NetBSD/sys/dev/pci/if_aq.c

4822 lines
129 KiB
C

/* $NetBSD: if_aq.c,v 1.25 2021/04/16 08:09:40 ryo Exp $ */
/**
* aQuantia Corporation Network Driver
* Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* (1) Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* (2) Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* (3) The name of the author may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*-
* Copyright (c) 2020 Ryo Shimizu <ryo@nerv.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.25 2021/04/16 08:09:40 ryo Exp $");
#ifdef _KERNEL_OPT
#include "opt_if_aq.h"
#include "sysmon_envsys.h"
#endif
#include <sys/param.h>
#include <sys/types.h>
#include <sys/bitops.h>
#include <sys/cprng.h>
#include <sys/cpu.h>
#include <sys/interrupt.h>
#include <sys/module.h>
#include <sys/pcq.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net/rss_config.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcidevs.h>
#include <dev/sysmon/sysmonvar.h>
/* driver configuration */
#define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */
#undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */
#undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */
#define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
/* TX + RX + LINK. must be <= 32 */
#define AQ_LINKSTAT_IRQ 31 /* for legacy mode */
#define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */
#define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */
/* minimum required to send a packet (vlan needs additional TX descriptor) */
#define AQ_TXD_MIN (1 + 1)
/* hardware specification */
#define AQ_RINGS_NUM 32
#define AQ_RSSQUEUE_MAX 8
#define AQ_RX_DESCRIPTOR_MIN 32
#define AQ_TX_DESCRIPTOR_MIN 32
#define AQ_RX_DESCRIPTOR_MAX 8184
#define AQ_TX_DESCRIPTOR_MAX 8184
#define AQ_TRAFFICCLASS_NUM 8
#define AQ_RSS_HASHKEY_SIZE 40
#define AQ_RSS_INDIRECTION_TABLE_MAX 64
#define AQ_JUMBO_MTU_REV_A 9000
#define AQ_JUMBO_MTU_REV_B 16338
/*
* TERMINOLOGY
* MPI = MAC PHY INTERFACE?
* RPO = RX Protocol Offloading
* TPO = TX Protocol Offloading
* RPF = RX Packet Filter
* TPB = TX Packet buffer
* RPB = RX Packet buffer
*/
/* registers */
#define AQ_FW_SOFTRESET_REG 0x0000
#define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */
#define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */
#define AQ_FW_VERSION_REG 0x0018
#define AQ_HW_REVISION_REG 0x001c
#define AQ_GLB_NVR_INTERFACE1_REG 0x0100
#define AQ_FW_MBOX_CMD_REG 0x0200
#define AQ_FW_MBOX_CMD_EXECUTE 0x00008000
#define AQ_FW_MBOX_CMD_BUSY 0x00000100
#define AQ_FW_MBOX_ADDR_REG 0x0208
#define AQ_FW_MBOX_VAL_REG 0x020c
#define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */
#define FW2X_LED_REG 0x031c
#define FW2X_LED_DEFAULT 0x00000000
#define FW2X_LED_NONE 0x0000003f
#define FW2X_LINKLED __BITS(0,1)
#define FW2X_LINKLED_ACTIVE 0
#define FW2X_LINKLED_ON 1
#define FW2X_LINKLED_BLINK 2
#define FW2X_LINKLED_OFF 3
#define FW2X_STATUSLED __BITS(2,5)
#define FW2X_STATUSLED_ORANGE 0
#define FW2X_STATUSLED_ORANGE_BLINK 2
#define FW2X_STATUSLED_OFF 3
#define FW2X_STATUSLED_GREEN 4
#define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8
#define FW2X_STATUSLED_GREEN_BLINK 10
#define FW_MPI_MBOX_ADDR_REG 0x0360
#define FW1X_MPI_INIT1_REG 0x0364
#define FW1X_MPI_CONTROL_REG 0x0368
#define FW1X_MPI_STATE_REG 0x036c
#define FW1X_MPI_STATE_MODE __BITS(7,0)
#define FW1X_MPI_STATE_SPEED __BITS(32,16)
#define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25)
#define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28)
#define FW1X_MPI_INIT2_REG 0x0370
#define FW1X_MPI_EFUSEADDR_REG 0x0374
#define FW2X_MPI_EFUSEADDR_REG 0x0364
#define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */
#define FW2X_MPI_STATE_REG 0x0370 /* 64bit */
#define FW_BOOT_EXIT_CODE_REG 0x0388
#define RBL_STATUS_DEAD 0x0000dead
#define RBL_STATUS_SUCCESS 0x0000abba
#define RBL_STATUS_FAILURE 0x00000bad
#define RBL_STATUS_HOST_BOOT 0x0000f1a7
#define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4)
#define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2)
#define AQ_FW_GLB_CTL2_REG 0x0404
#define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1)
#define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520
#define AQ_GLB_NVR_PROVISIONING2_REG 0x0534
#define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704
#define AQ_PCI_REG_CONTROL_6_REG 0x1014
// msix bitmap */
#define AQ_INTR_STATUS_REG 0x2000 /* intr status */
#define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */
#define AQ_INTR_MASK_REG 0x2060 /* intr mask set */
#define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */
#define AQ_INTR_AUTOMASK_REG 0x2090
/* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
#define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4)
#define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
#define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8))
#define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8))
#define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
#define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8))
#define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8))
/* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
#define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4)
#define AQ_B0_ERR_INT 8U
#define AQ_INTR_CTRL_REG 0x2300
#define AQ_INTR_CTRL_IRQMODE __BITS(1,0)
#define AQ_INTR_CTRL_IRQMODE_LEGACY 0
#define AQ_INTR_CTRL_IRQMODE_MSI 1
#define AQ_INTR_CTRL_IRQMODE_MSIX 2
#define AQ_INTR_CTRL_MULTIVEC __BIT(2)
#define AQ_INTR_CTRL_AUTO_MASK __BIT(5)
#define AQ_INTR_CTRL_CLR_ON_READ __BIT(7)
#define AQ_INTR_CTRL_RESET_DIS __BIT(29)
#define AQ_INTR_CTRL_RESET_IRQ __BIT(31)
#define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8
#define FW_MPI_RESETCTRL_REG 0x4000
#define FW_MPI_RESETCTRL_RESET_DIS __BIT(29)
#define RX_SYSCONTROL_REG 0x5000
#define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6)
#define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8)
#define RX_SYSCONTROL_RESET_DIS __BIT(29)
#define RX_TCP_RSS_HASH_REG 0x5040
#define RX_TCP_RSS_HASH_RPF2 __BITS(19,16)
#define RX_TCP_RSS_HASH_TYPE __BITS(15,0)
/* for RPF_*_REG.ACTION */
#define RPF_ACTION_DISCARD 0
#define RPF_ACTION_HOST 1
#define RPF_ACTION_MANAGEMENT 2
#define RPF_ACTION_HOST_MANAGEMENT 3
#define RPF_ACTION_WOL 4
#define RPF_L2BC_REG 0x5100
#define RPF_L2BC_EN __BIT(0)
#define RPF_L2BC_PROMISC __BIT(3)
#define RPF_L2BC_ACTION __BITS(12,14)
#define RPF_L2BC_THRESHOLD __BITS(31,16)
/* RPF_L2UC_*_REG[34] (actual [38]?) */
#define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8)
#define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8)
#define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0)
#define RPF_L2UC_MSW_ACTION __BITS(18,16)
#define RPF_L2UC_MSW_EN __BIT(31)
#define AQ_HW_MAC_OWN 0 /* index of own address */
#define AQ_HW_MAC_NUM 34
/* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
#define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4)
#define RPF_MCAST_FILTER_EN __BIT(31)
#define RPF_MCAST_FILTER_MASK_REG 0x5270
#define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14)
#define RPF_VLAN_MODE_REG 0x5280
#define RPF_VLAN_MODE_PROMISC __BIT(1)
#define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2)
#define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3)
#define RPF_VLAN_TPID_REG 0x5284
#define RPF_VLAN_TPID_OUTER __BITS(31,16)
#define RPF_VLAN_TPID_INNER __BITS(15,0)
/* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
#define RPF_VLAN_MAX_FILTERS 16
#define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4)
#define RPF_VLAN_FILTER_EN __BIT(31)
#define RPF_VLAN_FILTER_RXQ_EN __BIT(28)
#define RPF_VLAN_FILTER_RXQ __BITS(24,20)
#define RPF_VLAN_FILTER_ACTION __BITS(18,16)
#define RPF_VLAN_FILTER_ID __BITS(11,0)
/* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
#define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4)
#define RPF_ETHERTYPE_FILTER_EN __BIT(31)
#define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30)
#define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29)
#define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26)
#define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20)
#define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19)
#define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16)
#define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0)
/* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
#define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4)
#define RPF_L3_FILTER_L4_EN __BIT(31)
#define RPF_L3_FILTER_IPV6_EN __BIT(30)
#define RPF_L3_FILTER_SRCADDR_EN __BIT(29)
#define RPF_L3_FILTER_DSTADDR_EN __BIT(28)
#define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27)
#define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26)
#define RPF_L3_FILTER_L4_PROTO_EN __BIT(25)
#define RPF_L3_FILTER_ARP_EN __BIT(24)
#define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23)
#define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22)
#define RPF_L3_FILTER_L4_ACTION __BITS(16,18)
#define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8)
#define RPF_L3_FILTER_L4_PROTO __BITS(2,0)
#define RPF_L3_FILTER_L4_PROTO_TCP 0
#define RPF_L3_FILTER_L4_PROTO_UDP 1
#define RPF_L3_FILTER_L4_PROTO_SCTP 2
#define RPF_L3_FILTER_L4_PROTO_ICMP 3
/* parameters of RPF_L3_FILTER_REG[8] */
#define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4)
#define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4)
#define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4)
#define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4)
#define RX_FLR_RSS_CONTROL1_REG 0x54c0
#define RX_FLR_RSS_CONTROL1_EN __BIT(31)
#define RPF_RPB_RX_TC_UPT_REG 0x54c4
#define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4))
#define RPF_RSS_KEY_ADDR_REG 0x54d0
#define RPF_RSS_KEY_ADDR __BITS(4,0)
#define RPF_RSS_KEY_WR_EN __BIT(5)
#define RPF_RSS_KEY_WR_DATA_REG 0x54d4
#define RPF_RSS_KEY_RD_DATA_REG 0x54d8
#define RPF_RSS_REDIR_ADDR_REG 0x54e0
#define RPF_RSS_REDIR_ADDR __BITS(3,0)
#define RPF_RSS_REDIR_WR_EN __BIT(4)
#define RPF_RSS_REDIR_WR_DATA_REG 0x54e4
#define RPF_RSS_REDIR_WR_DATA __BITS(15,0)
#define RPO_HWCSUM_REG 0x5580
#define RPO_HWCSUM_IP4CSUM_EN __BIT(1)
#define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
#define RPO_LRO_ENABLE_REG 0x5590
#define RPO_LRO_CONF_REG 0x5594
#define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12)
#define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5)
#define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15)
#define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0)
#define RPO_LRO_RSC_MAX_REG 0x5598
/* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
#define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4)
#define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4))
#define RPO_LRO_TB_DIV_REG 0x5620
#define RPO_LRO_TB_DIV __BITS(20,31)
#define RPO_LRO_INACTIVE_IVAL_REG 0x5620
#define RPO_LRO_INACTIVE_IVAL __BITS(10,19)
#define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620
#define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0)
#define RPB_RPF_RX_REG 0x5700
#define RPB_RPF_RX_TC_MODE __BIT(8)
#define RPB_RPF_RX_FC_MODE __BITS(5,4)
#define RPB_RPF_RX_BUF_EN __BIT(0)
/* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
#define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10)
#define RPB_RXB_BUFSIZE __BITS(8,0)
#define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10)
#define RPB_RXB_XOFF_EN __BIT(31)
#define RPB_RXB_XOFF_THRESH_HI __BITS(29,16)
#define RPB_RXB_XOFF_THRESH_LO __BITS(13,0)
#define RX_DMA_DESC_CACHE_INIT_REG 0x5a00
#define RX_DMA_DESC_CACHE_INIT __BIT(0)
#define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30
#define RX_DMA_INT_DESC_WRWB_EN __BIT(2)
#define RX_DMA_INT_DESC_MODERATE_EN __BIT(3)
/* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
#define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4)
#define RX_INTR_MODERATION_CTL_EN __BIT(1)
#define RX_INTR_MODERATION_CTL_MIN __BITS(15,8)
#define RX_INTR_MODERATION_CTL_MAX __BITS(24,16)
/* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
#define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20)
#define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20)
#define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20)
#define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */
#define RX_DMA_DESC_RESET __BIT(25)
#define RX_DMA_DESC_HEADER_SPLIT __BIT(28)
#define RX_DMA_DESC_VLAN_STRIP __BIT(29)
#define RX_DMA_DESC_EN __BIT(31)
#define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20)
#define RX_DMA_DESC_HEAD_PTR __BITS(12,0)
#define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20)
#define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20)
#define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0)
#define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8)
/* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
#define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4)
#define RX_DMA_DCAD_CPUID __BITS(7,0)
#define RX_DMA_DCAD_PAYLOAD_EN __BIT(29)
#define RX_DMA_DCAD_HEADER_EN __BIT(30)
#define RX_DMA_DCAD_DESC_EN __BIT(31)
#define RX_DMA_DCA_REG 0x6180
#define RX_DMA_DCA_EN __BIT(31)
#define RX_DMA_DCA_MODE __BITS(3,0)
/* counters */
#define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800
#define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808
#define RX_DMA_DROP_PKT_CNT_REG 0x6818
#define RX_DMA_COALESCED_PKT_CNT_REG 0x6820
#define TX_SYSCONTROL_REG 0x7000
#define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6)
#define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7)
#define TX_SYSCONTROL_RESET_DIS __BIT(29)
#define TX_TPO2_REG 0x7040
#define TX_TPO2_EN __BIT(16)
#define TPS_DESC_VM_ARB_MODE_REG 0x7300
#define TPS_DESC_VM_ARB_MODE __BIT(0)
#define TPS_DESC_RATE_REG 0x7310
#define TPS_DESC_RATE_TA_RST __BIT(31)
#define TPS_DESC_RATE_LIM __BITS(10,0)
#define TPS_DESC_TC_ARB_MODE_REG 0x7200
#define TPS_DESC_TC_ARB_MODE __BITS(1,0)
#define TPS_DATA_TC_ARB_MODE_REG 0x7100
#define TPS_DATA_TC_ARB_MODE __BIT(0)
/* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
#define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4)
#define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27)
#define TPS_DATA_TCT_WEIGHT __BITS(8,0)
/* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
#define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4)
#define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27)
#define TPS_DESC_TCT_WEIGHT __BITS(8,0)
#define AQ_HW_TXBUF_MAX 160
#define AQ_HW_RXBUF_MAX 320
#define TPO_HWCSUM_REG 0x7800
#define TPO_HWCSUM_IP4CSUM_EN __BIT(1)
#define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
#define TDM_LSO_EN_REG 0x7810
#define THM_LSO_TCP_FLAG1_REG 0x7820
#define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0)
#define THM_LSO_TCP_FLAG1_MID __BITS(27,16)
#define THM_LSO_TCP_FLAG2_REG 0x7824
#define THM_LSO_TCP_FLAG2_LAST __BITS(11,0)
#define TPB_TX_BUF_REG 0x7900
#define TPB_TX_BUF_EN __BIT(0)
#define TPB_TX_BUF_SCP_INS_EN __BIT(2)
#define TPB_TX_BUF_TC_MODE_EN __BIT(8)
/* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
#define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10)
#define TPB_TXB_BUFSIZE __BITS(7,0)
#define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10)
#define TPB_TXB_THRESH_HI __BITS(16,28)
#define TPB_TXB_THRESH_LO __BITS(12,0)
#define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20
#define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40
#define TX_DMA_INT_DESC_WRWB_EN __BIT(1)
#define TX_DMA_INT_DESC_MODERATE_EN __BIT(4)
/* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
#define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40)
#define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40)
#define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40)
#define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */
#define TX_DMA_DESC_EN __BIT(31)
#define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40)
#define TX_DMA_DESC_HEAD_PTR __BITS(12,0)
#define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40)
#define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40)
#define TX_DMA_DESC_WRWB_THRESH __BITS(14,8)
/* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
#define TDM_DCAD_REG(i) (0x8400 + (i) * 4)
#define TDM_DCAD_CPUID __BITS(7,0)
#define TDM_DCAD_CPUID_EN __BIT(31)
#define TDM_DCA_REG 0x8480
#define TDM_DCA_EN __BIT(31)
#define TDM_DCA_MODE __BITS(3,0)
/* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
#define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4)
#define TX_INTR_MODERATION_CTL_EN __BIT(1)
#define TX_INTR_MODERATION_CTL_MIN __BITS(15,8)
#define TX_INTR_MODERATION_CTL_MAX __BITS(24,16)
#define FW1X_CTRL_10G __BIT(0)
#define FW1X_CTRL_5G __BIT(1)
#define FW1X_CTRL_5GSR __BIT(2)
#define FW1X_CTRL_2G5 __BIT(3)
#define FW1X_CTRL_1G __BIT(4)
#define FW1X_CTRL_100M __BIT(5)
#define FW2X_CTRL_10BASET_HD __BIT(0)
#define FW2X_CTRL_10BASET_FD __BIT(1)
#define FW2X_CTRL_100BASETX_HD __BIT(2)
#define FW2X_CTRL_100BASET4_HD __BIT(3)
#define FW2X_CTRL_100BASET2_HD __BIT(4)
#define FW2X_CTRL_100BASETX_FD __BIT(5)
#define FW2X_CTRL_100BASET2_FD __BIT(6)
#define FW2X_CTRL_1000BASET_HD __BIT(7)
#define FW2X_CTRL_1000BASET_FD __BIT(8)
#define FW2X_CTRL_2P5GBASET_FD __BIT(9)
#define FW2X_CTRL_5GBASET_FD __BIT(10)
#define FW2X_CTRL_10GBASET_FD __BIT(11)
#define FW2X_CTRL_RESERVED1 __BIT(32)
#define FW2X_CTRL_10BASET_EEE __BIT(33)
#define FW2X_CTRL_RESERVED2 __BIT(34)
#define FW2X_CTRL_PAUSE __BIT(35)
#define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36)
#define FW2X_CTRL_100BASETX_EEE __BIT(37)
#define FW2X_CTRL_RESERVED3 __BIT(38)
#define FW2X_CTRL_RESERVED4 __BIT(39)
#define FW2X_CTRL_1000BASET_FD_EEE __BIT(40)
#define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41)
#define FW2X_CTRL_5GBASET_FD_EEE __BIT(42)
#define FW2X_CTRL_10GBASET_FD_EEE __BIT(43)
#define FW2X_CTRL_RESERVED5 __BIT(44)
#define FW2X_CTRL_RESERVED6 __BIT(45)
#define FW2X_CTRL_RESERVED7 __BIT(46)
#define FW2X_CTRL_RESERVED8 __BIT(47)
#define FW2X_CTRL_RESERVED9 __BIT(48)
#define FW2X_CTRL_CABLE_DIAG __BIT(49)
#define FW2X_CTRL_TEMPERATURE __BIT(50)
#define FW2X_CTRL_DOWNSHIFT __BIT(51)
#define FW2X_CTRL_PTP_AVB_EN __BIT(52)
#define FW2X_CTRL_MEDIA_DETECT __BIT(53)
#define FW2X_CTRL_LINK_DROP __BIT(54)
#define FW2X_CTRL_SLEEP_PROXY __BIT(55)
#define FW2X_CTRL_WOL __BIT(56)
#define FW2X_CTRL_MAC_STOP __BIT(57)
#define FW2X_CTRL_EXT_LOOPBACK __BIT(58)
#define FW2X_CTRL_INT_LOOPBACK __BIT(59)
#define FW2X_CTRL_EFUSE_AGENT __BIT(60)
#define FW2X_CTRL_WOL_TIMER __BIT(61)
#define FW2X_CTRL_STATISTICS __BIT(62)
#define FW2X_CTRL_TRANSACTION_ID __BIT(63)
#define FW2X_SNPRINTB \
"\177\020" \
"b\x23" "PAUSE\0" \
"b\x24" "ASYMMETRIC-PAUSE\0" \
"b\x31" "CABLE-DIAG\0" \
"b\x32" "TEMPERATURE\0" \
"b\x33" "DOWNSHIFT\0" \
"b\x34" "PTP-AVB\0" \
"b\x35" "MEDIA-DETECT\0" \
"b\x36" "LINK-DROP\0" \
"b\x37" "SLEEP-PROXY\0" \
"b\x38" "WOL\0" \
"b\x39" "MAC-STOP\0" \
"b\x3a" "EXT-LOOPBACK\0" \
"b\x3b" "INT-LOOPBACK\0" \
"b\x3c" "EFUSE-AGENT\0" \
"b\x3d" "WOL-TIMER\0" \
"b\x3e" "STATISTICS\0" \
"b\x3f" "TRANSACTION-ID\0" \
"\0"
#define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD
#define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD
#define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD
#define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD
#define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD
#define FW2X_CTRL_RATE_MASK \
(FW2X_CTRL_RATE_100M | \
FW2X_CTRL_RATE_1G | \
FW2X_CTRL_RATE_2G5 | \
FW2X_CTRL_RATE_5G | \
FW2X_CTRL_RATE_10G)
#define FW2X_CTRL_EEE_MASK \
(FW2X_CTRL_10BASET_EEE | \
FW2X_CTRL_100BASETX_EEE | \
FW2X_CTRL_1000BASET_FD_EEE | \
FW2X_CTRL_2P5GBASET_FD_EEE | \
FW2X_CTRL_5GBASET_FD_EEE | \
FW2X_CTRL_10GBASET_FD_EEE)
typedef enum aq_fw_bootloader_mode {
FW_BOOT_MODE_UNKNOWN = 0,
FW_BOOT_MODE_FLB,
FW_BOOT_MODE_RBL_FLASH,
FW_BOOT_MODE_RBL_HOST_BOOTLOAD
} aq_fw_bootloader_mode_t;
#define AQ_WRITE_REG(sc, reg, val) \
bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
#define AQ_READ_REG(sc, reg) \
bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
#define AQ_READ64_REG(sc, reg) \
((uint64_t)AQ_READ_REG(sc, reg) | \
(((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
#define AQ_WRITE64_REG(sc, reg, val) \
do { \
AQ_WRITE_REG(sc, reg, (uint32_t)val); \
AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
} while (/* CONSTCOND */0)
#define AQ_READ_REG_BIT(sc, reg, mask) \
__SHIFTOUT(AQ_READ_REG(sc, reg), mask)
#define AQ_WRITE_REG_BIT(sc, reg, mask, val) \
do { \
uint32_t _v; \
_v = AQ_READ_REG((sc), (reg)); \
_v &= ~(mask); \
if ((val) != 0) \
_v |= __SHIFTIN((val), (mask)); \
AQ_WRITE_REG((sc), (reg), _v); \
} while (/* CONSTCOND */ 0)
#define WAIT_FOR(expr, us, n, errp) \
do { \
unsigned int _n; \
for (_n = n; (!(expr)) && _n != 0; --_n) { \
delay((us)); \
} \
if ((errp != NULL)) { \
if (_n == 0) \
*(errp) = ETIMEDOUT; \
else \
*(errp) = 0; \
} \
} while (/* CONSTCOND */ 0)
#define msec_delay(x) DELAY(1000 * (x))
typedef struct aq_mailbox_header {
uint32_t version;
uint32_t transaction_id;
int32_t error;
} __packed __aligned(4) aq_mailbox_header_t;
typedef struct aq_hw_stats_s {
uint32_t uprc;
uint32_t mprc;
uint32_t bprc;
uint32_t erpt;
uint32_t uptc;
uint32_t mptc;
uint32_t bptc;
uint32_t erpr;
uint32_t mbtc;
uint32_t bbtc;
uint32_t mbrc;
uint32_t bbrc;
uint32_t ubrc;
uint32_t ubtc;
uint32_t ptc;
uint32_t prc;
uint32_t dpc; /* not exists in fw2x_msm_statistics */
uint32_t cprc; /* not exists in fw2x_msm_statistics */
} __packed __aligned(4) aq_hw_stats_s_t;
typedef struct fw1x_mailbox {
aq_mailbox_header_t header;
aq_hw_stats_s_t msm;
} __packed __aligned(4) fw1x_mailbox_t;
typedef struct fw2x_msm_statistics {
uint32_t uprc;
uint32_t mprc;
uint32_t bprc;
uint32_t erpt;
uint32_t uptc;
uint32_t mptc;
uint32_t bptc;
uint32_t erpr;
uint32_t mbtc;
uint32_t bbtc;
uint32_t mbrc;
uint32_t bbrc;
uint32_t ubrc;
uint32_t ubtc;
uint32_t ptc;
uint32_t prc;
} __packed __aligned(4) fw2x_msm_statistics_t;
typedef struct fw2x_phy_cable_diag_data {
uint32_t lane_data[4];
} __packed __aligned(4) fw2x_phy_cable_diag_data_t;
typedef struct fw2x_capabilities {
uint32_t caps_lo;
uint32_t caps_hi;
} __packed __aligned(4) fw2x_capabilities_t;
typedef struct fw2x_mailbox { /* struct fwHostInterface */
aq_mailbox_header_t header;
fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */
uint32_t phy_info1;
#define PHYINFO1_FAULT_CODE __BITS(31,16)
#define PHYINFO1_PHY_H_BIT __BITS(0,15)
uint32_t phy_info2;
#define PHYINFO2_TEMPERATURE __BITS(15,0)
#define PHYINFO2_CABLE_LEN __BITS(23,16)
fw2x_phy_cable_diag_data_t diag_data;
uint32_t reserved[8];
fw2x_capabilities_t caps;
/* ... */
} __packed __aligned(4) fw2x_mailbox_t;
typedef enum aq_link_speed {
AQ_LINK_NONE = 0,
AQ_LINK_100M = (1 << 0),
AQ_LINK_1G = (1 << 1),
AQ_LINK_2G5 = (1 << 2),
AQ_LINK_5G = (1 << 3),
AQ_LINK_10G = (1 << 4)
} aq_link_speed_t;
#define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
AQ_LINK_5G | AQ_LINK_10G )
#define AQ_LINK_AUTO AQ_LINK_ALL
typedef enum aq_link_fc {
AQ_FC_NONE = 0,
AQ_FC_RX = __BIT(0),
AQ_FC_TX = __BIT(1),
AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
} aq_link_fc_t;
typedef enum aq_link_eee {
AQ_EEE_DISABLE = 0,
AQ_EEE_ENABLE = 1
} aq_link_eee_t;
typedef enum aq_hw_fw_mpi_state {
MPI_DEINIT = 0,
MPI_RESET = 1,
MPI_INIT = 2,
MPI_POWER = 4
} aq_hw_fw_mpi_state_t;
enum aq_media_type {
AQ_MEDIA_TYPE_UNKNOWN = 0,
AQ_MEDIA_TYPE_FIBRE,
AQ_MEDIA_TYPE_TP
};
struct aq_rx_desc_read {
uint64_t buf_addr;
uint64_t hdr_addr;
} __packed __aligned(8);
struct aq_rx_desc_wb {
uint32_t type;
#define RXDESC_TYPE_RSSTYPE __BITS(3,0)
#define RXDESC_TYPE_RSSTYPE_NONE 0
#define RXDESC_TYPE_RSSTYPE_IPV4 2
#define RXDESC_TYPE_RSSTYPE_IPV6 3
#define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4
#define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5
#define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6
#define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7
#define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4)
#define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0
#define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1
#define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2
#define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3
#define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6)
#define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0
#define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1
#define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2
#define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3
#define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4
#define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9)
#define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10)
#define RXDESC_TYPE_MAC_DMA_ERR __BIT(12)
#define RXDESC_TYPE_RESERVED __BITS(18,13)
#define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */
#define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20)
#define RXDESC_TYPE_SPH __BIT(21)
#define RXDESC_TYPE_HDR_LEN __BITS(31,22)
uint32_t rss_hash;
uint16_t status;
#define RXDESC_STATUS_DD __BIT(0)
#define RXDESC_STATUS_EOP __BIT(1)
#define RXDESC_STATUS_MACERR __BIT(2)
#define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3)
#define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4)
#define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5)
#define RXDESC_STATUS_STAT __BITS(2,5)
#define RXDESC_STATUS_ESTAT __BITS(6,11)
#define RXDESC_STATUS_RSC_CNT __BITS(12,15)
uint16_t pkt_len;
uint16_t next_desc_ptr;
uint16_t vlan;
} __packed __aligned(4);
typedef union aq_rx_desc {
struct aq_rx_desc_read read;
struct aq_rx_desc_wb wb;
} __packed __aligned(8) aq_rx_desc_t;
typedef struct aq_tx_desc {
uint64_t buf_addr;
uint32_t ctl1;
#define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003
#define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001
#define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002
#define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */
#define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */
#define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */
#define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */
#define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */
#define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */
#define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */
#define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */
#define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */
#define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */
#define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */
#define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */
#define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */
uint32_t ctl2;
#define AQ_TXDESC_CTL2_LEN __BITS(31,14)
#define AQ_TXDESC_CTL2_CTX_EN __BIT(13)
#define AQ_TXDESC_CTL2_CTX_IDX __BIT(12)
} __packed __aligned(8) aq_tx_desc_t;
struct aq_txring {
struct aq_softc *txr_sc;
int txr_index;
kmutex_t txr_mutex;
bool txr_active;
pcq_t *txr_pcq;
void *txr_softint;
aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */
bus_dmamap_t txr_txdesc_dmamap;
bus_dma_segment_t txr_txdesc_seg[1];
bus_size_t txr_txdesc_size;
struct {
struct mbuf *m;
bus_dmamap_t dmamap;
} txr_mbufs[AQ_TXD_NUM];
unsigned int txr_prodidx;
unsigned int txr_considx;
int txr_nfree;
};
struct aq_rxring {
struct aq_softc *rxr_sc;
int rxr_index;
kmutex_t rxr_mutex;
bool rxr_active;
aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */
bus_dmamap_t rxr_rxdesc_dmamap;
bus_dma_segment_t rxr_rxdesc_seg[1];
bus_size_t rxr_rxdesc_size;
struct {
struct mbuf *m;
bus_dmamap_t dmamap;
} rxr_mbufs[AQ_RXD_NUM];
unsigned int rxr_readidx;
};
struct aq_queue {
struct aq_softc *sc;
struct aq_txring txring;
struct aq_rxring rxring;
};
struct aq_softc;
struct aq_firmware_ops {
int (*reset)(struct aq_softc *);
int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
#if NSYSMON_ENVSYS > 0
int (*get_temperature)(struct aq_softc *, uint32_t *);
#endif
};
#ifdef AQ_EVENT_COUNTERS
#define AQ_EVCNT_DECL(name) \
char sc_evcount_##name##_name[32]; \
struct evcnt sc_evcount_##name##_ev;
#define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \
do { \
snprintf((sc)->sc_evcount_##name##_name, \
sizeof((sc)->sc_evcount_##name##_name), \
"%s", desc); \
evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \
(evtype), NULL, device_xname((sc)->sc_dev), \
(sc)->sc_evcount_##name##_name); \
} while (/*CONSTCOND*/0)
#define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \
AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
#define AQ_EVCNT_DETACH(sc, name) \
evcnt_detach(&(sc)->sc_evcount_##name##_ev)
#define AQ_EVCNT_ADD(sc, name, val) \
((sc)->sc_evcount_##name##_ev.ev_count += (val))
#endif /* AQ_EVENT_COUNTERS */
#define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex);
#define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex);
/* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
#define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex);
#define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex);
struct aq_softc {
device_t sc_dev;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
bus_size_t sc_iosize;
bus_dma_tag_t sc_dmat;
void *sc_ihs[AQ_NINTR_MAX];
pci_intr_handle_t *sc_intrs;
int sc_tx_irq[AQ_RSSQUEUE_MAX];
int sc_rx_irq[AQ_RSSQUEUE_MAX];
int sc_linkstat_irq;
bool sc_use_txrx_independent_intr;
bool sc_poll_linkstat;
bool sc_detect_linkstat;
#if NSYSMON_ENVSYS > 0
struct sysmon_envsys *sc_sme;
envsys_data_t sc_sensor_temp;
#endif
callout_t sc_tick_ch;
int sc_nintrs;
bool sc_msix;
struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
int sc_nqueues;
pci_chipset_tag_t sc_pc;
pcitag_t sc_pcitag;
uint16_t sc_product;
uint16_t sc_revision;
kmutex_t sc_mutex;
kmutex_t sc_mpi_mutex;
const struct aq_firmware_ops *sc_fw_ops;
uint64_t sc_fw_caps;
enum aq_media_type sc_media_type;
aq_link_speed_t sc_available_rates;
aq_link_speed_t sc_link_rate;
aq_link_fc_t sc_link_fc;
aq_link_eee_t sc_link_eee;
uint32_t sc_fw_version;
#define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff)
#define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff)
#define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff)
uint32_t sc_features;
#define FEATURES_MIPS 0x00000001
#define FEATURES_TPO2 0x00000002
#define FEATURES_RPF2 0x00000004
#define FEATURES_MPI_AQ 0x00000008
#define FEATURES_REV_A0 0x10000000
#define FEATURES_REV_A (FEATURES_REV_A0)
#define FEATURES_REV_B0 0x20000000
#define FEATURES_REV_B1 0x40000000
#define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1)
uint32_t sc_max_mtu;
uint32_t sc_mbox_addr;
bool sc_rbl_enabled;
bool sc_fast_start_enabled;
bool sc_flash_present;
bool sc_intr_moderation_enable;
bool sc_rss_enable;
struct ethercom sc_ethercom;
struct ether_addr sc_enaddr;
struct ifmedia sc_media;
int sc_ec_capenable; /* last ec_capenable */
unsigned short sc_if_flags; /* last if_flags */
#ifdef AQ_EVENT_COUNTERS
aq_hw_stats_s_t sc_statistics[2];
int sc_statistics_idx;
bool sc_poll_statistics;
AQ_EVCNT_DECL(uprc);
AQ_EVCNT_DECL(mprc);
AQ_EVCNT_DECL(bprc);
AQ_EVCNT_DECL(erpt);
AQ_EVCNT_DECL(uptc);
AQ_EVCNT_DECL(mptc);
AQ_EVCNT_DECL(bptc);
AQ_EVCNT_DECL(erpr);
AQ_EVCNT_DECL(mbtc);
AQ_EVCNT_DECL(bbtc);
AQ_EVCNT_DECL(mbrc);
AQ_EVCNT_DECL(bbrc);
AQ_EVCNT_DECL(ubrc);
AQ_EVCNT_DECL(ubtc);
AQ_EVCNT_DECL(ptc);
AQ_EVCNT_DECL(prc);
AQ_EVCNT_DECL(dpc);
AQ_EVCNT_DECL(cprc);
#endif
};
static int aq_match(device_t, cfdata_t, void *);
static void aq_attach(device_t, device_t, void *);
static int aq_detach(device_t, int);
static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
bool, bool);
static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
pci_intr_type_t);
static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
static int aq_ifmedia_change(struct ifnet * const);
static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
static int aq_ifflags_cb(struct ethercom *);
static int aq_init(struct ifnet *);
static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
struct aq_txring *, bool);
static int aq_transmit(struct ifnet *, struct mbuf *);
static void aq_deferred_transmit(void *);
static void aq_start(struct ifnet *);
static void aq_stop(struct ifnet *, int);
static void aq_watchdog(struct ifnet *);
static int aq_ioctl(struct ifnet *, unsigned long, void *);
static int aq_txrx_rings_alloc(struct aq_softc *);
static void aq_txrx_rings_free(struct aq_softc *);
static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
static void aq_initmedia(struct aq_softc *);
static void aq_enable_intr(struct aq_softc *, bool, bool);
#if NSYSMON_ENVSYS > 0
static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
#endif
static void aq_tick(void *);
static int aq_legacy_intr(void *);
static int aq_link_intr(void *);
static int aq_txrx_intr(void *);
static int aq_tx_intr(void *);
static int aq_rx_intr(void *);
static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
aq_link_eee_t);
static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
aq_link_eee_t *);
static int aq_fw_reset(struct aq_softc *);
static int aq_fw_version_init(struct aq_softc *);
static int aq_hw_init(struct aq_softc *);
static int aq_hw_init_ucp(struct aq_softc *);
static int aq_hw_reset(struct aq_softc *);
static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
uint32_t);
static int aq_get_mac_addr(struct aq_softc *);
static int aq_init_rss(struct aq_softc *);
static int aq_set_capability(struct aq_softc *);
static int fw1x_reset(struct aq_softc *);
static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
static int fw2x_reset(struct aq_softc *);
static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
#if NSYSMON_ENVSYS > 0
static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
#endif
static const struct aq_firmware_ops aq_fw1x_ops = {
.reset = fw1x_reset,
.set_mode = fw1x_set_mode,
.get_mode = fw1x_get_mode,
.get_stats = fw1x_get_stats,
#if NSYSMON_ENVSYS > 0
.get_temperature = NULL
#endif
};
static const struct aq_firmware_ops aq_fw2x_ops = {
.reset = fw2x_reset,
.set_mode = fw2x_set_mode,
.get_mode = fw2x_get_mode,
.get_stats = fw2x_get_stats,
#if NSYSMON_ENVSYS > 0
.get_temperature = fw2x_get_temperature
#endif
};
CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
static const struct aq_product {
pci_vendor_id_t aq_vendor;
pci_product_id_t aq_product;
const char *aq_name;
enum aq_media_type aq_media_type;
aq_link_speed_t aq_available_rates;
} aq_products[] = {
{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
"Aquantia AQC100 10 Gigabit Network Adapter",
AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
},
{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
"Aquantia AQC107 10 Gigabit Network Adapter",
AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
},
{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
"Aquantia AQC108 5 Gigabit Network Adapter",
AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
},
{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
"Aquantia AQC109 2.5 Gigabit Network Adapter",
AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
},
{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
"Aquantia AQC111 5 Gigabit Network Adapter",
AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
},
{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
"Aquantia AQC112 2.5 Gigabit Network Adapter",
AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
},
{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
"Aquantia AQC100S 10 Gigabit Network Adapter",
AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
},
{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
"Aquantia AQC107S 10 Gigabit Network Adapter",
AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
},
{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
"Aquantia AQC108S 5 Gigabit Network Adapter",
AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
},
{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
"Aquantia AQC109S 2.5 Gigabit Network Adapter",
AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
},
{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
"Aquantia AQC111S 5 Gigabit Network Adapter",
AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
},
{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
"Aquantia AQC112S 2.5 Gigabit Network Adapter",
AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
},
{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
"Aquantia D100 10 Gigabit Network Adapter",
AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
},
{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
"Aquantia D107 10 Gigabit Network Adapter",
AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
},
{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
"Aquantia D108 5 Gigabit Network Adapter",
AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
},
{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
"Aquantia D109 2.5 Gigabit Network Adapter",
AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
}
};
static const struct aq_product *
aq_lookup(const struct pci_attach_args *pa)
{
unsigned int i;
for (i = 0; i < __arraycount(aq_products); i++) {
if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor &&
PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
return &aq_products[i];
}
return NULL;
}
static int
aq_match(device_t parent, cfdata_t cf, void *aux)
{
struct pci_attach_args *pa = aux;
if (aq_lookup(pa) != NULL)
return 1;
return 0;
}
static void
aq_attach(device_t parent, device_t self, void *aux)
{
struct aq_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
pci_chipset_tag_t pc;
pcitag_t tag;
pcireg_t command, memtype, bar;
const struct aq_product *aqp;
int error;
sc->sc_dev = self;
mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
sc->sc_pc = pc = pa->pa_pc;
sc->sc_pcitag = tag = pa->pa_tag;
sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
command |= PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
sc->sc_product = PCI_PRODUCT(pa->pa_id);
sc->sc_revision = PCI_REVISION(pa->pa_class);
aqp = aq_lookup(pa);
KASSERT(aqp != NULL);
pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
bar = pci_conf_read(pc, tag, PCI_BAR(0));
if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
(PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
return;
}
memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
NULL, &sc->sc_iosize) != 0) {
aprint_error_dev(sc->sc_dev, "unable to map register\n");
return;
}
sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
/* max queue num is 8, and must be 2^n */
if (ncpu >= 8)
sc->sc_nqueues = 8;
else if (ncpu >= 4)
sc->sc_nqueues = 4;
else if (ncpu >= 2)
sc->sc_nqueues = 2;
else
sc->sc_nqueues = 1;
int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
#ifndef CONFIG_NO_TXRX_INDEPENDENT
if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
/* TX intrs + RX intrs + LINKSTAT intrs */
sc->sc_use_txrx_independent_intr = true;
sc->sc_poll_linkstat = false;
sc->sc_msix = true;
} else if (msixcount >= (sc->sc_nqueues * 2)) {
/* TX intrs + RX intrs */
sc->sc_use_txrx_independent_intr = true;
sc->sc_poll_linkstat = true;
sc->sc_msix = true;
} else
#endif
if (msixcount >= (sc->sc_nqueues + 1)) {
/* TX/RX intrs LINKSTAT intrs */
sc->sc_use_txrx_independent_intr = false;
sc->sc_poll_linkstat = false;
sc->sc_msix = true;
} else if (msixcount >= sc->sc_nqueues) {
/* TX/RX intrs */
sc->sc_use_txrx_independent_intr = false;
sc->sc_poll_linkstat = true;
sc->sc_msix = true;
} else {
/* giving up using MSI-X */
sc->sc_msix = false;
}
/* XXX: on FIBRE, linkstat interrupt does not occur on boot? */
if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE)
sc->sc_poll_linkstat = true;
#ifdef AQ_FORCE_POLL_LINKSTAT
sc->sc_poll_linkstat = true;
#endif
aprint_debug_dev(sc->sc_dev,
"ncpu=%d, pci_msix_count=%d."
" allocate %d interrupts for %d%s queues%s\n",
ncpu, msixcount,
(sc->sc_use_txrx_independent_intr ?
(sc->sc_nqueues * 2) : sc->sc_nqueues) +
(sc->sc_poll_linkstat ? 0 : 1),
sc->sc_nqueues,
sc->sc_use_txrx_independent_intr ? "*2" : "",
sc->sc_poll_linkstat ? "" : ", and link status");
if (sc->sc_msix)
error = aq_setup_msix(sc, pa, sc->sc_nqueues,
sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
else
error = ENODEV;
if (error != 0) {
/* if MSI-X failed, fallback to MSI with single queue */
sc->sc_use_txrx_independent_intr = false;
sc->sc_poll_linkstat = false;
sc->sc_msix = false;
sc->sc_nqueues = 1;
error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
}
if (error != 0) {
/* if MSI failed, fallback to INTx */
error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
}
if (error != 0)
return;
callout_init(&sc->sc_tick_ch, 0);
callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
if (sc->sc_msix && (sc->sc_nqueues > 1))
sc->sc_rss_enable = true;
else
sc->sc_rss_enable = false;
error = aq_txrx_rings_alloc(sc);
if (error != 0)
goto attach_failure;
error = aq_fw_reset(sc);
if (error != 0)
goto attach_failure;
error = aq_fw_version_init(sc);
if (error != 0)
goto attach_failure;
error = aq_hw_init_ucp(sc);
if (error < 0)
goto attach_failure;
KASSERT(sc->sc_mbox_addr != 0);
error = aq_hw_reset(sc);
if (error != 0)
goto attach_failure;
aq_get_mac_addr(sc);
aq_init_rss(sc);
error = aq_hw_init(sc); /* initialize and interrupts */
if (error != 0)
goto attach_failure;
sc->sc_media_type = aqp->aq_media_type;
sc->sc_available_rates = aqp->aq_available_rates;
sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
ifmedia_init(&sc->sc_media, IFM_IMASK,
aq_ifmedia_change, aq_ifmedia_status);
aq_initmedia(sc);
strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_extflags = IFEF_MPSAFE;
ifp->if_baudrate = IF_Gbps(10);
ifp->if_init = aq_init;
ifp->if_ioctl = aq_ioctl;
if (sc->sc_msix && (sc->sc_nqueues > 1))
ifp->if_transmit = aq_transmit;
ifp->if_start = aq_start;
ifp->if_stop = aq_stop;
ifp->if_watchdog = aq_watchdog;
IFQ_SET_READY(&ifp->if_snd);
/* initialize capabilities */
sc->sc_ethercom.ec_capabilities = 0;
sc->sc_ethercom.ec_capenable = 0;
#if notyet
/* TODO */
sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
#endif
sc->sc_ethercom.ec_capabilities |=
ETHERCAP_JUMBO_MTU |
ETHERCAP_VLAN_MTU |
ETHERCAP_VLAN_HWTAGGING |
ETHERCAP_VLAN_HWFILTER;
sc->sc_ethercom.ec_capenable |=
ETHERCAP_VLAN_HWTAGGING |
ETHERCAP_VLAN_HWFILTER;
ifp->if_capabilities = 0;
ifp->if_capenable = 0;
#ifdef CONFIG_LRO_SUPPORT
ifp->if_capabilities |= IFCAP_LRO;
ifp->if_capenable |= IFCAP_LRO;
#endif
#if notyet
/* TSO */
ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
#endif
/* TX hardware checksum offloading */
ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
/* RX hardware checksum offloading */
ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
error = if_initialize(ifp);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
error);
goto attach_failure;
}
ifp->if_percpuq = if_percpuq_create(ifp);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
if_register(ifp);
aq_enable_intr(sc, true, false); /* only intr about link */
/* update media */
aq_ifmedia_change(ifp);
#if NSYSMON_ENVSYS > 0
/* temperature monitoring */
if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
(sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
sc->sc_sme = sysmon_envsys_create();
sc->sc_sme->sme_name = device_xname(self);
sc->sc_sme->sme_cookie = sc;
sc->sc_sme->sme_flags = 0;
sc->sc_sme->sme_refresh = aq_temp_refresh;
sc->sc_sensor_temp.units = ENVSYS_STEMP;
sc->sc_sensor_temp.state = ENVSYS_SINVALID;
snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
sysmon_envsys_register(sc->sc_sme);
/*
* for unknown reasons, the first call of fw2x_get_temperature()
* will always fail (firmware matter?), so run once now.
*/
aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
}
#endif
#ifdef AQ_EVENT_COUNTERS
/* get starting statistics values */
if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
sc->sc_poll_statistics = true;
}
AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
#endif
return;
attach_failure:
aq_detach(self, 0);
}
static int
aq_detach(device_t self, int flags __unused)
{
struct aq_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int i, s;
if (sc->sc_iosize != 0) {
if (ifp->if_softc != NULL) {
s = splnet();
aq_stop(ifp, 0);
splx(s);
}
for (i = 0; i < AQ_NINTR_MAX; i++) {
if (sc->sc_ihs[i] != NULL) {
pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
sc->sc_ihs[i] = NULL;
}
}
if (sc->sc_nintrs > 0) {
pci_intr_release(sc->sc_pc, sc->sc_intrs,
sc->sc_nintrs);
sc->sc_intrs = NULL;
sc->sc_nintrs = 0;
}
aq_txrx_rings_free(sc);
if (ifp->if_softc != NULL) {
ether_ifdetach(ifp);
if_detach(ifp);
}
aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
sc->sc_iosize = 0;
}
callout_stop(&sc->sc_tick_ch);
#if NSYSMON_ENVSYS > 0
if (sc->sc_sme != NULL) {
/* all sensors associated with this will also be detached */
sysmon_envsys_unregister(sc->sc_sme);
sc->sc_sme = NULL;
}
#endif
#ifdef AQ_EVENT_COUNTERS
AQ_EVCNT_DETACH(sc, uprc);
AQ_EVCNT_DETACH(sc, mprc);
AQ_EVCNT_DETACH(sc, bprc);
AQ_EVCNT_DETACH(sc, erpt);
AQ_EVCNT_DETACH(sc, uptc);
AQ_EVCNT_DETACH(sc, mptc);
AQ_EVCNT_DETACH(sc, bptc);
AQ_EVCNT_DETACH(sc, erpr);
AQ_EVCNT_DETACH(sc, mbtc);
AQ_EVCNT_DETACH(sc, bbtc);
AQ_EVCNT_DETACH(sc, mbrc);
AQ_EVCNT_DETACH(sc, bbrc);
AQ_EVCNT_DETACH(sc, ubrc);
AQ_EVCNT_DETACH(sc, ubtc);
AQ_EVCNT_DETACH(sc, ptc);
AQ_EVCNT_DETACH(sc, prc);
AQ_EVCNT_DETACH(sc, dpc);
AQ_EVCNT_DETACH(sc, cprc);
#endif
ifmedia_fini(&sc->sc_media);
mutex_destroy(&sc->sc_mpi_mutex);
mutex_destroy(&sc->sc_mutex);
return 0;
}
static int
aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
int (*func)(void *), void *arg, const char *xname)
{
char intrbuf[PCI_INTRSTR_LEN];
pci_chipset_tag_t pc = sc->sc_pc;
void *vih;
const char *intrstr = NULL;
intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
sizeof(intrbuf));
pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
IPL_NET, func, arg, xname);
if (vih == NULL) {
aprint_error_dev(sc->sc_dev,
"unable to establish MSI-X%s%s for %s\n",
intrstr ? " at " : "",
intrstr ? intrstr : "", xname);
return EIO;
}
sc->sc_ihs[intno] = vih;
if (affinity != NULL) {
/* Round-robin affinity */
kcpuset_zero(affinity);
kcpuset_set(affinity, intno % ncpu);
interrupt_distribute(vih, affinity, NULL);
}
return 0;
}
static int
aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
bool linkintr)
{
kcpuset_t *affinity;
int error, intno, i;
char intr_xname[INTRDEVNAMEBUF];
kcpuset_create(&affinity, false);
intno = 0;
if (txrx_independent) {
for (i = 0; i < sc->sc_nqueues; i++) {
snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
device_xname(sc->sc_dev), i);
sc->sc_rx_irq[i] = intno;
error = aq_establish_intr(sc, intno++, affinity,
aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
if (error != 0)
goto fail;
}
for (i = 0; i < sc->sc_nqueues; i++) {
snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
device_xname(sc->sc_dev), i);
sc->sc_tx_irq[i] = intno;
error = aq_establish_intr(sc, intno++, affinity,
aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
if (error != 0)
goto fail;
}
} else {
for (i = 0; i < sc->sc_nqueues; i++) {
snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
device_xname(sc->sc_dev), i);
sc->sc_rx_irq[i] = intno;
sc->sc_tx_irq[i] = intno;
error = aq_establish_intr(sc, intno++, affinity,
aq_txrx_intr, &sc->sc_queue[i], intr_xname);
if (error != 0)
goto fail;
}
}
if (linkintr) {
snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
device_xname(sc->sc_dev));
sc->sc_linkstat_irq = intno;
error = aq_establish_intr(sc, intno++, affinity,
aq_link_intr, sc, intr_xname);
if (error != 0)
goto fail;
}
kcpuset_destroy(affinity);
return 0;
fail:
for (i = 0; i < AQ_NINTR_MAX; i++) {
if (sc->sc_ihs[i] != NULL) {
pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
sc->sc_ihs[i] = NULL;
}
}
kcpuset_destroy(affinity);
return ENOMEM;
}
static int
aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
bool txrx_independent, bool linkintr)
{
int error, nintr;
if (txrx_independent)
nintr = nqueue * 2;
else
nintr = nqueue;
if (linkintr)
nintr++;
error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"failed to allocate MSI-X interrupts\n");
goto fail;
}
error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
if (error == 0) {
sc->sc_nintrs = nintr;
} else {
pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
sc->sc_nintrs = 0;
}
fail:
return error;
}
static int
aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
pci_intr_type_t inttype)
{
int counts[PCI_INTR_TYPE_SIZE];
int error, nintr;
nintr = 1;
memset(counts, 0, sizeof(counts));
counts[inttype] = nintr;
error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"failed to allocate%s interrupts\n",
(inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
return error;
}
error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
device_xname(sc->sc_dev));
if (error == 0) {
sc->sc_nintrs = nintr;
} else {
pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
sc->sc_nintrs = 0;
}
return error;
}
static void
global_software_reset(struct aq_softc *sc)
{
uint32_t v;
AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
FW_MPI_RESETCTRL_RESET_DIS, 0);
v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
v &= ~AQ_FW_SOFTRESET_DIS;
v |= AQ_FW_SOFTRESET_RESET;
AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
}
static int
mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
{
int timo;
aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
/* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
global_software_reset(sc);
AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
/* Wait for RBL to finish boot process. */
#define RBL_TIMEOUT_MS 10000
uint16_t rbl_status;
for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
break;
msec_delay(1);
}
if (timo <= 0) {
aprint_error_dev(sc->sc_dev,
"RBL> RBL restart failed: timeout\n");
return EBUSY;
}
switch (rbl_status) {
case RBL_STATUS_SUCCESS:
if (mode != NULL)
*mode = FW_BOOT_MODE_RBL_FLASH;
aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
break;
case RBL_STATUS_HOST_BOOT:
if (mode != NULL)
*mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
aprint_debug_dev(sc->sc_dev,
"RBL> reset complete! [Host Bootload]\n");
break;
case RBL_STATUS_FAILURE:
default:
aprint_error_dev(sc->sc_dev,
"unknown RBL status 0x%x\n", rbl_status);
return EBUSY;
}
return 0;
}
static int
mac_soft_reset_flb(struct aq_softc *sc)
{
uint32_t v;
int timo;
AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
/*
* Let Felicity hardware to complete SMBUS transaction before
* Global software reset.
*/
msec_delay(50);
/*
* If SPI burst transaction was interrupted(before running the script),
* global software reset may not clear SPI interface.
* Clean it up manually before global reset.
*/
AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
msec_delay(50);
v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
v &= ~AQ_FW_SOFTRESET_DIS;
v |= AQ_FW_SOFTRESET_RESET;
AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
/* Kickstart. */
AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
if (!sc->sc_fast_start_enabled)
AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
/*
* For the case SPI burst transaction was interrupted (by MCP reset
* above), wait until it is completed by hardware.
*/
msec_delay(50);
/* MAC Kickstart */
if (!sc->sc_fast_start_enabled) {
AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
uint32_t flb_status;
for (timo = 0; timo < 1000; timo++) {
flb_status = AQ_READ_REG(sc,
FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
if (flb_status != 0)
break;
msec_delay(1);
}
if (flb_status == 0) {
aprint_error_dev(sc->sc_dev,
"FLB> MAC kickstart failed: timed out\n");
return ETIMEDOUT;
}
aprint_debug_dev(sc->sc_dev,
"FLB> MAC kickstart done, %d ms\n", timo);
/* FW reset */
AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
/*
* Let Felicity hardware complete SMBUS transaction before
* Global software reset.
*/
msec_delay(50);
sc->sc_fast_start_enabled = true;
}
AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
/* PHY Kickstart: #undone */
global_software_reset(sc);
for (timo = 0; timo < 1000; timo++) {
if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
break;
msec_delay(10);
}
if (timo >= 1000) {
aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
return ETIMEDOUT;
}
aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
return 0;
}
static int
mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
{
if (sc->sc_rbl_enabled)
return mac_soft_reset_rbl(sc, mode);
if (mode != NULL)
*mode = FW_BOOT_MODE_FLB;
return mac_soft_reset_flb(sc);
}
static int
aq_fw_read_version(struct aq_softc *sc)
{
int i, error = EBUSY;
#define MAC_FW_START_TIMEOUT_MS 10000
for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
if (sc->sc_fw_version != 0) {
error = 0;
break;
}
delay(1000);
}
return error;
}
static int
aq_fw_reset(struct aq_softc *sc)
{
uint32_t ver, v, bootExitCode;
int i, error;
ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
for (i = 1000; i > 0; i--) {
v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
if (v != 0x06000000 || bootExitCode != 0)
break;
}
if (i <= 0) {
aprint_error_dev(sc->sc_dev,
"F/W reset failed. Neither RBL nor FLB started\n");
return ETIMEDOUT;
}
sc->sc_rbl_enabled = (bootExitCode != 0);
/*
* Having FW version 0 is an indicator that cold start
* is in progress. This means two things:
* 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
* 2) Driver may skip reset sequence and save time.
*/
if (sc->sc_fast_start_enabled && (ver != 0)) {
error = aq_fw_read_version(sc);
/* Skip reset as it just completed */
if (error == 0)
return 0;
}
aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
error = mac_soft_reset(sc, &mode);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
return error;
}
switch (mode) {
case FW_BOOT_MODE_FLB:
aprint_debug_dev(sc->sc_dev,
"FLB> F/W successfully loaded from flash.\n");
sc->sc_flash_present = true;
return aq_fw_read_version(sc);
case FW_BOOT_MODE_RBL_FLASH:
aprint_debug_dev(sc->sc_dev,
"RBL> F/W loaded from flash. Host Bootload disabled.\n");
sc->sc_flash_present = true;
return aq_fw_read_version(sc);
case FW_BOOT_MODE_UNKNOWN:
aprint_error_dev(sc->sc_dev,
"F/W bootload error: unknown bootloader type\n");
return ENOTSUP;
case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
break;
}
/*
* XXX: TODO: add support Host Boot
*/
aprint_error_dev(sc->sc_dev,
"RBL> F/W Host Bootload not implemented\n");
return ENOTSUP;
}
static int
aq_hw_reset(struct aq_softc *sc)
{
int error;
/* disable irq */
AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
/* apply */
AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
/* wait ack 10 times by 1ms */
WAIT_FOR(
(AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
1000, 10, &error);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"atlantic: IRQ reset failed: %d\n", error);
return error;
}
return sc->sc_fw_ops->reset(sc);
}
static int
aq_hw_init_ucp(struct aq_softc *sc)
{
int timo;
if (FW_VERSION_MAJOR(sc) == 1) {
if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
uint32_t data;
cprng_fast(&data, sizeof(data));
data &= 0xfefefefe;
data |= 0x02020202;
AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
}
AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
}
for (timo = 100; timo > 0; timo--) {
sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
if (sc->sc_mbox_addr != 0)
break;
delay(1000);
}
#define AQ_FW_MIN_VERSION 0x01050006
#define AQ_FW_MIN_VERSION_STR "1.5.6"
if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
aprint_error_dev(sc->sc_dev,
"atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
" or later required, this is %d.%d.%d\n",
FW_VERSION_MAJOR(sc),
FW_VERSION_MINOR(sc),
FW_VERSION_BUILD(sc));
return ENOTSUP;
}
return 0;
}
static int
aq_fw_version_init(struct aq_softc *sc)
{
int error = 0;
char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
if (FW_VERSION_MAJOR(sc) == 1) {
sc->sc_fw_ops = &aq_fw1x_ops;
} else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
sc->sc_fw_ops = &aq_fw2x_ops;
} else {
aprint_error_dev(sc->sc_dev,
"Unsupported F/W version %d.%d.%d\n",
FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
FW_VERSION_BUILD(sc));
return ENOTSUP;
}
snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
/* detect revision */
uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
switch (hwrev & 0x0000000f) {
case 0x01:
aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
fw_vers);
sc->sc_features |= FEATURES_REV_A0 |
FEATURES_MPI_AQ | FEATURES_MIPS;
sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A;
break;
case 0x02:
aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
fw_vers);
sc->sc_features |= FEATURES_REV_B0 |
FEATURES_MPI_AQ | FEATURES_MIPS |
FEATURES_TPO2 | FEATURES_RPF2;
sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
break;
case 0x0A:
aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
fw_vers);
sc->sc_features |= FEATURES_REV_B1 |
FEATURES_MPI_AQ | FEATURES_MIPS |
FEATURES_TPO2 | FEATURES_RPF2;
sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
break;
default:
aprint_error_dev(sc->sc_dev,
"Unknown revision (0x%08x)\n", hwrev);
sc->sc_features = 0;
sc->sc_max_mtu = ETHERMTU;
error = ENOTSUP;
break;
}
return error;
}
static int
fw1x_reset(struct aq_softc *sc)
{
struct aq_mailbox_header mbox;
const int retryCount = 1000;
uint32_t tid0;
int i;
tid0 = ~0; /*< Initial value of MBOX transactionId. */
for (i = 0; i < retryCount; ++i) {
/*
* Read the beginning of Statistics structure to capture
* the Transaction ID.
*/
aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
(uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
/* Successfully read the stats. */
if (tid0 == ~0U) {
/* We have read the initial value. */
tid0 = mbox.transaction_id;
continue;
} else if (mbox.transaction_id != tid0) {
/*
* Compare transaction ID to initial value.
* If it's different means f/w is alive.
* We're done.
*/
return 0;
}
/*
* Transaction ID value haven't changed since last time.
* Try reading the stats again.
*/
delay(10);
}
aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
return EBUSY;
}
static int
fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
{
uint32_t mpictrl = 0;
uint32_t mpispeed = 0;
if (speed & AQ_LINK_10G)
mpispeed |= FW1X_CTRL_10G;
if (speed & AQ_LINK_5G)
mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
if (speed & AQ_LINK_2G5)
mpispeed |= FW1X_CTRL_2G5;
if (speed & AQ_LINK_1G)
mpispeed |= FW1X_CTRL_1G;
if (speed & AQ_LINK_100M)
mpispeed |= FW1X_CTRL_100M;
mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
return 0;
}
static int
fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
{
uint32_t mpistate, mpi_speed;
aq_link_speed_t speed = AQ_LINK_NONE;
mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
if (modep != NULL)
*modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
if (mpi_speed & FW1X_CTRL_10G)
speed = AQ_LINK_10G;
else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
speed = AQ_LINK_5G;
else if (mpi_speed & FW1X_CTRL_2G5)
speed = AQ_LINK_2G5;
else if (mpi_speed & FW1X_CTRL_1G)
speed = AQ_LINK_1G;
else if (mpi_speed & FW1X_CTRL_100M)
speed = AQ_LINK_100M;
if (speedp != NULL)
*speedp = speed;
if (fcp != NULL)
*fcp = AQ_FC_NONE;
if (eeep != NULL)
*eeep = AQ_EEE_DISABLE;
return 0;
}
static int
fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
{
int error;
error = aq_fw_downld_dwords(sc,
sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
if (error < 0) {
device_printf(sc->sc_dev,
"fw1x> download statistics data FAILED, error %d", error);
return error;
}
stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
return 0;
}
static int
fw2x_reset(struct aq_softc *sc)
{
fw2x_capabilities_t caps = { 0 };
int error;
error = aq_fw_downld_dwords(sc,
sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
(uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"fw2x> can't get F/W capabilities mask, error %d\n",
error);
return error;
}
sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
char buf[256];
snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
return 0;
}
static int
fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
{
uint64_t mpi_ctrl;
int error = 0;
AQ_MPI_LOCK(sc);
mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
switch (mode) {
case MPI_INIT:
mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
if (speed & AQ_LINK_10G)
mpi_ctrl |= FW2X_CTRL_RATE_10G;
if (speed & AQ_LINK_5G)
mpi_ctrl |= FW2X_CTRL_RATE_5G;
if (speed & AQ_LINK_2G5)
mpi_ctrl |= FW2X_CTRL_RATE_2G5;
if (speed & AQ_LINK_1G)
mpi_ctrl |= FW2X_CTRL_RATE_1G;
if (speed & AQ_LINK_100M)
mpi_ctrl |= FW2X_CTRL_RATE_100M;
mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
if (eee == AQ_EEE_ENABLE)
mpi_ctrl |= FW2X_CTRL_EEE_MASK;
mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
if (fc & AQ_FC_RX)
mpi_ctrl |= FW2X_CTRL_PAUSE;
if (fc & AQ_FC_TX)
mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
break;
case MPI_DEINIT:
mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
break;
default:
device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
error = EINVAL;
goto failure;
}
AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
failure:
AQ_MPI_UNLOCK(sc);
return error;
}
static int
fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
{
uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
if (modep != NULL) {
uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
*modep = MPI_INIT;
else
*modep = MPI_DEINIT;
}
aq_link_speed_t speed = AQ_LINK_NONE;
if (mpi_state & FW2X_CTRL_RATE_10G)
speed = AQ_LINK_10G;
else if (mpi_state & FW2X_CTRL_RATE_5G)
speed = AQ_LINK_5G;
else if (mpi_state & FW2X_CTRL_RATE_2G5)
speed = AQ_LINK_2G5;
else if (mpi_state & FW2X_CTRL_RATE_1G)
speed = AQ_LINK_1G;
else if (mpi_state & FW2X_CTRL_RATE_100M)
speed = AQ_LINK_100M;
if (speedp != NULL)
*speedp = speed;
aq_link_fc_t fc = AQ_FC_NONE;
if (mpi_state & FW2X_CTRL_PAUSE)
fc |= AQ_FC_RX;
if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
fc |= AQ_FC_TX;
if (fcp != NULL)
*fcp = fc;
/* XXX: TODO: EEE */
if (eeep != NULL)
*eeep = AQ_EEE_DISABLE;
return 0;
}
static int
toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
uint32_t timeout_ms, uint32_t try_count)
{
uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
int error;
/* First, check that control and state values are consistent */
if ((mpi_ctrl & mask) != (mpi_state & mask)) {
device_printf(sc->sc_dev,
"fw2x> MPI control (%#llx) and state (%#llx)"
" are not consistent for mask %#llx!\n",
(unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
(unsigned long long)mask);
return EINVAL;
}
/* Invert bits (toggle) in control register */
mpi_ctrl ^= mask;
AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
/* Clear all bits except masked */
mpi_ctrl &= mask;
/* Wait for FW reflecting change in state register */
WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
1000 * timeout_ms, try_count, &error);
if (error != 0) {
device_printf(sc->sc_dev,
"f/w2x> timeout while waiting for response"
" in state register for bit %#llx!",
(unsigned long long)mask);
return error;
}
return 0;
}
static int
fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
{
int error;
AQ_MPI_LOCK(sc);
/* Say to F/W to update the statistics */
error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
if (error != 0) {
device_printf(sc->sc_dev,
"fw2x> statistics update error %d\n", error);
goto failure;
}
CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
error = aq_fw_downld_dwords(sc,
sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
if (error != 0) {
device_printf(sc->sc_dev,
"fw2x> download statistics data FAILED, error %d", error);
goto failure;
}
stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
failure:
AQ_MPI_UNLOCK(sc);
return error;
}
#if NSYSMON_ENVSYS > 0
static int
fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
{
int error;
uint32_t value, celsius;
AQ_MPI_LOCK(sc);
/* Say to F/W to update the temperature */
error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
if (error != 0)
goto failure;
error = aq_fw_downld_dwords(sc,
sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
&value, sizeof(value) / sizeof(uint32_t));
if (error != 0)
goto failure;
/* 1/256 decrees C to microkelvin */
celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
if (celsius == 0) {
error = EIO;
goto failure;
}
*temp = celsius * (1000000 / 256) + 273150000;
failure:
AQ_MPI_UNLOCK(sc);
return 0;
}
#endif
static int
aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
uint32_t cnt)
{
uint32_t v;
int error = 0;
WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
if (error != 0) {
AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
if (v == 0) {
device_printf(sc->sc_dev,
"%s:%d: timeout\n", __func__, __LINE__);
return ETIMEDOUT;
}
}
AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
error = 0;
for (; cnt > 0 && error == 0; cnt--) {
/* execute mailbox interface */
AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
AQ_FW_MBOX_CMD_EXECUTE, 1);
if (sc->sc_features & FEATURES_REV_B1) {
WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
1, 1000, &error);
} else {
WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
AQ_FW_MBOX_CMD_BUSY) == 0,
1, 1000, &error);
}
*p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
addr += sizeof(uint32_t);
}
AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
if (error != 0)
device_printf(sc->sc_dev,
"%s:%d: timeout\n", __func__, __LINE__);
return error;
}
/* read my mac address */
static int
aq_get_mac_addr(struct aq_softc *sc)
{
uint32_t mac_addr[2];
uint32_t efuse_shadow_addr;
int err;
efuse_shadow_addr = 0;
if (FW_VERSION_MAJOR(sc) >= 2)
efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
else
efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
if (efuse_shadow_addr == 0) {
aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
return ENXIO;
}
memset(mac_addr, 0, sizeof(mac_addr));
err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
mac_addr, __arraycount(mac_addr));
if (err < 0)
return err;
if (mac_addr[0] == 0 && mac_addr[1] == 0) {
aprint_error_dev(sc->sc_dev, "mac address not found\n");
return ENXIO;
}
mac_addr[0] = htobe32(mac_addr[0]);
mac_addr[1] = htobe32(mac_addr[1]);
memcpy(sc->sc_enaddr.ether_addr_octet,
(uint8_t *)mac_addr, ETHER_ADDR_LEN);
aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
ether_sprintf(sc->sc_enaddr.ether_addr_octet));
return 0;
}
/* set multicast filter. index 0 for own address */
static int
aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
{
uint32_t h, l;
if (index >= AQ_HW_MAC_NUM)
return EINVAL;
if (enaddr == NULL) {
/* disable */
AQ_WRITE_REG_BIT(sc,
RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
return 0;
}
h = (enaddr[0] << 8) | (enaddr[1]);
l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
(enaddr[4] << 8) | (enaddr[5]);
/* disable, set, and enable */
AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
RPF_L2UC_MSW_MACADDR_HI, h);
AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
return 0;
}
static int
aq_set_capability(struct aq_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int ip4csum_tx =
((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
int ip4csum_rx =
((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
int l4csum_tx = ((ifp->if_capenable &
(IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
int l4csum_rx =
((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
uint32_t lso =
((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
0 : 0xffffffff;
uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
0 : 0xffffffff;
uint32_t i, v;
/* TX checksums offloads*/
AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
/* RX checksums offloads*/
AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
/* LSO offloads*/
AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
#define AQ_B0_LRO_RXD_MAX 16
v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
(4 < AQ_B0_LRO_RXD_MAX) ? 2 :
(2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
for (i = 0; i < AQ_RINGS_NUM; i++) {
AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
RPO_LRO_LDES_MAX_MASK(i), v);
}
AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
RPO_LRO_INACTIVE_IVAL, 0);
/*
* the LRO timebase divider is 5 uS (0x61a),
* to get a maximum coalescing interval of 250 uS,
* we need to multiply by 50(0x32) to get
* the default value 250 uS
*/
AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
RPO_LRO_MAX_COALESCING_IVAL, 50);
AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
RPO_LRO_CONF_QSESSION_LIMIT, 1);
AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
return 0;
}
static int
aq_set_filter(struct aq_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ethercom *ec = &sc->sc_ethercom;
struct ether_multi *enm;
struct ether_multistep step;
int idx, error = 0;
if (ifp->if_flags & IFF_PROMISC) {
AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
(ifp->if_flags & IFF_PROMISC) ? 1 : 0);
ec->ec_flags |= ETHER_F_ALLMULTI;
goto done;
}
/* clear all table */
for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
if (idx == AQ_HW_MAC_OWN) /* already used for own */
continue;
aq_set_mac_addr(sc, idx, NULL);
}
/* don't accept all multicast */
AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
RPF_MCAST_FILTER_EN, 0);
idx = 0;
ETHER_LOCK(ec);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (idx == AQ_HW_MAC_OWN)
idx++;
if ((idx >= AQ_HW_MAC_NUM) ||
memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* too many filters.
* fallback to accept all multicast addresses.
*/
AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
RPF_MCAST_FILTER_EN, 1);
ec->ec_flags |= ETHER_F_ALLMULTI;
ETHER_UNLOCK(ec);
goto done;
}
/* add a filter */
aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
ETHER_NEXT_MULTI(step, enm);
}
ec->ec_flags &= ~ETHER_F_ALLMULTI;
ETHER_UNLOCK(ec);
done:
return error;
}
static int
aq_ifmedia_change(struct ifnet * const ifp)
{
struct aq_softc *sc = ifp->if_softc;
aq_link_speed_t rate = AQ_LINK_NONE;
aq_link_fc_t fc = AQ_FC_NONE;
aq_link_eee_t eee = AQ_EEE_DISABLE;
if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
return EINVAL;
switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
case IFM_AUTO:
rate = AQ_LINK_AUTO;
break;
case IFM_NONE:
rate = AQ_LINK_NONE;
break;
case IFM_100_TX:
rate = AQ_LINK_100M;
break;
case IFM_1000_T:
rate = AQ_LINK_1G;
break;
case IFM_2500_T:
rate = AQ_LINK_2G5;
break;
case IFM_5000_T:
rate = AQ_LINK_5G;
break;
case IFM_10G_T:
rate = AQ_LINK_10G;
break;
default:
device_printf(sc->sc_dev, "unknown media: 0x%X\n",
IFM_SUBTYPE(sc->sc_media.ifm_media));
return ENODEV;
}
if (sc->sc_media.ifm_media & IFM_FLOW)
fc = AQ_FC_ALL;
/* XXX: todo EEE */
/* re-initialize hardware with new parameters */
aq_set_linkmode(sc, rate, fc, eee);
return 0;
}
static void
aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
{
struct aq_softc *sc = ifp->if_softc;
/* update ifm_active */
ifmr->ifm_active = IFM_ETHER;
if (sc->sc_link_fc & AQ_FC_RX)
ifmr->ifm_active |= IFM_ETH_RXPAUSE;
if (sc->sc_link_fc & AQ_FC_TX)
ifmr->ifm_active |= IFM_ETH_TXPAUSE;
switch (sc->sc_link_rate) {
case AQ_LINK_100M:
/* XXX: need to detect fulldup or halfdup */
ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
break;
case AQ_LINK_1G:
ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
break;
case AQ_LINK_2G5:
ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
break;
case AQ_LINK_5G:
ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
break;
case AQ_LINK_10G:
ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
break;
default:
ifmr->ifm_active |= IFM_NONE;
break;
}
/* update ifm_status */
ifmr->ifm_status = IFM_AVALID;
if (sc->sc_link_rate != AQ_LINK_NONE)
ifmr->ifm_status |= IFM_ACTIVE;
}
static void
aq_initmedia(struct aq_softc *sc)
{
#define IFMEDIA_ETHER_ADD(sc, media) \
ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
IFMEDIA_ETHER_ADD(sc, IFM_NONE);
if (sc->sc_available_rates & AQ_LINK_100M) {
IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
}
if (sc->sc_available_rates & AQ_LINK_1G) {
IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
}
if (sc->sc_available_rates & AQ_LINK_2G5) {
IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
}
if (sc->sc_available_rates & AQ_LINK_5G) {
IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
}
if (sc->sc_available_rates & AQ_LINK_10G) {
IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
}
IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
/* default: auto without flowcontrol */
ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
}
static int
aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
aq_link_eee_t eee)
{
return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
}
static int
aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
aq_link_eee_t *eee)
{
aq_hw_fw_mpi_state_t mode;
int error;
error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
if (error != 0)
return error;
if (mode != MPI_INIT)
return ENXIO;
return 0;
}
static void
aq_hw_init_tx_path(struct aq_softc *sc)
{
/* Tx TC/RSS number config */
AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
THM_LSO_TCP_FLAG1_MID, 0x0ff6);
AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
THM_LSO_TCP_FLAG2_LAST, 0x0f7f);
/* misc */
AQ_WRITE_REG(sc, TX_TPO2_REG,
(sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
}
static void
aq_hw_init_rx_path(struct aq_softc *sc)
{
int i;
/* clear setting */
AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
for (i = 0; i < 32; i++) {
AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
RPF_ETHERTYPE_FILTER_EN, 0);
}
if (sc->sc_rss_enable) {
/* Rx TC/RSS number config */
AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
/* Rx flow control */
AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
/* RSS Ring selection */
switch (sc->sc_nqueues) {
case 2:
AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
RX_FLR_RSS_CONTROL1_EN | 0x11111111);
break;
case 4:
AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
RX_FLR_RSS_CONTROL1_EN | 0x22222222);
break;
case 8:
AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
RX_FLR_RSS_CONTROL1_EN | 0x33333333);
break;
}
}
/* L2 and Multicast filters */
for (i = 0; i < AQ_HW_MAC_NUM; i++) {
AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
RPF_ACTION_HOST);
}
AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
/* Vlan filters */
AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
ETHERTYPE_QINQ);
AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
ETHERTYPE_VLAN);
AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
if (sc->sc_features & FEATURES_REV_B) {
AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
}
/* misc */
if (sc->sc_features & FEATURES_RPF2)
AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
else
AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
/*
* XXX: RX_TCP_RSS_HASH_REG:
* linux set 0x000f0000
* freebsd set 0x000f001e
*/
/* RSS hash type set for IP/TCP */
AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
RX_TCP_RSS_HASH_TYPE, 0x001e);
AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
}
static void
aq_hw_interrupt_moderation_set(struct aq_softc *sc)
{
int i;
if (sc->sc_intr_moderation_enable) {
unsigned int tx_min, rx_min; /* 0-255 */
unsigned int tx_max, rx_max; /* 0-511? */
switch (sc->sc_link_rate) {
case AQ_LINK_100M:
tx_min = 0x4f;
tx_max = 0xff;
rx_min = 0x04;
rx_max = 0x50;
break;
case AQ_LINK_1G:
default:
tx_min = 0x4f;
tx_max = 0xff;
rx_min = 0x30;
rx_max = 0x80;
break;
case AQ_LINK_2G5:
tx_min = 0x4f;
tx_max = 0xff;
rx_min = 0x18;
rx_max = 0xe0;
break;
case AQ_LINK_5G:
tx_min = 0x4f;
tx_max = 0xff;
rx_min = 0x0c;
rx_max = 0x70;
break;
case AQ_LINK_10G:
tx_min = 0x4f;
tx_max = 0x1ff;
rx_min = 0x06; /* freebsd use 80 */
rx_max = 0x38; /* freebsd use 120 */
break;
}
AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
TX_DMA_INT_DESC_WRWB_EN, 0);
AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
TX_DMA_INT_DESC_MODERATE_EN, 1);
AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
RX_DMA_INT_DESC_WRWB_EN, 0);
AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
RX_DMA_INT_DESC_MODERATE_EN, 1);
for (i = 0; i < AQ_RINGS_NUM; i++) {
AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
__SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
__SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
TX_INTR_MODERATION_CTL_EN);
}
for (i = 0; i < AQ_RINGS_NUM; i++) {
AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
__SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
__SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
RX_INTR_MODERATION_CTL_EN);
}
} else {
AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
TX_DMA_INT_DESC_WRWB_EN, 1);
AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
TX_DMA_INT_DESC_MODERATE_EN, 0);
AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
RX_DMA_INT_DESC_WRWB_EN, 1);
AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
RX_DMA_INT_DESC_MODERATE_EN, 0);
for (i = 0; i < AQ_RINGS_NUM; i++) {
AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
}
for (i = 0; i < AQ_RINGS_NUM; i++) {
AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
}
}
}
static void
aq_hw_qos_set(struct aq_softc *sc)
{
uint32_t tc = 0;
uint32_t buff_size;
/* TPS Descriptor rate init */
AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
/* TPS VM init */
AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
/* TPS TC credits init */
AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
TPS_DATA_TCT_CREDIT_MAX, 0xfff);
AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
TPS_DATA_TCT_WEIGHT, 0x64);
AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
TPS_DESC_TCT_CREDIT_MAX, 0x50);
AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
TPS_DESC_TCT_WEIGHT, 0x1e);
/* Tx buf size */
tc = 0;
buff_size = AQ_HW_TXBUF_MAX;
AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
buff_size);
AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
(buff_size * (1024 / 32) * 66) / 100);
AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
(buff_size * (1024 / 32) * 50) / 100);
/* QoS Rx buf size per TC */
tc = 0;
buff_size = AQ_HW_RXBUF_MAX;
AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
buff_size);
AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
(buff_size * (1024 / 32) * 66) / 100);
AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
(buff_size * (1024 / 32) * 50) / 100);
/* QoS 802.1p priority -> TC mapping */
int i_priority;
for (i_priority = 0; i_priority < 8; i_priority++) {
AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
}
}
/* called once from aq_attach */
static int
aq_init_rss(struct aq_softc *sc)
{
CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
unsigned int i;
int error;
/* initialize rss key */
rss_getkey((uint8_t *)rss_key);
/* hash to ring table */
for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
rss_table[i] = i % sc->sc_nqueues;
}
/*
* set rss key
*/
for (i = 0; i < __arraycount(rss_key); i++) {
uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
RPF_RSS_KEY_WR_EN, 1);
WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
if (error != 0) {
device_printf(sc->sc_dev, "%s: rss key write timeout\n",
__func__);
goto rss_set_timeout;
}
}
/*
* set rss indirection table
*
* AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
* we'll make it by __BITMAP(3) macros.
*/
__BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
__BITMAP_ZERO(&bit3x64);
#define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \
do { \
if (val & 1) { \
__BITMAP_SET((idx) * 3, (bitmap)); \
} else { \
__BITMAP_CLR((idx) * 3, (bitmap)); \
} \
if (val & 2) { \
__BITMAP_SET((idx) * 3 + 1, (bitmap)); \
} else { \
__BITMAP_CLR((idx) * 3 + 1, (bitmap)); \
} \
if (val & 4) { \
__BITMAP_SET((idx) * 3 + 2, (bitmap)); \
} else { \
__BITMAP_CLR((idx) * 3 + 2, (bitmap)); \
} \
} while (0 /* CONSTCOND */)
for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
}
/* write 192bit data in steps of 16bit */
for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
RPF_RSS_REDIR_ADDR, i);
AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
RPF_RSS_REDIR_WR_EN, 1);
WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
if (error != 0)
break;
}
rss_set_timeout:
return error;
}
static void
aq_hw_l3_filter_set(struct aq_softc *sc)
{
int i;
/* clear all filter */
for (i = 0; i < 8; i++) {
AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
RPF_L3_FILTER_L4_EN, 0);
}
}
static void
aq_set_vlan_filters(struct aq_softc *sc)
{
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct vlanid_list *vlanidp;
int i;
ETHER_LOCK(ec);
/* disable all vlan filters */
for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
/* count VID */
i = 0;
SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
i++;
if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
(ifp->if_flags & IFF_PROMISC) ||
(i > RPF_VLAN_MAX_FILTERS)) {
/*
* no vlan hwfilter, in promiscuous mode, or too many VID?
* must receive all VID
*/
AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
RPF_VLAN_MODE_PROMISC, 1);
goto done;
}
/* receive only selected VID */
AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
i = 0;
SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
RPF_VLAN_FILTER_EN, 1);
AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
RPF_VLAN_FILTER_RXQ_EN, 0);
AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
RPF_VLAN_FILTER_RXQ, 0);
AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
RPF_VLAN_FILTER_ID, vlanidp->vid);
i++;
}
done:
ETHER_UNLOCK(ec);
}
static int
aq_hw_init(struct aq_softc *sc)
{
uint32_t v;
/* Force limit MRRS on RDM/TDM to 2K */
v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
/*
* TX DMA total request limit. B0 hardware is not capable to
* handle more than (8K-MRRS) incoming DMA data.
* Value 24 in 256byte units
*/
AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
aq_hw_init_tx_path(sc);
aq_hw_init_rx_path(sc);
aq_hw_interrupt_moderation_set(sc);
aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
aq_hw_qos_set(sc);
/* Enable interrupt */
int irqmode;
if (sc->sc_msix)
irqmode = AQ_INTR_CTRL_IRQMODE_MSIX;
else
irqmode = AQ_INTR_CTRL_IRQMODE_MSI;
AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
sc->sc_msix ? 1 : 0);
AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
((AQ_B0_ERR_INT << 24) | (1U << 31)) |
((AQ_B0_ERR_INT << 16) | (1 << 23))
);
/* link interrupt */
if (!sc->sc_msix)
sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
__BIT(7) | sc->sc_linkstat_irq);
return 0;
}
static int
aq_update_link_status(struct aq_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
aq_link_speed_t rate = AQ_LINK_NONE;
aq_link_fc_t fc = AQ_FC_NONE;
aq_link_eee_t eee = AQ_EEE_DISABLE;
unsigned int speed;
int changed = 0;
aq_get_linkmode(sc, &rate, &fc, &eee);
if (sc->sc_link_rate != rate)
changed = 1;
if (sc->sc_link_fc != fc)
changed = 1;
if (sc->sc_link_eee != eee)
changed = 1;
if (changed) {
switch (rate) {
case AQ_LINK_100M:
speed = 100;
break;
case AQ_LINK_1G:
speed = 1000;
break;
case AQ_LINK_2G5:
speed = 2500;
break;
case AQ_LINK_5G:
speed = 5000;
break;
case AQ_LINK_10G:
speed = 10000;
break;
case AQ_LINK_NONE:
default:
speed = 0;
break;
}
if (sc->sc_link_rate == AQ_LINK_NONE) {
/* link DOWN -> UP */
device_printf(sc->sc_dev, "link is UP: speed=%u\n",
speed);
if_link_state_change(ifp, LINK_STATE_UP);
} else if (rate == AQ_LINK_NONE) {
/* link UP -> DOWN */
device_printf(sc->sc_dev, "link is DOWN\n");
if_link_state_change(ifp, LINK_STATE_DOWN);
} else {
device_printf(sc->sc_dev,
"link mode changed: speed=%u, fc=0x%x, eee=%x\n",
speed, fc, eee);
}
sc->sc_link_rate = rate;
sc->sc_link_fc = fc;
sc->sc_link_eee = eee;
/* update interrupt timing according to new link speed */
aq_hw_interrupt_moderation_set(sc);
}
return changed;
}
#ifdef AQ_EVENT_COUNTERS
static void
aq_update_statistics(struct aq_softc *sc)
{
int prev = sc->sc_statistics_idx;
int cur = prev ^ 1;
sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
/*
* aq's internal statistics counter is 32bit.
* cauculate delta, and add to evcount
*/
#define ADD_DELTA(cur, prev, name) \
do { \
uint32_t n; \
n = (uint32_t)(sc->sc_statistics[cur].name - \
sc->sc_statistics[prev].name); \
if (n != 0) { \
AQ_EVCNT_ADD(sc, name, n); \
} \
} while (/*CONSTCOND*/0);
ADD_DELTA(cur, prev, uprc);
ADD_DELTA(cur, prev, mprc);
ADD_DELTA(cur, prev, bprc);
ADD_DELTA(cur, prev, prc);
ADD_DELTA(cur, prev, erpr);
ADD_DELTA(cur, prev, uptc);
ADD_DELTA(cur, prev, mptc);
ADD_DELTA(cur, prev, bptc);
ADD_DELTA(cur, prev, ptc);
ADD_DELTA(cur, prev, erpt);
ADD_DELTA(cur, prev, mbtc);
ADD_DELTA(cur, prev, bbtc);
ADD_DELTA(cur, prev, mbrc);
ADD_DELTA(cur, prev, bbrc);
ADD_DELTA(cur, prev, ubrc);
ADD_DELTA(cur, prev, ubtc);
ADD_DELTA(cur, prev, dpc);
ADD_DELTA(cur, prev, cprc);
sc->sc_statistics_idx = cur;
}
#endif /* AQ_EVENT_COUNTERS */
/* allocate and map one DMA block */
static int
_alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
{
int nsegs, error;
if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
1, &nsegs, 0)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to allocate DMA buffer, error=%d\n", error);
goto fail_alloc;
}
if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
BUS_DMA_COHERENT)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to map DMA buffer, error=%d\n", error);
goto fail_map;
}
if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
0, mapp)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to create DMA map, error=%d\n", error);
goto fail_create;
}
if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
0)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to load DMA map, error=%d\n", error);
goto fail_load;
}
*sizep = size;
return 0;
fail_load:
bus_dmamap_destroy(sc->sc_dmat, *mapp);
*mapp = NULL;
fail_create:
bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
*addrp = NULL;
fail_map:
bus_dmamem_free(sc->sc_dmat, seg, 1);
memset(seg, 0, sizeof(*seg));
fail_alloc:
*sizep = 0;
return error;
}
static void
_free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
bus_dmamap_t *mapp, bus_dma_segment_t *seg)
{
if (*mapp != NULL) {
bus_dmamap_destroy(sc->sc_dmat, *mapp);
*mapp = NULL;
}
if (*addrp != NULL) {
bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
*addrp = NULL;
}
if (*sizep != 0) {
bus_dmamem_free(sc->sc_dmat, seg, 1);
memset(seg, 0, sizeof(*seg));
*sizep = 0;
}
}
static int
aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
{
int i, error;
/* allocate tx descriptors */
error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
&txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
&txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
if (error != 0)
return error;
memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
/* fill tx ring with dmamap */
for (i = 0; i < AQ_TXD_NUM; i++) {
#define AQ_MAXDMASIZE (16 * 1024)
#define AQ_NTXSEGS 32
/* XXX: TODO: error check */
bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
}
return 0;
}
static void
aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
{
int i;
_free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
&txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
for (i = 0; i < AQ_TXD_NUM; i++) {
if (txring->txr_mbufs[i].dmamap != NULL) {
if (txring->txr_mbufs[i].m != NULL) {
bus_dmamap_unload(sc->sc_dmat,
txring->txr_mbufs[i].dmamap);
m_freem(txring->txr_mbufs[i].m);
txring->txr_mbufs[i].m = NULL;
}
bus_dmamap_destroy(sc->sc_dmat,
txring->txr_mbufs[i].dmamap);
txring->txr_mbufs[i].dmamap = NULL;
}
}
}
static int
aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
{
int i, error;
/* allocate rx descriptors */
error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
&rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
&rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
if (error != 0)
return error;
memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
/* fill rxring with dmamaps */
for (i = 0; i < AQ_RXD_NUM; i++) {
rxring->rxr_mbufs[i].m = NULL;
/* XXX: TODO: error check */
bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
&rxring->rxr_mbufs[i].dmamap);
}
return 0;
}
static void
aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
{
int i;
/* free all mbufs allocated for RX */
for (i = 0; i < AQ_RXD_NUM; i++) {
if (rxring->rxr_mbufs[i].m != NULL) {
bus_dmamap_unload(sc->sc_dmat,
rxring->rxr_mbufs[i].dmamap);
m_freem(rxring->rxr_mbufs[i].m);
rxring->rxr_mbufs[i].m = NULL;
}
}
}
static void
aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
{
int i;
/* free all mbufs and dmamaps */
aq_rxdrain(sc, rxring);
for (i = 0; i < AQ_RXD_NUM; i++) {
if (rxring->rxr_mbufs[i].dmamap != NULL) {
bus_dmamap_destroy(sc->sc_dmat,
rxring->rxr_mbufs[i].dmamap);
rxring->rxr_mbufs[i].dmamap = NULL;
}
}
/* free RX descriptor */
_free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
&rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
}
static void
aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
struct mbuf *m)
{
int error;
/* if mbuf already exists, unload and free */
if (rxring->rxr_mbufs[idx].m != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
m_freem(rxring->rxr_mbufs[idx].m);
rxring->rxr_mbufs[idx].m = NULL;
}
rxring->rxr_mbufs[idx].m = m;
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
m, BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error) {
device_printf(sc->sc_dev,
"unable to load rx DMA map %d, error = %d\n", idx, error);
panic("%s: unable to load rx DMA map. error=%d",
__func__, error);
}
bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
}
static inline void
aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
{
/* refill rxdesc, and sync */
rxring->rxr_rxdesc[idx].read.buf_addr =
htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
BUS_DMASYNC_PREWRITE);
}
static struct mbuf *
aq_alloc_mbuf(void)
{
struct mbuf *m;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return NULL;
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return NULL;
}
return m;
}
/* allocate mbuf and unload dmamap */
static int
aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
{
struct mbuf *m;
m = aq_alloc_mbuf();
if (m == NULL)
return ENOBUFS;
aq_rxring_setmbuf(sc, rxring, idx, m);
return 0;
}
static int
aq_txrx_rings_alloc(struct aq_softc *sc)
{
int n, error;
for (n = 0; n < sc->sc_nqueues; n++) {
sc->sc_queue[n].sc = sc;
sc->sc_queue[n].txring.txr_sc = sc;
sc->sc_queue[n].txring.txr_index = n;
mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
IPL_NET);
error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
if (error != 0)
goto failure;
error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
if (error != 0)
goto failure;
sc->sc_queue[n].rxring.rxr_sc = sc;
sc->sc_queue[n].rxring.rxr_index = n;
mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
IPL_NET);
error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
if (error != 0)
break;
}
failure:
return error;
}
static void
aq_txrx_rings_free(struct aq_softc *sc)
{
int n;
for (n = 0; n < sc->sc_nqueues; n++) {
aq_txring_free(sc, &sc->sc_queue[n].txring);
mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
aq_rxring_free(sc, &sc->sc_queue[n].rxring);
mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
}
}
static int
aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
{
int error = 0;
txring->txr_softint = NULL;
txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
if (txring->txr_pcq == NULL) {
aprint_error_dev(sc->sc_dev,
"unable to allocate pcq for TXring[%d]\n",
txring->txr_index);
error = ENOMEM;
goto done;
}
txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
aq_deferred_transmit, txring);
if (txring->txr_softint == NULL) {
aprint_error_dev(sc->sc_dev,
"unable to establish softint for TXring[%d]\n",
txring->txr_index);
error = ENOENT;
}
done:
return error;
}
static void
aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
{
struct mbuf *m;
if (txring->txr_softint != NULL) {
softint_disestablish(txring->txr_softint);
txring->txr_softint = NULL;
}
if (txring->txr_pcq != NULL) {
while ((m = pcq_get(txring->txr_pcq)) != NULL)
m_freem(m);
pcq_destroy(txring->txr_pcq);
txring->txr_pcq = NULL;
}
}
#if NSYSMON_ENVSYS > 0
static void
aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
{
struct aq_softc *sc;
uint32_t temp;
int error;
sc = sme->sme_cookie;
error = sc->sc_fw_ops->get_temperature(sc, &temp);
if (error == 0) {
edata->value_cur = temp;
edata->state = ENVSYS_SVALID;
} else {
edata->state = ENVSYS_SINVALID;
}
}
#endif
static void
aq_tick(void *arg)
{
struct aq_softc *sc = arg;
if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
sc->sc_detect_linkstat = false;
aq_update_link_status(sc);
}
#ifdef AQ_EVENT_COUNTERS
if (sc->sc_poll_statistics)
aq_update_statistics(sc);
#endif
if (sc->sc_poll_linkstat
#ifdef AQ_EVENT_COUNTERS
|| sc->sc_poll_statistics
#endif
) {
callout_schedule(&sc->sc_tick_ch, hz);
}
}
/* interrupt enable/disable */
static void
aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
{
uint32_t imask = 0;
int i;
if (txrx) {
for (i = 0; i < sc->sc_nqueues; i++) {
imask |= __BIT(sc->sc_tx_irq[i]);
imask |= __BIT(sc->sc_rx_irq[i]);
}
}
if (link)
imask |= __BIT(sc->sc_linkstat_irq);
AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
}
static int
aq_legacy_intr(void *arg)
{
struct aq_softc *sc = arg;
uint32_t status;
int nintr = 0;
status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
if (status & __BIT(sc->sc_linkstat_irq)) {
sc->sc_detect_linkstat = true;
callout_schedule(&sc->sc_tick_ch, 0);
nintr++;
}
if (status & __BIT(sc->sc_rx_irq[0])) {
nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
}
if (status & __BIT(sc->sc_tx_irq[0])) {
nintr += aq_tx_intr(&sc->sc_queue[0].txring);
}
return nintr;
}
static int
aq_txrx_intr(void *arg)
{
struct aq_queue *queue = arg;
struct aq_softc *sc = queue->sc;
struct aq_txring *txring = &queue->txring;
struct aq_rxring *rxring = &queue->rxring;
uint32_t status;
int nintr = 0;
int txringidx, rxringidx, txirq, rxirq;
txringidx = txring->txr_index;
rxringidx = rxring->rxr_index;
txirq = sc->sc_tx_irq[txringidx];
rxirq = sc->sc_rx_irq[rxringidx];
status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
/* stray interrupt? */
return 0;
}
nintr += aq_rx_intr(rxring);
nintr += aq_tx_intr(txring);
return nintr;
}
static int
aq_link_intr(void *arg)
{
struct aq_softc *sc = arg;
uint32_t status;
int nintr = 0;
status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
if (status & __BIT(sc->sc_linkstat_irq)) {
sc->sc_detect_linkstat = true;
callout_schedule(&sc->sc_tick_ch, 0);
AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
__BIT(sc->sc_linkstat_irq));
nintr++;
}
return nintr;
}
static void
aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
{
const int ringidx = txring->txr_index;
int i;
mutex_enter(&txring->txr_mutex);
txring->txr_prodidx = 0;
txring->txr_considx = 0;
txring->txr_nfree = AQ_TXD_NUM;
txring->txr_active = false;
/* free mbufs untransmitted */
for (i = 0; i < AQ_TXD_NUM; i++) {
if (txring->txr_mbufs[i].m != NULL) {
m_freem(txring->txr_mbufs[i].m);
txring->txr_mbufs[i].m = NULL;
}
}
/* disable DMA */
AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
if (start) {
/* TX descriptor physical address */
paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
(uint32_t)((uint64_t)paddr >> 32));
/* TX descriptor size */
AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
AQ_TXD_NUM / 8);
/* reload TAIL pointer */
txring->txr_prodidx = txring->txr_considx =
AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
/* Mapping interrupt vector */
AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
/* enable DMA */
AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
TX_DMA_DESC_EN, 1);
const int cpuid = 0; /* XXX? */
AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
TDM_DCAD_CPUID, cpuid);
AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
TDM_DCAD_CPUID_EN, 0);
txring->txr_active = true;
}
mutex_exit(&txring->txr_mutex);
}
static int
aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
{
const int ringidx = rxring->rxr_index;
int i;
int error = 0;
mutex_enter(&rxring->rxr_mutex);
rxring->rxr_active = false;
/* disable DMA */
AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
/* free all RX mbufs */
aq_rxdrain(sc, rxring);
if (start) {
for (i = 0; i < AQ_RXD_NUM; i++) {
error = aq_rxring_add(sc, rxring, i);
if (error != 0) {
aq_rxdrain(sc, rxring);
return error;
}
aq_rxring_reset_desc(sc, rxring, i);
}
/* RX descriptor physical address */
paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
(uint32_t)((uint64_t)paddr >> 32));
/* RX descriptor size */
AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
AQ_RXD_NUM / 8);
/* maximum receive frame size */
AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
RX_DMA_DESC_HEADER_SPLIT, 0);
AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
RX_DMA_DESC_VLAN_STRIP,
(sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
1 : 0);
/*
* reload TAIL pointer, and update readidx
* (HEAD pointer cannot write)
*/
rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
(rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
/* Rx ring set mode */
/* Mapping interrupt vector */
AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
const int cpuid = 0; /* XXX? */
AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
RX_DMA_DCAD_CPUID, cpuid);
AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
RX_DMA_DCAD_DESC_EN, 0);
AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
RX_DMA_DCAD_HEADER_EN, 0);
AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
RX_DMA_DCAD_PAYLOAD_EN, 0);
/* enable DMA. start receiving */
AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
RX_DMA_DESC_EN, 1);
rxring->rxr_active = true;
}
mutex_exit(&rxring->rxr_mutex);
return error;
}
#define TXRING_NEXTIDX(idx) \
(((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
#define RXRING_NEXTIDX(idx) \
(((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
static int
aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
{
bus_dmamap_t map;
struct mbuf *m = *mp;
uint32_t ctl1, ctl1_ctx, ctl2;
int idx, i, error;
idx = txring->txr_prodidx;
map = txring->txr_mbufs[idx].dmamap;
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
BUS_DMA_WRITE | BUS_DMA_NOWAIT);
if (error == EFBIG) {
struct mbuf *n;
n = m_defrag(m, M_DONTWAIT);
if (n == NULL)
return EFBIG;
/* m_defrag() preserve m */
KASSERT(n == m);
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
BUS_DMA_WRITE | BUS_DMA_NOWAIT);
}
if (error != 0)
return error;
/*
* check spaces of free descriptors.
* +1 is additional descriptor for context (vlan, etc,.)
*/
if ((map->dm_nsegs + 1) > txring->txr_nfree) {
device_printf(sc->sc_dev,
"TX: not enough descriptors left %d for %d segs\n",
txring->txr_nfree, map->dm_nsegs + 1);
bus_dmamap_unload(sc->sc_dmat, map);
return ENOBUFS;
}
/* sync dma for mbuf */
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
ctl1_ctx = 0;
ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
if (vlan_has_tag(m)) {
ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
/* fill context descriptor and forward index */
txring->txr_txdesc[idx].buf_addr = 0;
txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
txring->txr_txdesc[idx].ctl2 = 0;
idx = TXRING_NEXTIDX(idx);
txring->txr_nfree--;
}
if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
if (m->m_pkthdr.csum_flags &
(M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
}
/* fill descriptor(s) */
for (i = 0; i < map->dm_nsegs; i++) {
ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
__SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
if (i == 0) {
/* remember mbuf of these descriptors */
txring->txr_mbufs[idx].m = m;
} else {
txring->txr_mbufs[idx].m = NULL;
}
if (i == map->dm_nsegs - 1) {
/* last segment, mark an EndOfPacket, and cause intr */
ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
}
txring->txr_txdesc[idx].buf_addr =
htole64(map->dm_segs[i].ds_addr);
txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
idx = TXRING_NEXTIDX(idx);
txring->txr_nfree--;
}
txring->txr_prodidx = idx;
return 0;
}
static int
aq_tx_intr(void *arg)
{
struct aq_txring *txring = arg;
struct aq_softc *sc = txring->txr_sc;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mbuf *m;
const int ringidx = txring->txr_index;
unsigned int idx, hw_head, n = 0;
mutex_enter(&txring->txr_mutex);
if (!txring->txr_active)
goto tx_intr_done;
hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
TX_DMA_DESC_HEAD_PTR);
if (hw_head == txring->txr_considx) {
goto tx_intr_done;
}
net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
for (idx = txring->txr_considx; idx != hw_head;
idx = TXRING_NEXTIDX(idx), n++) {
if ((m = txring->txr_mbufs[idx].m) != NULL) {
bus_dmamap_unload(sc->sc_dmat,
txring->txr_mbufs[idx].dmamap);
if_statinc_ref(nsr, if_opackets);
if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
if (m->m_flags & M_MCAST)
if_statinc_ref(nsr, if_omcasts);
m_freem(m);
txring->txr_mbufs[idx].m = NULL;
}
txring->txr_nfree++;
}
txring->txr_considx = idx;
IF_STAT_PUTREF(ifp);
if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
ifp->if_flags &= ~IFF_OACTIVE;
/* no more pending TX packet, cancel watchdog */
if (txring->txr_nfree >= AQ_TXD_NUM)
ifp->if_timer = 0;
tx_intr_done:
mutex_exit(&txring->txr_mutex);
AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
return n;
}
static int
aq_rx_intr(void *arg)
{
struct aq_rxring *rxring = arg;
struct aq_softc *sc = rxring->rxr_sc;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
const int ringidx = rxring->rxr_index;
aq_rx_desc_t *rxd;
struct mbuf *m, *m0, *mprev, *new_m;
uint32_t rxd_type, rxd_hash __unused;
uint16_t rxd_status, rxd_pktlen;
uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
unsigned int idx, n = 0;
mutex_enter(&rxring->rxr_mutex);
if (!rxring->rxr_active)
goto rx_intr_done;
if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
goto rx_intr_done;
}
net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
m0 = mprev = NULL;
for (idx = rxring->rxr_readidx;
idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
rxd = &rxring->rxr_rxdesc[idx];
rxd_status = le16toh(rxd->wb.status);
if ((rxd_status & RXDESC_STATUS_DD) == 0)
break; /* not yet done */
rxd_type = le32toh(rxd->wb.type);
rxd_pktlen = le16toh(rxd->wb.pkt_len);
rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
rxd_hash = le32toh(rxd->wb.rss_hash);
rxd_vlan = le16toh(rxd->wb.vlan);
if ((rxd_status & RXDESC_STATUS_MACERR) ||
(rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
if_statinc_ref(nsr, if_ierrors);
goto rx_next;
}
bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
BUS_DMASYNC_POSTREAD);
m = rxring->rxr_mbufs[idx].m;
new_m = aq_alloc_mbuf();
if (new_m == NULL) {
/*
* cannot allocate new mbuf.
* discard this packet, and reuse mbuf for next.
*/
if_statinc_ref(nsr, if_iqdrops);
goto rx_next;
}
rxring->rxr_mbufs[idx].m = NULL;
aq_rxring_setmbuf(sc, rxring, idx, new_m);
if (m0 == NULL) {
m0 = m;
} else {
if (m->m_flags & M_PKTHDR)
m_remove_pkthdr(m);
mprev->m_next = m;
}
mprev = m;
if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
m->m_len = MCLBYTES;
} else {
/* last buffer */
int mlen = rxd_pktlen % MCLBYTES;
if (mlen == 0)
mlen = MCLBYTES;
m->m_len = mlen;
m0->m_pkthdr.len = rxd_pktlen;
/* VLAN offloading */
if ((sc->sc_ethercom.ec_capenable &
ETHERCAP_VLAN_HWTAGGING) &&
(__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
__SHIFTOUT(rxd_type,
RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
vlan_set_tag(m0, rxd_vlan);
}
/* Checksum offloading */
unsigned int pkttype_eth =
__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
(pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
__SHIFTOUT(rxd_type,
RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
if (__SHIFTOUT(rxd_status,
RXDESC_STATUS_IPV4_CSUM_NG))
m0->m_pkthdr.csum_flags |=
M_CSUM_IPv4_BAD;
}
/*
* aq will always mark BAD for fragment packets,
* but this is not a problem because the IP stack
* ignores the CSUM flag in fragment packets.
*/
if (__SHIFTOUT(rxd_type,
RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
bool checked = false;
unsigned int pkttype_proto =
__SHIFTOUT(rxd_type,
RXDESC_TYPE_PKTTYPE_PROTO);
if (pkttype_proto ==
RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
if ((pkttype_eth ==
RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
(ifp->if_capabilities &
IFCAP_CSUM_TCPv4_Rx)) {
m0->m_pkthdr.csum_flags |=
M_CSUM_TCPv4;
checked = true;
} else if ((pkttype_eth ==
RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
(ifp->if_capabilities &
IFCAP_CSUM_TCPv6_Rx)) {
m0->m_pkthdr.csum_flags |=
M_CSUM_TCPv6;
checked = true;
}
} else if (pkttype_proto ==
RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
if ((pkttype_eth ==
RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
(ifp->if_capabilities &
IFCAP_CSUM_UDPv4_Rx)) {
m0->m_pkthdr.csum_flags |=
M_CSUM_UDPv4;
checked = true;
} else if ((pkttype_eth ==
RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
(ifp->if_capabilities &
IFCAP_CSUM_UDPv6_Rx)) {
m0->m_pkthdr.csum_flags |=
M_CSUM_UDPv6;
checked = true;
}
}
if (checked &&
(__SHIFTOUT(rxd_status,
RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
!__SHIFTOUT(rxd_status,
RXDESC_STATUS_TCPUDP_CSUM_OK))) {
m0->m_pkthdr.csum_flags |=
M_CSUM_TCP_UDP_BAD;
}
}
m_set_rcvif(m0, ifp);
if_statinc_ref(nsr, if_ipackets);
if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
if_percpuq_enqueue(ifp->if_percpuq, m0);
m0 = mprev = NULL;
}
rx_next:
aq_rxring_reset_desc(sc, rxring, idx);
AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
}
rxring->rxr_readidx = idx;
IF_STAT_PUTREF(ifp);
rx_intr_done:
mutex_exit(&rxring->rxr_mutex);
AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
return n;
}
static int
aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
{
struct ifnet *ifp = &ec->ec_if;
struct aq_softc *sc = ifp->if_softc;
aq_set_vlan_filters(sc);
return 0;
}
static int
aq_ifflags_cb(struct ethercom *ec)
{
struct ifnet *ifp = &ec->ec_if;
struct aq_softc *sc = ifp->if_softc;
int i, ecchange, error = 0;
unsigned short iffchange;
AQ_LOCK(sc);
iffchange = ifp->if_flags ^ sc->sc_if_flags;
if ((iffchange & IFF_PROMISC) != 0)
error = aq_set_filter(sc);
ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
for (i = 0; i < AQ_RINGS_NUM; i++) {
AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
RX_DMA_DESC_VLAN_STRIP,
(ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
1 : 0);
}
}
/* vlan configuration depends on also interface promiscuous mode */
if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
aq_set_vlan_filters(sc);
sc->sc_ec_capenable = ec->ec_capenable;
sc->sc_if_flags = ifp->if_flags;
AQ_UNLOCK(sc);
return error;
}
static int
aq_init(struct ifnet *ifp)
{
struct aq_softc *sc = ifp->if_softc;
int i, error = 0;
aq_stop(ifp, false);
AQ_LOCK(sc);
aq_set_vlan_filters(sc);
aq_set_capability(sc);
for (i = 0; i < sc->sc_nqueues; i++) {
aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
}
/* invalidate RX descriptor cache */
AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
AQ_READ_REG_BIT(sc,
RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
/* start RX */
for (i = 0; i < sc->sc_nqueues; i++) {
error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
if (error != 0) {
device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
__func__);
goto aq_init_failure;
}
}
aq_init_rss(sc);
aq_hw_l3_filter_set(sc);
/* need to start callout? */
if (sc->sc_poll_linkstat
#ifdef AQ_EVENT_COUNTERS
|| sc->sc_poll_statistics
#endif
) {
callout_schedule(&sc->sc_tick_ch, hz);
}
/* ready */
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/* start TX and RX */
aq_enable_intr(sc, true, true);
AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
aq_init_failure:
sc->sc_if_flags = ifp->if_flags;
AQ_UNLOCK(sc);
return error;
}
static void
aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
struct aq_txring *txring, bool is_transmit)
{
struct mbuf *m;
int npkt, error;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
for (npkt = 0; ; npkt++) {
if (is_transmit)
m = pcq_peek(txring->txr_pcq);
else
IFQ_POLL(&ifp->if_snd, m);
if (m == NULL)
break;
if (txring->txr_nfree < AQ_TXD_MIN)
break;
if (is_transmit)
pcq_get(txring->txr_pcq);
else
IFQ_DEQUEUE(&ifp->if_snd, m);
error = aq_encap_txring(sc, txring, &m);
if (error != 0) {
/* too many mbuf chains? or not enough descriptors? */
m_freem(m);
if_statinc(ifp, if_oerrors);
if (txring->txr_index == 0 && error == ENOBUFS)
ifp->if_flags |= IFF_OACTIVE;
break;
}
/* update tail ptr */
AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
txring->txr_prodidx);
/* Pass the packet to any BPF listeners */
bpf_mtap(ifp, m, BPF_D_OUT);
}
if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
ifp->if_flags |= IFF_OACTIVE;
if (npkt)
ifp->if_timer = 5;
}
static void
aq_start(struct ifnet *ifp)
{
struct aq_softc *sc;
struct aq_txring *txring;
sc = ifp->if_softc;
txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
mutex_enter(&txring->txr_mutex);
if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
aq_send_common_locked(ifp, sc, txring, false);
mutex_exit(&txring->txr_mutex);
}
static inline unsigned int
aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
{
return (cpu_index(curcpu()) % sc->sc_nqueues);
}
static int
aq_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct aq_softc *sc = ifp->if_softc;
struct aq_txring *txring;
int ringidx;
ringidx = aq_select_txqueue(sc, m);
txring = &sc->sc_queue[ringidx].txring;
if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
m_freem(m);
return ENOBUFS;
}
if (mutex_tryenter(&txring->txr_mutex)) {
aq_send_common_locked(ifp, sc, txring, true);
mutex_exit(&txring->txr_mutex);
} else {
softint_schedule(txring->txr_softint);
}
return 0;
}
static void
aq_deferred_transmit(void *arg)
{
struct aq_txring *txring = arg;
struct aq_softc *sc = txring->txr_sc;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
mutex_enter(&txring->txr_mutex);
if (pcq_peek(txring->txr_pcq) != NULL)
aq_send_common_locked(ifp, sc, txring, true);
mutex_exit(&txring->txr_mutex);
}
static void
aq_stop(struct ifnet *ifp, int disable)
{
struct aq_softc *sc = ifp->if_softc;
int i;
AQ_LOCK(sc);
ifp->if_timer = 0;
if ((ifp->if_flags & IFF_RUNNING) == 0)
goto already_stopped;
/* disable tx/rx interrupts */
aq_enable_intr(sc, true, false);
AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
for (i = 0; i < sc->sc_nqueues; i++) {
aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
}
AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
for (i = 0; i < sc->sc_nqueues; i++) {
aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
}
/* invalidate RX descriptor cache */
AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
AQ_READ_REG_BIT(sc,
RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
ifp->if_timer = 0;
already_stopped:
if (!disable) {
/* when pmf stop, disable link status intr and callout */
aq_enable_intr(sc, false, false);
callout_stop(&sc->sc_tick_ch);
}
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
AQ_UNLOCK(sc);
}
static void
aq_watchdog(struct ifnet *ifp)
{
struct aq_softc *sc = ifp->if_softc;
struct aq_txring *txring;
int n, head, tail;
AQ_LOCK(sc);
device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
__func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
for (n = 0; n < sc->sc_nqueues; n++) {
txring = &sc->sc_queue[n].txring;
head = AQ_READ_REG_BIT(sc,
TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
TX_DMA_DESC_HEAD_PTR),
tail = AQ_READ_REG(sc,
TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
__func__, txring->txr_index, head, tail);
aq_tx_intr(txring);
}
AQ_UNLOCK(sc);
aq_init(ifp);
}
static int
aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
{
struct aq_softc *sc __unused;
struct ifreq *ifr __unused;
int error, s;
sc = (struct aq_softc *)ifp->if_softc;
ifr = (struct ifreq *)data;
error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) {
error = EINVAL;
} else {
ifp->if_mtu = ifr->ifr_mtu;
error = 0; /* no need to reset (no ENETRESET) */
}
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
splx(s);
if (error != ENETRESET)
return error;
switch (cmd) {
case SIOCSIFCAP:
error = aq_set_capability(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((ifp->if_flags & IFF_RUNNING) == 0)
break;
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
error = aq_set_filter(sc);
break;
}
return error;
}
MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
if_aq_modcmd(modcmd_t cmd, void *opaque)
{
int error = 0;
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
error = config_init_component(cfdriver_ioconf_if_aq,
cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
#endif
return error;
case MODULE_CMD_FINI:
#ifdef _MODULE
error = config_fini_component(cfdriver_ioconf_if_aq,
cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
#endif
return error;
default:
return ENOTTY;
}
}