0)
|
|
&& (pcs_lpab & TXCW_ASYM_PAUSE))
|
|
mii->mii_media_active |= IFM_FLOW
|
|
| IFM_ETH_RXPAUSE;
|
|
}
|
|
/* Update LED */
|
|
wm_tbi_serdes_set_linkled(sc);
|
|
} else
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: Receive sequence error\n",
|
|
device_xname(sc->sc_dev)));
|
|
}
|
|
|
|
/*
|
|
* wm_linkintr:
|
|
*
|
|
* Helper; handle link interrupts.
|
|
*/
|
|
static void
|
|
wm_linkintr(struct wm_softc *sc, uint32_t icr)
|
|
{
|
|
|
|
KASSERT(WM_CORE_LOCKED(sc));
|
|
|
|
if (sc->sc_flags & WM_F_HAS_MII)
|
|
wm_linkintr_gmii(sc, icr);
|
|
else if ((sc->sc_mediatype == WM_MEDIATYPE_SERDES)
|
|
&& ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211)))
|
|
wm_linkintr_serdes(sc, icr);
|
|
else
|
|
wm_linkintr_tbi(sc, icr);
|
|
}
|
|
|
|
|
|
static inline void
|
|
wm_sched_handle_queue(struct wm_softc *sc, struct wm_queue *wmq)
|
|
{
|
|
|
|
if (wmq->wmq_txrx_use_workqueue)
|
|
workqueue_enqueue(sc->sc_queue_wq, &wmq->wmq_cookie, curcpu());
|
|
else
|
|
softint_schedule(wmq->wmq_si);
|
|
}
|
|
|
|
/*
|
|
* wm_intr_legacy:
|
|
*
|
|
* Interrupt service routine for INTx and MSI.
|
|
*/
|
|
static int
|
|
wm_intr_legacy(void *arg)
|
|
{
|
|
struct wm_softc *sc = arg;
|
|
struct wm_queue *wmq = &sc->sc_queue[0];
|
|
struct wm_txqueue *txq = &wmq->wmq_txq;
|
|
struct wm_rxqueue *rxq = &wmq->wmq_rxq;
|
|
uint32_t icr, rndval = 0;
|
|
int handled = 0;
|
|
|
|
while (1 /* CONSTCOND */) {
|
|
icr = CSR_READ(sc, WMREG_ICR);
|
|
if ((icr & sc->sc_icr) == 0)
|
|
break;
|
|
if (handled == 0)
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: INTx: got intr\n",device_xname(sc->sc_dev)));
|
|
if (rndval == 0)
|
|
rndval = icr;
|
|
|
|
mutex_enter(rxq->rxq_lock);
|
|
|
|
if (rxq->rxq_stopping) {
|
|
mutex_exit(rxq->rxq_lock);
|
|
break;
|
|
}
|
|
|
|
handled = 1;
|
|
|
|
#if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
|
|
if (icr & (ICR_RXDMT0 | ICR_RXT0)) {
|
|
DPRINTF(sc, WM_DEBUG_RX,
|
|
("%s: RX: got Rx intr 0x%08x\n",
|
|
device_xname(sc->sc_dev),
|
|
icr & (ICR_RXDMT0 | ICR_RXT0)));
|
|
WM_Q_EVCNT_INCR(rxq, intr);
|
|
}
|
|
#endif
|
|
/*
|
|
* wm_rxeof() does *not* call upper layer functions directly,
|
|
* as if_percpuq_enqueue() just call softint_schedule().
|
|
* So, we can call wm_rxeof() in interrupt context.
|
|
*/
|
|
wm_rxeof(rxq, UINT_MAX);
|
|
|
|
mutex_exit(rxq->rxq_lock);
|
|
mutex_enter(txq->txq_lock);
|
|
|
|
if (txq->txq_stopping) {
|
|
mutex_exit(txq->txq_lock);
|
|
break;
|
|
}
|
|
|
|
#if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
|
|
if (icr & ICR_TXDW) {
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: got TXDW interrupt\n",
|
|
device_xname(sc->sc_dev)));
|
|
WM_Q_EVCNT_INCR(txq, txdw);
|
|
}
|
|
#endif
|
|
wm_txeof(txq, UINT_MAX);
|
|
|
|
mutex_exit(txq->txq_lock);
|
|
WM_CORE_LOCK(sc);
|
|
|
|
if (sc->sc_core_stopping) {
|
|
WM_CORE_UNLOCK(sc);
|
|
break;
|
|
}
|
|
|
|
if (icr & (ICR_LSC | ICR_RXSEQ)) {
|
|
WM_EVCNT_INCR(&sc->sc_ev_linkintr);
|
|
wm_linkintr(sc, icr);
|
|
}
|
|
if ((icr & ICR_GPI(0)) != 0)
|
|
device_printf(sc->sc_dev, "got module interrupt\n");
|
|
|
|
WM_CORE_UNLOCK(sc);
|
|
|
|
if (icr & ICR_RXO) {
|
|
#if defined(WM_DEBUG)
|
|
log(LOG_WARNING, "%s: Receive overrun\n",
|
|
device_xname(sc->sc_dev));
|
|
#endif /* defined(WM_DEBUG) */
|
|
}
|
|
}
|
|
|
|
rnd_add_uint32(&sc->rnd_source, rndval);
|
|
|
|
if (handled) {
|
|
/* Try to get more packets going. */
|
|
wmq->wmq_txrx_use_workqueue = sc->sc_txrx_use_workqueue;
|
|
wm_sched_handle_queue(sc, wmq);
|
|
}
|
|
|
|
return handled;
|
|
}
|
|
|
|
static inline void
|
|
wm_txrxintr_disable(struct wm_queue *wmq)
|
|
{
|
|
struct wm_softc *sc = wmq->wmq_txq.txq_sc;
|
|
|
|
if (sc->sc_type == WM_T_82574)
|
|
CSR_WRITE(sc, WMREG_IMC,
|
|
ICR_TXQ(wmq->wmq_id) | ICR_RXQ(wmq->wmq_id));
|
|
else if (sc->sc_type == WM_T_82575)
|
|
CSR_WRITE(sc, WMREG_EIMC,
|
|
EITR_TX_QUEUE(wmq->wmq_id) | EITR_RX_QUEUE(wmq->wmq_id));
|
|
else
|
|
CSR_WRITE(sc, WMREG_EIMC, 1 << wmq->wmq_intr_idx);
|
|
}
|
|
|
|
static inline void
|
|
wm_txrxintr_enable(struct wm_queue *wmq)
|
|
{
|
|
struct wm_softc *sc = wmq->wmq_txq.txq_sc;
|
|
|
|
wm_itrs_calculate(sc, wmq);
|
|
|
|
/*
|
|
* ICR_OTHER which is disabled in wm_linkintr_msix() is enabled here.
|
|
* There is no need to care about which of RXQ(0) and RXQ(1) enable
|
|
* ICR_OTHER in first, because each RXQ/TXQ interrupt is disabled
|
|
* while each wm_handle_queue(wmq) is runnig.
|
|
*/
|
|
if (sc->sc_type == WM_T_82574)
|
|
CSR_WRITE(sc, WMREG_IMS,
|
|
ICR_TXQ(wmq->wmq_id) | ICR_RXQ(wmq->wmq_id) | ICR_OTHER);
|
|
else if (sc->sc_type == WM_T_82575)
|
|
CSR_WRITE(sc, WMREG_EIMS,
|
|
EITR_TX_QUEUE(wmq->wmq_id) | EITR_RX_QUEUE(wmq->wmq_id));
|
|
else
|
|
CSR_WRITE(sc, WMREG_EIMS, 1 << wmq->wmq_intr_idx);
|
|
}
|
|
|
|
static int
|
|
wm_txrxintr_msix(void *arg)
|
|
{
|
|
struct wm_queue *wmq = arg;
|
|
struct wm_txqueue *txq = &wmq->wmq_txq;
|
|
struct wm_rxqueue *rxq = &wmq->wmq_rxq;
|
|
struct wm_softc *sc = txq->txq_sc;
|
|
u_int txlimit = sc->sc_tx_intr_process_limit;
|
|
u_int rxlimit = sc->sc_rx_intr_process_limit;
|
|
bool txmore;
|
|
bool rxmore;
|
|
|
|
KASSERT(wmq->wmq_intr_idx == wmq->wmq_id);
|
|
|
|
DPRINTF(sc, WM_DEBUG_TX,
|
|
("%s: TX: got Tx intr\n", device_xname(sc->sc_dev)));
|
|
|
|
wm_txrxintr_disable(wmq);
|
|
|
|
mutex_enter(txq->txq_lock);
|
|
|
|
if (txq->txq_stopping) {
|
|
mutex_exit(txq->txq_lock);
|
|
return 0;
|
|
}
|
|
|
|
WM_Q_EVCNT_INCR(txq, txdw);
|
|
txmore = wm_txeof(txq, txlimit);
|
|
/* wm_deferred start() is done in wm_handle_queue(). */
|
|
mutex_exit(txq->txq_lock);
|
|
|
|
DPRINTF(sc, WM_DEBUG_RX,
|
|
("%s: RX: got Rx intr\n", device_xname(sc->sc_dev)));
|
|
mutex_enter(rxq->rxq_lock);
|
|
|
|
if (rxq->rxq_stopping) {
|
|
mutex_exit(rxq->rxq_lock);
|
|
return 0;
|
|
}
|
|
|
|
WM_Q_EVCNT_INCR(rxq, intr);
|
|
rxmore = wm_rxeof(rxq, rxlimit);
|
|
mutex_exit(rxq->rxq_lock);
|
|
|
|
wm_itrs_writereg(sc, wmq);
|
|
|
|
if (txmore || rxmore) {
|
|
wmq->wmq_txrx_use_workqueue = sc->sc_txrx_use_workqueue;
|
|
wm_sched_handle_queue(sc, wmq);
|
|
} else
|
|
wm_txrxintr_enable(wmq);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
wm_handle_queue(void *arg)
|
|
{
|
|
struct wm_queue *wmq = arg;
|
|
struct wm_txqueue *txq = &wmq->wmq_txq;
|
|
struct wm_rxqueue *rxq = &wmq->wmq_rxq;
|
|
struct wm_softc *sc = txq->txq_sc;
|
|
u_int txlimit = sc->sc_tx_process_limit;
|
|
u_int rxlimit = sc->sc_rx_process_limit;
|
|
bool txmore;
|
|
bool rxmore;
|
|
|
|
mutex_enter(txq->txq_lock);
|
|
if (txq->txq_stopping) {
|
|
mutex_exit(txq->txq_lock);
|
|
return;
|
|
}
|
|
txmore = wm_txeof(txq, txlimit);
|
|
wm_deferred_start_locked(txq);
|
|
mutex_exit(txq->txq_lock);
|
|
|
|
mutex_enter(rxq->rxq_lock);
|
|
if (rxq->rxq_stopping) {
|
|
mutex_exit(rxq->rxq_lock);
|
|
return;
|
|
}
|
|
WM_Q_EVCNT_INCR(rxq, defer);
|
|
rxmore = wm_rxeof(rxq, rxlimit);
|
|
mutex_exit(rxq->rxq_lock);
|
|
|
|
if (txmore || rxmore) {
|
|
wmq->wmq_txrx_use_workqueue = sc->sc_txrx_use_workqueue;
|
|
wm_sched_handle_queue(sc, wmq);
|
|
} else
|
|
wm_txrxintr_enable(wmq);
|
|
}
|
|
|
|
static void
|
|
wm_handle_queue_work(struct work *wk, void *context)
|
|
{
|
|
struct wm_queue *wmq = container_of(wk, struct wm_queue, wmq_cookie);
|
|
|
|
/*
|
|
* "enqueued flag" is not required here.
|
|
*/
|
|
wm_handle_queue(wmq);
|
|
}
|
|
|
|
/*
|
|
* wm_linkintr_msix:
|
|
*
|
|
* Interrupt service routine for link status change for MSI-X.
|
|
*/
|
|
static int
|
|
wm_linkintr_msix(void *arg)
|
|
{
|
|
struct wm_softc *sc = arg;
|
|
uint32_t reg;
|
|
bool has_rxo;
|
|
|
|
reg = CSR_READ(sc, WMREG_ICR);
|
|
WM_CORE_LOCK(sc);
|
|
DPRINTF(sc, WM_DEBUG_LINK,
|
|
("%s: LINK: got link intr. ICR = %08x\n",
|
|
device_xname(sc->sc_dev), reg));
|
|
|
|
if (sc->sc_core_stopping)
|
|
goto out;
|
|
|
|
if ((reg & ICR_LSC) != 0) {
|
|
WM_EVCNT_INCR(&sc->sc_ev_linkintr);
|
|
wm_linkintr(sc, ICR_LSC);
|
|
}
|
|
if ((reg & ICR_GPI(0)) != 0)
|
|
device_printf(sc->sc_dev, "got module interrupt\n");
|
|
|
|
/*
|
|
* XXX 82574 MSI-X mode workaround
|
|
*
|
|
* 82574 MSI-X mode causes receive overrun(RXO) interrupt as ICR_OTHER
|
|
* MSI-X vector, furthermore it does not cause neigher ICR_RXQ(0) nor
|
|
* ICR_RXQ(1) vector. So, we generate ICR_RXQ(0) and ICR_RXQ(1)
|
|
* interrupts by writing WMREG_ICS to process receive packets.
|
|
*/
|
|
if (sc->sc_type == WM_T_82574 && ((reg & ICR_RXO) != 0)) {
|
|
#if defined(WM_DEBUG)
|
|
log(LOG_WARNING, "%s: Receive overrun\n",
|
|
device_xname(sc->sc_dev));
|
|
#endif /* defined(WM_DEBUG) */
|
|
|
|
has_rxo = true;
|
|
/*
|
|
* The RXO interrupt is very high rate when receive traffic is
|
|
* high rate. We use polling mode for ICR_OTHER like Tx/Rx
|
|
* interrupts. ICR_OTHER will be enabled at the end of
|
|
* wm_txrxintr_msix() which is kicked by both ICR_RXQ(0) and
|
|
* ICR_RXQ(1) interrupts.
|
|
*/
|
|
CSR_WRITE(sc, WMREG_IMC, ICR_OTHER);
|
|
|
|
CSR_WRITE(sc, WMREG_ICS, ICR_RXQ(0) | ICR_RXQ(1));
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
WM_CORE_UNLOCK(sc);
|
|
|
|
if (sc->sc_type == WM_T_82574) {
|
|
if (!has_rxo)
|
|
CSR_WRITE(sc, WMREG_IMS, ICR_OTHER | ICR_LSC);
|
|
else
|
|
CSR_WRITE(sc, WMREG_IMS, ICR_LSC);
|
|
} else if (sc->sc_type == WM_T_82575)
|
|
CSR_WRITE(sc, WMREG_EIMS, EITR_OTHER);
|
|
else
|
|
CSR_WRITE(sc, WMREG_EIMS, 1 << sc->sc_link_intr_idx);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Media related.
|
|
* GMII, SGMII, TBI (and SERDES)
|
|
*/
|
|
|
|
/* Common */
|
|
|
|
/*
|
|
* wm_tbi_serdes_set_linkled:
|
|
*
|
|
* Update the link LED on TBI and SERDES devices.
|
|
*/
|
|
static void
|
|
wm_tbi_serdes_set_linkled(struct wm_softc *sc)
|
|
{
|
|
|
|
if (sc->sc_tbi_linkup)
|
|
sc->sc_ctrl |= CTRL_SWDPIN(0);
|
|
else
|
|
sc->sc_ctrl &= ~CTRL_SWDPIN(0);
|
|
|
|
/* 82540 or newer devices are active low */
|
|
sc->sc_ctrl ^= (sc->sc_type >= WM_T_82540) ? CTRL_SWDPIN(0) : 0;
|
|
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
}
|
|
|
|
/* GMII related */
|
|
|
|
/*
|
|
* wm_gmii_reset:
|
|
*
|
|
* Reset the PHY.
|
|
*/
|
|
static void
|
|
wm_gmii_reset(struct wm_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
int rv;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
rv = sc->phy.acquire(sc);
|
|
if (rv != 0) {
|
|
aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
|
|
__func__);
|
|
return;
|
|
}
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_82542_2_0:
|
|
case WM_T_82542_2_1:
|
|
/* null */
|
|
break;
|
|
case WM_T_82543:
|
|
/*
|
|
* With 82543, we need to force speed and duplex on the MAC
|
|
* equal to what the PHY speed and duplex configuration is.
|
|
* In addition, we need to perform a hardware reset on the PHY
|
|
* to take it out of reset.
|
|
*/
|
|
sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
|
|
/* The PHY reset pin is active-low. */
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
|
|
CTRL_EXT_SWDPIN(4));
|
|
reg |= CTRL_EXT_SWDPIO(4);
|
|
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(10*1000);
|
|
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(150);
|
|
#if 0
|
|
sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
|
|
#endif
|
|
delay(20*1000); /* XXX extra delay to get PHY ID? */
|
|
break;
|
|
case WM_T_82544: /* Reset 10000us */
|
|
case WM_T_82540:
|
|
case WM_T_82545:
|
|
case WM_T_82545_3:
|
|
case WM_T_82546:
|
|
case WM_T_82546_3:
|
|
case WM_T_82541:
|
|
case WM_T_82541_2:
|
|
case WM_T_82547:
|
|
case WM_T_82547_2:
|
|
case WM_T_82571: /* Reset 100us */
|
|
case WM_T_82572:
|
|
case WM_T_82573:
|
|
case WM_T_82574:
|
|
case WM_T_82575:
|
|
case WM_T_82576:
|
|
case WM_T_82580:
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
case WM_T_I210:
|
|
case WM_T_I211:
|
|
case WM_T_82583:
|
|
case WM_T_80003:
|
|
/* Generic reset */
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(20000);
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(20000);
|
|
|
|
if ((sc->sc_type == WM_T_82541)
|
|
|| (sc->sc_type == WM_T_82541_2)
|
|
|| (sc->sc_type == WM_T_82547)
|
|
|| (sc->sc_type == WM_T_82547_2)) {
|
|
/* Workaround for igp are done in igp_reset() */
|
|
/* XXX add code to set LED after phy reset */
|
|
}
|
|
break;
|
|
case WM_T_ICH8:
|
|
case WM_T_ICH9:
|
|
case WM_T_ICH10:
|
|
case WM_T_PCH:
|
|
case WM_T_PCH2:
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
/* Generic reset */
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(100);
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(150);
|
|
break;
|
|
default:
|
|
panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
|
|
__func__);
|
|
break;
|
|
}
|
|
|
|
sc->phy.release(sc);
|
|
|
|
/* get_cfg_done */
|
|
wm_get_cfg_done(sc);
|
|
|
|
/* Extra setup */
|
|
switch (sc->sc_type) {
|
|
case WM_T_82542_2_0:
|
|
case WM_T_82542_2_1:
|
|
case WM_T_82543:
|
|
case WM_T_82544:
|
|
case WM_T_82540:
|
|
case WM_T_82545:
|
|
case WM_T_82545_3:
|
|
case WM_T_82546:
|
|
case WM_T_82546_3:
|
|
case WM_T_82541_2:
|
|
case WM_T_82547_2:
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
case WM_T_82573:
|
|
case WM_T_82574:
|
|
case WM_T_82583:
|
|
case WM_T_82575:
|
|
case WM_T_82576:
|
|
case WM_T_82580:
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
case WM_T_I210:
|
|
case WM_T_I211:
|
|
case WM_T_80003:
|
|
/* Null */
|
|
break;
|
|
case WM_T_82541:
|
|
case WM_T_82547:
|
|
/* XXX Configure actively LED after PHY reset */
|
|
break;
|
|
case WM_T_ICH8:
|
|
case WM_T_ICH9:
|
|
case WM_T_ICH10:
|
|
case WM_T_PCH:
|
|
case WM_T_PCH2:
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
wm_phy_post_reset(sc);
|
|
break;
|
|
default:
|
|
panic("%s: unknown type\n", __func__);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup sc_phytype and mii_{read|write}reg.
|
|
*
|
|
* To identify PHY type, correct read/write function should be selected.
|
|
* To select correct read/write function, PCI ID or MAC type are required
|
|
* without accessing PHY registers.
|
|
*
|
|
* On the first call of this function, PHY ID is not known yet. Check
|
|
* PCI ID or MAC type. The list of the PCI ID may not be perfect, so the
|
|
* result might be incorrect.
|
|
*
|
|
* In the second call, PHY OUI and model is used to identify PHY type.
|
|
* It might not be perfect because of the lack of compared entry, but it
|
|
* would be better than the first call.
|
|
*
|
|
* If the detected new result and previous assumption is different,
|
|
* diagnous message will be printed.
|
|
*/
|
|
static void
|
|
wm_gmii_setup_phytype(struct wm_softc *sc, uint32_t phy_oui,
|
|
uint16_t phy_model)
|
|
{
|
|
device_t dev = sc->sc_dev;
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
uint16_t new_phytype = WMPHY_UNKNOWN;
|
|
uint16_t doubt_phytype = WMPHY_UNKNOWN;
|
|
mii_readreg_t new_readreg;
|
|
mii_writereg_t new_writereg;
|
|
bool dodiag = true;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
/*
|
|
* 1000BASE-T SFP uses SGMII and the first asumed PHY type is always
|
|
* incorrect. So don't print diag output when it's 2nd call.
|
|
*/
|
|
if ((sc->sc_sfptype != 0) && (phy_oui == 0) && (phy_model == 0))
|
|
dodiag = false;
|
|
|
|
if (mii->mii_readreg == NULL) {
|
|
/*
|
|
* This is the first call of this function. For ICH and PCH
|
|
* variants, it's difficult to determine the PHY access method
|
|
* by sc_type, so use the PCI product ID for some devices.
|
|
*/
|
|
|
|
switch (sc->sc_pcidevid) {
|
|
case PCI_PRODUCT_INTEL_PCH_M_LM:
|
|
case PCI_PRODUCT_INTEL_PCH_M_LC:
|
|
/* 82577 */
|
|
new_phytype = WMPHY_82577;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_PCH_D_DM:
|
|
case PCI_PRODUCT_INTEL_PCH_D_DC:
|
|
/* 82578 */
|
|
new_phytype = WMPHY_82578;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_PCH2_LV_LM:
|
|
case PCI_PRODUCT_INTEL_PCH2_LV_V:
|
|
/* 82579 */
|
|
new_phytype = WMPHY_82579;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_82801H_82567V_3:
|
|
case PCI_PRODUCT_INTEL_82801I_BM:
|
|
case PCI_PRODUCT_INTEL_82801I_IGP_M_AMT: /* Not IGP but BM */
|
|
case PCI_PRODUCT_INTEL_82801J_R_BM_LM:
|
|
case PCI_PRODUCT_INTEL_82801J_R_BM_LF:
|
|
case PCI_PRODUCT_INTEL_82801J_D_BM_LM:
|
|
case PCI_PRODUCT_INTEL_82801J_D_BM_LF:
|
|
case PCI_PRODUCT_INTEL_82801J_R_BM_V:
|
|
/* ICH8, 9, 10 with 82567 */
|
|
new_phytype = WMPHY_BM;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else {
|
|
/* It's not the first call. Use PHY OUI and model */
|
|
switch (phy_oui) {
|
|
case MII_OUI_ATTANSIC: /* XXX ??? */
|
|
switch (phy_model) {
|
|
case 0x0004: /* XXX */
|
|
new_phytype = WMPHY_82578;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case MII_OUI_xxMARVELL:
|
|
switch (phy_model) {
|
|
case MII_MODEL_xxMARVELL_I210:
|
|
new_phytype = WMPHY_I210;
|
|
break;
|
|
case MII_MODEL_xxMARVELL_E1011:
|
|
case MII_MODEL_xxMARVELL_E1000_3:
|
|
case MII_MODEL_xxMARVELL_E1000_5:
|
|
case MII_MODEL_xxMARVELL_E1112:
|
|
new_phytype = WMPHY_M88;
|
|
break;
|
|
case MII_MODEL_xxMARVELL_E1149:
|
|
new_phytype = WMPHY_BM;
|
|
break;
|
|
case MII_MODEL_xxMARVELL_E1111:
|
|
case MII_MODEL_xxMARVELL_I347:
|
|
case MII_MODEL_xxMARVELL_E1512:
|
|
case MII_MODEL_xxMARVELL_E1340M:
|
|
case MII_MODEL_xxMARVELL_E1543:
|
|
new_phytype = WMPHY_M88;
|
|
break;
|
|
case MII_MODEL_xxMARVELL_I82563:
|
|
new_phytype = WMPHY_GG82563;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case MII_OUI_INTEL:
|
|
switch (phy_model) {
|
|
case MII_MODEL_INTEL_I82577:
|
|
new_phytype = WMPHY_82577;
|
|
break;
|
|
case MII_MODEL_INTEL_I82579:
|
|
new_phytype = WMPHY_82579;
|
|
break;
|
|
case MII_MODEL_INTEL_I217:
|
|
new_phytype = WMPHY_I217;
|
|
break;
|
|
case MII_MODEL_INTEL_I82580:
|
|
new_phytype = WMPHY_82580;
|
|
break;
|
|
case MII_MODEL_INTEL_I350:
|
|
new_phytype = WMPHY_I350;
|
|
break;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case MII_OUI_yyINTEL:
|
|
switch (phy_model) {
|
|
case MII_MODEL_yyINTEL_I82562G:
|
|
case MII_MODEL_yyINTEL_I82562EM:
|
|
case MII_MODEL_yyINTEL_I82562ET:
|
|
new_phytype = WMPHY_IFE;
|
|
break;
|
|
case MII_MODEL_yyINTEL_IGP01E1000:
|
|
new_phytype = WMPHY_IGP;
|
|
break;
|
|
case MII_MODEL_yyINTEL_I82566:
|
|
new_phytype = WMPHY_IGP_3;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (dodiag) {
|
|
if (new_phytype == WMPHY_UNKNOWN)
|
|
aprint_verbose_dev(dev,
|
|
"%s: Unknown PHY model. OUI=%06x, "
|
|
"model=%04x\n", __func__, phy_oui,
|
|
phy_model);
|
|
|
|
if ((sc->sc_phytype != WMPHY_UNKNOWN)
|
|
&& (sc->sc_phytype != new_phytype)) {
|
|
aprint_error_dev(dev, "Previously assumed PHY "
|
|
"type(%u) was incorrect. PHY type from PHY"
|
|
"ID = %u\n", sc->sc_phytype, new_phytype);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Next, use sc->sc_flags and sc->sc_type to set read/write funcs. */
|
|
if (((sc->sc_flags & WM_F_SGMII) != 0) && !wm_sgmii_uses_mdio(sc)) {
|
|
/* SGMII */
|
|
new_readreg = wm_sgmii_readreg;
|
|
new_writereg = wm_sgmii_writereg;
|
|
} else if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583)){
|
|
/* BM2 (phyaddr == 1) */
|
|
if ((sc->sc_phytype != WMPHY_UNKNOWN)
|
|
&& (new_phytype != WMPHY_BM)
|
|
&& (new_phytype != WMPHY_UNKNOWN))
|
|
doubt_phytype = new_phytype;
|
|
new_phytype = WMPHY_BM;
|
|
new_readreg = wm_gmii_bm_readreg;
|
|
new_writereg = wm_gmii_bm_writereg;
|
|
} else if (sc->sc_type >= WM_T_PCH) {
|
|
/* All PCH* use _hv_ */
|
|
new_readreg = wm_gmii_hv_readreg;
|
|
new_writereg = wm_gmii_hv_writereg;
|
|
} else if (sc->sc_type >= WM_T_ICH8) {
|
|
/* non-82567 ICH8, 9 and 10 */
|
|
new_readreg = wm_gmii_i82544_readreg;
|
|
new_writereg = wm_gmii_i82544_writereg;
|
|
} else if (sc->sc_type >= WM_T_80003) {
|
|
/* 80003 */
|
|
if ((sc->sc_phytype != WMPHY_UNKNOWN)
|
|
&& (new_phytype != WMPHY_GG82563)
|
|
&& (new_phytype != WMPHY_UNKNOWN))
|
|
doubt_phytype = new_phytype;
|
|
new_phytype = WMPHY_GG82563;
|
|
new_readreg = wm_gmii_i80003_readreg;
|
|
new_writereg = wm_gmii_i80003_writereg;
|
|
} else if (sc->sc_type >= WM_T_I210) {
|
|
/* I210 and I211 */
|
|
if ((sc->sc_phytype != WMPHY_UNKNOWN)
|
|
&& (new_phytype != WMPHY_I210)
|
|
&& (new_phytype != WMPHY_UNKNOWN))
|
|
doubt_phytype = new_phytype;
|
|
new_phytype = WMPHY_I210;
|
|
new_readreg = wm_gmii_gs40g_readreg;
|
|
new_writereg = wm_gmii_gs40g_writereg;
|
|
} else if (sc->sc_type >= WM_T_82580) {
|
|
/* 82580, I350 and I354 */
|
|
new_readreg = wm_gmii_82580_readreg;
|
|
new_writereg = wm_gmii_82580_writereg;
|
|
} else if (sc->sc_type >= WM_T_82544) {
|
|
/* 82544, 0, [56], [17], 8257[1234] and 82583 */
|
|
new_readreg = wm_gmii_i82544_readreg;
|
|
new_writereg = wm_gmii_i82544_writereg;
|
|
} else {
|
|
new_readreg = wm_gmii_i82543_readreg;
|
|
new_writereg = wm_gmii_i82543_writereg;
|
|
}
|
|
|
|
if (new_phytype == WMPHY_BM) {
|
|
/* All BM use _bm_ */
|
|
new_readreg = wm_gmii_bm_readreg;
|
|
new_writereg = wm_gmii_bm_writereg;
|
|
}
|
|
if ((sc->sc_type >= WM_T_PCH) && (sc->sc_type <= WM_T_PCH_CNP)) {
|
|
/* All PCH* use _hv_ */
|
|
new_readreg = wm_gmii_hv_readreg;
|
|
new_writereg = wm_gmii_hv_writereg;
|
|
}
|
|
|
|
/* Diag output */
|
|
if (dodiag) {
|
|
if (doubt_phytype != WMPHY_UNKNOWN)
|
|
aprint_error_dev(dev, "Assumed new PHY type was "
|
|
"incorrect. old = %u, new = %u\n", sc->sc_phytype,
|
|
new_phytype);
|
|
else if ((sc->sc_phytype != WMPHY_UNKNOWN)
|
|
&& (sc->sc_phytype != new_phytype))
|
|
aprint_error_dev(dev, "Previously assumed PHY type(%u)"
|
|
"was incorrect. New PHY type = %u\n",
|
|
sc->sc_phytype, new_phytype);
|
|
|
|
if ((mii->mii_readreg != NULL) &&
|
|
(new_phytype == WMPHY_UNKNOWN))
|
|
aprint_error_dev(dev, "PHY type is still unknown.\n");
|
|
|
|
if ((mii->mii_readreg != NULL) &&
|
|
(mii->mii_readreg != new_readreg))
|
|
aprint_error_dev(dev, "Previously assumed PHY "
|
|
"read/write function was incorrect.\n");
|
|
}
|
|
|
|
/* Update now */
|
|
sc->sc_phytype = new_phytype;
|
|
mii->mii_readreg = new_readreg;
|
|
mii->mii_writereg = new_writereg;
|
|
if (new_readreg == wm_gmii_hv_readreg) {
|
|
sc->phy.readreg_locked = wm_gmii_hv_readreg_locked;
|
|
sc->phy.writereg_locked = wm_gmii_hv_writereg_locked;
|
|
} else if (new_readreg == wm_sgmii_readreg) {
|
|
sc->phy.readreg_locked = wm_sgmii_readreg_locked;
|
|
sc->phy.writereg_locked = wm_sgmii_writereg_locked;
|
|
} else if (new_readreg == wm_gmii_i82544_readreg) {
|
|
sc->phy.readreg_locked = wm_gmii_i82544_readreg_locked;
|
|
sc->phy.writereg_locked = wm_gmii_i82544_writereg_locked;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* wm_get_phy_id_82575:
|
|
*
|
|
* Return PHY ID. Return -1 if it failed.
|
|
*/
|
|
static int
|
|
wm_get_phy_id_82575(struct wm_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
int phyid = -1;
|
|
|
|
/* XXX */
|
|
if ((sc->sc_flags & WM_F_SGMII) == 0)
|
|
return -1;
|
|
|
|
if (wm_sgmii_uses_mdio(sc)) {
|
|
switch (sc->sc_type) {
|
|
case WM_T_82575:
|
|
case WM_T_82576:
|
|
reg = CSR_READ(sc, WMREG_MDIC);
|
|
phyid = (reg & MDIC_PHY_MASK) >> MDIC_PHY_SHIFT;
|
|
break;
|
|
case WM_T_82580:
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
case WM_T_I210:
|
|
case WM_T_I211:
|
|
reg = CSR_READ(sc, WMREG_MDICNFG);
|
|
phyid = (reg & MDICNFG_PHY_MASK) >> MDICNFG_PHY_SHIFT;
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return phyid;
|
|
}
|
|
|
|
/*
|
|
* wm_gmii_mediainit:
|
|
*
|
|
* Initialize media for use on 1000BASE-T devices.
|
|
*/
|
|
static void
|
|
wm_gmii_mediainit(struct wm_softc *sc, pci_product_id_t prodid)
|
|
{
|
|
device_t dev = sc->sc_dev;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
|
|
DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
/* We have GMII. */
|
|
sc->sc_flags |= WM_F_HAS_MII;
|
|
|
|
if (sc->sc_type == WM_T_80003)
|
|
sc->sc_tipg = TIPG_1000T_80003_DFLT;
|
|
else
|
|
sc->sc_tipg = TIPG_1000T_DFLT;
|
|
|
|
/*
|
|
* Let the chip set speed/duplex on its own based on
|
|
* signals from the PHY.
|
|
* XXXbouyer - I'm not sure this is right for the 80003,
|
|
* the em driver only sets CTRL_SLU here - but it seems to work.
|
|
*/
|
|
sc->sc_ctrl |= CTRL_SLU;
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
|
|
/* Initialize our media structures and probe the GMII. */
|
|
mii->mii_ifp = ifp;
|
|
|
|
mii->mii_statchg = wm_gmii_statchg;
|
|
|
|
/* get PHY control from SMBus to PCIe */
|
|
if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
|
|
|| (sc->sc_type == WM_T_PCH_LPT) || (sc->sc_type == WM_T_PCH_SPT)
|
|
|| (sc->sc_type == WM_T_PCH_CNP))
|
|
wm_init_phy_workarounds_pchlan(sc);
|
|
|
|
wm_gmii_reset(sc);
|
|
|
|
sc->sc_ethercom.ec_mii = &sc->sc_mii;
|
|
ifmedia_init_with_lock(&mii->mii_media, IFM_IMASK, wm_gmii_mediachange,
|
|
wm_gmii_mediastatus, sc->sc_core_lock);
|
|
|
|
/* Setup internal SGMII PHY for SFP */
|
|
wm_sgmii_sfp_preconfig(sc);
|
|
|
|
if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
|
|
|| (sc->sc_type == WM_T_82580)
|
|
|| (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
|
|
|| (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211)) {
|
|
if ((sc->sc_flags & WM_F_SGMII) == 0) {
|
|
/* Attach only one port */
|
|
mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, 1,
|
|
MII_OFFSET_ANY, MIIF_DOPAUSE);
|
|
} else {
|
|
int i, id;
|
|
uint32_t ctrl_ext;
|
|
|
|
id = wm_get_phy_id_82575(sc);
|
|
if (id != -1) {
|
|
mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff,
|
|
id, MII_OFFSET_ANY, MIIF_DOPAUSE);
|
|
}
|
|
if ((id == -1)
|
|
|| (LIST_FIRST(&mii->mii_phys) == NULL)) {
|
|
/* Power on sgmii phy if it is disabled */
|
|
ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT,
|
|
ctrl_ext &~ CTRL_EXT_SWDPIN(3));
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(300*1000); /* XXX too long */
|
|
|
|
/*
|
|
* From 1 to 8.
|
|
*
|
|
* I2C access fails with I2C register's ERROR
|
|
* bit set, so prevent error message while
|
|
* scanning.
|
|
*/
|
|
sc->phy.no_errprint = true;
|
|
for (i = 1; i < 8; i++)
|
|
mii_attach(sc->sc_dev, &sc->sc_mii,
|
|
0xffffffff, i, MII_OFFSET_ANY,
|
|
MIIF_DOPAUSE);
|
|
sc->phy.no_errprint = false;
|
|
|
|
/* Restore previous sfp cage power state */
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
|
|
}
|
|
}
|
|
} else
|
|
mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
|
|
MII_OFFSET_ANY, MIIF_DOPAUSE);
|
|
|
|
/*
|
|
* If the MAC is PCH2 or PCH_LPT and failed to detect MII PHY, call
|
|
* wm_set_mdio_slow_mode_hv() for a workaround and retry.
|
|
*/
|
|
if (((sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
|
|
|| (sc->sc_type == WM_T_PCH_SPT)
|
|
|| (sc->sc_type == WM_T_PCH_CNP))
|
|
&& (LIST_FIRST(&mii->mii_phys) == NULL)) {
|
|
wm_set_mdio_slow_mode_hv(sc);
|
|
mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
|
|
MII_OFFSET_ANY, MIIF_DOPAUSE);
|
|
}
|
|
|
|
/*
|
|
* (For ICH8 variants)
|
|
* If PHY detection failed, use BM's r/w function and retry.
|
|
*/
|
|
if (LIST_FIRST(&mii->mii_phys) == NULL) {
|
|
/* if failed, retry with *_bm_* */
|
|
aprint_verbose_dev(dev, "Assumed PHY access function "
|
|
"(type = %d) might be incorrect. Use BM and retry.\n",
|
|
sc->sc_phytype);
|
|
sc->sc_phytype = WMPHY_BM;
|
|
mii->mii_readreg = wm_gmii_bm_readreg;
|
|
mii->mii_writereg = wm_gmii_bm_writereg;
|
|
|
|
mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
|
|
MII_OFFSET_ANY, MIIF_DOPAUSE);
|
|
}
|
|
|
|
if (LIST_FIRST(&mii->mii_phys) == NULL) {
|
|
/* Any PHY wasn't find */
|
|
ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
|
|
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
|
|
sc->sc_phytype = WMPHY_NONE;
|
|
} else {
|
|
struct mii_softc *child = LIST_FIRST(&mii->mii_phys);
|
|
|
|
/*
|
|
* PHY Found! Check PHY type again by the second call of
|
|
* wm_gmii_setup_phytype.
|
|
*/
|
|
wm_gmii_setup_phytype(sc, child->mii_mpd_oui,
|
|
child->mii_mpd_model);
|
|
|
|
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* wm_gmii_mediachange: [ifmedia interface function]
|
|
*
|
|
* Set hardware to newly-selected media on a 1000BASE-T device.
|
|
*/
|
|
static int
|
|
wm_gmii_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
|
|
uint32_t reg;
|
|
int rc;
|
|
|
|
DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
if ((ifp->if_flags & IFF_UP) == 0)
|
|
return 0;
|
|
|
|
/* XXX Not for I354? FreeBSD's e1000_82575.c doesn't include it */
|
|
if ((sc->sc_type == WM_T_82580)
|
|
|| (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I210)
|
|
|| (sc->sc_type == WM_T_I211)) {
|
|
reg = CSR_READ(sc, WMREG_PHPM);
|
|
reg &= ~PHPM_GO_LINK_D;
|
|
CSR_WRITE(sc, WMREG_PHPM, reg);
|
|
}
|
|
|
|
/* Disable D0 LPLU. */
|
|
wm_lplu_d0_disable(sc);
|
|
|
|
sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
|
|
sc->sc_ctrl |= CTRL_SLU;
|
|
if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
|
|
|| (sc->sc_type > WM_T_82543)) {
|
|
sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX);
|
|
} else {
|
|
sc->sc_ctrl &= ~CTRL_ASDE;
|
|
sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
|
|
if (ife->ifm_media & IFM_FDX)
|
|
sc->sc_ctrl |= CTRL_FD;
|
|
switch (IFM_SUBTYPE(ife->ifm_media)) {
|
|
case IFM_10_T:
|
|
sc->sc_ctrl |= CTRL_SPEED_10;
|
|
break;
|
|
case IFM_100_TX:
|
|
sc->sc_ctrl |= CTRL_SPEED_100;
|
|
break;
|
|
case IFM_1000_T:
|
|
sc->sc_ctrl |= CTRL_SPEED_1000;
|
|
break;
|
|
case IFM_NONE:
|
|
/* There is no specific setting for IFM_NONE */
|
|
break;
|
|
default:
|
|
panic("wm_gmii_mediachange: bad media 0x%x",
|
|
ife->ifm_media);
|
|
}
|
|
}
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
CSR_WRITE_FLUSH(sc);
|
|
|
|
if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211))
|
|
wm_serdes_mediachange(ifp);
|
|
|
|
if (sc->sc_type <= WM_T_82543)
|
|
wm_gmii_reset(sc);
|
|
else if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211)
|
|
&& ((sc->sc_flags & WM_F_SGMII) != 0)) {
|
|
/* allow time for SFP cage time to power up phy */
|
|
delay(300 * 1000);
|
|
wm_gmii_reset(sc);
|
|
}
|
|
|
|
if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
|
|
return 0;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* wm_gmii_mediastatus: [ifmedia interface function]
|
|
*
|
|
* Get the current interface media status on a 1000BASE-T device.
|
|
*/
|
|
static void
|
|
wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
|
|
ether_mediastatus(ifp, ifmr);
|
|
ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
|
|
| sc->sc_flowflags;
|
|
}
|
|
|
|
#define MDI_IO CTRL_SWDPIN(2)
|
|
#define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
|
|
#define MDI_CLK CTRL_SWDPIN(3)
|
|
|
|
static void
|
|
wm_i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
|
|
{
|
|
uint32_t i, v;
|
|
|
|
v = CSR_READ(sc, WMREG_CTRL);
|
|
v &= ~(MDI_IO | MDI_CLK | (CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
|
|
v |= MDI_DIR | CTRL_SWDPIO(3);
|
|
|
|
for (i = __BIT(nbits - 1); i != 0; i >>= 1) {
|
|
if (data & i)
|
|
v |= MDI_IO;
|
|
else
|
|
v &= ~MDI_IO;
|
|
CSR_WRITE(sc, WMREG_CTRL, v);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(10);
|
|
CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(10);
|
|
CSR_WRITE(sc, WMREG_CTRL, v);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(10);
|
|
}
|
|
}
|
|
|
|
static uint16_t
|
|
wm_i82543_mii_recvbits(struct wm_softc *sc)
|
|
{
|
|
uint32_t v, i;
|
|
uint16_t data = 0;
|
|
|
|
v = CSR_READ(sc, WMREG_CTRL);
|
|
v &= ~(MDI_IO | MDI_CLK | (CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
|
|
v |= CTRL_SWDPIO(3);
|
|
|
|
CSR_WRITE(sc, WMREG_CTRL, v);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(10);
|
|
CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(10);
|
|
CSR_WRITE(sc, WMREG_CTRL, v);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(10);
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
data <<= 1;
|
|
CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(10);
|
|
if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
|
|
data |= 1;
|
|
CSR_WRITE(sc, WMREG_CTRL, v);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(10);
|
|
}
|
|
|
|
CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(10);
|
|
CSR_WRITE(sc, WMREG_CTRL, v);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(10);
|
|
|
|
return data;
|
|
}
|
|
|
|
#undef MDI_IO
|
|
#undef MDI_DIR
|
|
#undef MDI_CLK
|
|
|
|
/*
|
|
* wm_gmii_i82543_readreg: [mii interface function]
|
|
*
|
|
* Read a PHY register on the GMII (i82543 version).
|
|
*/
|
|
static int
|
|
wm_gmii_i82543_readreg(device_t dev, int phy, int reg, uint16_t *val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
|
|
wm_i82543_mii_sendbits(sc, 0xffffffffU, 32);
|
|
wm_i82543_mii_sendbits(sc, reg | (phy << 5) |
|
|
(MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
|
|
*val = wm_i82543_mii_recvbits(sc) & 0xffff;
|
|
|
|
DPRINTF(sc, WM_DEBUG_GMII, ("%s: GMII: read phy %d reg %d -> 0x%04hx\n",
|
|
device_xname(dev), phy, reg, *val));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* wm_gmii_i82543_writereg: [mii interface function]
|
|
*
|
|
* Write a PHY register on the GMII (i82543 version).
|
|
*/
|
|
static int
|
|
wm_gmii_i82543_writereg(device_t dev, int phy, int reg, uint16_t val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
|
|
wm_i82543_mii_sendbits(sc, 0xffffffffU, 32);
|
|
wm_i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
|
|
(reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
|
|
(MII_COMMAND_START << 30), 32);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* wm_gmii_mdic_readreg: [mii interface function]
|
|
*
|
|
* Read a PHY register on the GMII.
|
|
*/
|
|
static int
|
|
wm_gmii_mdic_readreg(device_t dev, int phy, int reg, uint16_t *val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
uint32_t mdic = 0;
|
|
int i;
|
|
|
|
if ((sc->sc_phytype != WMPHY_82579) && (sc->sc_phytype != WMPHY_I217)
|
|
&& (reg > MII_ADDRMASK)) {
|
|
device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n",
|
|
__func__, sc->sc_phytype, reg);
|
|
reg &= MII_ADDRMASK;
|
|
}
|
|
|
|
CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
|
|
MDIC_REGADD(reg));
|
|
|
|
for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
|
|
delay(50);
|
|
mdic = CSR_READ(sc, WMREG_MDIC);
|
|
if (mdic & MDIC_READY)
|
|
break;
|
|
}
|
|
|
|
if ((mdic & MDIC_READY) == 0) {
|
|
DPRINTF(sc, WM_DEBUG_GMII,
|
|
("%s: MDIC read timed out: phy %d reg %d\n",
|
|
device_xname(dev), phy, reg));
|
|
return ETIMEDOUT;
|
|
} else if (mdic & MDIC_E) {
|
|
/* This is normal if no PHY is present. */
|
|
DPRINTF(sc, WM_DEBUG_GMII, ("%s: MDIC read error: phy %d reg %d\n",
|
|
device_xname(sc->sc_dev), phy, reg));
|
|
return -1;
|
|
} else
|
|
*val = MDIC_DATA(mdic);
|
|
|
|
/*
|
|
* Allow some time after each MDIC transaction to avoid
|
|
* reading duplicate data in the next MDIC transaction.
|
|
*/
|
|
if (sc->sc_type == WM_T_PCH2)
|
|
delay(100);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* wm_gmii_mdic_writereg: [mii interface function]
|
|
*
|
|
* Write a PHY register on the GMII.
|
|
*/
|
|
static int
|
|
wm_gmii_mdic_writereg(device_t dev, int phy, int reg, uint16_t val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
uint32_t mdic = 0;
|
|
int i;
|
|
|
|
if ((sc->sc_phytype != WMPHY_82579) && (sc->sc_phytype != WMPHY_I217)
|
|
&& (reg > MII_ADDRMASK)) {
|
|
device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n",
|
|
__func__, sc->sc_phytype, reg);
|
|
reg &= MII_ADDRMASK;
|
|
}
|
|
|
|
CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
|
|
MDIC_REGADD(reg) | MDIC_DATA(val));
|
|
|
|
for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
|
|
delay(50);
|
|
mdic = CSR_READ(sc, WMREG_MDIC);
|
|
if (mdic & MDIC_READY)
|
|
break;
|
|
}
|
|
|
|
if ((mdic & MDIC_READY) == 0) {
|
|
DPRINTF(sc, WM_DEBUG_GMII,
|
|
("%s: MDIC write timed out: phy %d reg %d\n",
|
|
device_xname(dev), phy, reg));
|
|
return ETIMEDOUT;
|
|
} else if (mdic & MDIC_E) {
|
|
DPRINTF(sc, WM_DEBUG_GMII,
|
|
("%s: MDIC write error: phy %d reg %d\n",
|
|
device_xname(dev), phy, reg));
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Allow some time after each MDIC transaction to avoid
|
|
* reading duplicate data in the next MDIC transaction.
|
|
*/
|
|
if (sc->sc_type == WM_T_PCH2)
|
|
delay(100);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* wm_gmii_i82544_readreg: [mii interface function]
|
|
*
|
|
* Read a PHY register on the GMII.
|
|
*/
|
|
static int
|
|
wm_gmii_i82544_readreg(device_t dev, int phy, int reg, uint16_t *val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
int rv;
|
|
|
|
if (sc->phy.acquire(sc)) {
|
|
device_printf(dev, "%s: failed to get semaphore\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
rv = wm_gmii_i82544_readreg_locked(dev, phy, reg, val);
|
|
|
|
sc->phy.release(sc);
|
|
|
|
return rv;
|
|
}
|
|
|
|
static int
|
|
wm_gmii_i82544_readreg_locked(device_t dev, int phy, int reg, uint16_t *val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
int rv;
|
|
|
|
if (reg > BME1000_MAX_MULTI_PAGE_REG) {
|
|
switch (sc->sc_phytype) {
|
|
case WMPHY_IGP:
|
|
case WMPHY_IGP_2:
|
|
case WMPHY_IGP_3:
|
|
rv = wm_gmii_mdic_writereg(dev, phy,
|
|
IGPHY_PAGE_SELECT, reg);
|
|
if (rv != 0)
|
|
return rv;
|
|
break;
|
|
default:
|
|
#ifdef WM_DEBUG
|
|
device_printf(dev, "%s: PHYTYPE = 0x%x, addr = %02x\n",
|
|
__func__, sc->sc_phytype, reg);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
return wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val);
|
|
}
|
|
|
|
/*
|
|
* wm_gmii_i82544_writereg: [mii interface function]
|
|
*
|
|
* Write a PHY register on the GMII.
|
|
*/
|
|
static int
|
|
wm_gmii_i82544_writereg(device_t dev, int phy, int reg, uint16_t val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
int rv;
|
|
|
|
if (sc->phy.acquire(sc)) {
|
|
device_printf(dev, "%s: failed to get semaphore\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
rv = wm_gmii_i82544_writereg_locked(dev, phy, reg & MII_ADDRMASK, val);
|
|
sc->phy.release(sc);
|
|
|
|
return rv;
|
|
}
|
|
|
|
static int
|
|
wm_gmii_i82544_writereg_locked(device_t dev, int phy, int reg, uint16_t val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
int rv;
|
|
|
|
if (reg > BME1000_MAX_MULTI_PAGE_REG) {
|
|
switch (sc->sc_phytype) {
|
|
case WMPHY_IGP:
|
|
case WMPHY_IGP_2:
|
|
case WMPHY_IGP_3:
|
|
rv = wm_gmii_mdic_writereg(dev, phy,
|
|
IGPHY_PAGE_SELECT, reg);
|
|
if (rv != 0)
|
|
return rv;
|
|
break;
|
|
default:
|
|
#ifdef WM_DEBUG
|
|
device_printf(dev, "%s: PHYTYPE == 0x%x, addr = %02x",
|
|
__func__, sc->sc_phytype, reg);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
return wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val);
|
|
}
|
|
|
|
/*
|
|
* wm_gmii_i80003_readreg: [mii interface function]
|
|
*
|
|
* Read a PHY register on the kumeran
|
|
* This could be handled by the PHY layer if we didn't have to lock the
|
|
* resource ...
|
|
*/
|
|
static int
|
|
wm_gmii_i80003_readreg(device_t dev, int phy, int reg, uint16_t *val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
int page_select;
|
|
uint16_t temp, temp2;
|
|
int rv = 0;
|
|
|
|
if (phy != 1) /* Only one PHY on kumeran bus */
|
|
return -1;
|
|
|
|
if (sc->phy.acquire(sc)) {
|
|
device_printf(dev, "%s: failed to get semaphore\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
if ((reg & MII_ADDRMASK) < GG82563_MIN_ALT_REG)
|
|
page_select = GG82563_PHY_PAGE_SELECT;
|
|
else {
|
|
/*
|
|
* Use Alternative Page Select register to access registers
|
|
* 30 and 31.
|
|
*/
|
|
page_select = GG82563_PHY_PAGE_SELECT_ALT;
|
|
}
|
|
temp = reg >> GG82563_PAGE_SHIFT;
|
|
if ((rv = wm_gmii_mdic_writereg(dev, phy, page_select, temp)) != 0)
|
|
goto out;
|
|
|
|
if ((sc->sc_flags & WM_F_80003_MDIC_WA) != 0) {
|
|
/*
|
|
* Wait more 200us for a bug of the ready bit in the MDIC
|
|
* register.
|
|
*/
|
|
delay(200);
|
|
rv = wm_gmii_mdic_readreg(dev, phy, page_select, &temp2);
|
|
if ((rv != 0) || (temp2 != temp)) {
|
|
device_printf(dev, "%s failed\n", __func__);
|
|
rv = -1;
|
|
goto out;
|
|
}
|
|
delay(200);
|
|
rv = wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val);
|
|
delay(200);
|
|
} else
|
|
rv = wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val);
|
|
|
|
out:
|
|
sc->phy.release(sc);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* wm_gmii_i80003_writereg: [mii interface function]
|
|
*
|
|
* Write a PHY register on the kumeran.
|
|
* This could be handled by the PHY layer if we didn't have to lock the
|
|
* resource ...
|
|
*/
|
|
static int
|
|
wm_gmii_i80003_writereg(device_t dev, int phy, int reg, uint16_t val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
int page_select, rv;
|
|
uint16_t temp, temp2;
|
|
|
|
if (phy != 1) /* Only one PHY on kumeran bus */
|
|
return -1;
|
|
|
|
if (sc->phy.acquire(sc)) {
|
|
device_printf(dev, "%s: failed to get semaphore\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
if ((reg & MII_ADDRMASK) < GG82563_MIN_ALT_REG)
|
|
page_select = GG82563_PHY_PAGE_SELECT;
|
|
else {
|
|
/*
|
|
* Use Alternative Page Select register to access registers
|
|
* 30 and 31.
|
|
*/
|
|
page_select = GG82563_PHY_PAGE_SELECT_ALT;
|
|
}
|
|
temp = (uint16_t)reg >> GG82563_PAGE_SHIFT;
|
|
if ((rv = wm_gmii_mdic_writereg(dev, phy, page_select, temp)) != 0)
|
|
goto out;
|
|
|
|
if ((sc->sc_flags & WM_F_80003_MDIC_WA) != 0) {
|
|
/*
|
|
* Wait more 200us for a bug of the ready bit in the MDIC
|
|
* register.
|
|
*/
|
|
delay(200);
|
|
rv = wm_gmii_mdic_readreg(dev, phy, page_select, &temp2);
|
|
if ((rv != 0) || (temp2 != temp)) {
|
|
device_printf(dev, "%s failed\n", __func__);
|
|
rv = -1;
|
|
goto out;
|
|
}
|
|
delay(200);
|
|
rv = wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val);
|
|
delay(200);
|
|
} else
|
|
rv = wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val);
|
|
|
|
out:
|
|
sc->phy.release(sc);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* wm_gmii_bm_readreg: [mii interface function]
|
|
*
|
|
* Read a PHY register on the kumeran
|
|
* This could be handled by the PHY layer if we didn't have to lock the
|
|
* resource ...
|
|
*/
|
|
static int
|
|
wm_gmii_bm_readreg(device_t dev, int phy, int reg, uint16_t *val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
uint16_t page = reg >> BME1000_PAGE_SHIFT;
|
|
int rv;
|
|
|
|
if (sc->phy.acquire(sc)) {
|
|
device_printf(dev, "%s: failed to get semaphore\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
if ((sc->sc_type != WM_T_82574) && (sc->sc_type != WM_T_82583))
|
|
phy = ((page >= 768) || ((page == 0) && (reg == 25))
|
|
|| (reg == 31)) ? 1 : phy;
|
|
/* Page 800 works differently than the rest so it has its own func */
|
|
if (page == BM_WUC_PAGE) {
|
|
rv = wm_access_phy_wakeup_reg_bm(dev, reg, val, true, false);
|
|
goto release;
|
|
}
|
|
|
|
if (reg > BME1000_MAX_MULTI_PAGE_REG) {
|
|
if ((phy == 1) && (sc->sc_type != WM_T_82574)
|
|
&& (sc->sc_type != WM_T_82583))
|
|
rv = wm_gmii_mdic_writereg(dev, phy,
|
|
IGPHY_PAGE_SELECT, page << BME1000_PAGE_SHIFT);
|
|
else
|
|
rv = wm_gmii_mdic_writereg(dev, phy,
|
|
BME1000_PHY_PAGE_SELECT, page);
|
|
if (rv != 0)
|
|
goto release;
|
|
}
|
|
|
|
rv = wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val);
|
|
|
|
release:
|
|
sc->phy.release(sc);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* wm_gmii_bm_writereg: [mii interface function]
|
|
*
|
|
* Write a PHY register on the kumeran.
|
|
* This could be handled by the PHY layer if we didn't have to lock the
|
|
* resource ...
|
|
*/
|
|
static int
|
|
wm_gmii_bm_writereg(device_t dev, int phy, int reg, uint16_t val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
uint16_t page = reg >> BME1000_PAGE_SHIFT;
|
|
int rv;
|
|
|
|
if (sc->phy.acquire(sc)) {
|
|
device_printf(dev, "%s: failed to get semaphore\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
if ((sc->sc_type != WM_T_82574) && (sc->sc_type != WM_T_82583))
|
|
phy = ((page >= 768) || ((page == 0) && (reg == 25))
|
|
|| (reg == 31)) ? 1 : phy;
|
|
/* Page 800 works differently than the rest so it has its own func */
|
|
if (page == BM_WUC_PAGE) {
|
|
rv = wm_access_phy_wakeup_reg_bm(dev, reg, &val, false, false);
|
|
goto release;
|
|
}
|
|
|
|
if (reg > BME1000_MAX_MULTI_PAGE_REG) {
|
|
if ((phy == 1) && (sc->sc_type != WM_T_82574)
|
|
&& (sc->sc_type != WM_T_82583))
|
|
rv = wm_gmii_mdic_writereg(dev, phy,
|
|
IGPHY_PAGE_SELECT, page << BME1000_PAGE_SHIFT);
|
|
else
|
|
rv = wm_gmii_mdic_writereg(dev, phy,
|
|
BME1000_PHY_PAGE_SELECT, page);
|
|
if (rv != 0)
|
|
goto release;
|
|
}
|
|
|
|
rv = wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val);
|
|
|
|
release:
|
|
sc->phy.release(sc);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* wm_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
|
|
* @dev: pointer to the HW structure
|
|
* @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
|
|
*
|
|
* Assumes semaphore already acquired and phy_reg points to a valid memory
|
|
* address to store contents of the BM_WUC_ENABLE_REG register.
|
|
*/
|
|
static int
|
|
wm_enable_phy_wakeup_reg_access_bm(device_t dev, uint16_t *phy_regp)
|
|
{
|
|
#ifdef WM_DEBUG
|
|
struct wm_softc *sc = device_private(dev);
|
|
#endif
|
|
uint16_t temp;
|
|
int rv;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(dev), __func__));
|
|
|
|
if (!phy_regp)
|
|
return -1;
|
|
|
|
/* All page select, port ctrl and wakeup registers use phy address 1 */
|
|
|
|
/* Select Port Control Registers page */
|
|
rv = wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT,
|
|
BM_PORT_CTRL_PAGE << IGP3_PAGE_SHIFT);
|
|
if (rv != 0)
|
|
return rv;
|
|
|
|
/* Read WUCE and save it */
|
|
rv = wm_gmii_mdic_readreg(dev, 1, BM_WUC_ENABLE_REG, phy_regp);
|
|
if (rv != 0)
|
|
return rv;
|
|
|
|
/* Enable both PHY wakeup mode and Wakeup register page writes.
|
|
* Prevent a power state change by disabling ME and Host PHY wakeup.
|
|
*/
|
|
temp = *phy_regp;
|
|
temp |= BM_WUC_ENABLE_BIT;
|
|
temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
|
|
|
|
if ((rv = wm_gmii_mdic_writereg(dev, 1, BM_WUC_ENABLE_REG, temp)) != 0)
|
|
return rv;
|
|
|
|
/* Select Host Wakeup Registers page - caller now able to write
|
|
* registers on the Wakeup registers page
|
|
*/
|
|
return wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT,
|
|
BM_WUC_PAGE << IGP3_PAGE_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* wm_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
|
|
* @dev: pointer to the HW structure
|
|
* @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
|
|
*
|
|
* Restore BM_WUC_ENABLE_REG to its original value.
|
|
*
|
|
* Assumes semaphore already acquired and *phy_reg is the contents of the
|
|
* BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
|
|
* caller.
|
|
*/
|
|
static int
|
|
wm_disable_phy_wakeup_reg_access_bm(device_t dev, uint16_t *phy_regp)
|
|
{
|
|
#ifdef WM_DEBUG
|
|
struct wm_softc *sc = device_private(dev);
|
|
#endif
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(dev), __func__));
|
|
|
|
if (!phy_regp)
|
|
return -1;
|
|
|
|
/* Select Port Control Registers page */
|
|
wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT,
|
|
BM_PORT_CTRL_PAGE << IGP3_PAGE_SHIFT);
|
|
|
|
/* Restore 769.17 to its original value */
|
|
wm_gmii_mdic_writereg(dev, 1, BM_WUC_ENABLE_REG, *phy_regp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* wm_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
|
|
* @sc: pointer to the HW structure
|
|
* @offset: register offset to be read or written
|
|
* @val: pointer to the data to read or write
|
|
* @rd: determines if operation is read or write
|
|
* @page_set: BM_WUC_PAGE already set and access enabled
|
|
*
|
|
* Read the PHY register at offset and store the retrieved information in
|
|
* data, or write data to PHY register at offset. Note the procedure to
|
|
* access the PHY wakeup registers is different than reading the other PHY
|
|
* registers. It works as such:
|
|
* 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
|
|
* 2) Set page to 800 for host (801 if we were manageability)
|
|
* 3) Write the address using the address opcode (0x11)
|
|
* 4) Read or write the data using the data opcode (0x12)
|
|
* 5) Restore 769.17.2 to its original value
|
|
*
|
|
* Steps 1 and 2 are done by wm_enable_phy_wakeup_reg_access_bm() and
|
|
* step 5 is done by wm_disable_phy_wakeup_reg_access_bm().
|
|
*
|
|
* Assumes semaphore is already acquired. When page_set==TRUE, assumes
|
|
* the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
|
|
* is responsible for calls to wm_[enable|disable]_phy_wakeup_reg_bm()).
|
|
*/
|
|
static int
|
|
wm_access_phy_wakeup_reg_bm(device_t dev, int offset, int16_t *val, int rd,
|
|
bool page_set)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
uint16_t regnum = BM_PHY_REG_NUM(offset);
|
|
uint16_t page = BM_PHY_REG_PAGE(offset);
|
|
uint16_t wuce;
|
|
int rv = 0;
|
|
|
|
DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s called\n",
|
|
device_xname(dev), __func__));
|
|
/* XXX Gig must be disabled for MDIO accesses to page 800 */
|
|
if ((sc->sc_type == WM_T_PCH)
|
|
&& ((CSR_READ(sc, WMREG_PHY_CTRL) & PHY_CTRL_GBE_DIS) == 0)) {
|
|
device_printf(dev,
|
|
"Attempting to access page %d while gig enabled.\n", page);
|
|
}
|
|
|
|
if (!page_set) {
|
|
/* Enable access to PHY wakeup registers */
|
|
rv = wm_enable_phy_wakeup_reg_access_bm(dev, &wuce);
|
|
if (rv != 0) {
|
|
device_printf(dev,
|
|
"%s: Could not enable PHY wakeup reg access\n",
|
|
__func__);
|
|
return rv;
|
|
}
|
|
}
|
|
DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s: Accessing PHY page %d reg 0x%x\n",
|
|
device_xname(sc->sc_dev), __func__, page, regnum));
|
|
|
|
/*
|
|
* 2) Access PHY wakeup register.
|
|
* See wm_access_phy_wakeup_reg_bm.
|
|
*/
|
|
|
|
/* Write the Wakeup register page offset value using opcode 0x11 */
|
|
rv = wm_gmii_mdic_writereg(dev, 1, BM_WUC_ADDRESS_OPCODE, regnum);
|
|
if (rv != 0)
|
|
return rv;
|
|
|
|
if (rd) {
|
|
/* Read the Wakeup register page value using opcode 0x12 */
|
|
rv = wm_gmii_mdic_readreg(dev, 1, BM_WUC_DATA_OPCODE, val);
|
|
} else {
|
|
/* Write the Wakeup register page value using opcode 0x12 */
|
|
rv = wm_gmii_mdic_writereg(dev, 1, BM_WUC_DATA_OPCODE, *val);
|
|
}
|
|
if (rv != 0)
|
|
return rv;
|
|
|
|
if (!page_set)
|
|
rv = wm_disable_phy_wakeup_reg_access_bm(dev, &wuce);
|
|
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* wm_gmii_hv_readreg: [mii interface function]
|
|
*
|
|
* Read a PHY register on the kumeran
|
|
* This could be handled by the PHY layer if we didn't have to lock the
|
|
* resource ...
|
|
*/
|
|
static int
|
|
wm_gmii_hv_readreg(device_t dev, int phy, int reg, uint16_t *val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
int rv;
|
|
|
|
DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s called\n",
|
|
device_xname(dev), __func__));
|
|
if (sc->phy.acquire(sc)) {
|
|
device_printf(dev, "%s: failed to get semaphore\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
rv = wm_gmii_hv_readreg_locked(dev, phy, reg, val);
|
|
sc->phy.release(sc);
|
|
return rv;
|
|
}
|
|
|
|
static int
|
|
wm_gmii_hv_readreg_locked(device_t dev, int phy, int reg, uint16_t *val)
|
|
{
|
|
uint16_t page = BM_PHY_REG_PAGE(reg);
|
|
uint16_t regnum = BM_PHY_REG_NUM(reg);
|
|
int rv;
|
|
|
|
phy = (page >= HV_INTC_FC_PAGE_START) ? 1 : phy;
|
|
|
|
/* Page 800 works differently than the rest so it has its own func */
|
|
if (page == BM_WUC_PAGE)
|
|
return wm_access_phy_wakeup_reg_bm(dev, reg, val, true, false);
|
|
|
|
/*
|
|
* Lower than page 768 works differently than the rest so it has its
|
|
* own func
|
|
*/
|
|
if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
|
|
device_printf(dev, "gmii_hv_readreg!!!\n");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* XXX I21[789] documents say that the SMBus Address register is at
|
|
* PHY address 01, Page 0 (not 768), Register 26.
|
|
*/
|
|
if (page == HV_INTC_FC_PAGE_START)
|
|
page = 0;
|
|
|
|
if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
|
|
rv = wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT,
|
|
page << BME1000_PAGE_SHIFT);
|
|
if (rv != 0)
|
|
return rv;
|
|
}
|
|
|
|
return wm_gmii_mdic_readreg(dev, phy, regnum & MII_ADDRMASK, val);
|
|
}
|
|
|
|
/*
|
|
* wm_gmii_hv_writereg: [mii interface function]
|
|
*
|
|
* Write a PHY register on the kumeran.
|
|
* This could be handled by the PHY layer if we didn't have to lock the
|
|
* resource ...
|
|
*/
|
|
static int
|
|
wm_gmii_hv_writereg(device_t dev, int phy, int reg, uint16_t val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
int rv;
|
|
|
|
DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s called\n",
|
|
device_xname(dev), __func__));
|
|
|
|
if (sc->phy.acquire(sc)) {
|
|
device_printf(dev, "%s: failed to get semaphore\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
rv = wm_gmii_hv_writereg_locked(dev, phy, reg, val);
|
|
sc->phy.release(sc);
|
|
|
|
return rv;
|
|
}
|
|
|
|
static int
|
|
wm_gmii_hv_writereg_locked(device_t dev, int phy, int reg, uint16_t val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
uint16_t page = BM_PHY_REG_PAGE(reg);
|
|
uint16_t regnum = BM_PHY_REG_NUM(reg);
|
|
int rv;
|
|
|
|
phy = (page >= HV_INTC_FC_PAGE_START) ? 1 : phy;
|
|
|
|
/* Page 800 works differently than the rest so it has its own func */
|
|
if (page == BM_WUC_PAGE)
|
|
return wm_access_phy_wakeup_reg_bm(dev, reg, &val, false,
|
|
false);
|
|
|
|
/*
|
|
* Lower than page 768 works differently than the rest so it has its
|
|
* own func
|
|
*/
|
|
if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
|
|
device_printf(dev, "gmii_hv_writereg!!!\n");
|
|
return -1;
|
|
}
|
|
|
|
{
|
|
/*
|
|
* XXX I21[789] documents say that the SMBus Address register
|
|
* is at PHY address 01, Page 0 (not 768), Register 26.
|
|
*/
|
|
if (page == HV_INTC_FC_PAGE_START)
|
|
page = 0;
|
|
|
|
/*
|
|
* XXX Workaround MDIO accesses being disabled after entering
|
|
* IEEE Power Down (whenever bit 11 of the PHY control
|
|
* register is set)
|
|
*/
|
|
if (sc->sc_phytype == WMPHY_82578) {
|
|
struct mii_softc *child;
|
|
|
|
child = LIST_FIRST(&sc->sc_mii.mii_phys);
|
|
if ((child != NULL) && (child->mii_mpd_rev >= 1)
|
|
&& (phy == 2) && ((regnum & MII_ADDRMASK) == 0)
|
|
&& ((val & (1 << 11)) != 0)) {
|
|
device_printf(dev, "XXX need workaround\n");
|
|
}
|
|
}
|
|
|
|
if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
|
|
rv = wm_gmii_mdic_writereg(dev, 1,
|
|
IGPHY_PAGE_SELECT, page << BME1000_PAGE_SHIFT);
|
|
if (rv != 0)
|
|
return rv;
|
|
}
|
|
}
|
|
|
|
return wm_gmii_mdic_writereg(dev, phy, regnum & MII_ADDRMASK, val);
|
|
}
|
|
|
|
/*
|
|
* wm_gmii_82580_readreg: [mii interface function]
|
|
*
|
|
* Read a PHY register on the 82580 and I350.
|
|
* This could be handled by the PHY layer if we didn't have to lock the
|
|
* resource ...
|
|
*/
|
|
static int
|
|
wm_gmii_82580_readreg(device_t dev, int phy, int reg, uint16_t *val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
int rv;
|
|
|
|
if (sc->phy.acquire(sc) != 0) {
|
|
device_printf(dev, "%s: failed to get semaphore\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (reg > MII_ADDRMASK) {
|
|
device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n",
|
|
__func__, sc->sc_phytype, reg);
|
|
reg &= MII_ADDRMASK;
|
|
}
|
|
#endif
|
|
rv = wm_gmii_mdic_readreg(dev, phy, reg, val);
|
|
|
|
sc->phy.release(sc);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* wm_gmii_82580_writereg: [mii interface function]
|
|
*
|
|
* Write a PHY register on the 82580 and I350.
|
|
* This could be handled by the PHY layer if we didn't have to lock the
|
|
* resource ...
|
|
*/
|
|
static int
|
|
wm_gmii_82580_writereg(device_t dev, int phy, int reg, uint16_t val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
int rv;
|
|
|
|
if (sc->phy.acquire(sc) != 0) {
|
|
device_printf(dev, "%s: failed to get semaphore\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (reg > MII_ADDRMASK) {
|
|
device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n",
|
|
__func__, sc->sc_phytype, reg);
|
|
reg &= MII_ADDRMASK;
|
|
}
|
|
#endif
|
|
rv = wm_gmii_mdic_writereg(dev, phy, reg, val);
|
|
|
|
sc->phy.release(sc);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* wm_gmii_gs40g_readreg: [mii interface function]
|
|
*
|
|
* Read a PHY register on the I2100 and I211.
|
|
* This could be handled by the PHY layer if we didn't have to lock the
|
|
* resource ...
|
|
*/
|
|
static int
|
|
wm_gmii_gs40g_readreg(device_t dev, int phy, int reg, uint16_t *val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
int page, offset;
|
|
int rv;
|
|
|
|
/* Acquire semaphore */
|
|
if (sc->phy.acquire(sc)) {
|
|
device_printf(dev, "%s: failed to get semaphore\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
/* Page select */
|
|
page = reg >> GS40G_PAGE_SHIFT;
|
|
rv = wm_gmii_mdic_writereg(dev, phy, GS40G_PAGE_SELECT, page);
|
|
if (rv != 0)
|
|
goto release;
|
|
|
|
/* Read reg */
|
|
offset = reg & GS40G_OFFSET_MASK;
|
|
rv = wm_gmii_mdic_readreg(dev, phy, offset, val);
|
|
|
|
release:
|
|
sc->phy.release(sc);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* wm_gmii_gs40g_writereg: [mii interface function]
|
|
*
|
|
* Write a PHY register on the I210 and I211.
|
|
* This could be handled by the PHY layer if we didn't have to lock the
|
|
* resource ...
|
|
*/
|
|
static int
|
|
wm_gmii_gs40g_writereg(device_t dev, int phy, int reg, uint16_t val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
uint16_t page;
|
|
int offset, rv;
|
|
|
|
/* Acquire semaphore */
|
|
if (sc->phy.acquire(sc)) {
|
|
device_printf(dev, "%s: failed to get semaphore\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
/* Page select */
|
|
page = reg >> GS40G_PAGE_SHIFT;
|
|
rv = wm_gmii_mdic_writereg(dev, phy, GS40G_PAGE_SELECT, page);
|
|
if (rv != 0)
|
|
goto release;
|
|
|
|
/* Write reg */
|
|
offset = reg & GS40G_OFFSET_MASK;
|
|
rv = wm_gmii_mdic_writereg(dev, phy, offset, val);
|
|
|
|
release:
|
|
/* Release semaphore */
|
|
sc->phy.release(sc);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* wm_gmii_statchg: [mii interface function]
|
|
*
|
|
* Callback from MII layer when media changes.
|
|
*/
|
|
static void
|
|
wm_gmii_statchg(struct ifnet *ifp)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
|
|
sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
|
|
sc->sc_tctl &= ~TCTL_COLD(0x3ff);
|
|
sc->sc_fcrtl &= ~FCRTL_XONE;
|
|
|
|
/* Get flow control negotiation result. */
|
|
if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
|
|
(mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
|
|
sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
|
|
mii->mii_media_active &= ~IFM_ETH_FMASK;
|
|
}
|
|
|
|
if (sc->sc_flowflags & IFM_FLOW) {
|
|
if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
|
|
sc->sc_ctrl |= CTRL_TFCE;
|
|
sc->sc_fcrtl |= FCRTL_XONE;
|
|
}
|
|
if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
|
|
sc->sc_ctrl |= CTRL_RFCE;
|
|
}
|
|
|
|
if (mii->mii_media_active & IFM_FDX) {
|
|
DPRINTF(sc, WM_DEBUG_LINK,
|
|
("%s: LINK: statchg: FDX\n", ifp->if_xname));
|
|
sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
|
|
} else {
|
|
DPRINTF(sc, WM_DEBUG_LINK,
|
|
("%s: LINK: statchg: HDX\n", ifp->if_xname));
|
|
sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
|
|
}
|
|
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
|
|
CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
|
|
: WMREG_FCRTL, sc->sc_fcrtl);
|
|
if (sc->sc_type == WM_T_80003) {
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_1000_T:
|
|
wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
|
|
KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
|
|
sc->sc_tipg = TIPG_1000T_80003_DFLT;
|
|
break;
|
|
default:
|
|
wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
|
|
KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
|
|
sc->sc_tipg = TIPG_10_100_80003_DFLT;
|
|
break;
|
|
}
|
|
CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
|
|
}
|
|
}
|
|
|
|
/* kumeran related (80003, ICH* and PCH*) */
|
|
|
|
/*
|
|
* wm_kmrn_readreg:
|
|
*
|
|
* Read a kumeran register
|
|
*/
|
|
static int
|
|
wm_kmrn_readreg(struct wm_softc *sc, int reg, uint16_t *val)
|
|
{
|
|
int rv;
|
|
|
|
if (sc->sc_type == WM_T_80003)
|
|
rv = wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
|
|
else
|
|
rv = sc->phy.acquire(sc);
|
|
if (rv != 0) {
|
|
device_printf(sc->sc_dev, "%s: failed to get semaphore\n",
|
|
__func__);
|
|
return rv;
|
|
}
|
|
|
|
rv = wm_kmrn_readreg_locked(sc, reg, val);
|
|
|
|
if (sc->sc_type == WM_T_80003)
|
|
wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
|
|
else
|
|
sc->phy.release(sc);
|
|
|
|
return rv;
|
|
}
|
|
|
|
static int
|
|
wm_kmrn_readreg_locked(struct wm_softc *sc, int reg, uint16_t *val)
|
|
{
|
|
|
|
CSR_WRITE(sc, WMREG_KUMCTRLSTA,
|
|
((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
|
|
KUMCTRLSTA_REN);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(2);
|
|
|
|
*val = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* wm_kmrn_writereg:
|
|
*
|
|
* Write a kumeran register
|
|
*/
|
|
static int
|
|
wm_kmrn_writereg(struct wm_softc *sc, int reg, uint16_t val)
|
|
{
|
|
int rv;
|
|
|
|
if (sc->sc_type == WM_T_80003)
|
|
rv = wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
|
|
else
|
|
rv = sc->phy.acquire(sc);
|
|
if (rv != 0) {
|
|
device_printf(sc->sc_dev, "%s: failed to get semaphore\n",
|
|
__func__);
|
|
return rv;
|
|
}
|
|
|
|
rv = wm_kmrn_writereg_locked(sc, reg, val);
|
|
|
|
if (sc->sc_type == WM_T_80003)
|
|
wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
|
|
else
|
|
sc->phy.release(sc);
|
|
|
|
return rv;
|
|
}
|
|
|
|
static int
|
|
wm_kmrn_writereg_locked(struct wm_softc *sc, int reg, uint16_t val)
|
|
{
|
|
|
|
CSR_WRITE(sc, WMREG_KUMCTRLSTA,
|
|
((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) | val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* EMI register related (82579, WMPHY_I217(PCH2 and newer))
|
|
* This access method is different from IEEE MMD.
|
|
*/
|
|
static int
|
|
wm_access_emi_reg_locked(device_t dev, int reg, uint16_t *val, bool rd)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
int rv;
|
|
|
|
rv = sc->phy.writereg_locked(dev, 2, I82579_EMI_ADDR, reg);
|
|
if (rv != 0)
|
|
return rv;
|
|
|
|
if (rd)
|
|
rv = sc->phy.readreg_locked(dev, 2, I82579_EMI_DATA, val);
|
|
else
|
|
rv = sc->phy.writereg_locked(dev, 2, I82579_EMI_DATA, *val);
|
|
return rv;
|
|
}
|
|
|
|
static int
|
|
wm_read_emi_reg_locked(device_t dev, int reg, uint16_t *val)
|
|
{
|
|
|
|
return wm_access_emi_reg_locked(dev, reg, val, true);
|
|
}
|
|
|
|
static int
|
|
wm_write_emi_reg_locked(device_t dev, int reg, uint16_t val)
|
|
{
|
|
|
|
return wm_access_emi_reg_locked(dev, reg, &val, false);
|
|
}
|
|
|
|
/* SGMII related */
|
|
|
|
/*
|
|
* wm_sgmii_uses_mdio
|
|
*
|
|
* Check whether the transaction is to the internal PHY or the external
|
|
* MDIO interface. Return true if it's MDIO.
|
|
*/
|
|
static bool
|
|
wm_sgmii_uses_mdio(struct wm_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
bool ismdio = false;
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_82575:
|
|
case WM_T_82576:
|
|
reg = CSR_READ(sc, WMREG_MDIC);
|
|
ismdio = ((reg & MDIC_DEST) != 0);
|
|
break;
|
|
case WM_T_82580:
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
case WM_T_I210:
|
|
case WM_T_I211:
|
|
reg = CSR_READ(sc, WMREG_MDICNFG);
|
|
ismdio = ((reg & MDICNFG_DEST) != 0);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ismdio;
|
|
}
|
|
|
|
/* Setup internal SGMII PHY for SFP */
|
|
static void
|
|
wm_sgmii_sfp_preconfig(struct wm_softc *sc)
|
|
{
|
|
uint16_t id1, id2, phyreg;
|
|
int i, rv;
|
|
|
|
if (((sc->sc_flags & WM_F_SGMII) == 0)
|
|
|| ((sc->sc_flags & WM_F_SFP) == 0))
|
|
return;
|
|
|
|
for (i = 0; i < MII_NPHY; i++) {
|
|
sc->phy.no_errprint = true;
|
|
rv = sc->phy.readreg_locked(sc->sc_dev, i, MII_PHYIDR1, &id1);
|
|
if (rv != 0)
|
|
continue;
|
|
rv = sc->phy.readreg_locked(sc->sc_dev, i, MII_PHYIDR2, &id2);
|
|
if (rv != 0)
|
|
continue;
|
|
if (MII_OUI(id1, id2) != MII_OUI_xxMARVELL)
|
|
continue;
|
|
sc->phy.no_errprint = false;
|
|
|
|
sc->phy.readreg_locked(sc->sc_dev, i, MAKPHY_ESSR, &phyreg);
|
|
phyreg &= ~(ESSR_SER_ANEG_BYPASS | ESSR_HWCFG_MODE);
|
|
phyreg |= ESSR_SGMII_WOC_COPPER;
|
|
sc->phy.writereg_locked(sc->sc_dev, i, MAKPHY_ESSR, phyreg);
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* wm_sgmii_readreg: [mii interface function]
|
|
*
|
|
* Read a PHY register on the SGMII
|
|
* This could be handled by the PHY layer if we didn't have to lock the
|
|
* resource ...
|
|
*/
|
|
static int
|
|
wm_sgmii_readreg(device_t dev, int phy, int reg, uint16_t *val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
int rv;
|
|
|
|
if (sc->phy.acquire(sc)) {
|
|
device_printf(dev, "%s: failed to get semaphore\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
rv = wm_sgmii_readreg_locked(dev, phy, reg, val);
|
|
|
|
sc->phy.release(sc);
|
|
return rv;
|
|
}
|
|
|
|
static int
|
|
wm_sgmii_readreg_locked(device_t dev, int phy, int reg, uint16_t *val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
uint32_t i2ccmd;
|
|
int i, rv = 0;
|
|
|
|
i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
|
|
| (phy << I2CCMD_PHY_ADDR_SHIFT) | I2CCMD_OPCODE_READ;
|
|
CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
|
|
|
|
/* Poll the ready bit */
|
|
for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
|
|
delay(50);
|
|
i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
|
|
if (i2ccmd & I2CCMD_READY)
|
|
break;
|
|
}
|
|
if ((i2ccmd & I2CCMD_READY) == 0) {
|
|
device_printf(dev, "I2CCMD Read did not complete\n");
|
|
rv = ETIMEDOUT;
|
|
}
|
|
if ((i2ccmd & I2CCMD_ERROR) != 0) {
|
|
if (!sc->phy.no_errprint)
|
|
device_printf(dev, "I2CCMD Error bit set\n");
|
|
rv = EIO;
|
|
}
|
|
|
|
*val = (uint16_t)((i2ccmd >> 8) & 0x00ff) | ((i2ccmd << 8) & 0xff00);
|
|
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* wm_sgmii_writereg: [mii interface function]
|
|
*
|
|
* Write a PHY register on the SGMII.
|
|
* This could be handled by the PHY layer if we didn't have to lock the
|
|
* resource ...
|
|
*/
|
|
static int
|
|
wm_sgmii_writereg(device_t dev, int phy, int reg, uint16_t val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
int rv;
|
|
|
|
if (sc->phy.acquire(sc) != 0) {
|
|
device_printf(dev, "%s: failed to get semaphore\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
rv = wm_sgmii_writereg_locked(dev, phy, reg, val);
|
|
|
|
sc->phy.release(sc);
|
|
|
|
return rv;
|
|
}
|
|
|
|
static int
|
|
wm_sgmii_writereg_locked(device_t dev, int phy, int reg, uint16_t val)
|
|
{
|
|
struct wm_softc *sc = device_private(dev);
|
|
uint32_t i2ccmd;
|
|
uint16_t swapdata;
|
|
int rv = 0;
|
|
int i;
|
|
|
|
/* Swap the data bytes for the I2C interface */
|
|
swapdata = ((val >> 8) & 0x00FF) | ((val << 8) & 0xFF00);
|
|
i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
|
|
| (phy << I2CCMD_PHY_ADDR_SHIFT) | I2CCMD_OPCODE_WRITE | swapdata;
|
|
CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
|
|
|
|
/* Poll the ready bit */
|
|
for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
|
|
delay(50);
|
|
i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
|
|
if (i2ccmd & I2CCMD_READY)
|
|
break;
|
|
}
|
|
if ((i2ccmd & I2CCMD_READY) == 0) {
|
|
device_printf(dev, "I2CCMD Write did not complete\n");
|
|
rv = ETIMEDOUT;
|
|
}
|
|
if ((i2ccmd & I2CCMD_ERROR) != 0) {
|
|
device_printf(dev, "I2CCMD Error bit set\n");
|
|
rv = EIO;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
/* TBI related */
|
|
|
|
static bool
|
|
wm_tbi_havesignal(struct wm_softc *sc, uint32_t ctrl)
|
|
{
|
|
bool sig;
|
|
|
|
sig = ctrl & CTRL_SWDPIN(1);
|
|
|
|
/*
|
|
* On 82543 and 82544, the CTRL_SWDPIN(1) bit will be 0 if the optics
|
|
* detect a signal, 1 if they don't.
|
|
*/
|
|
if ((sc->sc_type == WM_T_82543) || (sc->sc_type == WM_T_82544))
|
|
sig = !sig;
|
|
|
|
return sig;
|
|
}
|
|
|
|
/*
|
|
* wm_tbi_mediainit:
|
|
*
|
|
* Initialize media for use on 1000BASE-X devices.
|
|
*/
|
|
static void
|
|
wm_tbi_mediainit(struct wm_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
const char *sep = "";
|
|
|
|
if (sc->sc_type < WM_T_82543)
|
|
sc->sc_tipg = TIPG_WM_DFLT;
|
|
else
|
|
sc->sc_tipg = TIPG_LG_DFLT;
|
|
|
|
sc->sc_tbi_serdes_anegticks = 5;
|
|
|
|
/* Initialize our media structures */
|
|
sc->sc_mii.mii_ifp = ifp;
|
|
sc->sc_ethercom.ec_mii = &sc->sc_mii;
|
|
|
|
ifp->if_baudrate = IF_Gbps(1);
|
|
if (((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211))
|
|
&& (sc->sc_mediatype == WM_MEDIATYPE_SERDES)) {
|
|
ifmedia_init_with_lock(&sc->sc_mii.mii_media, IFM_IMASK,
|
|
wm_serdes_mediachange, wm_serdes_mediastatus,
|
|
sc->sc_core_lock);
|
|
} else {
|
|
ifmedia_init_with_lock(&sc->sc_mii.mii_media, IFM_IMASK,
|
|
wm_tbi_mediachange, wm_tbi_mediastatus, sc->sc_core_lock);
|
|
}
|
|
|
|
/*
|
|
* SWD Pins:
|
|
*
|
|
* 0 = Link LED (output)
|
|
* 1 = Loss Of Signal (input)
|
|
*/
|
|
sc->sc_ctrl |= CTRL_SWDPIO(0);
|
|
|
|
/* XXX Perhaps this is only for TBI */
|
|
if (sc->sc_mediatype != WM_MEDIATYPE_SERDES)
|
|
sc->sc_ctrl &= ~CTRL_SWDPIO(1);
|
|
|
|
if (sc->sc_mediatype == WM_MEDIATYPE_SERDES)
|
|
sc->sc_ctrl &= ~CTRL_LRST;
|
|
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
|
|
#define ADD(ss, mm, dd) \
|
|
do { \
|
|
aprint_normal("%s%s", sep, ss); \
|
|
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | (mm), (dd), NULL); \
|
|
sep = ", "; \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
aprint_normal_dev(sc->sc_dev, "");
|
|
|
|
if (sc->sc_type == WM_T_I354) {
|
|
uint32_t status;
|
|
|
|
status = CSR_READ(sc, WMREG_STATUS);
|
|
if (((status & STATUS_2P5_SKU) != 0)
|
|
&& ((status & STATUS_2P5_SKU_OVER) == 0)) {
|
|
ADD("2500baseKX-FDX", IFM_2500_KX | IFM_FDX,ANAR_X_FD);
|
|
} else
|
|
ADD("1000baseKX-FDX", IFM_1000_KX | IFM_FDX,ANAR_X_FD);
|
|
} else if (sc->sc_type == WM_T_82545) {
|
|
/* Only 82545 is LX (XXX except SFP) */
|
|
ADD("1000baseLX", IFM_1000_LX, ANAR_X_HD);
|
|
ADD("1000baseLX-FDX", IFM_1000_LX | IFM_FDX, ANAR_X_FD);
|
|
} else if (sc->sc_sfptype != 0) {
|
|
/* XXX wm(4) fiber/serdes don't use ifm_data */
|
|
switch (sc->sc_sfptype) {
|
|
default:
|
|
case SFF_SFP_ETH_FLAGS_1000SX:
|
|
ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
|
|
ADD("1000baseSX-FDX", IFM_1000_SX | IFM_FDX, ANAR_X_FD);
|
|
break;
|
|
case SFF_SFP_ETH_FLAGS_1000LX:
|
|
ADD("1000baseLX", IFM_1000_LX, ANAR_X_HD);
|
|
ADD("1000baseLX-FDX", IFM_1000_LX | IFM_FDX, ANAR_X_FD);
|
|
break;
|
|
case SFF_SFP_ETH_FLAGS_1000CX:
|
|
ADD("1000baseCX", IFM_1000_CX, ANAR_X_HD);
|
|
ADD("1000baseCX-FDX", IFM_1000_CX | IFM_FDX, ANAR_X_FD);
|
|
break;
|
|
case SFF_SFP_ETH_FLAGS_1000T:
|
|
ADD("1000baseT", IFM_1000_T, 0);
|
|
ADD("1000baseT-FDX", IFM_1000_T | IFM_FDX, 0);
|
|
break;
|
|
case SFF_SFP_ETH_FLAGS_100FX:
|
|
ADD("100baseFX", IFM_100_FX, ANAR_TX);
|
|
ADD("100baseFX-FDX", IFM_100_FX | IFM_FDX, ANAR_TX_FD);
|
|
break;
|
|
}
|
|
} else {
|
|
ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
|
|
ADD("1000baseSX-FDX", IFM_1000_SX | IFM_FDX, ANAR_X_FD);
|
|
}
|
|
ADD("auto", IFM_AUTO, ANAR_X_FD | ANAR_X_HD);
|
|
aprint_normal("\n");
|
|
|
|
#undef ADD
|
|
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
|
|
}
|
|
|
|
/*
|
|
* wm_tbi_mediachange: [ifmedia interface function]
|
|
*
|
|
* Set hardware to newly-selected media on a 1000BASE-X device.
|
|
*/
|
|
static int
|
|
wm_tbi_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
|
|
uint32_t status, ctrl;
|
|
bool signal;
|
|
int i;
|
|
|
|
KASSERT(sc->sc_mediatype != WM_MEDIATYPE_COPPER);
|
|
if (sc->sc_mediatype == WM_MEDIATYPE_SERDES) {
|
|
/* XXX need some work for >= 82571 and < 82575 */
|
|
if (sc->sc_type < WM_T_82575)
|
|
return 0;
|
|
}
|
|
|
|
if ((sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_82572)
|
|
|| (sc->sc_type >= WM_T_82575))
|
|
CSR_WRITE(sc, WMREG_SCTL, SCTL_DISABLE_SERDES_LOOPBACK);
|
|
|
|
sc->sc_ctrl &= ~CTRL_LRST;
|
|
sc->sc_txcw = TXCW_ANE;
|
|
if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
|
|
sc->sc_txcw |= TXCW_FD | TXCW_HD;
|
|
else if (ife->ifm_media & IFM_FDX)
|
|
sc->sc_txcw |= TXCW_FD;
|
|
else
|
|
sc->sc_txcw |= TXCW_HD;
|
|
|
|
if ((sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
|
|
sc->sc_txcw |= TXCW_SYM_PAUSE | TXCW_ASYM_PAUSE;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n",
|
|
device_xname(sc->sc_dev), sc->sc_txcw));
|
|
CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(1000);
|
|
|
|
ctrl = CSR_READ(sc, WMREG_CTRL);
|
|
signal = wm_tbi_havesignal(sc, ctrl);
|
|
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: signal = %d\n", device_xname(sc->sc_dev),
|
|
signal));
|
|
|
|
if (signal) {
|
|
/* Have signal; wait for the link to come up. */
|
|
for (i = 0; i < WM_LINKUP_TIMEOUT; i++) {
|
|
delay(10000);
|
|
if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
|
|
break;
|
|
}
|
|
|
|
DPRINTF(sc, WM_DEBUG_LINK,("%s: i = %d after waiting for link\n",
|
|
device_xname(sc->sc_dev), i));
|
|
|
|
status = CSR_READ(sc, WMREG_STATUS);
|
|
DPRINTF(sc, WM_DEBUG_LINK,
|
|
("%s: status after final read = 0x%x, STATUS_LU = 0x%x\n",
|
|
device_xname(sc->sc_dev), status, STATUS_LU));
|
|
if (status & STATUS_LU) {
|
|
/* Link is up. */
|
|
DPRINTF(sc, WM_DEBUG_LINK,
|
|
("%s: LINK: set media -> link up %s\n",
|
|
device_xname(sc->sc_dev),
|
|
(status & STATUS_FD) ? "FDX" : "HDX"));
|
|
|
|
/*
|
|
* NOTE: CTRL will update TFCE and RFCE automatically,
|
|
* so we should update sc->sc_ctrl
|
|
*/
|
|
sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
|
|
sc->sc_tctl &= ~TCTL_COLD(0x3ff);
|
|
sc->sc_fcrtl &= ~FCRTL_XONE;
|
|
if (status & STATUS_FD)
|
|
sc->sc_tctl |=
|
|
TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
|
|
else
|
|
sc->sc_tctl |=
|
|
TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
|
|
if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
|
|
sc->sc_fcrtl |= FCRTL_XONE;
|
|
CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
|
|
CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
|
|
WMREG_OLD_FCRTL : WMREG_FCRTL, sc->sc_fcrtl);
|
|
sc->sc_tbi_linkup = 1;
|
|
} else {
|
|
if (i == WM_LINKUP_TIMEOUT)
|
|
wm_check_for_link(sc);
|
|
/* Link is down. */
|
|
DPRINTF(sc, WM_DEBUG_LINK,
|
|
("%s: LINK: set media -> link down\n",
|
|
device_xname(sc->sc_dev)));
|
|
sc->sc_tbi_linkup = 0;
|
|
}
|
|
} else {
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
|
|
device_xname(sc->sc_dev)));
|
|
sc->sc_tbi_linkup = 0;
|
|
}
|
|
|
|
wm_tbi_serdes_set_linkled(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* wm_tbi_mediastatus: [ifmedia interface function]
|
|
*
|
|
* Get the current interface media status on a 1000BASE-X device.
|
|
*/
|
|
static void
|
|
wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
uint32_t ctrl, status;
|
|
|
|
ifmr->ifm_status = IFM_AVALID;
|
|
ifmr->ifm_active = IFM_ETHER;
|
|
|
|
status = CSR_READ(sc, WMREG_STATUS);
|
|
if ((status & STATUS_LU) == 0) {
|
|
ifmr->ifm_active |= IFM_NONE;
|
|
return;
|
|
}
|
|
|
|
ifmr->ifm_status |= IFM_ACTIVE;
|
|
/* Only 82545 is LX */
|
|
if (sc->sc_type == WM_T_82545)
|
|
ifmr->ifm_active |= IFM_1000_LX;
|
|
else
|
|
ifmr->ifm_active |= IFM_1000_SX;
|
|
if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
else
|
|
ifmr->ifm_active |= IFM_HDX;
|
|
ctrl = CSR_READ(sc, WMREG_CTRL);
|
|
if (ctrl & CTRL_RFCE)
|
|
ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
|
|
if (ctrl & CTRL_TFCE)
|
|
ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
|
|
}
|
|
|
|
/* XXX TBI only */
|
|
static int
|
|
wm_check_for_link(struct wm_softc *sc)
|
|
{
|
|
struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
|
|
uint32_t rxcw;
|
|
uint32_t ctrl;
|
|
uint32_t status;
|
|
bool signal;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if (sc->sc_mediatype == WM_MEDIATYPE_SERDES) {
|
|
/* XXX need some work for >= 82571 */
|
|
if (sc->sc_type >= WM_T_82571) {
|
|
sc->sc_tbi_linkup = 1;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
rxcw = CSR_READ(sc, WMREG_RXCW);
|
|
ctrl = CSR_READ(sc, WMREG_CTRL);
|
|
status = CSR_READ(sc, WMREG_STATUS);
|
|
signal = wm_tbi_havesignal(sc, ctrl);
|
|
|
|
DPRINTF(sc, WM_DEBUG_LINK,
|
|
("%s: %s: signal = %d, status_lu = %d, rxcw_c = %d\n",
|
|
device_xname(sc->sc_dev), __func__, signal,
|
|
((status & STATUS_LU) != 0), ((rxcw & RXCW_C) != 0)));
|
|
|
|
/*
|
|
* SWDPIN LU RXCW
|
|
* 0 0 0
|
|
* 0 0 1 (should not happen)
|
|
* 0 1 0 (should not happen)
|
|
* 0 1 1 (should not happen)
|
|
* 1 0 0 Disable autonego and force linkup
|
|
* 1 0 1 got /C/ but not linkup yet
|
|
* 1 1 0 (linkup)
|
|
* 1 1 1 If IFM_AUTO, back to autonego
|
|
*
|
|
*/
|
|
if (signal && ((status & STATUS_LU) == 0) && ((rxcw & RXCW_C) == 0)) {
|
|
DPRINTF(sc, WM_DEBUG_LINK,
|
|
("%s: %s: force linkup and fullduplex\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
sc->sc_tbi_linkup = 0;
|
|
/* Disable auto-negotiation in the TXCW register */
|
|
CSR_WRITE(sc, WMREG_TXCW, (sc->sc_txcw & ~TXCW_ANE));
|
|
|
|
/*
|
|
* Force link-up and also force full-duplex.
|
|
*
|
|
* NOTE: CTRL was updated TFCE and RFCE automatically,
|
|
* so we should update sc->sc_ctrl
|
|
*/
|
|
sc->sc_ctrl = ctrl | CTRL_SLU | CTRL_FD;
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
} else if (((status & STATUS_LU) != 0)
|
|
&& ((rxcw & RXCW_C) != 0)
|
|
&& (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)) {
|
|
sc->sc_tbi_linkup = 1;
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s: go back to autonego\n",
|
|
device_xname(sc->sc_dev),
|
|
__func__));
|
|
CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
|
|
CSR_WRITE(sc, WMREG_CTRL, (ctrl & ~CTRL_SLU));
|
|
} else if (signal && ((rxcw & RXCW_C) != 0)) {
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s: /C/",
|
|
device_xname(sc->sc_dev), __func__));
|
|
} else {
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s: linkup %08x,%08x,%08x\n",
|
|
device_xname(sc->sc_dev), __func__, rxcw, ctrl,
|
|
status));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* wm_tbi_tick:
|
|
*
|
|
* Check the link on TBI devices.
|
|
* This function acts as mii_tick().
|
|
*/
|
|
static void
|
|
wm_tbi_tick(struct wm_softc *sc)
|
|
{
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
|
|
uint32_t status;
|
|
|
|
KASSERT(WM_CORE_LOCKED(sc));
|
|
|
|
status = CSR_READ(sc, WMREG_STATUS);
|
|
|
|
/* XXX is this needed? */
|
|
(void)CSR_READ(sc, WMREG_RXCW);
|
|
(void)CSR_READ(sc, WMREG_CTRL);
|
|
|
|
/* set link status */
|
|
if ((status & STATUS_LU) == 0) {
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: checklink -> down\n",
|
|
device_xname(sc->sc_dev)));
|
|
sc->sc_tbi_linkup = 0;
|
|
} else if (sc->sc_tbi_linkup == 0) {
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: checklink -> up %s\n",
|
|
device_xname(sc->sc_dev),
|
|
(status & STATUS_FD) ? "FDX" : "HDX"));
|
|
sc->sc_tbi_linkup = 1;
|
|
sc->sc_tbi_serdes_ticks = 0;
|
|
}
|
|
|
|
if ((sc->sc_ethercom.ec_if.if_flags & IFF_UP) == 0)
|
|
goto setled;
|
|
|
|
if ((status & STATUS_LU) == 0) {
|
|
sc->sc_tbi_linkup = 0;
|
|
/* If the timer expired, retry autonegotiation */
|
|
if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
|
|
&& (++sc->sc_tbi_serdes_ticks
|
|
>= sc->sc_tbi_serdes_anegticks)) {
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s: EXPIRE\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
sc->sc_tbi_serdes_ticks = 0;
|
|
/*
|
|
* Reset the link, and let autonegotiation do
|
|
* its thing
|
|
*/
|
|
sc->sc_ctrl |= CTRL_LRST;
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(1000);
|
|
sc->sc_ctrl &= ~CTRL_LRST;
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(1000);
|
|
CSR_WRITE(sc, WMREG_TXCW,
|
|
sc->sc_txcw & ~TXCW_ANE);
|
|
CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
|
|
}
|
|
}
|
|
|
|
setled:
|
|
wm_tbi_serdes_set_linkled(sc);
|
|
}
|
|
|
|
/* SERDES related */
|
|
static void
|
|
wm_serdes_power_up_link_82575(struct wm_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
|
|
if ((sc->sc_mediatype != WM_MEDIATYPE_SERDES)
|
|
&& ((sc->sc_flags & WM_F_SGMII) == 0))
|
|
return;
|
|
|
|
/* Enable PCS to turn on link */
|
|
reg = CSR_READ(sc, WMREG_PCS_CFG);
|
|
reg |= PCS_CFG_PCS_EN;
|
|
CSR_WRITE(sc, WMREG_PCS_CFG, reg);
|
|
|
|
/* Power up the laser */
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
reg &= ~CTRL_EXT_SWDPIN(3);
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
|
|
|
|
/* Flush the write to verify completion */
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(1000);
|
|
}
|
|
|
|
static int
|
|
wm_serdes_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
bool pcs_autoneg = true; /* XXX */
|
|
uint32_t ctrl_ext, pcs_lctl, reg;
|
|
|
|
if ((sc->sc_mediatype != WM_MEDIATYPE_SERDES)
|
|
&& ((sc->sc_flags & WM_F_SGMII) == 0))
|
|
return 0;
|
|
|
|
/* XXX Currently, this function is not called on 8257[12] */
|
|
if ((sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_82572)
|
|
|| (sc->sc_type >= WM_T_82575))
|
|
CSR_WRITE(sc, WMREG_SCTL, SCTL_DISABLE_SERDES_LOOPBACK);
|
|
|
|
/* Power on the sfp cage if present */
|
|
ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
ctrl_ext &= ~CTRL_EXT_SWDPIN(3);
|
|
ctrl_ext |= CTRL_EXT_I2C_ENA;
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
|
|
|
|
sc->sc_ctrl |= CTRL_SLU;
|
|
|
|
if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)) {
|
|
sc->sc_ctrl |= CTRL_SWDPIN(0) | CTRL_SWDPIN(1);
|
|
|
|
reg = CSR_READ(sc, WMREG_CONNSW);
|
|
reg |= CONNSW_ENRGSRC;
|
|
CSR_WRITE(sc, WMREG_CONNSW, reg);
|
|
}
|
|
|
|
pcs_lctl = CSR_READ(sc, WMREG_PCS_LCTL);
|
|
switch (ctrl_ext & CTRL_EXT_LINK_MODE_MASK) {
|
|
case CTRL_EXT_LINK_MODE_SGMII:
|
|
/* SGMII mode lets the phy handle forcing speed/duplex */
|
|
pcs_autoneg = true;
|
|
/* Autoneg time out should be disabled for SGMII mode */
|
|
pcs_lctl &= ~PCS_LCTL_AN_TIMEOUT;
|
|
break;
|
|
case CTRL_EXT_LINK_MODE_1000KX:
|
|
pcs_autoneg = false;
|
|
/* FALLTHROUGH */
|
|
default:
|
|
if ((sc->sc_type == WM_T_82575)
|
|
|| (sc->sc_type == WM_T_82576)) {
|
|
if ((sc->sc_flags & WM_F_PCS_DIS_AUTONEGO) != 0)
|
|
pcs_autoneg = false;
|
|
}
|
|
sc->sc_ctrl |= CTRL_SPEED_1000 | CTRL_FRCSPD | CTRL_FD
|
|
| CTRL_FRCFDX;
|
|
|
|
/* Set speed of 1000/Full if speed/duplex is forced */
|
|
pcs_lctl |= PCS_LCTL_FSV_1000 | PCS_LCTL_FDV_FULL;
|
|
}
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
|
|
|
|
pcs_lctl &= ~(PCS_LCTL_AN_ENABLE | PCS_LCTL_FLV_LINK_UP |
|
|
PCS_LCTL_FSD | PCS_LCTL_FORCE_LINK);
|
|
|
|
if (pcs_autoneg) {
|
|
/* Set PCS register for autoneg */
|
|
pcs_lctl |= PCS_LCTL_AN_ENABLE | PCS_LCTL_AN_RESTART;
|
|
|
|
/* Disable force flow control for autoneg */
|
|
pcs_lctl &= ~PCS_LCTL_FORCE_FC;
|
|
|
|
/* Configure flow control advertisement for autoneg */
|
|
reg = CSR_READ(sc, WMREG_PCS_ANADV);
|
|
reg &= ~(TXCW_ASYM_PAUSE | TXCW_SYM_PAUSE);
|
|
reg |= TXCW_ASYM_PAUSE | TXCW_SYM_PAUSE;
|
|
CSR_WRITE(sc, WMREG_PCS_ANADV, reg);
|
|
} else
|
|
pcs_lctl |= PCS_LCTL_FSD | PCS_LCTL_FORCE_FC;
|
|
|
|
CSR_WRITE(sc, WMREG_PCS_LCTL, pcs_lctl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
wm_serdes_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct wm_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
|
|
uint32_t pcs_adv, pcs_lpab, reg;
|
|
|
|
ifmr->ifm_status = IFM_AVALID;
|
|
ifmr->ifm_active = IFM_ETHER;
|
|
|
|
/* Check PCS */
|
|
reg = CSR_READ(sc, WMREG_PCS_LSTS);
|
|
if ((reg & PCS_LSTS_LINKOK) == 0) {
|
|
ifmr->ifm_active |= IFM_NONE;
|
|
sc->sc_tbi_linkup = 0;
|
|
goto setled;
|
|
}
|
|
|
|
sc->sc_tbi_linkup = 1;
|
|
ifmr->ifm_status |= IFM_ACTIVE;
|
|
if (sc->sc_type == WM_T_I354) {
|
|
uint32_t status;
|
|
|
|
status = CSR_READ(sc, WMREG_STATUS);
|
|
if (((status & STATUS_2P5_SKU) != 0)
|
|
&& ((status & STATUS_2P5_SKU_OVER) == 0)) {
|
|
ifmr->ifm_active |= IFM_2500_KX;
|
|
} else
|
|
ifmr->ifm_active |= IFM_1000_KX;
|
|
} else {
|
|
switch (__SHIFTOUT(reg, PCS_LSTS_SPEED)) {
|
|
case PCS_LSTS_SPEED_10:
|
|
ifmr->ifm_active |= IFM_10_T; /* XXX */
|
|
break;
|
|
case PCS_LSTS_SPEED_100:
|
|
ifmr->ifm_active |= IFM_100_FX; /* XXX */
|
|
break;
|
|
case PCS_LSTS_SPEED_1000:
|
|
ifmr->ifm_active |= IFM_1000_SX; /* XXX */
|
|
break;
|
|
default:
|
|
device_printf(sc->sc_dev, "Unknown speed\n");
|
|
ifmr->ifm_active |= IFM_1000_SX; /* XXX */
|
|
break;
|
|
}
|
|
}
|
|
ifp->if_baudrate = ifmedia_baudrate(ifmr->ifm_active);
|
|
if ((reg & PCS_LSTS_FDX) != 0)
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
else
|
|
ifmr->ifm_active |= IFM_HDX;
|
|
mii->mii_media_active &= ~IFM_ETH_FMASK;
|
|
if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
|
|
/* Check flow */
|
|
reg = CSR_READ(sc, WMREG_PCS_LSTS);
|
|
if ((reg & PCS_LSTS_AN_COMP) == 0) {
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("XXX LINKOK but not ACOMP\n"));
|
|
goto setled;
|
|
}
|
|
pcs_adv = CSR_READ(sc, WMREG_PCS_ANADV);
|
|
pcs_lpab = CSR_READ(sc, WMREG_PCS_LPAB);
|
|
DPRINTF(sc, WM_DEBUG_LINK,
|
|
("XXX AN result(2) %08x, %08x\n", pcs_adv, pcs_lpab));
|
|
if ((pcs_adv & TXCW_SYM_PAUSE)
|
|
&& (pcs_lpab & TXCW_SYM_PAUSE)) {
|
|
mii->mii_media_active |= IFM_FLOW
|
|
| IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
|
|
} else if (((pcs_adv & TXCW_SYM_PAUSE) == 0)
|
|
&& (pcs_adv & TXCW_ASYM_PAUSE)
|
|
&& (pcs_lpab & TXCW_SYM_PAUSE)
|
|
&& (pcs_lpab & TXCW_ASYM_PAUSE)) {
|
|
mii->mii_media_active |= IFM_FLOW
|
|
| IFM_ETH_TXPAUSE;
|
|
} else if ((pcs_adv & TXCW_SYM_PAUSE)
|
|
&& (pcs_adv & TXCW_ASYM_PAUSE)
|
|
&& ((pcs_lpab & TXCW_SYM_PAUSE) == 0)
|
|
&& (pcs_lpab & TXCW_ASYM_PAUSE)) {
|
|
mii->mii_media_active |= IFM_FLOW
|
|
| IFM_ETH_RXPAUSE;
|
|
}
|
|
}
|
|
ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
|
|
| (mii->mii_media_active & IFM_ETH_FMASK);
|
|
setled:
|
|
wm_tbi_serdes_set_linkled(sc);
|
|
}
|
|
|
|
/*
|
|
* wm_serdes_tick:
|
|
*
|
|
* Check the link on serdes devices.
|
|
*/
|
|
static void
|
|
wm_serdes_tick(struct wm_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
|
|
uint32_t reg;
|
|
|
|
KASSERT(WM_CORE_LOCKED(sc));
|
|
|
|
mii->mii_media_status = IFM_AVALID;
|
|
mii->mii_media_active = IFM_ETHER;
|
|
|
|
/* Check PCS */
|
|
reg = CSR_READ(sc, WMREG_PCS_LSTS);
|
|
if ((reg & PCS_LSTS_LINKOK) != 0) {
|
|
mii->mii_media_status |= IFM_ACTIVE;
|
|
sc->sc_tbi_linkup = 1;
|
|
sc->sc_tbi_serdes_ticks = 0;
|
|
mii->mii_media_active |= IFM_1000_SX; /* XXX */
|
|
if ((reg & PCS_LSTS_FDX) != 0)
|
|
mii->mii_media_active |= IFM_FDX;
|
|
else
|
|
mii->mii_media_active |= IFM_HDX;
|
|
} else {
|
|
mii->mii_media_status |= IFM_NONE;
|
|
sc->sc_tbi_linkup = 0;
|
|
/* If the timer expired, retry autonegotiation */
|
|
if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
|
|
&& (++sc->sc_tbi_serdes_ticks
|
|
>= sc->sc_tbi_serdes_anegticks)) {
|
|
DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s: EXPIRE\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
sc->sc_tbi_serdes_ticks = 0;
|
|
/* XXX */
|
|
wm_serdes_mediachange(ifp);
|
|
}
|
|
}
|
|
|
|
wm_tbi_serdes_set_linkled(sc);
|
|
}
|
|
|
|
/* SFP related */
|
|
|
|
static int
|
|
wm_sfp_read_data_byte(struct wm_softc *sc, uint16_t offset, uint8_t *data)
|
|
{
|
|
uint32_t i2ccmd;
|
|
int i;
|
|
|
|
i2ccmd = (offset << I2CCMD_REG_ADDR_SHIFT) | I2CCMD_OPCODE_READ;
|
|
CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
|
|
|
|
/* Poll the ready bit */
|
|
for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
|
|
delay(50);
|
|
i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
|
|
if (i2ccmd & I2CCMD_READY)
|
|
break;
|
|
}
|
|
if ((i2ccmd & I2CCMD_READY) == 0)
|
|
return -1;
|
|
if ((i2ccmd & I2CCMD_ERROR) != 0)
|
|
return -1;
|
|
|
|
*data = i2ccmd & 0x00ff;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t
|
|
wm_sfp_get_media_type(struct wm_softc *sc)
|
|
{
|
|
uint32_t ctrl_ext;
|
|
uint8_t val = 0;
|
|
int timeout = 3;
|
|
uint32_t mediatype = WM_MEDIATYPE_UNKNOWN;
|
|
int rv = -1;
|
|
|
|
ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
ctrl_ext &= ~CTRL_EXT_SWDPIN(3);
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext | CTRL_EXT_I2C_ENA);
|
|
CSR_WRITE_FLUSH(sc);
|
|
|
|
/* Read SFP module data */
|
|
while (timeout) {
|
|
rv = wm_sfp_read_data_byte(sc, SFF_SFP_ID_OFF, &val);
|
|
if (rv == 0)
|
|
break;
|
|
delay(100*1000); /* XXX too big */
|
|
timeout--;
|
|
}
|
|
if (rv != 0)
|
|
goto out;
|
|
|
|
switch (val) {
|
|
case SFF_SFP_ID_SFF:
|
|
aprint_normal_dev(sc->sc_dev,
|
|
"Module/Connector soldered to board\n");
|
|
break;
|
|
case SFF_SFP_ID_SFP:
|
|
sc->sc_flags |= WM_F_SFP;
|
|
break;
|
|
case SFF_SFP_ID_UNKNOWN:
|
|
goto out;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
rv = wm_sfp_read_data_byte(sc, SFF_SFP_ETH_FLAGS_OFF, &val);
|
|
if (rv != 0)
|
|
goto out;
|
|
|
|
sc->sc_sfptype = val;
|
|
if ((val & (SFF_SFP_ETH_FLAGS_1000SX | SFF_SFP_ETH_FLAGS_1000LX)) != 0)
|
|
mediatype = WM_MEDIATYPE_SERDES;
|
|
else if ((val & SFF_SFP_ETH_FLAGS_1000T) != 0) {
|
|
sc->sc_flags |= WM_F_SGMII;
|
|
mediatype = WM_MEDIATYPE_COPPER;
|
|
} else if ((val & SFF_SFP_ETH_FLAGS_100FX) != 0) {
|
|
sc->sc_flags |= WM_F_SGMII;
|
|
mediatype = WM_MEDIATYPE_SERDES;
|
|
} else {
|
|
device_printf(sc->sc_dev, "%s: unknown media type? (0x%hhx)\n",
|
|
__func__, sc->sc_sfptype);
|
|
sc->sc_sfptype = 0; /* XXX unknown */
|
|
}
|
|
|
|
out:
|
|
/* Restore I2C interface setting */
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
|
|
|
|
return mediatype;
|
|
}
|
|
|
|
/*
|
|
* NVM related.
|
|
* Microwire, SPI (w/wo EERD) and Flash.
|
|
*/
|
|
|
|
/* Both spi and uwire */
|
|
|
|
/*
|
|
* wm_eeprom_sendbits:
|
|
*
|
|
* Send a series of bits to the EEPROM.
|
|
*/
|
|
static void
|
|
wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
|
|
{
|
|
uint32_t reg;
|
|
int x;
|
|
|
|
reg = CSR_READ(sc, WMREG_EECD);
|
|
|
|
for (x = nbits; x > 0; x--) {
|
|
if (bits & (1U << (x - 1)))
|
|
reg |= EECD_DI;
|
|
else
|
|
reg &= ~EECD_DI;
|
|
CSR_WRITE(sc, WMREG_EECD, reg);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(2);
|
|
CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(2);
|
|
CSR_WRITE(sc, WMREG_EECD, reg);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(2);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* wm_eeprom_recvbits:
|
|
*
|
|
* Receive a series of bits from the EEPROM.
|
|
*/
|
|
static void
|
|
wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
|
|
{
|
|
uint32_t reg, val;
|
|
int x;
|
|
|
|
reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
|
|
|
|
val = 0;
|
|
for (x = nbits; x > 0; x--) {
|
|
CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(2);
|
|
if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
|
|
val |= (1U << (x - 1));
|
|
CSR_WRITE(sc, WMREG_EECD, reg);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(2);
|
|
}
|
|
*valp = val;
|
|
}
|
|
|
|
/* Microwire */
|
|
|
|
/*
|
|
* wm_nvm_read_uwire:
|
|
*
|
|
* Read a word from the EEPROM using the MicroWire protocol.
|
|
*/
|
|
static int
|
|
wm_nvm_read_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
|
|
{
|
|
uint32_t reg, val;
|
|
int i;
|
|
|
|
DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if (sc->nvm.acquire(sc) != 0)
|
|
return -1;
|
|
|
|
for (i = 0; i < wordcnt; i++) {
|
|
/* Clear SK and DI. */
|
|
reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
|
|
CSR_WRITE(sc, WMREG_EECD, reg);
|
|
|
|
/*
|
|
* XXX: workaround for a bug in qemu-0.12.x and prior
|
|
* and Xen.
|
|
*
|
|
* We use this workaround only for 82540 because qemu's
|
|
* e1000 act as 82540.
|
|
*/
|
|
if (sc->sc_type == WM_T_82540) {
|
|
reg |= EECD_SK;
|
|
CSR_WRITE(sc, WMREG_EECD, reg);
|
|
reg &= ~EECD_SK;
|
|
CSR_WRITE(sc, WMREG_EECD, reg);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(2);
|
|
}
|
|
/* XXX: end of workaround */
|
|
|
|
/* Set CHIP SELECT. */
|
|
reg |= EECD_CS;
|
|
CSR_WRITE(sc, WMREG_EECD, reg);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(2);
|
|
|
|
/* Shift in the READ command. */
|
|
wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
|
|
|
|
/* Shift in address. */
|
|
wm_eeprom_sendbits(sc, word + i, sc->sc_nvm_addrbits);
|
|
|
|
/* Shift out the data. */
|
|
wm_eeprom_recvbits(sc, &val, 16);
|
|
data[i] = val & 0xffff;
|
|
|
|
/* Clear CHIP SELECT. */
|
|
reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
|
|
CSR_WRITE(sc, WMREG_EECD, reg);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(2);
|
|
}
|
|
|
|
sc->nvm.release(sc);
|
|
return 0;
|
|
}
|
|
|
|
/* SPI */
|
|
|
|
/*
|
|
* Set SPI and FLASH related information from the EECD register.
|
|
* For 82541 and 82547, the word size is taken from EEPROM.
|
|
*/
|
|
static int
|
|
wm_nvm_set_addrbits_size_eecd(struct wm_softc *sc)
|
|
{
|
|
int size;
|
|
uint32_t reg;
|
|
uint16_t data;
|
|
|
|
reg = CSR_READ(sc, WMREG_EECD);
|
|
sc->sc_nvm_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
|
|
|
|
/* Read the size of NVM from EECD by default */
|
|
size = __SHIFTOUT(reg, EECD_EE_SIZE_EX_MASK);
|
|
switch (sc->sc_type) {
|
|
case WM_T_82541:
|
|
case WM_T_82541_2:
|
|
case WM_T_82547:
|
|
case WM_T_82547_2:
|
|
/* Set dummy value to access EEPROM */
|
|
sc->sc_nvm_wordsize = 64;
|
|
if (wm_nvm_read(sc, NVM_OFF_EEPROM_SIZE, 1, &data) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"%s: failed to read EEPROM size\n", __func__);
|
|
}
|
|
reg = data;
|
|
size = __SHIFTOUT(reg, EECD_EE_SIZE_EX_MASK);
|
|
if (size == 0)
|
|
size = 6; /* 64 word size */
|
|
else
|
|
size += NVM_WORD_SIZE_BASE_SHIFT + 1;
|
|
break;
|
|
case WM_T_80003:
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
case WM_T_82573: /* SPI case */
|
|
case WM_T_82574: /* SPI case */
|
|
case WM_T_82583: /* SPI case */
|
|
size += NVM_WORD_SIZE_BASE_SHIFT;
|
|
if (size > 14)
|
|
size = 14;
|
|
break;
|
|
case WM_T_82575:
|
|
case WM_T_82576:
|
|
case WM_T_82580:
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
case WM_T_I210:
|
|
case WM_T_I211:
|
|
size += NVM_WORD_SIZE_BASE_SHIFT;
|
|
if (size > 15)
|
|
size = 15;
|
|
break;
|
|
default:
|
|
aprint_error_dev(sc->sc_dev,
|
|
"%s: unknown device(%d)?\n", __func__, sc->sc_type);
|
|
return -1;
|
|
break;
|
|
}
|
|
|
|
sc->sc_nvm_wordsize = 1 << size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* wm_nvm_ready_spi:
|
|
*
|
|
* Wait for a SPI EEPROM to be ready for commands.
|
|
*/
|
|
static int
|
|
wm_nvm_ready_spi(struct wm_softc *sc)
|
|
{
|
|
uint32_t val;
|
|
int usec;
|
|
|
|
DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
|
|
wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
|
|
wm_eeprom_recvbits(sc, &val, 8);
|
|
if ((val & SPI_SR_RDY) == 0)
|
|
break;
|
|
}
|
|
if (usec >= SPI_MAX_RETRIES) {
|
|
aprint_error_dev(sc->sc_dev,"EEPROM failed to become ready\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* wm_nvm_read_spi:
|
|
*
|
|
* Read a work from the EEPROM using the SPI protocol.
|
|
*/
|
|
static int
|
|
wm_nvm_read_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
|
|
{
|
|
uint32_t reg, val;
|
|
int i;
|
|
uint8_t opc;
|
|
int rv = 0;
|
|
|
|
DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if (sc->nvm.acquire(sc) != 0)
|
|
return -1;
|
|
|
|
/* Clear SK and CS. */
|
|
reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
|
|
CSR_WRITE(sc, WMREG_EECD, reg);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(2);
|
|
|
|
if ((rv = wm_nvm_ready_spi(sc)) != 0)
|
|
goto out;
|
|
|
|
/* Toggle CS to flush commands. */
|
|
CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(2);
|
|
CSR_WRITE(sc, WMREG_EECD, reg);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(2);
|
|
|
|
opc = SPI_OPC_READ;
|
|
if (sc->sc_nvm_addrbits == 8 && word >= 128)
|
|
opc |= SPI_OPC_A8;
|
|
|
|
wm_eeprom_sendbits(sc, opc, 8);
|
|
wm_eeprom_sendbits(sc, word << 1, sc->sc_nvm_addrbits);
|
|
|
|
for (i = 0; i < wordcnt; i++) {
|
|
wm_eeprom_recvbits(sc, &val, 16);
|
|
data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
|
|
}
|
|
|
|
/* Raise CS and clear SK. */
|
|
reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
|
|
CSR_WRITE(sc, WMREG_EECD, reg);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(2);
|
|
|
|
out:
|
|
sc->nvm.release(sc);
|
|
return rv;
|
|
}
|
|
|
|
/* Using with EERD */
|
|
|
|
static int
|
|
wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
|
|
{
|
|
uint32_t attempts = 100000;
|
|
uint32_t i, reg = 0;
|
|
int32_t done = -1;
|
|
|
|
for (i = 0; i < attempts; i++) {
|
|
reg = CSR_READ(sc, rw);
|
|
|
|
if (reg & EERD_DONE) {
|
|
done = 0;
|
|
break;
|
|
}
|
|
delay(5);
|
|
}
|
|
|
|
return done;
|
|
}
|
|
|
|
static int
|
|
wm_nvm_read_eerd(struct wm_softc *sc, int offset, int wordcnt, uint16_t *data)
|
|
{
|
|
int i, eerd = 0;
|
|
int rv = 0;
|
|
|
|
DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if (sc->nvm.acquire(sc) != 0)
|
|
return -1;
|
|
|
|
for (i = 0; i < wordcnt; i++) {
|
|
eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
|
|
CSR_WRITE(sc, WMREG_EERD, eerd);
|
|
rv = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
|
|
if (rv != 0) {
|
|
aprint_error_dev(sc->sc_dev, "EERD polling failed: "
|
|
"offset=%d. wordcnt=%d\n", offset, wordcnt);
|
|
break;
|
|
}
|
|
data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
|
|
}
|
|
|
|
sc->nvm.release(sc);
|
|
return rv;
|
|
}
|
|
|
|
/* Flash */
|
|
|
|
static int
|
|
wm_nvm_valid_bank_detect_ich8lan(struct wm_softc *sc, unsigned int *bank)
|
|
{
|
|
uint32_t eecd;
|
|
uint32_t act_offset = ICH_NVM_SIG_WORD * 2 + 1;
|
|
uint32_t bank1_offset = sc->sc_ich8_flash_bank_size * sizeof(uint16_t);
|
|
uint32_t nvm_dword = 0;
|
|
uint8_t sig_byte = 0;
|
|
int rv;
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
bank1_offset = sc->sc_ich8_flash_bank_size * 2;
|
|
act_offset = ICH_NVM_SIG_WORD * 2;
|
|
|
|
/* Set bank to 0 in case flash read fails. */
|
|
*bank = 0;
|
|
|
|
/* Check bank 0 */
|
|
rv = wm_read_ich8_dword(sc, act_offset, &nvm_dword);
|
|
if (rv != 0)
|
|
return rv;
|
|
sig_byte = (uint8_t)((nvm_dword & 0xFF00) >> 8);
|
|
if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
|
|
*bank = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* Check bank 1 */
|
|
rv = wm_read_ich8_dword(sc, act_offset + bank1_offset,
|
|
&nvm_dword);
|
|
sig_byte = (uint8_t)((nvm_dword & 0xFF00) >> 8);
|
|
if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
|
|
*bank = 1;
|
|
return 0;
|
|
}
|
|
aprint_error_dev(sc->sc_dev,
|
|
"%s: no valid NVM bank present (%u)\n", __func__, *bank);
|
|
return -1;
|
|
case WM_T_ICH8:
|
|
case WM_T_ICH9:
|
|
eecd = CSR_READ(sc, WMREG_EECD);
|
|
if ((eecd & EECD_SEC1VAL_VALMASK) == EECD_SEC1VAL_VALMASK) {
|
|
*bank = ((eecd & EECD_SEC1VAL) != 0) ? 1 : 0;
|
|
return 0;
|
|
}
|
|
/* FALLTHROUGH */
|
|
default:
|
|
/* Default to 0 */
|
|
*bank = 0;
|
|
|
|
/* Check bank 0 */
|
|
wm_read_ich8_byte(sc, act_offset, &sig_byte);
|
|
if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
|
|
*bank = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* Check bank 1 */
|
|
wm_read_ich8_byte(sc, act_offset + bank1_offset,
|
|
&sig_byte);
|
|
if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
|
|
*bank = 1;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
DPRINTF(sc, WM_DEBUG_NVM, ("%s: No valid NVM bank present\n",
|
|
device_xname(sc->sc_dev)));
|
|
return -1;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* This function does initial flash setup so that a new read/write/erase cycle
|
|
* can be started.
|
|
*
|
|
* sc - The pointer to the hw structure
|
|
****************************************************************************/
|
|
static int32_t
|
|
wm_ich8_cycle_init(struct wm_softc *sc)
|
|
{
|
|
uint16_t hsfsts;
|
|
int32_t error = 1;
|
|
int32_t i = 0;
|
|
|
|
if (sc->sc_type >= WM_T_PCH_SPT)
|
|
hsfsts = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS) & 0xffffUL;
|
|
else
|
|
hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
|
|
|
|
/* May be check the Flash Des Valid bit in Hw status */
|
|
if ((hsfsts & HSFSTS_FLDVAL) == 0)
|
|
return error;
|
|
|
|
/* Clear FCERR in Hw status by writing 1 */
|
|
/* Clear DAEL in Hw status by writing a 1 */
|
|
hsfsts |= HSFSTS_ERR | HSFSTS_DAEL;
|
|
|
|
if (sc->sc_type >= WM_T_PCH_SPT)
|
|
ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS, hsfsts & 0xffffUL);
|
|
else
|
|
ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
|
|
|
|
/*
|
|
* Either we should have a hardware SPI cycle in progress bit to check
|
|
* against, in order to start a new cycle or FDONE bit should be
|
|
* changed in the hardware so that it is 1 after hardware reset, which
|
|
* can then be used as an indication whether a cycle is in progress or
|
|
* has been completed .. we should also have some software semaphore
|
|
* mechanism to guard FDONE or the cycle in progress bit so that two
|
|
* threads access to those bits can be sequentiallized or a way so that
|
|
* 2 threads don't start the cycle at the same time
|
|
*/
|
|
|
|
if ((hsfsts & HSFSTS_FLINPRO) == 0) {
|
|
/*
|
|
* There is no cycle running at present, so we can start a
|
|
* cycle
|
|
*/
|
|
|
|
/* Begin by setting Flash Cycle Done. */
|
|
hsfsts |= HSFSTS_DONE;
|
|
if (sc->sc_type >= WM_T_PCH_SPT)
|
|
ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS,
|
|
hsfsts & 0xffffUL);
|
|
else
|
|
ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
|
|
error = 0;
|
|
} else {
|
|
/*
|
|
* Otherwise poll for sometime so the current cycle has a
|
|
* chance to end before giving up.
|
|
*/
|
|
for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
|
|
if (sc->sc_type >= WM_T_PCH_SPT)
|
|
hsfsts = ICH8_FLASH_READ32(sc,
|
|
ICH_FLASH_HSFSTS) & 0xffffUL;
|
|
else
|
|
hsfsts = ICH8_FLASH_READ16(sc,
|
|
ICH_FLASH_HSFSTS);
|
|
if ((hsfsts & HSFSTS_FLINPRO) == 0) {
|
|
error = 0;
|
|
break;
|
|
}
|
|
delay(1);
|
|
}
|
|
if (error == 0) {
|
|
/*
|
|
* Successful in waiting for previous cycle to timeout,
|
|
* now set the Flash Cycle Done.
|
|
*/
|
|
hsfsts |= HSFSTS_DONE;
|
|
if (sc->sc_type >= WM_T_PCH_SPT)
|
|
ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS,
|
|
hsfsts & 0xffffUL);
|
|
else
|
|
ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS,
|
|
hsfsts);
|
|
}
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* This function starts a flash cycle and waits for its completion
|
|
*
|
|
* sc - The pointer to the hw structure
|
|
****************************************************************************/
|
|
static int32_t
|
|
wm_ich8_flash_cycle(struct wm_softc *sc, uint32_t timeout)
|
|
{
|
|
uint16_t hsflctl;
|
|
uint16_t hsfsts;
|
|
int32_t error = 1;
|
|
uint32_t i = 0;
|
|
|
|
/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
|
|
if (sc->sc_type >= WM_T_PCH_SPT)
|
|
hsflctl = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS) >> 16;
|
|
else
|
|
hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
|
|
hsflctl |= HSFCTL_GO;
|
|
if (sc->sc_type >= WM_T_PCH_SPT)
|
|
ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS,
|
|
(uint32_t)hsflctl << 16);
|
|
else
|
|
ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
|
|
|
|
/* Wait till FDONE bit is set to 1 */
|
|
do {
|
|
if (sc->sc_type >= WM_T_PCH_SPT)
|
|
hsfsts = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS)
|
|
& 0xffffUL;
|
|
else
|
|
hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
|
|
if (hsfsts & HSFSTS_DONE)
|
|
break;
|
|
delay(1);
|
|
i++;
|
|
} while (i < timeout);
|
|
if ((hsfsts & HSFSTS_DONE) == 1 && (hsfsts & HSFSTS_ERR) == 0)
|
|
error = 0;
|
|
|
|
return error;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Reads a byte or (d)word from the NVM using the ICH8 flash access registers.
|
|
*
|
|
* sc - The pointer to the hw structure
|
|
* index - The index of the byte or word to read.
|
|
* size - Size of data to read, 1=byte 2=word, 4=dword
|
|
* data - Pointer to the word to store the value read.
|
|
*****************************************************************************/
|
|
static int32_t
|
|
wm_read_ich8_data(struct wm_softc *sc, uint32_t index,
|
|
uint32_t size, uint32_t *data)
|
|
{
|
|
uint16_t hsfsts;
|
|
uint16_t hsflctl;
|
|
uint32_t flash_linear_address;
|
|
uint32_t flash_data = 0;
|
|
int32_t error = 1;
|
|
int32_t count = 0;
|
|
|
|
if (size < 1 || size > 4 || data == 0x0 ||
|
|
index > ICH_FLASH_LINEAR_ADDR_MASK)
|
|
return error;
|
|
|
|
flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
|
|
sc->sc_ich8_flash_base;
|
|
|
|
do {
|
|
delay(1);
|
|
/* Steps */
|
|
error = wm_ich8_cycle_init(sc);
|
|
if (error)
|
|
break;
|
|
|
|
if (sc->sc_type >= WM_T_PCH_SPT)
|
|
hsflctl = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS)
|
|
>> 16;
|
|
else
|
|
hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
|
|
/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
|
|
hsflctl |= ((size - 1) << HSFCTL_BCOUNT_SHIFT)
|
|
& HSFCTL_BCOUNT_MASK;
|
|
hsflctl |= ICH_CYCLE_READ << HSFCTL_CYCLE_SHIFT;
|
|
if (sc->sc_type >= WM_T_PCH_SPT) {
|
|
/*
|
|
* In SPT, This register is in Lan memory space, not
|
|
* flash. Therefore, only 32 bit access is supported.
|
|
*/
|
|
ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS,
|
|
(uint32_t)hsflctl << 16);
|
|
} else
|
|
ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
|
|
|
|
/*
|
|
* Write the last 24 bits of index into Flash Linear address
|
|
* field in Flash Address
|
|
*/
|
|
/* TODO: TBD maybe check the index against the size of flash */
|
|
|
|
ICH8_FLASH_WRITE32(sc, ICH_FLASH_FADDR, flash_linear_address);
|
|
|
|
error = wm_ich8_flash_cycle(sc, ICH_FLASH_COMMAND_TIMEOUT);
|
|
|
|
/*
|
|
* Check if FCERR is set to 1, if set to 1, clear it and try
|
|
* the whole sequence a few more times, else read in (shift in)
|
|
* the Flash Data0, the order is least significant byte first
|
|
* msb to lsb
|
|
*/
|
|
if (error == 0) {
|
|
flash_data = ICH8_FLASH_READ32(sc, ICH_FLASH_FDATA0);
|
|
if (size == 1)
|
|
*data = (uint8_t)(flash_data & 0x000000FF);
|
|
else if (size == 2)
|
|
*data = (uint16_t)(flash_data & 0x0000FFFF);
|
|
else if (size == 4)
|
|
*data = (uint32_t)flash_data;
|
|
break;
|
|
} else {
|
|
/*
|
|
* If we've gotten here, then things are probably
|
|
* completely hosed, but if the error condition is
|
|
* detected, it won't hurt to give it another try...
|
|
* ICH_FLASH_CYCLE_REPEAT_COUNT times.
|
|
*/
|
|
if (sc->sc_type >= WM_T_PCH_SPT)
|
|
hsfsts = ICH8_FLASH_READ32(sc,
|
|
ICH_FLASH_HSFSTS) & 0xffffUL;
|
|
else
|
|
hsfsts = ICH8_FLASH_READ16(sc,
|
|
ICH_FLASH_HSFSTS);
|
|
|
|
if (hsfsts & HSFSTS_ERR) {
|
|
/* Repeat for some time before giving up. */
|
|
continue;
|
|
} else if ((hsfsts & HSFSTS_DONE) == 0)
|
|
break;
|
|
}
|
|
} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
|
|
|
|
return error;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Reads a single byte from the NVM using the ICH8 flash access registers.
|
|
*
|
|
* sc - pointer to wm_hw structure
|
|
* index - The index of the byte to read.
|
|
* data - Pointer to a byte to store the value read.
|
|
*****************************************************************************/
|
|
static int32_t
|
|
wm_read_ich8_byte(struct wm_softc *sc, uint32_t index, uint8_t* data)
|
|
{
|
|
int32_t status;
|
|
uint32_t word = 0;
|
|
|
|
status = wm_read_ich8_data(sc, index, 1, &word);
|
|
if (status == 0)
|
|
*data = (uint8_t)word;
|
|
else
|
|
*data = 0;
|
|
|
|
return status;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Reads a word from the NVM using the ICH8 flash access registers.
|
|
*
|
|
* sc - pointer to wm_hw structure
|
|
* index - The starting byte index of the word to read.
|
|
* data - Pointer to a word to store the value read.
|
|
*****************************************************************************/
|
|
static int32_t
|
|
wm_read_ich8_word(struct wm_softc *sc, uint32_t index, uint16_t *data)
|
|
{
|
|
int32_t status;
|
|
uint32_t word = 0;
|
|
|
|
status = wm_read_ich8_data(sc, index, 2, &word);
|
|
if (status == 0)
|
|
*data = (uint16_t)word;
|
|
else
|
|
*data = 0;
|
|
|
|
return status;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Reads a dword from the NVM using the ICH8 flash access registers.
|
|
*
|
|
* sc - pointer to wm_hw structure
|
|
* index - The starting byte index of the word to read.
|
|
* data - Pointer to a word to store the value read.
|
|
*****************************************************************************/
|
|
static int32_t
|
|
wm_read_ich8_dword(struct wm_softc *sc, uint32_t index, uint32_t *data)
|
|
{
|
|
int32_t status;
|
|
|
|
status = wm_read_ich8_data(sc, index, 4, data);
|
|
return status;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
|
|
* register.
|
|
*
|
|
* sc - Struct containing variables accessed by shared code
|
|
* offset - offset of word in the EEPROM to read
|
|
* data - word read from the EEPROM
|
|
* words - number of words to read
|
|
*****************************************************************************/
|
|
static int
|
|
wm_nvm_read_ich8(struct wm_softc *sc, int offset, int words, uint16_t *data)
|
|
{
|
|
int32_t rv = 0;
|
|
uint32_t flash_bank = 0;
|
|
uint32_t act_offset = 0;
|
|
uint32_t bank_offset = 0;
|
|
uint16_t word = 0;
|
|
uint16_t i = 0;
|
|
|
|
DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if (sc->nvm.acquire(sc) != 0)
|
|
return -1;
|
|
|
|
/*
|
|
* We need to know which is the valid flash bank. In the event
|
|
* that we didn't allocate eeprom_shadow_ram, we may not be
|
|
* managing flash_bank. So it cannot be trusted and needs
|
|
* to be updated with each read.
|
|
*/
|
|
rv = wm_nvm_valid_bank_detect_ich8lan(sc, &flash_bank);
|
|
if (rv) {
|
|
DPRINTF(sc, WM_DEBUG_NVM, ("%s: failed to detect NVM bank\n",
|
|
device_xname(sc->sc_dev)));
|
|
flash_bank = 0;
|
|
}
|
|
|
|
/*
|
|
* Adjust offset appropriately if we're on bank 1 - adjust for word
|
|
* size
|
|
*/
|
|
bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
|
|
|
|
for (i = 0; i < words; i++) {
|
|
/* The NVM part needs a byte offset, hence * 2 */
|
|
act_offset = bank_offset + ((offset + i) * 2);
|
|
rv = wm_read_ich8_word(sc, act_offset, &word);
|
|
if (rv) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"%s: failed to read NVM\n", __func__);
|
|
break;
|
|
}
|
|
data[i] = word;
|
|
}
|
|
|
|
sc->nvm.release(sc);
|
|
return rv;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Reads a 16 bit word or words from the EEPROM using the SPT's flash access
|
|
* register.
|
|
*
|
|
* sc - Struct containing variables accessed by shared code
|
|
* offset - offset of word in the EEPROM to read
|
|
* data - word read from the EEPROM
|
|
* words - number of words to read
|
|
*****************************************************************************/
|
|
static int
|
|
wm_nvm_read_spt(struct wm_softc *sc, int offset, int words, uint16_t *data)
|
|
{
|
|
int32_t rv = 0;
|
|
uint32_t flash_bank = 0;
|
|
uint32_t act_offset = 0;
|
|
uint32_t bank_offset = 0;
|
|
uint32_t dword = 0;
|
|
uint16_t i = 0;
|
|
|
|
DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if (sc->nvm.acquire(sc) != 0)
|
|
return -1;
|
|
|
|
/*
|
|
* We need to know which is the valid flash bank. In the event
|
|
* that we didn't allocate eeprom_shadow_ram, we may not be
|
|
* managing flash_bank. So it cannot be trusted and needs
|
|
* to be updated with each read.
|
|
*/
|
|
rv = wm_nvm_valid_bank_detect_ich8lan(sc, &flash_bank);
|
|
if (rv) {
|
|
DPRINTF(sc, WM_DEBUG_NVM, ("%s: failed to detect NVM bank\n",
|
|
device_xname(sc->sc_dev)));
|
|
flash_bank = 0;
|
|
}
|
|
|
|
/*
|
|
* Adjust offset appropriately if we're on bank 1 - adjust for word
|
|
* size
|
|
*/
|
|
bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
|
|
|
|
for (i = 0; i < words; i++) {
|
|
/* The NVM part needs a byte offset, hence * 2 */
|
|
act_offset = bank_offset + ((offset + i) * 2);
|
|
/* but we must read dword aligned, so mask ... */
|
|
rv = wm_read_ich8_dword(sc, act_offset & ~0x3, &dword);
|
|
if (rv) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"%s: failed to read NVM\n", __func__);
|
|
break;
|
|
}
|
|
/* ... and pick out low or high word */
|
|
if ((act_offset & 0x2) == 0)
|
|
data[i] = (uint16_t)(dword & 0xFFFF);
|
|
else
|
|
data[i] = (uint16_t)((dword >> 16) & 0xFFFF);
|
|
}
|
|
|
|
sc->nvm.release(sc);
|
|
return rv;
|
|
}
|
|
|
|
/* iNVM */
|
|
|
|
static int
|
|
wm_nvm_read_word_invm(struct wm_softc *sc, uint16_t address, uint16_t *data)
|
|
{
|
|
int32_t rv = 0;
|
|
uint32_t invm_dword;
|
|
uint16_t i;
|
|
uint8_t record_type, word_address;
|
|
|
|
DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
for (i = 0; i < INVM_SIZE; i++) {
|
|
invm_dword = CSR_READ(sc, WM_INVM_DATA_REG(i));
|
|
/* Get record type */
|
|
record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
|
|
if (record_type == INVM_UNINITIALIZED_STRUCTURE)
|
|
break;
|
|
if (record_type == INVM_CSR_AUTOLOAD_STRUCTURE)
|
|
i += INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
|
|
if (record_type == INVM_RSA_KEY_SHA256_STRUCTURE)
|
|
i += INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
|
|
if (record_type == INVM_WORD_AUTOLOAD_STRUCTURE) {
|
|
word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
|
|
if (word_address == address) {
|
|
*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
|
|
rv = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
static int
|
|
wm_nvm_read_invm(struct wm_softc *sc, int offset, int words, uint16_t *data)
|
|
{
|
|
int rv = 0;
|
|
int i;
|
|
|
|
DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if (sc->nvm.acquire(sc) != 0)
|
|
return -1;
|
|
|
|
for (i = 0; i < words; i++) {
|
|
switch (offset + i) {
|
|
case NVM_OFF_MACADDR:
|
|
case NVM_OFF_MACADDR1:
|
|
case NVM_OFF_MACADDR2:
|
|
rv = wm_nvm_read_word_invm(sc, offset + i, &data[i]);
|
|
if (rv != 0) {
|
|
data[i] = 0xffff;
|
|
rv = -1;
|
|
}
|
|
break;
|
|
case NVM_OFF_CFG1: /* == INVM_AUTOLOAD */
|
|
rv = wm_nvm_read_word_invm(sc, offset, data);
|
|
if (rv != 0) {
|
|
*data = INVM_DEFAULT_AL;
|
|
rv = 0;
|
|
}
|
|
break;
|
|
case NVM_OFF_CFG2:
|
|
rv = wm_nvm_read_word_invm(sc, offset, data);
|
|
if (rv != 0) {
|
|
*data = NVM_INIT_CTRL_2_DEFAULT_I211;
|
|
rv = 0;
|
|
}
|
|
break;
|
|
case NVM_OFF_CFG4:
|
|
rv = wm_nvm_read_word_invm(sc, offset, data);
|
|
if (rv != 0) {
|
|
*data = NVM_INIT_CTRL_4_DEFAULT_I211;
|
|
rv = 0;
|
|
}
|
|
break;
|
|
case NVM_OFF_LED_1_CFG:
|
|
rv = wm_nvm_read_word_invm(sc, offset, data);
|
|
if (rv != 0) {
|
|
*data = NVM_LED_1_CFG_DEFAULT_I211;
|
|
rv = 0;
|
|
}
|
|
break;
|
|
case NVM_OFF_LED_0_2_CFG:
|
|
rv = wm_nvm_read_word_invm(sc, offset, data);
|
|
if (rv != 0) {
|
|
*data = NVM_LED_0_2_CFG_DEFAULT_I211;
|
|
rv = 0;
|
|
}
|
|
break;
|
|
case NVM_OFF_ID_LED_SETTINGS:
|
|
rv = wm_nvm_read_word_invm(sc, offset, data);
|
|
if (rv != 0) {
|
|
*data = ID_LED_RESERVED_FFFF;
|
|
rv = 0;
|
|
}
|
|
break;
|
|
default:
|
|
DPRINTF(sc, WM_DEBUG_NVM,
|
|
("NVM word 0x%02x is not mapped.\n", offset));
|
|
*data = NVM_RESERVED_WORD;
|
|
break;
|
|
}
|
|
}
|
|
|
|
sc->nvm.release(sc);
|
|
return rv;
|
|
}
|
|
|
|
/* Lock, detecting NVM type, validate checksum, version and read */
|
|
|
|
static int
|
|
wm_nvm_is_onboard_eeprom(struct wm_softc *sc)
|
|
{
|
|
uint32_t eecd = 0;
|
|
|
|
if (sc->sc_type == WM_T_82573 || sc->sc_type == WM_T_82574
|
|
|| sc->sc_type == WM_T_82583) {
|
|
eecd = CSR_READ(sc, WMREG_EECD);
|
|
|
|
/* Isolate bits 15 & 16 */
|
|
eecd = ((eecd >> 15) & 0x03);
|
|
|
|
/* If both bits are set, device is Flash type */
|
|
if (eecd == 0x03)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
wm_nvm_flash_presence_i210(struct wm_softc *sc)
|
|
{
|
|
uint32_t eec;
|
|
|
|
eec = CSR_READ(sc, WMREG_EEC);
|
|
if ((eec & EEC_FLASH_DETECTED) != 0)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* wm_nvm_validate_checksum
|
|
*
|
|
* The checksum is defined as the sum of the first 64 (16 bit) words.
|
|
*/
|
|
static int
|
|
wm_nvm_validate_checksum(struct wm_softc *sc)
|
|
{
|
|
uint16_t checksum;
|
|
uint16_t eeprom_data;
|
|
#ifdef WM_DEBUG
|
|
uint16_t csum_wordaddr, valid_checksum;
|
|
#endif
|
|
int i;
|
|
|
|
checksum = 0;
|
|
|
|
/* Don't check for I211 */
|
|
if (sc->sc_type == WM_T_I211)
|
|
return 0;
|
|
|
|
#ifdef WM_DEBUG
|
|
if ((sc->sc_type == WM_T_PCH_LPT) || (sc->sc_type == WM_T_PCH_SPT)
|
|
|| (sc->sc_type == WM_T_PCH_CNP)) {
|
|
csum_wordaddr = NVM_OFF_COMPAT;
|
|
valid_checksum = NVM_COMPAT_VALID_CHECKSUM;
|
|
} else {
|
|
csum_wordaddr = NVM_OFF_FUTURE_INIT_WORD1;
|
|
valid_checksum = NVM_FUTURE_INIT_WORD1_VALID_CHECKSUM;
|
|
}
|
|
|
|
/* Dump EEPROM image for debug */
|
|
if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
|
|
|| (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
|
|
|| (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) {
|
|
/* XXX PCH_SPT? */
|
|
wm_nvm_read(sc, csum_wordaddr, 1, &eeprom_data);
|
|
if ((eeprom_data & valid_checksum) == 0)
|
|
DPRINTF(sc, WM_DEBUG_NVM,
|
|
("%s: NVM need to be updated (%04x != %04x)\n",
|
|
device_xname(sc->sc_dev), eeprom_data,
|
|
valid_checksum));
|
|
}
|
|
|
|
if ((sc->sc_debug & WM_DEBUG_NVM) != 0) {
|
|
printf("%s: NVM dump:\n", device_xname(sc->sc_dev));
|
|
for (i = 0; i < NVM_SIZE; i++) {
|
|
if (wm_nvm_read(sc, i, 1, &eeprom_data))
|
|
printf("XXXX ");
|
|
else
|
|
printf("%04hx ", eeprom_data);
|
|
if (i % 8 == 7)
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
#endif /* WM_DEBUG */
|
|
|
|
for (i = 0; i < NVM_SIZE; i++) {
|
|
if (wm_nvm_read(sc, i, 1, &eeprom_data))
|
|
return 1;
|
|
checksum += eeprom_data;
|
|
}
|
|
|
|
if (checksum != (uint16_t) NVM_CHECKSUM) {
|
|
#ifdef WM_DEBUG
|
|
printf("%s: NVM checksum mismatch (%04x != %04x)\n",
|
|
device_xname(sc->sc_dev), checksum, NVM_CHECKSUM);
|
|
#endif
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
wm_nvm_version_invm(struct wm_softc *sc)
|
|
{
|
|
uint32_t dword;
|
|
|
|
/*
|
|
* Linux's code to decode version is very strange, so we don't
|
|
* obey that algorithm and just use word 61 as the document.
|
|
* Perhaps it's not perfect though...
|
|
*
|
|
* Example:
|
|
*
|
|
* Word61: 00800030 -> Version 0.6 (I211 spec update notes about 0.6)
|
|
*/
|
|
dword = CSR_READ(sc, WM_INVM_DATA_REG(61));
|
|
dword = __SHIFTOUT(dword, INVM_VER_1);
|
|
sc->sc_nvm_ver_major = __SHIFTOUT(dword, INVM_MAJOR);
|
|
sc->sc_nvm_ver_minor = __SHIFTOUT(dword, INVM_MINOR);
|
|
}
|
|
|
|
static void
|
|
wm_nvm_version(struct wm_softc *sc)
|
|
{
|
|
uint16_t major, minor, build, patch;
|
|
uint16_t uid0, uid1;
|
|
uint16_t nvm_data;
|
|
uint16_t off;
|
|
bool check_version = false;
|
|
bool check_optionrom = false;
|
|
bool have_build = false;
|
|
bool have_uid = true;
|
|
|
|
/*
|
|
* Version format:
|
|
*
|
|
* XYYZ
|
|
* X0YZ
|
|
* X0YY
|
|
*
|
|
* Example:
|
|
*
|
|
* 82571 0x50a2 5.10.2? (the spec update notes about 5.6-5.10)
|
|
* 82571 0x50a6 5.10.6?
|
|
* 82572 0x506a 5.6.10?
|
|
* 82572EI 0x5069 5.6.9?
|
|
* 82574L 0x1080 1.8.0? (the spec update notes about 2.1.4)
|
|
* 0x2013 2.1.3?
|
|
* 82583 0x10a0 1.10.0? (document says it's default value)
|
|
* ICH8+82567 0x0040 0.4.0?
|
|
* ICH9+82566 0x1040 1.4.0?
|
|
*ICH10+82567 0x0043 0.4.3?
|
|
* PCH+82577 0x00c1 0.12.1?
|
|
* PCH2+82579 0x00d3 0.13.3?
|
|
* 0x00d4 0.13.4?
|
|
* LPT+I218 0x0023 0.2.3?
|
|
* SPT+I219 0x0084 0.8.4?
|
|
* CNP+I219 0x0054 0.5.4?
|
|
*/
|
|
|
|
/*
|
|
* XXX
|
|
* Qemu's e1000e emulation (82574L)'s SPI has only 64 words.
|
|
* I've never seen on real 82574 hardware with such small SPI ROM.
|
|
*/
|
|
if ((sc->sc_nvm_wordsize < NVM_OFF_IMAGE_UID1)
|
|
|| (wm_nvm_read(sc, NVM_OFF_IMAGE_UID1, 1, &uid1) != 0))
|
|
have_uid = false;
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
case WM_T_82574:
|
|
case WM_T_82583:
|
|
check_version = true;
|
|
check_optionrom = true;
|
|
have_build = true;
|
|
break;
|
|
case WM_T_ICH8:
|
|
case WM_T_ICH9:
|
|
case WM_T_ICH10:
|
|
case WM_T_PCH:
|
|
case WM_T_PCH2:
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
check_version = true;
|
|
have_build = true;
|
|
have_uid = false;
|
|
break;
|
|
case WM_T_82575:
|
|
case WM_T_82576:
|
|
case WM_T_82580:
|
|
if (have_uid && (uid1 & NVM_MAJOR_MASK) != NVM_UID_VALID)
|
|
check_version = true;
|
|
break;
|
|
case WM_T_I211:
|
|
wm_nvm_version_invm(sc);
|
|
have_uid = false;
|
|
goto printver;
|
|
case WM_T_I210:
|
|
if (!wm_nvm_flash_presence_i210(sc)) {
|
|
wm_nvm_version_invm(sc);
|
|
have_uid = false;
|
|
goto printver;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
check_version = true;
|
|
check_optionrom = true;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
if (check_version
|
|
&& (wm_nvm_read(sc, NVM_OFF_VERSION, 1, &nvm_data) == 0)) {
|
|
major = (nvm_data & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
|
|
if (have_build || ((nvm_data & 0x0f00) != 0x0000)) {
|
|
minor = (nvm_data & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT;
|
|
build = nvm_data & NVM_BUILD_MASK;
|
|
have_build = true;
|
|
} else
|
|
minor = nvm_data & 0x00ff;
|
|
|
|
/* Decimal */
|
|
minor = (minor / 16) * 10 + (minor % 16);
|
|
sc->sc_nvm_ver_major = major;
|
|
sc->sc_nvm_ver_minor = minor;
|
|
|
|
printver:
|
|
aprint_verbose(", version %d.%d", sc->sc_nvm_ver_major,
|
|
sc->sc_nvm_ver_minor);
|
|
if (have_build) {
|
|
sc->sc_nvm_ver_build = build;
|
|
aprint_verbose(".%d", build);
|
|
}
|
|
}
|
|
|
|
/* Assume the Option ROM area is at avove NVM_SIZE */
|
|
if ((sc->sc_nvm_wordsize > NVM_SIZE) && check_optionrom
|
|
&& (wm_nvm_read(sc, NVM_OFF_COMB_VER_PTR, 1, &off) == 0)) {
|
|
/* Option ROM Version */
|
|
if ((off != 0x0000) && (off != 0xffff)) {
|
|
int rv;
|
|
|
|
off += NVM_COMBO_VER_OFF;
|
|
rv = wm_nvm_read(sc, off + 1, 1, &uid1);
|
|
rv |= wm_nvm_read(sc, off, 1, &uid0);
|
|
if ((rv == 0) && (uid0 != 0) && (uid0 != 0xffff)
|
|
&& (uid1 != 0) && (uid1 != 0xffff)) {
|
|
/* 16bits */
|
|
major = uid0 >> 8;
|
|
build = (uid0 << 8) | (uid1 >> 8);
|
|
patch = uid1 & 0x00ff;
|
|
aprint_verbose(", option ROM Version %d.%d.%d",
|
|
major, build, patch);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (have_uid && (wm_nvm_read(sc, NVM_OFF_IMAGE_UID0, 1, &uid0) == 0))
|
|
aprint_verbose(", Image Unique ID %08x",
|
|
((uint32_t)uid1 << 16) | uid0);
|
|
}
|
|
|
|
/*
|
|
* wm_nvm_read:
|
|
*
|
|
* Read data from the serial EEPROM.
|
|
*/
|
|
static int
|
|
wm_nvm_read(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
|
|
{
|
|
int rv;
|
|
|
|
DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if (sc->sc_flags & WM_F_EEPROM_INVALID)
|
|
return -1;
|
|
|
|
rv = sc->nvm.read(sc, word, wordcnt, data);
|
|
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Hardware semaphores.
|
|
* Very complexed...
|
|
*/
|
|
|
|
static int
|
|
wm_get_null(struct wm_softc *sc)
|
|
{
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
wm_put_null(struct wm_softc *sc)
|
|
{
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
return;
|
|
}
|
|
|
|
static int
|
|
wm_get_eecd(struct wm_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
int x;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK | WM_DEBUG_NVM, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
reg = CSR_READ(sc, WMREG_EECD);
|
|
|
|
/* Request EEPROM access. */
|
|
reg |= EECD_EE_REQ;
|
|
CSR_WRITE(sc, WMREG_EECD, reg);
|
|
|
|
/* ..and wait for it to be granted. */
|
|
for (x = 0; x < 1000; x++) {
|
|
reg = CSR_READ(sc, WMREG_EECD);
|
|
if (reg & EECD_EE_GNT)
|
|
break;
|
|
delay(5);
|
|
}
|
|
if ((reg & EECD_EE_GNT) == 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not acquire EEPROM GNT\n");
|
|
reg &= ~EECD_EE_REQ;
|
|
CSR_WRITE(sc, WMREG_EECD, reg);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
wm_nvm_eec_clock_raise(struct wm_softc *sc, uint32_t *eecd)
|
|
{
|
|
|
|
*eecd |= EECD_SK;
|
|
CSR_WRITE(sc, WMREG_EECD, *eecd);
|
|
CSR_WRITE_FLUSH(sc);
|
|
if ((sc->sc_flags & WM_F_EEPROM_SPI) != 0)
|
|
delay(1);
|
|
else
|
|
delay(50);
|
|
}
|
|
|
|
static void
|
|
wm_nvm_eec_clock_lower(struct wm_softc *sc, uint32_t *eecd)
|
|
{
|
|
|
|
*eecd &= ~EECD_SK;
|
|
CSR_WRITE(sc, WMREG_EECD, *eecd);
|
|
CSR_WRITE_FLUSH(sc);
|
|
if ((sc->sc_flags & WM_F_EEPROM_SPI) != 0)
|
|
delay(1);
|
|
else
|
|
delay(50);
|
|
}
|
|
|
|
static void
|
|
wm_put_eecd(struct wm_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
/* Stop nvm */
|
|
reg = CSR_READ(sc, WMREG_EECD);
|
|
if ((sc->sc_flags & WM_F_EEPROM_SPI) != 0) {
|
|
/* Pull CS high */
|
|
reg |= EECD_CS;
|
|
wm_nvm_eec_clock_lower(sc, ®);
|
|
} else {
|
|
/* CS on Microwire is active-high */
|
|
reg &= ~(EECD_CS | EECD_DI);
|
|
CSR_WRITE(sc, WMREG_EECD, reg);
|
|
wm_nvm_eec_clock_raise(sc, ®);
|
|
wm_nvm_eec_clock_lower(sc, ®);
|
|
}
|
|
|
|
reg = CSR_READ(sc, WMREG_EECD);
|
|
reg &= ~EECD_EE_REQ;
|
|
CSR_WRITE(sc, WMREG_EECD, reg);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Get hardware semaphore.
|
|
* Same as e1000_get_hw_semaphore_generic()
|
|
*/
|
|
static int
|
|
wm_get_swsm_semaphore(struct wm_softc *sc)
|
|
{
|
|
int32_t timeout;
|
|
uint32_t swsm;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
KASSERT(sc->sc_nvm_wordsize > 0);
|
|
|
|
retry:
|
|
/* Get the SW semaphore. */
|
|
timeout = sc->sc_nvm_wordsize + 1;
|
|
while (timeout) {
|
|
swsm = CSR_READ(sc, WMREG_SWSM);
|
|
|
|
if ((swsm & SWSM_SMBI) == 0)
|
|
break;
|
|
|
|
delay(50);
|
|
timeout--;
|
|
}
|
|
|
|
if (timeout == 0) {
|
|
if ((sc->sc_flags & WM_F_WA_I210_CLSEM) != 0) {
|
|
/*
|
|
* In rare circumstances, the SW semaphore may already
|
|
* be held unintentionally. Clear the semaphore once
|
|
* before giving up.
|
|
*/
|
|
sc->sc_flags &= ~WM_F_WA_I210_CLSEM;
|
|
wm_put_swsm_semaphore(sc);
|
|
goto retry;
|
|
}
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not acquire SWSM SMBI\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Get the FW semaphore. */
|
|
timeout = sc->sc_nvm_wordsize + 1;
|
|
while (timeout) {
|
|
swsm = CSR_READ(sc, WMREG_SWSM);
|
|
swsm |= SWSM_SWESMBI;
|
|
CSR_WRITE(sc, WMREG_SWSM, swsm);
|
|
/* If we managed to set the bit we got the semaphore. */
|
|
swsm = CSR_READ(sc, WMREG_SWSM);
|
|
if (swsm & SWSM_SWESMBI)
|
|
break;
|
|
|
|
delay(50);
|
|
timeout--;
|
|
}
|
|
|
|
if (timeout == 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not acquire SWSM SWESMBI\n");
|
|
/* Release semaphores */
|
|
wm_put_swsm_semaphore(sc);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Put hardware semaphore.
|
|
* Same as e1000_put_hw_semaphore_generic()
|
|
*/
|
|
static void
|
|
wm_put_swsm_semaphore(struct wm_softc *sc)
|
|
{
|
|
uint32_t swsm;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
swsm = CSR_READ(sc, WMREG_SWSM);
|
|
swsm &= ~(SWSM_SMBI | SWSM_SWESMBI);
|
|
CSR_WRITE(sc, WMREG_SWSM, swsm);
|
|
}
|
|
|
|
/*
|
|
* Get SW/FW semaphore.
|
|
* Same as e1000_acquire_swfw_sync_{80003es2lan,82575}().
|
|
*/
|
|
static int
|
|
wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
|
|
{
|
|
uint32_t swfw_sync;
|
|
uint32_t swmask = mask << SWFW_SOFT_SHIFT;
|
|
uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
|
|
int timeout;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if (sc->sc_type == WM_T_80003)
|
|
timeout = 50;
|
|
else
|
|
timeout = 200;
|
|
|
|
while (timeout) {
|
|
if (wm_get_swsm_semaphore(sc)) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"%s: failed to get semaphore\n",
|
|
__func__);
|
|
return 1;
|
|
}
|
|
swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
|
|
if ((swfw_sync & (swmask | fwmask)) == 0) {
|
|
swfw_sync |= swmask;
|
|
CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
|
|
wm_put_swsm_semaphore(sc);
|
|
return 0;
|
|
}
|
|
wm_put_swsm_semaphore(sc);
|
|
delay(5000);
|
|
timeout--;
|
|
}
|
|
device_printf(sc->sc_dev,
|
|
"failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
|
|
mask, swfw_sync);
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
|
|
{
|
|
uint32_t swfw_sync;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
while (wm_get_swsm_semaphore(sc) != 0)
|
|
continue;
|
|
|
|
swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
|
|
swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
|
|
CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
|
|
|
|
wm_put_swsm_semaphore(sc);
|
|
}
|
|
|
|
static int
|
|
wm_get_nvm_80003(struct wm_softc *sc)
|
|
{
|
|
int rv;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK | WM_DEBUG_NVM, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if ((rv = wm_get_swfw_semaphore(sc, SWFW_EEP_SM)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"%s: failed to get semaphore(SWFW)\n", __func__);
|
|
return rv;
|
|
}
|
|
|
|
if (((sc->sc_flags & WM_F_LOCK_EECD) != 0)
|
|
&& (rv = wm_get_eecd(sc)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"%s: failed to get semaphore(EECD)\n", __func__);
|
|
wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
|
|
return rv;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
wm_put_nvm_80003(struct wm_softc *sc)
|
|
{
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if ((sc->sc_flags & WM_F_LOCK_EECD) != 0)
|
|
wm_put_eecd(sc);
|
|
wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
|
|
}
|
|
|
|
static int
|
|
wm_get_nvm_82571(struct wm_softc *sc)
|
|
{
|
|
int rv;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if ((rv = wm_get_swsm_semaphore(sc)) != 0)
|
|
return rv;
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_82573:
|
|
break;
|
|
default:
|
|
if ((sc->sc_flags & WM_F_LOCK_EECD) != 0)
|
|
rv = wm_get_eecd(sc);
|
|
break;
|
|
}
|
|
|
|
if (rv != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"%s: failed to get semaphore\n",
|
|
__func__);
|
|
wm_put_swsm_semaphore(sc);
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
static void
|
|
wm_put_nvm_82571(struct wm_softc *sc)
|
|
{
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_82573:
|
|
break;
|
|
default:
|
|
if ((sc->sc_flags & WM_F_LOCK_EECD) != 0)
|
|
wm_put_eecd(sc);
|
|
break;
|
|
}
|
|
|
|
wm_put_swsm_semaphore(sc);
|
|
}
|
|
|
|
static int
|
|
wm_get_phy_82575(struct wm_softc *sc)
|
|
{
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
return wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
|
|
}
|
|
|
|
static void
|
|
wm_put_phy_82575(struct wm_softc *sc)
|
|
{
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
wm_put_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
|
|
}
|
|
|
|
static int
|
|
wm_get_swfwhw_semaphore(struct wm_softc *sc)
|
|
{
|
|
uint32_t ext_ctrl;
|
|
int timeout = 200;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
mutex_enter(sc->sc_ich_phymtx); /* Use PHY mtx for both PHY and NVM */
|
|
for (timeout = 0; timeout < 200; timeout++) {
|
|
ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
|
|
ext_ctrl |= EXTCNFCTR_MDIO_SW_OWNERSHIP;
|
|
CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
|
|
|
|
ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
|
|
if (ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP)
|
|
return 0;
|
|
delay(5000);
|
|
}
|
|
device_printf(sc->sc_dev,
|
|
"failed to get swfwhw semaphore ext_ctrl 0x%x\n", ext_ctrl);
|
|
mutex_exit(sc->sc_ich_phymtx); /* Use PHY mtx for both PHY and NVM */
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
wm_put_swfwhw_semaphore(struct wm_softc *sc)
|
|
{
|
|
uint32_t ext_ctrl;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
|
|
ext_ctrl &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
|
|
CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
|
|
|
|
mutex_exit(sc->sc_ich_phymtx); /* Use PHY mtx for both PHY and NVM */
|
|
}
|
|
|
|
static int
|
|
wm_get_swflag_ich8lan(struct wm_softc *sc)
|
|
{
|
|
uint32_t ext_ctrl;
|
|
int timeout;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
mutex_enter(sc->sc_ich_phymtx);
|
|
for (timeout = 0; timeout < WM_PHY_CFG_TIMEOUT; timeout++) {
|
|
ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
|
|
if ((ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP) == 0)
|
|
break;
|
|
delay(1000);
|
|
}
|
|
if (timeout >= WM_PHY_CFG_TIMEOUT) {
|
|
device_printf(sc->sc_dev,
|
|
"SW has already locked the resource\n");
|
|
goto out;
|
|
}
|
|
|
|
ext_ctrl |= EXTCNFCTR_MDIO_SW_OWNERSHIP;
|
|
CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
|
|
for (timeout = 0; timeout < 1000; timeout++) {
|
|
ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
|
|
if (ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP)
|
|
break;
|
|
delay(1000);
|
|
}
|
|
if (timeout >= 1000) {
|
|
device_printf(sc->sc_dev, "failed to acquire semaphore\n");
|
|
ext_ctrl &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
|
|
CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
|
|
goto out;
|
|
}
|
|
return 0;
|
|
|
|
out:
|
|
mutex_exit(sc->sc_ich_phymtx);
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
wm_put_swflag_ich8lan(struct wm_softc *sc)
|
|
{
|
|
uint32_t ext_ctrl;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
|
|
if (ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP) {
|
|
ext_ctrl &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
|
|
CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
|
|
} else {
|
|
device_printf(sc->sc_dev, "Semaphore unexpectedly released\n");
|
|
}
|
|
|
|
mutex_exit(sc->sc_ich_phymtx);
|
|
}
|
|
|
|
static int
|
|
wm_get_nvm_ich8lan(struct wm_softc *sc)
|
|
{
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
mutex_enter(sc->sc_ich_nvmmtx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
wm_put_nvm_ich8lan(struct wm_softc *sc)
|
|
{
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
mutex_exit(sc->sc_ich_nvmmtx);
|
|
}
|
|
|
|
static int
|
|
wm_get_hw_semaphore_82573(struct wm_softc *sc)
|
|
{
|
|
int i = 0;
|
|
uint32_t reg;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
reg = CSR_READ(sc, WMREG_EXTCNFCTR);
|
|
do {
|
|
CSR_WRITE(sc, WMREG_EXTCNFCTR,
|
|
reg | EXTCNFCTR_MDIO_SW_OWNERSHIP);
|
|
reg = CSR_READ(sc, WMREG_EXTCNFCTR);
|
|
if ((reg & EXTCNFCTR_MDIO_SW_OWNERSHIP) != 0)
|
|
break;
|
|
delay(2*1000);
|
|
i++;
|
|
} while (i < WM_MDIO_OWNERSHIP_TIMEOUT);
|
|
|
|
if (i == WM_MDIO_OWNERSHIP_TIMEOUT) {
|
|
wm_put_hw_semaphore_82573(sc);
|
|
log(LOG_ERR, "%s: Driver can't access the PHY\n",
|
|
device_xname(sc->sc_dev));
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
wm_put_hw_semaphore_82573(struct wm_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
reg = CSR_READ(sc, WMREG_EXTCNFCTR);
|
|
reg &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
|
|
CSR_WRITE(sc, WMREG_EXTCNFCTR, reg);
|
|
}
|
|
|
|
/*
|
|
* Management mode and power management related subroutines.
|
|
* BMC, AMT, suspend/resume and EEE.
|
|
*/
|
|
|
|
#ifdef WM_WOL
|
|
static int
|
|
wm_check_mng_mode(struct wm_softc *sc)
|
|
{
|
|
int rv;
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_ICH8:
|
|
case WM_T_ICH9:
|
|
case WM_T_ICH10:
|
|
case WM_T_PCH:
|
|
case WM_T_PCH2:
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
rv = wm_check_mng_mode_ich8lan(sc);
|
|
break;
|
|
case WM_T_82574:
|
|
case WM_T_82583:
|
|
rv = wm_check_mng_mode_82574(sc);
|
|
break;
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
case WM_T_82573:
|
|
case WM_T_80003:
|
|
rv = wm_check_mng_mode_generic(sc);
|
|
break;
|
|
default:
|
|
/* Noting to do */
|
|
rv = 0;
|
|
break;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
static int
|
|
wm_check_mng_mode_ich8lan(struct wm_softc *sc)
|
|
{
|
|
uint32_t fwsm;
|
|
|
|
fwsm = CSR_READ(sc, WMREG_FWSM);
|
|
|
|
if (((fwsm & FWSM_FW_VALID) != 0)
|
|
&& (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_ICH_IAMT_MODE))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
wm_check_mng_mode_82574(struct wm_softc *sc)
|
|
{
|
|
uint16_t data;
|
|
|
|
wm_nvm_read(sc, NVM_OFF_CFG2, 1, &data);
|
|
|
|
if ((data & NVM_CFG2_MNGM_MASK) != 0)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
wm_check_mng_mode_generic(struct wm_softc *sc)
|
|
{
|
|
uint32_t fwsm;
|
|
|
|
fwsm = CSR_READ(sc, WMREG_FWSM);
|
|
|
|
if (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_IAMT_MODE)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
#endif /* WM_WOL */
|
|
|
|
static int
|
|
wm_enable_mng_pass_thru(struct wm_softc *sc)
|
|
{
|
|
uint32_t manc, fwsm, factps;
|
|
|
|
if ((sc->sc_flags & WM_F_ASF_FIRMWARE_PRES) == 0)
|
|
return 0;
|
|
|
|
manc = CSR_READ(sc, WMREG_MANC);
|
|
|
|
DPRINTF(sc, WM_DEBUG_MANAGE, ("%s: MANC (%08x)\n",
|
|
device_xname(sc->sc_dev), manc));
|
|
if ((manc & MANC_RECV_TCO_EN) == 0)
|
|
return 0;
|
|
|
|
if ((sc->sc_flags & WM_F_ARC_SUBSYS_VALID) != 0) {
|
|
fwsm = CSR_READ(sc, WMREG_FWSM);
|
|
factps = CSR_READ(sc, WMREG_FACTPS);
|
|
if (((factps & FACTPS_MNGCG) == 0)
|
|
&& (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_ICH_IAMT_MODE))
|
|
return 1;
|
|
} else if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583)){
|
|
uint16_t data;
|
|
|
|
factps = CSR_READ(sc, WMREG_FACTPS);
|
|
wm_nvm_read(sc, NVM_OFF_CFG2, 1, &data);
|
|
DPRINTF(sc, WM_DEBUG_MANAGE, ("%s: FACTPS = %08x, CFG2=%04x\n",
|
|
device_xname(sc->sc_dev), factps, data));
|
|
if (((factps & FACTPS_MNGCG) == 0)
|
|
&& ((data & NVM_CFG2_MNGM_MASK)
|
|
== (NVM_CFG2_MNGM_PT << NVM_CFG2_MNGM_SHIFT)))
|
|
return 1;
|
|
} else if (((manc & MANC_SMBUS_EN) != 0)
|
|
&& ((manc & MANC_ASF_EN) == 0))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
wm_phy_resetisblocked(struct wm_softc *sc)
|
|
{
|
|
bool blocked = false;
|
|
uint32_t reg;
|
|
int i = 0;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_ICH8:
|
|
case WM_T_ICH9:
|
|
case WM_T_ICH10:
|
|
case WM_T_PCH:
|
|
case WM_T_PCH2:
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
do {
|
|
reg = CSR_READ(sc, WMREG_FWSM);
|
|
if ((reg & FWSM_RSPCIPHY) == 0) {
|
|
blocked = true;
|
|
delay(10*1000);
|
|
continue;
|
|
}
|
|
blocked = false;
|
|
} while (blocked && (i++ < 30));
|
|
return blocked;
|
|
break;
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
case WM_T_82573:
|
|
case WM_T_82574:
|
|
case WM_T_82583:
|
|
case WM_T_80003:
|
|
reg = CSR_READ(sc, WMREG_MANC);
|
|
if ((reg & MANC_BLK_PHY_RST_ON_IDE) != 0)
|
|
return true;
|
|
else
|
|
return false;
|
|
break;
|
|
default:
|
|
/* No problem */
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
wm_get_hw_control(struct wm_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if (sc->sc_type == WM_T_82573) {
|
|
reg = CSR_READ(sc, WMREG_SWSM);
|
|
CSR_WRITE(sc, WMREG_SWSM, reg | SWSM_DRV_LOAD);
|
|
} else if (sc->sc_type >= WM_T_82571) {
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_DRV_LOAD);
|
|
}
|
|
}
|
|
|
|
static void
|
|
wm_release_hw_control(struct wm_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
|
|
DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if (sc->sc_type == WM_T_82573) {
|
|
reg = CSR_READ(sc, WMREG_SWSM);
|
|
CSR_WRITE(sc, WMREG_SWSM, reg & ~SWSM_DRV_LOAD);
|
|
} else if (sc->sc_type >= WM_T_82571) {
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg & ~CTRL_EXT_DRV_LOAD);
|
|
}
|
|
}
|
|
|
|
static void
|
|
wm_gate_hw_phy_config_ich8lan(struct wm_softc *sc, bool gate)
|
|
{
|
|
uint32_t reg;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if (sc->sc_type < WM_T_PCH2)
|
|
return;
|
|
|
|
reg = CSR_READ(sc, WMREG_EXTCNFCTR);
|
|
|
|
if (gate)
|
|
reg |= EXTCNFCTR_GATE_PHY_CFG;
|
|
else
|
|
reg &= ~EXTCNFCTR_GATE_PHY_CFG;
|
|
|
|
CSR_WRITE(sc, WMREG_EXTCNFCTR, reg);
|
|
}
|
|
|
|
static int
|
|
wm_init_phy_workarounds_pchlan(struct wm_softc *sc)
|
|
{
|
|
uint32_t fwsm, reg;
|
|
int rv = 0;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
/* Gate automatic PHY configuration by hardware on non-managed 82579 */
|
|
wm_gate_hw_phy_config_ich8lan(sc, true);
|
|
|
|
/* Disable ULP */
|
|
wm_ulp_disable(sc);
|
|
|
|
/* Acquire PHY semaphore */
|
|
rv = sc->phy.acquire(sc);
|
|
if (rv != 0) {
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s: failed\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
return -1;
|
|
}
|
|
|
|
/* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
|
|
* inaccessible and resetting the PHY is not blocked, toggle the
|
|
* LANPHYPC Value bit to force the interconnect to PCIe mode.
|
|
*/
|
|
fwsm = CSR_READ(sc, WMREG_FWSM);
|
|
switch (sc->sc_type) {
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
if (wm_phy_is_accessible_pchlan(sc))
|
|
break;
|
|
|
|
/* Before toggling LANPHYPC, see if PHY is accessible by
|
|
* forcing MAC to SMBus mode first.
|
|
*/
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
reg |= CTRL_EXT_FORCE_SMBUS;
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
|
|
#if 0
|
|
/* XXX Isn't this required??? */
|
|
CSR_WRITE_FLUSH(sc);
|
|
#endif
|
|
/* Wait 50 milliseconds for MAC to finish any retries
|
|
* that it might be trying to perform from previous
|
|
* attempts to acknowledge any phy read requests.
|
|
*/
|
|
delay(50 * 1000);
|
|
/* FALLTHROUGH */
|
|
case WM_T_PCH2:
|
|
if (wm_phy_is_accessible_pchlan(sc) == true)
|
|
break;
|
|
/* FALLTHROUGH */
|
|
case WM_T_PCH:
|
|
if (sc->sc_type == WM_T_PCH)
|
|
if ((fwsm & FWSM_FW_VALID) != 0)
|
|
break;
|
|
|
|
if (wm_phy_resetisblocked(sc) == true) {
|
|
device_printf(sc->sc_dev, "XXX reset is blocked(3)\n");
|
|
break;
|
|
}
|
|
|
|
/* Toggle LANPHYPC Value bit */
|
|
wm_toggle_lanphypc_pch_lpt(sc);
|
|
|
|
if (sc->sc_type >= WM_T_PCH_LPT) {
|
|
if (wm_phy_is_accessible_pchlan(sc) == true)
|
|
break;
|
|
|
|
/* Toggling LANPHYPC brings the PHY out of SMBus mode
|
|
* so ensure that the MAC is also out of SMBus mode
|
|
*/
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
reg &= ~CTRL_EXT_FORCE_SMBUS;
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
|
|
|
|
if (wm_phy_is_accessible_pchlan(sc) == true)
|
|
break;
|
|
rv = -1;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Release semaphore */
|
|
sc->phy.release(sc);
|
|
|
|
if (rv == 0) {
|
|
/* Check to see if able to reset PHY. Print error if not */
|
|
if (wm_phy_resetisblocked(sc)) {
|
|
device_printf(sc->sc_dev, "XXX reset is blocked(4)\n");
|
|
goto out;
|
|
}
|
|
|
|
/* Reset the PHY before any access to it. Doing so, ensures
|
|
* that the PHY is in a known good state before we read/write
|
|
* PHY registers. The generic reset is sufficient here,
|
|
* because we haven't determined the PHY type yet.
|
|
*/
|
|
if (wm_reset_phy(sc) != 0)
|
|
goto out;
|
|
|
|
/* On a successful reset, possibly need to wait for the PHY
|
|
* to quiesce to an accessible state before returning control
|
|
* to the calling function. If the PHY does not quiesce, then
|
|
* return E1000E_BLK_PHY_RESET, as this is the condition that
|
|
* the PHY is in.
|
|
*/
|
|
if (wm_phy_resetisblocked(sc))
|
|
device_printf(sc->sc_dev, "XXX reset is blocked(4)\n");
|
|
}
|
|
|
|
out:
|
|
/* Ungate automatic PHY configuration on non-managed 82579 */
|
|
if ((sc->sc_type == WM_T_PCH2) && ((fwsm & FWSM_FW_VALID) == 0)) {
|
|
delay(10*1000);
|
|
wm_gate_hw_phy_config_ich8lan(sc, false);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
wm_init_manageability(struct wm_softc *sc)
|
|
{
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
if (sc->sc_flags & WM_F_HAS_MANAGE) {
|
|
uint32_t manc2h = CSR_READ(sc, WMREG_MANC2H);
|
|
uint32_t manc = CSR_READ(sc, WMREG_MANC);
|
|
|
|
/* Disable hardware interception of ARP */
|
|
manc &= ~MANC_ARP_EN;
|
|
|
|
/* Enable receiving management packets to the host */
|
|
if (sc->sc_type >= WM_T_82571) {
|
|
manc |= MANC_EN_MNG2HOST;
|
|
manc2h |= MANC2H_PORT_623 | MANC2H_PORT_624;
|
|
CSR_WRITE(sc, WMREG_MANC2H, manc2h);
|
|
}
|
|
|
|
CSR_WRITE(sc, WMREG_MANC, manc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
wm_release_manageability(struct wm_softc *sc)
|
|
{
|
|
|
|
if (sc->sc_flags & WM_F_HAS_MANAGE) {
|
|
uint32_t manc = CSR_READ(sc, WMREG_MANC);
|
|
|
|
manc |= MANC_ARP_EN;
|
|
if (sc->sc_type >= WM_T_82571)
|
|
manc &= ~MANC_EN_MNG2HOST;
|
|
|
|
CSR_WRITE(sc, WMREG_MANC, manc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
wm_get_wakeup(struct wm_softc *sc)
|
|
{
|
|
|
|
/* 0: HAS_AMT, ARC_SUBSYS_VALID, ASF_FIRMWARE_PRES */
|
|
switch (sc->sc_type) {
|
|
case WM_T_82573:
|
|
case WM_T_82583:
|
|
sc->sc_flags |= WM_F_HAS_AMT;
|
|
/* FALLTHROUGH */
|
|
case WM_T_80003:
|
|
case WM_T_82575:
|
|
case WM_T_82576:
|
|
case WM_T_82580:
|
|
case WM_T_I350:
|
|
case WM_T_I354:
|
|
if ((CSR_READ(sc, WMREG_FWSM) & FWSM_MODE) != 0)
|
|
sc->sc_flags |= WM_F_ARC_SUBSYS_VALID;
|
|
/* FALLTHROUGH */
|
|
case WM_T_82541:
|
|
case WM_T_82541_2:
|
|
case WM_T_82547:
|
|
case WM_T_82547_2:
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
case WM_T_82574:
|
|
sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
|
|
break;
|
|
case WM_T_ICH8:
|
|
case WM_T_ICH9:
|
|
case WM_T_ICH10:
|
|
case WM_T_PCH:
|
|
case WM_T_PCH2:
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
sc->sc_flags |= WM_F_HAS_AMT;
|
|
sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* 1: HAS_MANAGE */
|
|
if (wm_enable_mng_pass_thru(sc) != 0)
|
|
sc->sc_flags |= WM_F_HAS_MANAGE;
|
|
|
|
/*
|
|
* Note that the WOL flags is set after the resetting of the eeprom
|
|
* stuff
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Unconfigure Ultra Low Power mode.
|
|
* Only for I217 and newer (see below).
|
|
*/
|
|
static int
|
|
wm_ulp_disable(struct wm_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
uint16_t phyreg;
|
|
int i = 0, rv = 0;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
/* Exclude old devices */
|
|
if ((sc->sc_type < WM_T_PCH_LPT)
|
|
|| (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I217_LM)
|
|
|| (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I217_V)
|
|
|| (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_LM2)
|
|
|| (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_V2))
|
|
return 0;
|
|
|
|
if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) != 0) {
|
|
/* Request ME un-configure ULP mode in the PHY */
|
|
reg = CSR_READ(sc, WMREG_H2ME);
|
|
reg &= ~H2ME_ULP;
|
|
reg |= H2ME_ENFORCE_SETTINGS;
|
|
CSR_WRITE(sc, WMREG_H2ME, reg);
|
|
|
|
/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
|
|
while ((CSR_READ(sc, WMREG_FWSM) & FWSM_ULP_CFG_DONE) != 0) {
|
|
if (i++ == 30) {
|
|
device_printf(sc->sc_dev, "%s timed out\n",
|
|
__func__);
|
|
return -1;
|
|
}
|
|
delay(10 * 1000);
|
|
}
|
|
reg = CSR_READ(sc, WMREG_H2ME);
|
|
reg &= ~H2ME_ENFORCE_SETTINGS;
|
|
CSR_WRITE(sc, WMREG_H2ME, reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Acquire semaphore */
|
|
rv = sc->phy.acquire(sc);
|
|
if (rv != 0) {
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s: failed\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
return -1;
|
|
}
|
|
|
|
/* Toggle LANPHYPC */
|
|
wm_toggle_lanphypc_pch_lpt(sc);
|
|
|
|
/* Unforce SMBus mode in PHY */
|
|
rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, CV_SMB_CTRL, &phyreg);
|
|
if (rv != 0) {
|
|
uint32_t reg2;
|
|
|
|
aprint_debug_dev(sc->sc_dev, "%s: Force SMBus first.\n",
|
|
__func__);
|
|
reg2 = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
reg2 |= CTRL_EXT_FORCE_SMBUS;
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg2);
|
|
delay(50 * 1000);
|
|
|
|
rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, CV_SMB_CTRL,
|
|
&phyreg);
|
|
if (rv != 0)
|
|
goto release;
|
|
}
|
|
phyreg &= ~CV_SMB_CTRL_FORCE_SMBUS;
|
|
wm_gmii_hv_writereg_locked(sc->sc_dev, 2, CV_SMB_CTRL, phyreg);
|
|
|
|
/* Unforce SMBus mode in MAC */
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
reg &= ~CTRL_EXT_FORCE_SMBUS;
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
|
|
|
|
rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, HV_PM_CTRL, &phyreg);
|
|
if (rv != 0)
|
|
goto release;
|
|
phyreg |= HV_PM_CTRL_K1_ENA;
|
|
wm_gmii_hv_writereg_locked(sc->sc_dev, 2, HV_PM_CTRL, phyreg);
|
|
|
|
rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, I218_ULP_CONFIG1,
|
|
&phyreg);
|
|
if (rv != 0)
|
|
goto release;
|
|
phyreg &= ~(I218_ULP_CONFIG1_IND
|
|
| I218_ULP_CONFIG1_STICKY_ULP
|
|
| I218_ULP_CONFIG1_RESET_TO_SMBUS
|
|
| I218_ULP_CONFIG1_WOL_HOST
|
|
| I218_ULP_CONFIG1_INBAND_EXIT
|
|
| I218_ULP_CONFIG1_EN_ULP_LANPHYPC
|
|
| I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST
|
|
| I218_ULP_CONFIG1_DIS_SMB_PERST);
|
|
wm_gmii_hv_writereg_locked(sc->sc_dev, 2, I218_ULP_CONFIG1, phyreg);
|
|
phyreg |= I218_ULP_CONFIG1_START;
|
|
wm_gmii_hv_writereg_locked(sc->sc_dev, 2, I218_ULP_CONFIG1, phyreg);
|
|
|
|
reg = CSR_READ(sc, WMREG_FEXTNVM7);
|
|
reg &= ~FEXTNVM7_DIS_SMB_PERST;
|
|
CSR_WRITE(sc, WMREG_FEXTNVM7, reg);
|
|
|
|
release:
|
|
/* Release semaphore */
|
|
sc->phy.release(sc);
|
|
wm_gmii_reset(sc);
|
|
delay(50 * 1000);
|
|
|
|
return rv;
|
|
}
|
|
|
|
/* WOL in the newer chipset interfaces (pchlan) */
|
|
static int
|
|
wm_enable_phy_wakeup(struct wm_softc *sc)
|
|
{
|
|
device_t dev = sc->sc_dev;
|
|
uint32_t mreg, moff;
|
|
uint16_t wuce, wuc, wufc, preg;
|
|
int i, rv;
|
|
|
|
KASSERT(sc->sc_type >= WM_T_PCH);
|
|
|
|
/* Copy MAC RARs to PHY RARs */
|
|
wm_copy_rx_addrs_to_phy_ich8lan(sc);
|
|
|
|
/* Activate PHY wakeup */
|
|
rv = sc->phy.acquire(sc);
|
|
if (rv != 0) {
|
|
device_printf(dev, "%s: failed to acquire semaphore\n",
|
|
__func__);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Enable access to PHY wakeup registers.
|
|
* BM_MTA, BM_RCTL, BM_WUFC and BM_WUC are in BM_WUC_PAGE.
|
|
*/
|
|
rv = wm_enable_phy_wakeup_reg_access_bm(dev, &wuce);
|
|
if (rv != 0) {
|
|
device_printf(dev,
|
|
"%s: Could not enable PHY wakeup reg access\n", __func__);
|
|
goto release;
|
|
}
|
|
|
|
/* Copy MAC MTA to PHY MTA */
|
|
for (i = 0; i < WM_ICH8_MC_TABSIZE; i++) {
|
|
uint16_t lo, hi;
|
|
|
|
mreg = CSR_READ(sc, WMREG_CORDOVA_MTA + (i * 4));
|
|
lo = (uint16_t)(mreg & 0xffff);
|
|
hi = (uint16_t)((mreg >> 16) & 0xffff);
|
|
wm_access_phy_wakeup_reg_bm(dev, BM_MTA(i), &lo, 0, true);
|
|
wm_access_phy_wakeup_reg_bm(dev, BM_MTA(i) + 1, &hi, 0, true);
|
|
}
|
|
|
|
/* Configure PHY Rx Control register */
|
|
wm_access_phy_wakeup_reg_bm(dev, BM_RCTL, &preg, 1, true);
|
|
mreg = CSR_READ(sc, WMREG_RCTL);
|
|
if (mreg & RCTL_UPE)
|
|
preg |= BM_RCTL_UPE;
|
|
if (mreg & RCTL_MPE)
|
|
preg |= BM_RCTL_MPE;
|
|
preg &= ~(BM_RCTL_MO_MASK);
|
|
moff = __SHIFTOUT(mreg, RCTL_MO);
|
|
if (moff != 0)
|
|
preg |= moff << BM_RCTL_MO_SHIFT;
|
|
if (mreg & RCTL_BAM)
|
|
preg |= BM_RCTL_BAM;
|
|
if (mreg & RCTL_PMCF)
|
|
preg |= BM_RCTL_PMCF;
|
|
mreg = CSR_READ(sc, WMREG_CTRL);
|
|
if (mreg & CTRL_RFCE)
|
|
preg |= BM_RCTL_RFCE;
|
|
wm_access_phy_wakeup_reg_bm(dev, BM_RCTL, &preg, 0, true);
|
|
|
|
wuc = WUC_APME | WUC_PME_EN;
|
|
wufc = WUFC_MAG;
|
|
/* Enable PHY wakeup in MAC register */
|
|
CSR_WRITE(sc, WMREG_WUC,
|
|
WUC_PHY_WAKE | WUC_PME_STATUS | WUC_APMPME | wuc);
|
|
CSR_WRITE(sc, WMREG_WUFC, wufc);
|
|
|
|
/* Configure and enable PHY wakeup in PHY registers */
|
|
wm_access_phy_wakeup_reg_bm(dev, BM_WUC, &wuc, 0, true);
|
|
wm_access_phy_wakeup_reg_bm(dev, BM_WUFC, &wufc, 0, true);
|
|
|
|
wuce |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
|
|
wm_disable_phy_wakeup_reg_access_bm(dev, &wuce);
|
|
|
|
release:
|
|
sc->phy.release(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Power down workaround on D3 */
|
|
static void
|
|
wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
uint16_t phyreg;
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
/* Disable link */
|
|
reg = CSR_READ(sc, WMREG_PHY_CTRL);
|
|
reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
|
|
CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
|
|
|
|
/*
|
|
* Call gig speed drop workaround on Gig disable before
|
|
* accessing any PHY registers
|
|
*/
|
|
if (sc->sc_type == WM_T_ICH8)
|
|
wm_gig_downshift_workaround_ich8lan(sc);
|
|
|
|
/* Write VR power-down enable */
|
|
sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL, &phyreg);
|
|
phyreg &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
|
|
phyreg |= IGP3_VR_CTRL_MODE_SHUTDOWN;
|
|
sc->sc_mii.mii_writereg(sc->sc_dev, 1, IGP3_VR_CTRL, phyreg);
|
|
|
|
/* Read it back and test */
|
|
sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL, &phyreg);
|
|
phyreg &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
|
|
if ((phyreg == IGP3_VR_CTRL_MODE_SHUTDOWN) || (i != 0))
|
|
break;
|
|
|
|
/* Issue PHY reset and repeat at most one more time */
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* wm_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
|
|
* @sc: pointer to the HW structure
|
|
*
|
|
* During S0 to Sx transition, it is possible the link remains at gig
|
|
* instead of negotiating to a lower speed. Before going to Sx, set
|
|
* 'Gig Disable' to force link speed negotiation to a lower speed based on
|
|
* the LPLU setting in the NVM or custom setting. For PCH and newer parts,
|
|
* the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
|
|
* needs to be written.
|
|
* Parts that support (and are linked to a partner which support) EEE in
|
|
* 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
|
|
* than 10Mbps w/o EEE.
|
|
*/
|
|
static void
|
|
wm_suspend_workarounds_ich8lan(struct wm_softc *sc)
|
|
{
|
|
device_t dev = sc->sc_dev;
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
uint32_t phy_ctrl;
|
|
int rv;
|
|
|
|
phy_ctrl = CSR_READ(sc, WMREG_PHY_CTRL);
|
|
phy_ctrl |= PHY_CTRL_GBE_DIS;
|
|
|
|
KASSERT((sc->sc_type >= WM_T_ICH8) && (sc->sc_type <= WM_T_PCH_CNP));
|
|
|
|
if (sc->sc_phytype == WMPHY_I217) {
|
|
uint16_t devid = sc->sc_pcidevid;
|
|
|
|
if ((devid == PCI_PRODUCT_INTEL_I218_LM) ||
|
|
(devid == PCI_PRODUCT_INTEL_I218_V) ||
|
|
(devid == PCI_PRODUCT_INTEL_I218_LM3) ||
|
|
(devid == PCI_PRODUCT_INTEL_I218_V3) ||
|
|
(sc->sc_type >= WM_T_PCH_SPT))
|
|
CSR_WRITE(sc, WMREG_FEXTNVM6,
|
|
CSR_READ(sc, WMREG_FEXTNVM6)
|
|
& ~FEXTNVM6_REQ_PLL_CLK);
|
|
|
|
if (sc->phy.acquire(sc) != 0)
|
|
goto out;
|
|
|
|
if ((ec->ec_capenable & ETHERCAP_EEE) != 0) {
|
|
uint16_t eee_advert;
|
|
|
|
rv = wm_read_emi_reg_locked(dev,
|
|
I217_EEE_ADVERTISEMENT, &eee_advert);
|
|
if (rv)
|
|
goto release;
|
|
|
|
/*
|
|
* Disable LPLU if both link partners support 100BaseT
|
|
* EEE and 100Full is advertised on both ends of the
|
|
* link, and enable Auto Enable LPI since there will
|
|
* be no driver to enable LPI while in Sx.
|
|
*/
|
|
if ((eee_advert & AN_EEEADVERT_100_TX) &&
|
|
(sc->eee_lp_ability & AN_EEEADVERT_100_TX)) {
|
|
uint16_t anar, phy_reg;
|
|
|
|
sc->phy.readreg_locked(dev, 2, MII_ANAR,
|
|
&anar);
|
|
if (anar & ANAR_TX_FD) {
|
|
phy_ctrl &= ~(PHY_CTRL_D0A_LPLU |
|
|
PHY_CTRL_NOND0A_LPLU);
|
|
|
|
/* Set Auto Enable LPI after link up */
|
|
sc->phy.readreg_locked(dev, 2,
|
|
I217_LPI_GPIO_CTRL, &phy_reg);
|
|
phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
|
|
sc->phy.writereg_locked(dev, 2,
|
|
I217_LPI_GPIO_CTRL, phy_reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For i217 Intel Rapid Start Technology support,
|
|
* when the system is going into Sx and no manageability engine
|
|
* is present, the driver must configure proxy to reset only on
|
|
* power good. LPI (Low Power Idle) state must also reset only
|
|
* on power good, as well as the MTA (Multicast table array).
|
|
* The SMBus release must also be disabled on LCD reset.
|
|
*/
|
|
|
|
/*
|
|
* Enable MTA to reset for Intel Rapid Start Technology
|
|
* Support
|
|
*/
|
|
|
|
release:
|
|
sc->phy.release(sc);
|
|
}
|
|
out:
|
|
CSR_WRITE(sc, WMREG_PHY_CTRL, phy_ctrl);
|
|
|
|
if (sc->sc_type == WM_T_ICH8)
|
|
wm_gig_downshift_workaround_ich8lan(sc);
|
|
|
|
if (sc->sc_type >= WM_T_PCH) {
|
|
wm_oem_bits_config_ich8lan(sc, false);
|
|
|
|
/* Reset PHY to activate OEM bits on 82577/8 */
|
|
if (sc->sc_type == WM_T_PCH)
|
|
wm_reset_phy(sc);
|
|
|
|
if (sc->phy.acquire(sc) != 0)
|
|
return;
|
|
wm_write_smbus_addr(sc);
|
|
sc->phy.release(sc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* wm_resume_workarounds_pchlan - workarounds needed during Sx->S0
|
|
* @sc: pointer to the HW structure
|
|
*
|
|
* During Sx to S0 transitions on non-managed devices or managed devices
|
|
* on which PHY resets are not blocked, if the PHY registers cannot be
|
|
* accessed properly by the s/w toggle the LANPHYPC value to power cycle
|
|
* the PHY.
|
|
* On i217, setup Intel Rapid Start Technology.
|
|
*/
|
|
static int
|
|
wm_resume_workarounds_pchlan(struct wm_softc *sc)
|
|
{
|
|
device_t dev = sc->sc_dev;
|
|
int rv;
|
|
|
|
if (sc->sc_type < WM_T_PCH2)
|
|
return 0;
|
|
|
|
rv = wm_init_phy_workarounds_pchlan(sc);
|
|
if (rv != 0)
|
|
return -1;
|
|
|
|
/* For i217 Intel Rapid Start Technology support when the system
|
|
* is transitioning from Sx and no manageability engine is present
|
|
* configure SMBus to restore on reset, disable proxy, and enable
|
|
* the reset on MTA (Multicast table array).
|
|
*/
|
|
if (sc->sc_phytype == WMPHY_I217) {
|
|
uint16_t phy_reg;
|
|
|
|
if (sc->phy.acquire(sc) != 0)
|
|
return -1;
|
|
|
|
/* Clear Auto Enable LPI after link up */
|
|
sc->phy.readreg_locked(dev, 1, I217_LPI_GPIO_CTRL, &phy_reg);
|
|
phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
|
|
sc->phy.writereg_locked(dev, 1, I217_LPI_GPIO_CTRL, phy_reg);
|
|
|
|
if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) == 0) {
|
|
/* Restore clear on SMB if no manageability engine
|
|
* is present
|
|
*/
|
|
rv = sc->phy.readreg_locked(dev, 1, I217_MEMPWR,
|
|
&phy_reg);
|
|
if (rv != 0)
|
|
goto release;
|
|
phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
|
|
sc->phy.writereg_locked(dev, 1, I217_MEMPWR, phy_reg);
|
|
|
|
/* Disable Proxy */
|
|
sc->phy.writereg_locked(dev, 1, I217_PROXY_CTRL, 0);
|
|
}
|
|
/* Enable reset on MTA */
|
|
sc->phy.readreg_locked(dev, 1, I217_CFGREG, &phy_reg);
|
|
if (rv != 0)
|
|
goto release;
|
|
phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
|
|
sc->phy.writereg_locked(dev, 1, I217_CFGREG, phy_reg);
|
|
|
|
release:
|
|
sc->phy.release(sc);
|
|
return rv;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
wm_enable_wakeup(struct wm_softc *sc)
|
|
{
|
|
uint32_t reg, pmreg;
|
|
pcireg_t pmode;
|
|
int rv = 0;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PWRMGMT,
|
|
&pmreg, NULL) == 0)
|
|
return;
|
|
|
|
if ((sc->sc_flags & WM_F_WOL) == 0)
|
|
goto pme;
|
|
|
|
/* Advertise the wakeup capability */
|
|
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_SWDPIN(2)
|
|
| CTRL_SWDPIN(3));
|
|
|
|
/* Keep the laser running on fiber adapters */
|
|
if ((sc->sc_mediatype == WM_MEDIATYPE_FIBER)
|
|
|| (sc->sc_mediatype == WM_MEDIATYPE_SERDES)) {
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
reg |= CTRL_EXT_SWDPIN(3);
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
|
|
}
|
|
|
|
if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9) ||
|
|
(sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH) ||
|
|
(sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT) ||
|
|
(sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP))
|
|
wm_suspend_workarounds_ich8lan(sc);
|
|
|
|
#if 0 /* For the multicast packet */
|
|
reg = CSR_READ(sc, WMREG_WUFC) | WUFC_MAG;
|
|
reg |= WUFC_MC;
|
|
CSR_WRITE(sc, WMREG_RCTL, CSR_READ(sc, WMREG_RCTL) | RCTL_MPE);
|
|
#endif
|
|
|
|
if (sc->sc_type >= WM_T_PCH) {
|
|
rv = wm_enable_phy_wakeup(sc);
|
|
if (rv != 0)
|
|
goto pme;
|
|
} else {
|
|
/* Enable wakeup by the MAC */
|
|
CSR_WRITE(sc, WMREG_WUC, WUC_APME | WUC_PME_EN);
|
|
CSR_WRITE(sc, WMREG_WUFC, WUFC_MAG);
|
|
}
|
|
|
|
if (((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
|
|
|| (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
|
|
|| (sc->sc_type == WM_T_PCH2))
|
|
&& (sc->sc_phytype == WMPHY_IGP_3))
|
|
wm_igp3_phy_powerdown_workaround_ich8lan(sc);
|
|
|
|
pme:
|
|
/* Request PME */
|
|
pmode = pci_conf_read(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR);
|
|
pmode |= PCI_PMCSR_PME_STS; /* in case it's already set (W1C) */
|
|
if ((rv == 0) && (sc->sc_flags & WM_F_WOL) != 0) {
|
|
/* For WOL */
|
|
pmode |= PCI_PMCSR_PME_EN;
|
|
} else {
|
|
/* Disable WOL */
|
|
pmode &= ~PCI_PMCSR_PME_EN;
|
|
}
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR, pmode);
|
|
}
|
|
|
|
/* Disable ASPM L0s and/or L1 for workaround */
|
|
static void
|
|
wm_disable_aspm(struct wm_softc *sc)
|
|
{
|
|
pcireg_t reg, mask = 0;
|
|
unsigned const char *str = "";
|
|
|
|
/*
|
|
* Only for PCIe device which has PCIe capability in the PCI config
|
|
* space.
|
|
*/
|
|
if (((sc->sc_flags & WM_F_PCIE) == 0) || (sc->sc_pcixe_capoff == 0))
|
|
return;
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
/*
|
|
* 8257[12] Errata 13: Device Does Not Support PCIe Active
|
|
* State Power management L1 State (ASPM L1).
|
|
*/
|
|
mask = PCIE_LCSR_ASPM_L1;
|
|
str = "L1 is";
|
|
break;
|
|
case WM_T_82573:
|
|
case WM_T_82574:
|
|
case WM_T_82583:
|
|
/*
|
|
* The 82573 disappears when PCIe ASPM L0s is enabled.
|
|
*
|
|
* The 82574 and 82583 does not support PCIe ASPM L0s with
|
|
* some chipset. The document of 82574 and 82583 says that
|
|
* disabling L0s with some specific chipset is sufficient,
|
|
* but we follow as of the Intel em driver does.
|
|
*
|
|
* References:
|
|
* Errata 8 of the Specification Update of i82573.
|
|
* Errata 20 of the Specification Update of i82574.
|
|
* Errata 9 of the Specification Update of i82583.
|
|
*/
|
|
mask = PCIE_LCSR_ASPM_L1 | PCIE_LCSR_ASPM_L0S;
|
|
str = "L0s and L1 are";
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
|
|
sc->sc_pcixe_capoff + PCIE_LCSR);
|
|
reg &= ~mask;
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag,
|
|
sc->sc_pcixe_capoff + PCIE_LCSR, reg);
|
|
|
|
/* Print only in wm_attach() */
|
|
if ((sc->sc_flags & WM_F_ATTACHED) == 0)
|
|
aprint_verbose_dev(sc->sc_dev,
|
|
"ASPM %s disabled to workaround the errata.\n", str);
|
|
}
|
|
|
|
/* LPLU */
|
|
|
|
static void
|
|
wm_lplu_d0_disable(struct wm_softc *sc)
|
|
{
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
uint32_t reg;
|
|
uint16_t phyval;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if (sc->sc_phytype == WMPHY_IFE)
|
|
return;
|
|
|
|
switch (sc->sc_type) {
|
|
case WM_T_82571:
|
|
case WM_T_82572:
|
|
case WM_T_82573:
|
|
case WM_T_82575:
|
|
case WM_T_82576:
|
|
mii->mii_readreg(sc->sc_dev, 1, IGPHY_POWER_MGMT, &phyval);
|
|
phyval &= ~PMR_D0_LPLU;
|
|
mii->mii_writereg(sc->sc_dev, 1, IGPHY_POWER_MGMT, phyval);
|
|
break;
|
|
case WM_T_82580:
|
|
case WM_T_I350:
|
|
case WM_T_I210:
|
|
case WM_T_I211:
|
|
reg = CSR_READ(sc, WMREG_PHPM);
|
|
reg &= ~PHPM_D0A_LPLU;
|
|
CSR_WRITE(sc, WMREG_PHPM, reg);
|
|
break;
|
|
case WM_T_82574:
|
|
case WM_T_82583:
|
|
case WM_T_ICH8:
|
|
case WM_T_ICH9:
|
|
case WM_T_ICH10:
|
|
reg = CSR_READ(sc, WMREG_PHY_CTRL);
|
|
reg &= ~(PHY_CTRL_GBE_DIS | PHY_CTRL_D0A_LPLU);
|
|
CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
|
|
CSR_WRITE_FLUSH(sc);
|
|
break;
|
|
case WM_T_PCH:
|
|
case WM_T_PCH2:
|
|
case WM_T_PCH_LPT:
|
|
case WM_T_PCH_SPT:
|
|
case WM_T_PCH_CNP:
|
|
wm_gmii_hv_readreg(sc->sc_dev, 1, HV_OEM_BITS, &phyval);
|
|
phyval &= ~(HV_OEM_BITS_A1KDIS | HV_OEM_BITS_LPLU);
|
|
if (wm_phy_resetisblocked(sc) == false)
|
|
phyval |= HV_OEM_BITS_ANEGNOW;
|
|
wm_gmii_hv_writereg(sc->sc_dev, 1, HV_OEM_BITS, phyval);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* EEE */
|
|
|
|
static int
|
|
wm_set_eee_i350(struct wm_softc *sc)
|
|
{
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
uint32_t ipcnfg, eeer;
|
|
uint32_t ipcnfg_mask
|
|
= IPCNFG_EEE_1G_AN | IPCNFG_EEE_100M_AN | IPCNFG_10BASE_TE;
|
|
uint32_t eeer_mask = EEER_TX_LPI_EN | EEER_RX_LPI_EN | EEER_LPI_FC;
|
|
|
|
KASSERT(sc->sc_mediatype == WM_MEDIATYPE_COPPER);
|
|
|
|
ipcnfg = CSR_READ(sc, WMREG_IPCNFG);
|
|
eeer = CSR_READ(sc, WMREG_EEER);
|
|
|
|
/* Enable or disable per user setting */
|
|
if ((ec->ec_capenable & ETHERCAP_EEE) != 0) {
|
|
ipcnfg |= ipcnfg_mask;
|
|
eeer |= eeer_mask;
|
|
} else {
|
|
ipcnfg &= ~ipcnfg_mask;
|
|
eeer &= ~eeer_mask;
|
|
}
|
|
|
|
CSR_WRITE(sc, WMREG_IPCNFG, ipcnfg);
|
|
CSR_WRITE(sc, WMREG_EEER, eeer);
|
|
CSR_READ(sc, WMREG_IPCNFG); /* XXX flush? */
|
|
CSR_READ(sc, WMREG_EEER); /* XXX flush? */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
wm_set_eee_pchlan(struct wm_softc *sc)
|
|
{
|
|
device_t dev = sc->sc_dev;
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
uint16_t lpa, pcs_status, adv_addr, adv, lpi_ctrl, data;
|
|
int rv = 0;
|
|
|
|
switch (sc->sc_phytype) {
|
|
case WMPHY_82579:
|
|
lpa = I82579_EEE_LP_ABILITY;
|
|
pcs_status = I82579_EEE_PCS_STATUS;
|
|
adv_addr = I82579_EEE_ADVERTISEMENT;
|
|
break;
|
|
case WMPHY_I217:
|
|
lpa = I217_EEE_LP_ABILITY;
|
|
pcs_status = I217_EEE_PCS_STATUS;
|
|
adv_addr = I217_EEE_ADVERTISEMENT;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
if (sc->phy.acquire(sc)) {
|
|
device_printf(dev, "%s: failed to get semaphore\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
rv = sc->phy.readreg_locked(dev, 1, I82579_LPI_CTRL, &lpi_ctrl);
|
|
if (rv != 0)
|
|
goto release;
|
|
|
|
/* Clear bits that enable EEE in various speeds */
|
|
lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE;
|
|
|
|
if ((ec->ec_capenable & ETHERCAP_EEE) != 0) {
|
|
/* Save off link partner's EEE ability */
|
|
rv = wm_read_emi_reg_locked(dev, lpa, &sc->eee_lp_ability);
|
|
if (rv != 0)
|
|
goto release;
|
|
|
|
/* Read EEE advertisement */
|
|
if ((rv = wm_read_emi_reg_locked(dev, adv_addr, &adv)) != 0)
|
|
goto release;
|
|
|
|
/*
|
|
* Enable EEE only for speeds in which the link partner is
|
|
* EEE capable and for which we advertise EEE.
|
|
*/
|
|
if (adv & sc->eee_lp_ability & AN_EEEADVERT_1000_T)
|
|
lpi_ctrl |= I82579_LPI_CTRL_EN_1000;
|
|
if (adv & sc->eee_lp_ability & AN_EEEADVERT_100_TX) {
|
|
sc->phy.readreg_locked(dev, 2, MII_ANLPAR, &data);
|
|
if ((data & ANLPAR_TX_FD) != 0)
|
|
lpi_ctrl |= I82579_LPI_CTRL_EN_100;
|
|
else {
|
|
/*
|
|
* EEE is not supported in 100Half, so ignore
|
|
* partner's EEE in 100 ability if full-duplex
|
|
* is not advertised.
|
|
*/
|
|
sc->eee_lp_ability
|
|
&= ~AN_EEEADVERT_100_TX;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sc->sc_phytype == WMPHY_82579) {
|
|
rv = wm_read_emi_reg_locked(dev, I82579_LPI_PLL_SHUT, &data);
|
|
if (rv != 0)
|
|
goto release;
|
|
|
|
data &= ~I82579_LPI_PLL_SHUT_100;
|
|
rv = wm_write_emi_reg_locked(dev, I82579_LPI_PLL_SHUT, data);
|
|
}
|
|
|
|
/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
|
|
if ((rv = wm_read_emi_reg_locked(dev, pcs_status, &data)) != 0)
|
|
goto release;
|
|
|
|
rv = sc->phy.writereg_locked(dev, 1, I82579_LPI_CTRL, lpi_ctrl);
|
|
release:
|
|
sc->phy.release(sc);
|
|
|
|
return rv;
|
|
}
|
|
|
|
static int
|
|
wm_set_eee(struct wm_softc *sc)
|
|
{
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
|
|
if ((ec->ec_capabilities & ETHERCAP_EEE) == 0)
|
|
return 0;
|
|
|
|
if (sc->sc_type == WM_T_I354) {
|
|
/* I354 uses an external PHY */
|
|
return 0; /* not yet */
|
|
} else if ((sc->sc_type >= WM_T_I350) && (sc->sc_type <= WM_T_I211))
|
|
return wm_set_eee_i350(sc);
|
|
else if (sc->sc_type >= WM_T_PCH2)
|
|
return wm_set_eee_pchlan(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Workarounds (mainly PHY related).
|
|
* Basically, PHY's workarounds are in the PHY drivers.
|
|
*/
|
|
|
|
/* Work-around for 82566 Kumeran PCS lock loss */
|
|
static int
|
|
wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *sc)
|
|
{
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
uint32_t status = CSR_READ(sc, WMREG_STATUS);
|
|
int i, reg, rv;
|
|
uint16_t phyreg;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
/* If the link is not up, do nothing */
|
|
if ((status & STATUS_LU) == 0)
|
|
return 0;
|
|
|
|
/* Nothing to do if the link is other than 1Gbps */
|
|
if (__SHIFTOUT(status, STATUS_SPEED) != STATUS_SPEED_1000)
|
|
return 0;
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
/* read twice */
|
|
rv = mii->mii_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG, &phyreg);
|
|
if (rv != 0)
|
|
return rv;
|
|
rv = mii->mii_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG, &phyreg);
|
|
if (rv != 0)
|
|
return rv;
|
|
|
|
if ((phyreg & IGP3_KMRN_DIAG_PCS_LOCK_LOSS) == 0)
|
|
goto out; /* GOOD! */
|
|
|
|
/* Reset the PHY */
|
|
wm_reset_phy(sc);
|
|
delay(5*1000);
|
|
}
|
|
|
|
/* Disable GigE link negotiation */
|
|
reg = CSR_READ(sc, WMREG_PHY_CTRL);
|
|
reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
|
|
CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
|
|
|
|
/*
|
|
* Call gig speed drop workaround on Gig disable before accessing
|
|
* any PHY registers.
|
|
*/
|
|
wm_gig_downshift_workaround_ich8lan(sc);
|
|
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* wm_gig_downshift_workaround_ich8lan - WoL from S5 stops working
|
|
* @sc: pointer to the HW structure
|
|
*
|
|
* Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
|
|
* LPLU, Gig disable, MDIC PHY reset):
|
|
* 1) Set Kumeran Near-end loopback
|
|
* 2) Clear Kumeran Near-end loopback
|
|
* Should only be called for ICH8[m] devices with any 1G Phy.
|
|
*/
|
|
static void
|
|
wm_gig_downshift_workaround_ich8lan(struct wm_softc *sc)
|
|
{
|
|
uint16_t kmreg;
|
|
|
|
/* Only for igp3 */
|
|
if (sc->sc_phytype == WMPHY_IGP_3) {
|
|
if (wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_DIAG, &kmreg) != 0)
|
|
return;
|
|
kmreg |= KUMCTRLSTA_DIAG_NELPBK;
|
|
if (wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmreg) != 0)
|
|
return;
|
|
kmreg &= ~KUMCTRLSTA_DIAG_NELPBK;
|
|
wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmreg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Workaround for pch's PHYs
|
|
* XXX should be moved to new PHY driver?
|
|
*/
|
|
static int
|
|
wm_hv_phy_workarounds_ich8lan(struct wm_softc *sc)
|
|
{
|
|
device_t dev = sc->sc_dev;
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
struct mii_softc *child;
|
|
uint16_t phy_data, phyrev = 0;
|
|
int phytype = sc->sc_phytype;
|
|
int rv;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(dev), __func__));
|
|
KASSERT(sc->sc_type == WM_T_PCH);
|
|
|
|
/* Set MDIO slow mode before any other MDIO access */
|
|
if (phytype == WMPHY_82577)
|
|
if ((rv = wm_set_mdio_slow_mode_hv(sc)) != 0)
|
|
return rv;
|
|
|
|
child = LIST_FIRST(&mii->mii_phys);
|
|
if (child != NULL)
|
|
phyrev = child->mii_mpd_rev;
|
|
|
|
/* (82577 && (phy rev 1 or 2)) || (82578 & phy rev 1)*/
|
|
if ((child != NULL) &&
|
|
(((phytype == WMPHY_82577) && ((phyrev == 1) || (phyrev == 2))) ||
|
|
((phytype == WMPHY_82578) && (phyrev == 1)))) {
|
|
/* Disable generation of early preamble (0x4431) */
|
|
rv = mii->mii_readreg(dev, 2, BM_RATE_ADAPTATION_CTRL,
|
|
&phy_data);
|
|
if (rv != 0)
|
|
return rv;
|
|
phy_data &= ~(BM_RATE_ADAPTATION_CTRL_RX_RXDV_PRE |
|
|
BM_RATE_ADAPTATION_CTRL_RX_CRS_PRE);
|
|
rv = mii->mii_writereg(dev, 2, BM_RATE_ADAPTATION_CTRL,
|
|
phy_data);
|
|
if (rv != 0)
|
|
return rv;
|
|
|
|
/* Preamble tuning for SSC */
|
|
rv = mii->mii_writereg(dev, 2, HV_KMRN_FIFO_CTRLSTA, 0xa204);
|
|
if (rv != 0)
|
|
return rv;
|
|
}
|
|
|
|
/* 82578 */
|
|
if (phytype == WMPHY_82578) {
|
|
/*
|
|
* Return registers to default by doing a soft reset then
|
|
* writing 0x3140 to the control register
|
|
* 0x3140 == BMCR_SPEED0 | BMCR_AUTOEN | BMCR_FDX | BMCR_SPEED1
|
|
*/
|
|
if ((child != NULL) && (phyrev < 2)) {
|
|
PHY_RESET(child);
|
|
rv = mii->mii_writereg(dev, 2, MII_BMCR, 0x3140);
|
|
if (rv != 0)
|
|
return rv;
|
|
}
|
|
}
|
|
|
|
/* Select page 0 */
|
|
if ((rv = sc->phy.acquire(sc)) != 0)
|
|
return rv;
|
|
rv = wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT, 0);
|
|
sc->phy.release(sc);
|
|
if (rv != 0)
|
|
return rv;
|
|
|
|
/*
|
|
* Configure the K1 Si workaround during phy reset assuming there is
|
|
* link so that it disables K1 if link is in 1Gbps.
|
|
*/
|
|
if ((rv = wm_k1_gig_workaround_hv(sc, 1)) != 0)
|
|
return rv;
|
|
|
|
/* Workaround for link disconnects on a busy hub in half duplex */
|
|
rv = sc->phy.acquire(sc);
|
|
if (rv)
|
|
return rv;
|
|
rv = sc->phy.readreg_locked(dev, 2, BM_PORT_GEN_CFG, &phy_data);
|
|
if (rv)
|
|
goto release;
|
|
rv = sc->phy.writereg_locked(dev, 2, BM_PORT_GEN_CFG,
|
|
phy_data & 0x00ff);
|
|
if (rv)
|
|
goto release;
|
|
|
|
/* Set MSE higher to enable link to stay up when noise is high */
|
|
rv = wm_write_emi_reg_locked(dev, I82577_MSE_THRESHOLD, 0x0034);
|
|
release:
|
|
sc->phy.release(sc);
|
|
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* wm_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
|
|
* @sc: pointer to the HW structure
|
|
*/
|
|
static void
|
|
wm_copy_rx_addrs_to_phy_ich8lan(struct wm_softc *sc)
|
|
{
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if (sc->phy.acquire(sc) != 0)
|
|
return;
|
|
|
|
wm_copy_rx_addrs_to_phy_ich8lan_locked(sc);
|
|
|
|
sc->phy.release(sc);
|
|
}
|
|
|
|
static void
|
|
wm_copy_rx_addrs_to_phy_ich8lan_locked(struct wm_softc *sc)
|
|
{
|
|
device_t dev = sc->sc_dev;
|
|
uint32_t mac_reg;
|
|
uint16_t i, wuce;
|
|
int count;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(dev), __func__));
|
|
|
|
if (wm_enable_phy_wakeup_reg_access_bm(dev, &wuce) != 0)
|
|
return;
|
|
|
|
/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
|
|
count = wm_rar_count(sc);
|
|
for (i = 0; i < count; i++) {
|
|
uint16_t lo, hi;
|
|
mac_reg = CSR_READ(sc, WMREG_CORDOVA_RAL(i));
|
|
lo = (uint16_t)(mac_reg & 0xffff);
|
|
hi = (uint16_t)((mac_reg >> 16) & 0xffff);
|
|
wm_access_phy_wakeup_reg_bm(dev, BM_RAR_L(i), &lo, 0, true);
|
|
wm_access_phy_wakeup_reg_bm(dev, BM_RAR_M(i), &hi, 0, true);
|
|
|
|
mac_reg = CSR_READ(sc, WMREG_CORDOVA_RAH(i));
|
|
lo = (uint16_t)(mac_reg & 0xffff);
|
|
hi = (uint16_t)((mac_reg & RAL_AV) >> 16);
|
|
wm_access_phy_wakeup_reg_bm(dev, BM_RAR_H(i), &lo, 0, true);
|
|
wm_access_phy_wakeup_reg_bm(dev, BM_RAR_CTRL(i), &hi, 0, true);
|
|
}
|
|
|
|
wm_disable_phy_wakeup_reg_access_bm(dev, &wuce);
|
|
}
|
|
|
|
/*
|
|
* wm_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
|
|
* with 82579 PHY
|
|
* @enable: flag to enable/disable workaround when enabling/disabling jumbos
|
|
*/
|
|
static int
|
|
wm_lv_jumbo_workaround_ich8lan(struct wm_softc *sc, bool enable)
|
|
{
|
|
device_t dev = sc->sc_dev;
|
|
int rar_count;
|
|
int rv;
|
|
uint32_t mac_reg;
|
|
uint16_t dft_ctrl, data;
|
|
uint16_t i;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(dev), __func__));
|
|
|
|
if (sc->sc_type < WM_T_PCH2)
|
|
return 0;
|
|
|
|
/* Acquire PHY semaphore */
|
|
rv = sc->phy.acquire(sc);
|
|
if (rv != 0)
|
|
return rv;
|
|
|
|
/* Disable Rx path while enabling/disabling workaround */
|
|
rv = sc->phy.readreg_locked(dev, 2, I82579_DFT_CTRL, &dft_ctrl);
|
|
if (rv != 0)
|
|
goto out;
|
|
rv = sc->phy.writereg_locked(dev, 2, I82579_DFT_CTRL,
|
|
dft_ctrl | (1 << 14));
|
|
if (rv != 0)
|
|
goto out;
|
|
|
|
if (enable) {
|
|
/* Write Rx addresses (rar_entry_count for RAL/H, and
|
|
* SHRAL/H) and initial CRC values to the MAC
|
|
*/
|
|
rar_count = wm_rar_count(sc);
|
|
for (i = 0; i < rar_count; i++) {
|
|
uint8_t mac_addr[ETHER_ADDR_LEN] = {0};
|
|
uint32_t addr_high, addr_low;
|
|
|
|
addr_high = CSR_READ(sc, WMREG_CORDOVA_RAH(i));
|
|
if (!(addr_high & RAL_AV))
|
|
continue;
|
|
addr_low = CSR_READ(sc, WMREG_CORDOVA_RAL(i));
|
|
mac_addr[0] = (addr_low & 0xFF);
|
|
mac_addr[1] = ((addr_low >> 8) & 0xFF);
|
|
mac_addr[2] = ((addr_low >> 16) & 0xFF);
|
|
mac_addr[3] = ((addr_low >> 24) & 0xFF);
|
|
mac_addr[4] = (addr_high & 0xFF);
|
|
mac_addr[5] = ((addr_high >> 8) & 0xFF);
|
|
|
|
CSR_WRITE(sc, WMREG_PCH_RAICC(i),
|
|
~ether_crc32_le(mac_addr, ETHER_ADDR_LEN));
|
|
}
|
|
|
|
/* Write Rx addresses to the PHY */
|
|
wm_copy_rx_addrs_to_phy_ich8lan_locked(sc);
|
|
}
|
|
|
|
/*
|
|
* If enable ==
|
|
* true: Enable jumbo frame workaround in the MAC.
|
|
* false: Write MAC register values back to h/w defaults.
|
|
*/
|
|
mac_reg = CSR_READ(sc, WMREG_FFLT_DBG);
|
|
if (enable) {
|
|
mac_reg &= ~(1 << 14);
|
|
mac_reg |= (7 << 15);
|
|
} else
|
|
mac_reg &= ~(0xf << 14);
|
|
CSR_WRITE(sc, WMREG_FFLT_DBG, mac_reg);
|
|
|
|
mac_reg = CSR_READ(sc, WMREG_RCTL);
|
|
if (enable) {
|
|
mac_reg |= RCTL_SECRC;
|
|
sc->sc_rctl |= RCTL_SECRC;
|
|
sc->sc_flags |= WM_F_CRC_STRIP;
|
|
} else {
|
|
mac_reg &= ~RCTL_SECRC;
|
|
sc->sc_rctl &= ~RCTL_SECRC;
|
|
sc->sc_flags &= ~WM_F_CRC_STRIP;
|
|
}
|
|
CSR_WRITE(sc, WMREG_RCTL, mac_reg);
|
|
|
|
rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_CTRL, &data);
|
|
if (rv != 0)
|
|
goto out;
|
|
if (enable)
|
|
data |= 1 << 0;
|
|
else
|
|
data &= ~(1 << 0);
|
|
rv = wm_kmrn_writereg_locked(sc, KUMCTRLSTA_OFFSET_CTRL, data);
|
|
if (rv != 0)
|
|
goto out;
|
|
|
|
rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_HD_CTRL, &data);
|
|
if (rv != 0)
|
|
goto out;
|
|
/*
|
|
* XXX FreeBSD and Linux do the same thing that they set the same value
|
|
* on both the enable case and the disable case. Is it correct?
|
|
*/
|
|
data &= ~(0xf << 8);
|
|
data |= (0xb << 8);
|
|
rv = wm_kmrn_writereg_locked(sc, KUMCTRLSTA_OFFSET_HD_CTRL, data);
|
|
if (rv != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* If enable ==
|
|
* true: Enable jumbo frame workaround in the PHY.
|
|
* false: Write PHY register values back to h/w defaults.
|
|
*/
|
|
rv = sc->phy.readreg_locked(dev, 2, BME1000_REG(769, 23), &data);
|
|
if (rv != 0)
|
|
goto out;
|
|
data &= ~(0x7F << 5);
|
|
if (enable)
|
|
data |= (0x37 << 5);
|
|
rv = sc->phy.writereg_locked(dev, 2, BME1000_REG(769, 23), data);
|
|
if (rv != 0)
|
|
goto out;
|
|
|
|
rv = sc->phy.readreg_locked(dev, 2, BME1000_REG(769, 16), &data);
|
|
if (rv != 0)
|
|
goto out;
|
|
if (enable)
|
|
data &= ~(1 << 13);
|
|
else
|
|
data |= (1 << 13);
|
|
rv = sc->phy.writereg_locked(dev, 2, BME1000_REG(769, 16), data);
|
|
if (rv != 0)
|
|
goto out;
|
|
|
|
rv = sc->phy.readreg_locked(dev, 2, I82579_UNKNOWN1, &data);
|
|
if (rv != 0)
|
|
goto out;
|
|
data &= ~(0x3FF << 2);
|
|
if (enable)
|
|
data |= (I82579_TX_PTR_GAP << 2);
|
|
else
|
|
data |= (0x8 << 2);
|
|
rv = sc->phy.writereg_locked(dev, 2, I82579_UNKNOWN1, data);
|
|
if (rv != 0)
|
|
goto out;
|
|
|
|
rv = sc->phy.writereg_locked(dev, 2, BME1000_REG(776, 23),
|
|
enable ? 0xf100 : 0x7e00);
|
|
if (rv != 0)
|
|
goto out;
|
|
|
|
rv = sc->phy.readreg_locked(dev, 2, HV_PM_CTRL, &data);
|
|
if (rv != 0)
|
|
goto out;
|
|
if (enable)
|
|
data |= 1 << 10;
|
|
else
|
|
data &= ~(1 << 10);
|
|
rv = sc->phy.writereg_locked(dev, 2, HV_PM_CTRL, data);
|
|
if (rv != 0)
|
|
goto out;
|
|
|
|
/* Re-enable Rx path after enabling/disabling workaround */
|
|
rv = sc->phy.writereg_locked(dev, 2, I82579_DFT_CTRL,
|
|
dft_ctrl & ~(1 << 14));
|
|
|
|
out:
|
|
sc->phy.release(sc);
|
|
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* wm_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
|
|
* done after every PHY reset.
|
|
*/
|
|
static int
|
|
wm_lv_phy_workarounds_ich8lan(struct wm_softc *sc)
|
|
{
|
|
device_t dev = sc->sc_dev;
|
|
int rv;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(dev), __func__));
|
|
KASSERT(sc->sc_type == WM_T_PCH2);
|
|
|
|
/* Set MDIO slow mode before any other MDIO access */
|
|
rv = wm_set_mdio_slow_mode_hv(sc);
|
|
if (rv != 0)
|
|
return rv;
|
|
|
|
rv = sc->phy.acquire(sc);
|
|
if (rv != 0)
|
|
return rv;
|
|
/* Set MSE higher to enable link to stay up when noise is high */
|
|
rv = wm_write_emi_reg_locked(dev, I82579_MSE_THRESHOLD, 0x0034);
|
|
if (rv != 0)
|
|
goto release;
|
|
/* Drop link after 5 times MSE threshold was reached */
|
|
rv = wm_write_emi_reg_locked(dev, I82579_MSE_LINK_DOWN, 0x0005);
|
|
release:
|
|
sc->phy.release(sc);
|
|
|
|
return rv;
|
|
}
|
|
|
|
/**
|
|
* wm_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
|
|
* @link: link up bool flag
|
|
*
|
|
* When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
|
|
* preventing further DMA write requests. Workaround the issue by disabling
|
|
* the de-assertion of the clock request when in 1Gpbs mode.
|
|
* Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
|
|
* speeds in order to avoid Tx hangs.
|
|
**/
|
|
static int
|
|
wm_k1_workaround_lpt_lp(struct wm_softc *sc, bool link)
|
|
{
|
|
uint32_t fextnvm6 = CSR_READ(sc, WMREG_FEXTNVM6);
|
|
uint32_t status = CSR_READ(sc, WMREG_STATUS);
|
|
uint32_t speed = __SHIFTOUT(status, STATUS_SPEED);
|
|
uint16_t phyreg;
|
|
|
|
if (link && (speed == STATUS_SPEED_1000)) {
|
|
sc->phy.acquire(sc);
|
|
int rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG,
|
|
&phyreg);
|
|
if (rv != 0)
|
|
goto release;
|
|
rv = wm_kmrn_writereg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG,
|
|
phyreg & ~KUMCTRLSTA_K1_ENABLE);
|
|
if (rv != 0)
|
|
goto release;
|
|
delay(20);
|
|
CSR_WRITE(sc, WMREG_FEXTNVM6, fextnvm6 | FEXTNVM6_REQ_PLL_CLK);
|
|
|
|
rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG,
|
|
&phyreg);
|
|
release:
|
|
sc->phy.release(sc);
|
|
return rv;
|
|
}
|
|
|
|
fextnvm6 &= ~FEXTNVM6_REQ_PLL_CLK;
|
|
|
|
struct mii_softc *child = LIST_FIRST(&sc->sc_mii.mii_phys);
|
|
if (((child != NULL) && (child->mii_mpd_rev > 5))
|
|
|| !link
|
|
|| ((speed == STATUS_SPEED_100) && (status & STATUS_FD)))
|
|
goto update_fextnvm6;
|
|
|
|
wm_gmii_hv_readreg(sc->sc_dev, 2, I217_INBAND_CTRL, &phyreg);
|
|
|
|
/* Clear link status transmit timeout */
|
|
phyreg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
|
|
if (speed == STATUS_SPEED_100) {
|
|
/* Set inband Tx timeout to 5x10us for 100Half */
|
|
phyreg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
|
|
|
|
/* Do not extend the K1 entry latency for 100Half */
|
|
fextnvm6 &= ~FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
|
|
} else {
|
|
/* Set inband Tx timeout to 50x10us for 10Full/Half */
|
|
phyreg |= 50 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
|
|
|
|
/* Extend the K1 entry latency for 10 Mbps */
|
|
fextnvm6 |= FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
|
|
}
|
|
|
|
wm_gmii_hv_writereg(sc->sc_dev, 2, I217_INBAND_CTRL, phyreg);
|
|
|
|
update_fextnvm6:
|
|
CSR_WRITE(sc, WMREG_FEXTNVM6, fextnvm6);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* wm_k1_gig_workaround_hv - K1 Si workaround
|
|
* @sc: pointer to the HW structure
|
|
* @link: link up bool flag
|
|
*
|
|
* If K1 is enabled for 1Gbps, the MAC might stall when transitioning
|
|
* from a lower speed. This workaround disables K1 whenever link is at 1Gig
|
|
* If link is down, the function will restore the default K1 setting located
|
|
* in the NVM.
|
|
*/
|
|
static int
|
|
wm_k1_gig_workaround_hv(struct wm_softc *sc, int link)
|
|
{
|
|
int k1_enable = sc->sc_nvm_k1_enabled;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if (sc->phy.acquire(sc) != 0)
|
|
return -1;
|
|
|
|
if (link) {
|
|
k1_enable = 0;
|
|
|
|
/* Link stall fix for link up */
|
|
wm_gmii_hv_writereg_locked(sc->sc_dev, 1, IGP3_KMRN_DIAG,
|
|
0x0100);
|
|
} else {
|
|
/* Link stall fix for link down */
|
|
wm_gmii_hv_writereg_locked(sc->sc_dev, 1, IGP3_KMRN_DIAG,
|
|
0x4100);
|
|
}
|
|
|
|
wm_configure_k1_ich8lan(sc, k1_enable);
|
|
sc->phy.release(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* wm_k1_workaround_lv - K1 Si workaround
|
|
* @sc: pointer to the HW structure
|
|
*
|
|
* Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
|
|
* Disable K1 for 1000 and 100 speeds
|
|
*/
|
|
static int
|
|
wm_k1_workaround_lv(struct wm_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
uint16_t phyreg;
|
|
int rv;
|
|
|
|
if (sc->sc_type != WM_T_PCH2)
|
|
return 0;
|
|
|
|
/* Set K1 beacon duration based on 10Mbps speed */
|
|
rv = wm_gmii_hv_readreg(sc->sc_dev, 2, HV_M_STATUS, &phyreg);
|
|
if (rv != 0)
|
|
return rv;
|
|
|
|
if ((phyreg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
|
|
== (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
|
|
if (phyreg &
|
|
(HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
|
|
/* LV 1G/100 Packet drop issue wa */
|
|
rv = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_PM_CTRL,
|
|
&phyreg);
|
|
if (rv != 0)
|
|
return rv;
|
|
phyreg &= ~HV_PM_CTRL_K1_ENA;
|
|
rv = wm_gmii_hv_writereg(sc->sc_dev, 1, HV_PM_CTRL,
|
|
phyreg);
|
|
if (rv != 0)
|
|
return rv;
|
|
} else {
|
|
/* For 10Mbps */
|
|
reg = CSR_READ(sc, WMREG_FEXTNVM4);
|
|
reg &= ~FEXTNVM4_BEACON_DURATION;
|
|
reg |= FEXTNVM4_BEACON_DURATION_16US;
|
|
CSR_WRITE(sc, WMREG_FEXTNVM4, reg);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* wm_link_stall_workaround_hv - Si workaround
|
|
* @sc: pointer to the HW structure
|
|
*
|
|
* This function works around a Si bug where the link partner can get
|
|
* a link up indication before the PHY does. If small packets are sent
|
|
* by the link partner they can be placed in the packet buffer without
|
|
* being properly accounted for by the PHY and will stall preventing
|
|
* further packets from being received. The workaround is to clear the
|
|
* packet buffer after the PHY detects link up.
|
|
*/
|
|
static int
|
|
wm_link_stall_workaround_hv(struct wm_softc *sc)
|
|
{
|
|
uint16_t phyreg;
|
|
|
|
if (sc->sc_phytype != WMPHY_82578)
|
|
return 0;
|
|
|
|
/* Do not apply workaround if in PHY loopback bit 14 set */
|
|
wm_gmii_hv_readreg(sc->sc_dev, 2, MII_BMCR, &phyreg);
|
|
if ((phyreg & BMCR_LOOP) != 0)
|
|
return 0;
|
|
|
|
/* Check if link is up and at 1Gbps */
|
|
wm_gmii_hv_readreg(sc->sc_dev, 2, BM_CS_STATUS, &phyreg);
|
|
phyreg &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED
|
|
| BM_CS_STATUS_SPEED_MASK;
|
|
if (phyreg != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED
|
|
| BM_CS_STATUS_SPEED_1000))
|
|
return 0;
|
|
|
|
delay(200 * 1000); /* XXX too big */
|
|
|
|
/* Flush the packets in the fifo buffer */
|
|
wm_gmii_hv_writereg(sc->sc_dev, 1, HV_MUX_DATA_CTRL,
|
|
HV_MUX_DATA_CTRL_GEN_TO_MAC | HV_MUX_DATA_CTRL_FORCE_SPEED);
|
|
wm_gmii_hv_writereg(sc->sc_dev, 1, HV_MUX_DATA_CTRL,
|
|
HV_MUX_DATA_CTRL_GEN_TO_MAC);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
wm_set_mdio_slow_mode_hv(struct wm_softc *sc)
|
|
{
|
|
int rv;
|
|
uint16_t reg;
|
|
|
|
rv = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_KMRN_MODE_CTRL, ®);
|
|
if (rv != 0)
|
|
return rv;
|
|
|
|
return wm_gmii_hv_writereg(sc->sc_dev, 1, HV_KMRN_MODE_CTRL,
|
|
reg | HV_KMRN_MDIO_SLOW);
|
|
}
|
|
|
|
/*
|
|
* wm_configure_k1_ich8lan - Configure K1 power state
|
|
* @sc: pointer to the HW structure
|
|
* @enable: K1 state to configure
|
|
*
|
|
* Configure the K1 power state based on the provided parameter.
|
|
* Assumes semaphore already acquired.
|
|
*/
|
|
static void
|
|
wm_configure_k1_ich8lan(struct wm_softc *sc, int k1_enable)
|
|
{
|
|
uint32_t ctrl, ctrl_ext, tmp;
|
|
uint16_t kmreg;
|
|
int rv;
|
|
|
|
KASSERT(CSR_READ(sc, WMREG_EXTCNFCTR) & EXTCNFCTR_MDIO_SW_OWNERSHIP);
|
|
|
|
rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG, &kmreg);
|
|
if (rv != 0)
|
|
return;
|
|
|
|
if (k1_enable)
|
|
kmreg |= KUMCTRLSTA_K1_ENABLE;
|
|
else
|
|
kmreg &= ~KUMCTRLSTA_K1_ENABLE;
|
|
|
|
rv = wm_kmrn_writereg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG, kmreg);
|
|
if (rv != 0)
|
|
return;
|
|
|
|
delay(20);
|
|
|
|
ctrl = CSR_READ(sc, WMREG_CTRL);
|
|
ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
|
|
tmp = ctrl & ~(CTRL_SPEED_1000 | CTRL_SPEED_100);
|
|
tmp |= CTRL_FRCSPD;
|
|
|
|
CSR_WRITE(sc, WMREG_CTRL, tmp);
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext | CTRL_EXT_SPD_BYPS);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(20);
|
|
|
|
CSR_WRITE(sc, WMREG_CTRL, ctrl);
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(20);
|
|
|
|
return;
|
|
}
|
|
|
|
/* special case - for 82575 - need to do manual init ... */
|
|
static void
|
|
wm_reset_init_script_82575(struct wm_softc *sc)
|
|
{
|
|
/*
|
|
* Remark: this is untested code - we have no board without EEPROM
|
|
* same setup as mentioned int the FreeBSD driver for the i82575
|
|
*/
|
|
|
|
/* SerDes configuration via SERDESCTRL */
|
|
wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x00, 0x0c);
|
|
wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x01, 0x78);
|
|
wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x1b, 0x23);
|
|
wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x23, 0x15);
|
|
|
|
/* CCM configuration via CCMCTL register */
|
|
wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x14, 0x00);
|
|
wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x10, 0x00);
|
|
|
|
/* PCIe lanes configuration */
|
|
wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x00, 0xec);
|
|
wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x61, 0xdf);
|
|
wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x34, 0x05);
|
|
wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x2f, 0x81);
|
|
|
|
/* PCIe PLL Configuration */
|
|
wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x02, 0x47);
|
|
wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x14, 0x00);
|
|
wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x10, 0x00);
|
|
}
|
|
|
|
static void
|
|
wm_reset_mdicnfg_82580(struct wm_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
uint16_t nvmword;
|
|
int rv;
|
|
|
|
if (sc->sc_type != WM_T_82580)
|
|
return;
|
|
if ((sc->sc_flags & WM_F_SGMII) == 0)
|
|
return;
|
|
|
|
rv = wm_nvm_read(sc, NVM_OFF_LAN_FUNC_82580(sc->sc_funcid)
|
|
+ NVM_OFF_CFG3_PORTA, 1, &nvmword);
|
|
if (rv != 0) {
|
|
aprint_error_dev(sc->sc_dev, "%s: failed to read NVM\n",
|
|
__func__);
|
|
return;
|
|
}
|
|
|
|
reg = CSR_READ(sc, WMREG_MDICNFG);
|
|
if (nvmword & NVM_CFG3_PORTA_EXT_MDIO)
|
|
reg |= MDICNFG_DEST;
|
|
if (nvmword & NVM_CFG3_PORTA_COM_MDIO)
|
|
reg |= MDICNFG_COM_MDIO;
|
|
CSR_WRITE(sc, WMREG_MDICNFG, reg);
|
|
}
|
|
|
|
#define MII_INVALIDID(x) (((x) == 0x0000) || ((x) == 0xffff))
|
|
|
|
static bool
|
|
wm_phy_is_accessible_pchlan(struct wm_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
uint16_t id1, id2;
|
|
int i, rv;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
KASSERT(CSR_READ(sc, WMREG_EXTCNFCTR) & EXTCNFCTR_MDIO_SW_OWNERSHIP);
|
|
|
|
id1 = id2 = 0xffff;
|
|
for (i = 0; i < 2; i++) {
|
|
rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, MII_PHYIDR1,
|
|
&id1);
|
|
if ((rv != 0) || MII_INVALIDID(id1))
|
|
continue;
|
|
rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, MII_PHYIDR2,
|
|
&id2);
|
|
if ((rv != 0) || MII_INVALIDID(id2))
|
|
continue;
|
|
break;
|
|
}
|
|
if ((rv == 0) && !MII_INVALIDID(id1) && !MII_INVALIDID(id2))
|
|
goto out;
|
|
|
|
/*
|
|
* In case the PHY needs to be in mdio slow mode,
|
|
* set slow mode and try to get the PHY id again.
|
|
*/
|
|
rv = 0;
|
|
if (sc->sc_type < WM_T_PCH_LPT) {
|
|
sc->phy.release(sc);
|
|
wm_set_mdio_slow_mode_hv(sc);
|
|
rv = wm_gmii_hv_readreg(sc->sc_dev, 2, MII_PHYIDR1, &id1);
|
|
rv |= wm_gmii_hv_readreg(sc->sc_dev, 2, MII_PHYIDR2, &id2);
|
|
sc->phy.acquire(sc);
|
|
}
|
|
if ((rv != 0) || MII_INVALIDID(id1) || MII_INVALIDID(id2)) {
|
|
device_printf(sc->sc_dev, "XXX return with false\n");
|
|
return false;
|
|
}
|
|
out:
|
|
if (sc->sc_type >= WM_T_PCH_LPT) {
|
|
/* Only unforce SMBus if ME is not active */
|
|
if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) == 0) {
|
|
uint16_t phyreg;
|
|
|
|
/* Unforce SMBus mode in PHY */
|
|
rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2,
|
|
CV_SMB_CTRL, &phyreg);
|
|
phyreg &= ~CV_SMB_CTRL_FORCE_SMBUS;
|
|
wm_gmii_hv_writereg_locked(sc->sc_dev, 2,
|
|
CV_SMB_CTRL, phyreg);
|
|
|
|
/* Unforce SMBus mode in MAC */
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
reg &= ~CTRL_EXT_FORCE_SMBUS;
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
wm_toggle_lanphypc_pch_lpt(struct wm_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
int i;
|
|
|
|
/* Set PHY Config Counter to 50msec */
|
|
reg = CSR_READ(sc, WMREG_FEXTNVM3);
|
|
reg &= ~FEXTNVM3_PHY_CFG_COUNTER_MASK;
|
|
reg |= FEXTNVM3_PHY_CFG_COUNTER_50MS;
|
|
CSR_WRITE(sc, WMREG_FEXTNVM3, reg);
|
|
|
|
/* Toggle LANPHYPC */
|
|
reg = CSR_READ(sc, WMREG_CTRL);
|
|
reg |= CTRL_LANPHYPC_OVERRIDE;
|
|
reg &= ~CTRL_LANPHYPC_VALUE;
|
|
CSR_WRITE(sc, WMREG_CTRL, reg);
|
|
CSR_WRITE_FLUSH(sc);
|
|
delay(1000);
|
|
reg &= ~CTRL_LANPHYPC_OVERRIDE;
|
|
CSR_WRITE(sc, WMREG_CTRL, reg);
|
|
CSR_WRITE_FLUSH(sc);
|
|
|
|
if (sc->sc_type < WM_T_PCH_LPT)
|
|
delay(50 * 1000);
|
|
else {
|
|
i = 20;
|
|
|
|
do {
|
|
delay(5 * 1000);
|
|
} while (((CSR_READ(sc, WMREG_CTRL_EXT) & CTRL_EXT_LPCD) == 0)
|
|
&& i--);
|
|
|
|
delay(30 * 1000);
|
|
}
|
|
}
|
|
|
|
static int
|
|
wm_platform_pm_pch_lpt(struct wm_softc *sc, bool link)
|
|
{
|
|
uint32_t reg = __SHIFTIN(link, LTRV_NONSNOOP_REQ)
|
|
| __SHIFTIN(link, LTRV_SNOOP_REQ) | LTRV_SEND;
|
|
uint32_t rxa;
|
|
uint16_t scale = 0, lat_enc = 0;
|
|
int32_t obff_hwm = 0;
|
|
int64_t lat_ns, value;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
|
|
if (link) {
|
|
uint16_t max_snoop, max_nosnoop, max_ltr_enc;
|
|
uint32_t status;
|
|
uint16_t speed;
|
|
pcireg_t preg;
|
|
|
|
status = CSR_READ(sc, WMREG_STATUS);
|
|
switch (__SHIFTOUT(status, STATUS_SPEED)) {
|
|
case STATUS_SPEED_10:
|
|
speed = 10;
|
|
break;
|
|
case STATUS_SPEED_100:
|
|
speed = 100;
|
|
break;
|
|
case STATUS_SPEED_1000:
|
|
speed = 1000;
|
|
break;
|
|
default:
|
|
device_printf(sc->sc_dev, "Unknown speed "
|
|
"(status = %08x)\n", status);
|
|
return -1;
|
|
}
|
|
|
|
/* Rx Packet Buffer Allocation size (KB) */
|
|
rxa = CSR_READ(sc, WMREG_PBA) & PBA_RXA_MASK;
|
|
|
|
/*
|
|
* Determine the maximum latency tolerated by the device.
|
|
*
|
|
* Per the PCIe spec, the tolerated latencies are encoded as
|
|
* a 3-bit encoded scale (only 0-5 are valid) multiplied by
|
|
* a 10-bit value (0-1023) to provide a range from 1 ns to
|
|
* 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
|
|
* 1=2^5ns, 2=2^10ns,...5=2^25ns.
|
|
*/
|
|
lat_ns = ((int64_t)rxa * 1024 -
|
|
(2 * ((int64_t)sc->sc_ethercom.ec_if.if_mtu
|
|
+ ETHER_HDR_LEN))) * 8 * 1000;
|
|
if (lat_ns < 0)
|
|
lat_ns = 0;
|
|
else
|
|
lat_ns /= speed;
|
|
value = lat_ns;
|
|
|
|
while (value > LTRV_VALUE) {
|
|
scale ++;
|
|
value = howmany(value, __BIT(5));
|
|
}
|
|
if (scale > LTRV_SCALE_MAX) {
|
|
device_printf(sc->sc_dev,
|
|
"Invalid LTR latency scale %d\n", scale);
|
|
return -1;
|
|
}
|
|
lat_enc = (uint16_t)(__SHIFTIN(scale, LTRV_SCALE) | value);
|
|
|
|
/* Determine the maximum latency tolerated by the platform */
|
|
preg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
|
|
WM_PCI_LTR_CAP_LPT);
|
|
max_snoop = preg & 0xffff;
|
|
max_nosnoop = preg >> 16;
|
|
|
|
max_ltr_enc = MAX(max_snoop, max_nosnoop);
|
|
|
|
if (lat_enc > max_ltr_enc) {
|
|
lat_enc = max_ltr_enc;
|
|
lat_ns = __SHIFTOUT(lat_enc, PCI_LTR_MAXSNOOPLAT_VAL)
|
|
* PCI_LTR_SCALETONS(
|
|
__SHIFTOUT(lat_enc,
|
|
PCI_LTR_MAXSNOOPLAT_SCALE));
|
|
}
|
|
|
|
if (lat_ns) {
|
|
lat_ns *= speed * 1000;
|
|
lat_ns /= 8;
|
|
lat_ns /= 1000000000;
|
|
obff_hwm = (int32_t)(rxa - lat_ns);
|
|
}
|
|
if ((obff_hwm < 0) || (obff_hwm > SVT_OFF_HWM)) {
|
|
device_printf(sc->sc_dev, "Invalid high water mark %d"
|
|
"(rxa = %d, lat_ns = %d)\n",
|
|
obff_hwm, (int32_t)rxa, (int32_t)lat_ns);
|
|
return -1;
|
|
}
|
|
}
|
|
/* Snoop and No-Snoop latencies the same */
|
|
reg |= lat_enc | __SHIFTIN(lat_enc, LTRV_NONSNOOP);
|
|
CSR_WRITE(sc, WMREG_LTRV, reg);
|
|
|
|
/* Set OBFF high water mark */
|
|
reg = CSR_READ(sc, WMREG_SVT) & ~SVT_OFF_HWM;
|
|
reg |= obff_hwm;
|
|
CSR_WRITE(sc, WMREG_SVT, reg);
|
|
|
|
/* Enable OBFF */
|
|
reg = CSR_READ(sc, WMREG_SVCR);
|
|
reg |= SVCR_OFF_EN | SVCR_OFF_MASKINT;
|
|
CSR_WRITE(sc, WMREG_SVCR, reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* I210 Errata 25 and I211 Errata 10
|
|
* Slow System Clock.
|
|
*
|
|
* Note that this function is called on both FLASH and iNVM case on NetBSD.
|
|
*/
|
|
static int
|
|
wm_pll_workaround_i210(struct wm_softc *sc)
|
|
{
|
|
uint32_t mdicnfg, wuc;
|
|
uint32_t reg;
|
|
pcireg_t pcireg;
|
|
uint32_t pmreg;
|
|
uint16_t nvmword, tmp_nvmword;
|
|
uint16_t phyval;
|
|
bool wa_done = false;
|
|
int i, rv = 0;
|
|
|
|
/* Get Power Management cap offset */
|
|
if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PWRMGMT,
|
|
&pmreg, NULL) == 0)
|
|
return -1;
|
|
|
|
/* Save WUC and MDICNFG registers */
|
|
wuc = CSR_READ(sc, WMREG_WUC);
|
|
mdicnfg = CSR_READ(sc, WMREG_MDICNFG);
|
|
|
|
reg = mdicnfg & ~MDICNFG_DEST;
|
|
CSR_WRITE(sc, WMREG_MDICNFG, reg);
|
|
|
|
if (wm_nvm_read(sc, INVM_AUTOLOAD, 1, &nvmword) != 0) {
|
|
/*
|
|
* The default value of the Initialization Control Word 1
|
|
* is the same on both I210's FLASH_HW and I21[01]'s iNVM.
|
|
*/
|
|
nvmword = INVM_DEFAULT_AL;
|
|
}
|
|
tmp_nvmword = nvmword | INVM_PLL_WO_VAL;
|
|
|
|
for (i = 0; i < WM_MAX_PLL_TRIES; i++) {
|
|
wm_gmii_gs40g_readreg(sc->sc_dev, 1,
|
|
GS40G_PHY_PLL_FREQ_PAGE | GS40G_PHY_PLL_FREQ_REG, &phyval);
|
|
|
|
if ((phyval & GS40G_PHY_PLL_UNCONF) != GS40G_PHY_PLL_UNCONF) {
|
|
rv = 0;
|
|
break; /* OK */
|
|
} else
|
|
rv = -1;
|
|
|
|
wa_done = true;
|
|
/* Directly reset the internal PHY */
|
|
reg = CSR_READ(sc, WMREG_CTRL);
|
|
CSR_WRITE(sc, WMREG_CTRL, reg | CTRL_PHY_RESET);
|
|
|
|
reg = CSR_READ(sc, WMREG_CTRL_EXT);
|
|
reg |= CTRL_EXT_PHYPDEN | CTRL_EXT_SDLPE;
|
|
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
|
|
|
|
CSR_WRITE(sc, WMREG_WUC, 0);
|
|
reg = (INVM_AUTOLOAD << 4) | (tmp_nvmword << 16);
|
|
CSR_WRITE(sc, WMREG_EEARBC_I210, reg);
|
|
|
|
pcireg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
|
|
pmreg + PCI_PMCSR);
|
|
pcireg |= PCI_PMCSR_STATE_D3;
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag,
|
|
pmreg + PCI_PMCSR, pcireg);
|
|
delay(1000);
|
|
pcireg &= ~PCI_PMCSR_STATE_D3;
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag,
|
|
pmreg + PCI_PMCSR, pcireg);
|
|
|
|
reg = (INVM_AUTOLOAD << 4) | (nvmword << 16);
|
|
CSR_WRITE(sc, WMREG_EEARBC_I210, reg);
|
|
|
|
/* Restore WUC register */
|
|
CSR_WRITE(sc, WMREG_WUC, wuc);
|
|
}
|
|
|
|
/* Restore MDICNFG setting */
|
|
CSR_WRITE(sc, WMREG_MDICNFG, mdicnfg);
|
|
if (wa_done)
|
|
aprint_verbose_dev(sc->sc_dev, "I210 workaround done\n");
|
|
return rv;
|
|
}
|
|
|
|
static void
|
|
wm_legacy_irq_quirk_spt(struct wm_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
|
|
DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
|
|
device_xname(sc->sc_dev), __func__));
|
|
KASSERT((sc->sc_type == WM_T_PCH_SPT)
|
|
|| (sc->sc_type == WM_T_PCH_CNP));
|
|
|
|
reg = CSR_READ(sc, WMREG_FEXTNVM7);
|
|
reg |= FEXTNVM7_SIDE_CLK_UNGATE;
|
|
CSR_WRITE(sc, WMREG_FEXTNVM7, reg);
|
|
|
|
reg = CSR_READ(sc, WMREG_FEXTNVM9);
|
|
reg |= FEXTNVM9_IOSFSB_CLKGATE_DIS | FEXTNVM9_IOSFSB_CLKREQ_DIS;
|
|
CSR_WRITE(sc, WMREG_FEXTNVM9, reg);
|
|
}
|
|
|
|
/* Sysctl function */
|
|
#ifdef WM_DEBUG
|
|
static int
|
|
wm_sysctl_debug(SYSCTLFN_ARGS)
|
|
{
|
|
struct sysctlnode node = *rnode;
|
|
struct wm_softc *sc = (struct wm_softc *)node.sysctl_data;
|
|
uint32_t dflags;
|
|
int error;
|
|
|
|
dflags = sc->sc_debug;
|
|
node.sysctl_data = &dflags;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
|
|
if (error || newp == NULL)
|
|
return error;
|
|
|
|
sc->sc_debug = dflags;
|
|
|
|
return 0;
|
|
}
|
|
#endif
|