NetBSD/sys/dev/pci/if_alc.c

3538 lines
101 KiB
C

/* $NetBSD: if_alc.c,v 1.52 2020/03/01 03:06:08 thorpej Exp $ */
/* $OpenBSD: if_alc.c,v 1.1 2009/08/08 09:31:13 kevlo Exp $ */
/*-
* Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
#ifdef _KERNEL_OPT
#include "vlan.h"
#endif
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/queue.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/callout.h>
#include <sys/socket.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_llc.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#include <net/if_types.h>
#include <net/if_vlanvar.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_alcreg.h>
/*
* Devices supported by this driver.
*/
static const struct alc_ident alc_ident_table[] = {
{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8131, 9 * 1024,
"Atheros AR8131 PCIe Gigabit Ethernet" },
{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8132, 9 * 1024,
"Atheros AR8132 PCIe Fast Ethernet" },
{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151, 6 * 1024,
"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151_V2, 6 * 1024,
"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B, 6 * 1024,
"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B2, 6 * 1024,
"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8161, 9 * 1024,
"Atheros AR8161 PCIe Gigabit Ethernet" },
{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8162, 9 * 1024,
"Atheros AR8162 PCIe Fast Ethernet" },
{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8171, 9 * 1024,
"Atheros AR8171 PCIe Gigabit Ethernet" },
{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8172, 9 * 1024,
"Atheros AR8172 PCIe Fast Ethernet" },
{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_E2200, 9 * 1024,
"Killer E2200 Gigabit Ethernet" },
{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_E2400, 9 * 1024,
"Killer E2400 Gigabit Ethernet" },
{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_E2500, 9 * 1024,
"Killer E2500 Gigabit Ethernet" },
{ 0, 0, 0, NULL },
};
static int alc_match(device_t, cfdata_t, void *);
static void alc_attach(device_t, device_t, void *);
static int alc_detach(device_t, int);
static int alc_init(struct ifnet *);
static int alc_init_backend(struct ifnet *, bool);
static void alc_start(struct ifnet *);
static int alc_ioctl(struct ifnet *, u_long, void *);
static void alc_watchdog(struct ifnet *);
static int alc_mediachange(struct ifnet *);
static void alc_mediastatus(struct ifnet *, struct ifmediareq *);
static void alc_aspm(struct alc_softc *, int, int);
static void alc_aspm_813x(struct alc_softc *, int);
static void alc_aspm_816x(struct alc_softc *, int);
static void alc_disable_l0s_l1(struct alc_softc *);
static int alc_dma_alloc(struct alc_softc *);
static void alc_dma_free(struct alc_softc *);
static void alc_dsp_fixup(struct alc_softc *, int);
static int alc_encap(struct alc_softc *, struct mbuf **);
static const struct alc_ident *
alc_find_ident(struct pci_attach_args *);
static void alc_get_macaddr(struct alc_softc *);
static void alc_get_macaddr_813x(struct alc_softc *);
static void alc_get_macaddr_816x(struct alc_softc *);
static void alc_get_macaddr_par(struct alc_softc *);
static void alc_init_cmb(struct alc_softc *);
static void alc_init_rr_ring(struct alc_softc *);
static int alc_init_rx_ring(struct alc_softc *, bool);
static void alc_init_smb(struct alc_softc *);
static void alc_init_tx_ring(struct alc_softc *);
static int alc_intr(void *);
static void alc_mac_config(struct alc_softc *);
static int alc_mii_readreg_813x(struct alc_softc *, int, int, uint16_t *);
static int alc_mii_readreg_816x(struct alc_softc *, int, int, uint16_t *);
static int alc_mii_writereg_813x(struct alc_softc *, int, int, uint16_t);
static int alc_mii_writereg_816x(struct alc_softc *, int, int, uint16_t);
static int alc_miibus_readreg(device_t, int, int, uint16_t *);
static void alc_miibus_statchg(struct ifnet *);
static int alc_miibus_writereg(device_t, int, int, uint16_t);
static int alc_miidbg_readreg(struct alc_softc *, int, uint16_t *);
static int alc_miidbg_writereg(struct alc_softc *, int, uint16_t);
static int alc_miiext_readreg(struct alc_softc *, int, int, uint16_t *);
static int alc_miiext_writereg(struct alc_softc *, int, int, uint16_t);
static int alc_newbuf(struct alc_softc *, struct alc_rxdesc *, bool);
static void alc_phy_down(struct alc_softc *);
static void alc_phy_reset(struct alc_softc *);
static void alc_phy_reset_813x(struct alc_softc *);
static void alc_phy_reset_816x(struct alc_softc *);
static void alc_reset(struct alc_softc *);
static void alc_rxeof(struct alc_softc *, struct rx_rdesc *);
static int alc_rxintr(struct alc_softc *);
static void alc_iff(struct alc_softc *);
static void alc_rxvlan(struct alc_softc *);
static void alc_start_queue(struct alc_softc *);
static void alc_stats_clear(struct alc_softc *);
static void alc_stats_update(struct alc_softc *);
static void alc_stop(struct ifnet *, int);
static void alc_stop_mac(struct alc_softc *);
static void alc_stop_queue(struct alc_softc *);
static void alc_tick(void *);
static void alc_txeof(struct alc_softc *);
static void alc_init_pcie(struct alc_softc *);
static const uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0, 0 };
CFATTACH_DECL_NEW(alc, sizeof(struct alc_softc),
alc_match, alc_attach, alc_detach, NULL);
int alcdebug = 0;
#define DPRINTF(x) do { if (alcdebug) printf x; } while (0)
#define ALC_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
static int
alc_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
{
struct alc_softc *sc = device_private(dev);
int v;
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
v = alc_mii_readreg_816x(sc, phy, reg, val);
else
v = alc_mii_readreg_813x(sc, phy, reg, val);
return (v);
}
static int
alc_mii_readreg_813x(struct alc_softc *sc, int phy, int reg, uint16_t *val)
{
uint32_t v;
int i;
if (phy != sc->alc_phyaddr)
return -1;
/*
* For AR8132 fast ethernet controller, do not report 1000baseT
* capability to mii(4). Even though AR8132 uses the same
* model/revision number of F1 gigabit PHY, the PHY has no
* ability to establish 1000baseT link.
*/
if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 && reg == MII_EXTSR) {
*val = 0;
return 0;
}
CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
v = CSR_READ_4(sc, ALC_MDIO);
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
break;
}
if (i == 0) {
printf("%s: phy read timeout: phy %d, reg %d\n",
device_xname(sc->sc_dev), phy, reg);
return ETIMEDOUT;
}
*val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
return 0;
}
static int
alc_mii_readreg_816x(struct alc_softc *sc, int phy, int reg, uint16_t *val)
{
uint32_t clk, v;
int i;
if (phy != sc->alc_phyaddr)
return -1;
if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
clk = MDIO_CLK_25_128;
else
clk = MDIO_CLK_25_4;
CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
MDIO_SUP_PREAMBLE | clk | MDIO_REG_ADDR(reg));
for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
v = CSR_READ_4(sc, ALC_MDIO);
if ((v & MDIO_OP_BUSY) == 0)
break;
}
if (i == 0) {
printf("%s: phy read timeout: phy %d, reg %d\n",
device_xname(sc->sc_dev), phy, reg);
return ETIMEDOUT;
}
*val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
return 0;
}
static int
alc_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
{
struct alc_softc *sc = device_private(dev);
int rv;
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
rv = alc_mii_writereg_816x(sc, phy, reg, val);
else
rv = alc_mii_writereg_813x(sc, phy, reg, val);
return rv;
}
static int
alc_mii_writereg_813x(struct alc_softc *sc, int phy, int reg, uint16_t val)
{
uint32_t v;
int i;
CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
(val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
v = CSR_READ_4(sc, ALC_MDIO);
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
break;
}
if (i == 0) {
printf("%s: phy write timeout: phy %d, reg %d\n",
device_xname(sc->sc_dev), phy, reg);
return ETIMEDOUT;
}
return 0;
}
static int
alc_mii_writereg_816x(struct alc_softc *sc, int phy, int reg, uint16_t val)
{
uint32_t clk, v;
int i;
if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
clk = MDIO_CLK_25_128;
else
clk = MDIO_CLK_25_4;
CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) | MDIO_REG_ADDR(reg) |
MDIO_SUP_PREAMBLE | clk);
for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
v = CSR_READ_4(sc, ALC_MDIO);
if ((v & MDIO_OP_BUSY) == 0)
break;
}
if (i == 0) {
printf("%s: phy write timeout: phy %d, reg %d\n",
device_xname(sc->sc_dev), phy, reg);
return ETIMEDOUT;
}
return 0;
}
static void
alc_miibus_statchg(struct ifnet *ifp)
{
struct alc_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_miibus;
uint32_t reg;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
sc->alc_flags &= ~ALC_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->alc_flags |= ALC_FLAG_LINK;
break;
case IFM_1000_T:
if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
sc->alc_flags |= ALC_FLAG_LINK;
break;
default:
break;
}
}
/* Stop Rx/Tx MACs. */
alc_stop_mac(sc);
/* Program MACs with resolved speed/duplex/flow-control. */
if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
alc_start_queue(sc);
alc_mac_config(sc);
/* Re-enable Tx/Rx MACs. */
reg = CSR_READ_4(sc, ALC_MAC_CFG);
reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
}
alc_aspm(sc, 0, IFM_SUBTYPE(mii->mii_media_active));
alc_dsp_fixup(sc, IFM_SUBTYPE(mii->mii_media_active));
}
static int
alc_miidbg_readreg(struct alc_softc *sc, int reg, uint16_t *val)
{
int rv;
rv = alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
reg);
if (rv != 0)
return rv;
return (alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, val));
}
static int
alc_miidbg_writereg(struct alc_softc *sc, int reg, uint16_t val)
{
int rv;
rv = alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
reg);
if (rv != 0)
return rv;
rv = alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
val);
return rv;
}
static int
alc_miiext_readreg(struct alc_softc *sc, int devaddr, int reg, uint16_t *val)
{
uint32_t clk, v;
int i;
CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) |
EXT_MDIO_DEVADDR(devaddr));
if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
clk = MDIO_CLK_25_128;
else
clk = MDIO_CLK_25_4;
CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT);
for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
v = CSR_READ_4(sc, ALC_MDIO);
if ((v & MDIO_OP_BUSY) == 0)
break;
}
if (i == 0) {
printf("%s: phy ext read timeout: %d\n",
device_xname(sc->sc_dev), reg);
return ETIMEDOUT;
}
*val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
return 0;
}
static int
alc_miiext_writereg(struct alc_softc *sc, int devaddr, int reg, uint16_t val)
{
uint32_t clk, v;
int i;
CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) |
EXT_MDIO_DEVADDR(devaddr));
if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
clk = MDIO_CLK_25_128;
else
clk = MDIO_CLK_25_4;
CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) |
MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT);
for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
v = CSR_READ_4(sc, ALC_MDIO);
if ((v & MDIO_OP_BUSY) == 0)
break;
}
if (i == 0) {
printf("%s: phy ext write timeout: reg %d\n",
device_xname(sc->sc_dev), reg);
return ETIMEDOUT;
}
return 0;
}
static void
alc_dsp_fixup(struct alc_softc *sc, int media)
{
uint16_t agc, len, val;
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
return;
if (AR816X_REV(sc->alc_rev) >= AR816X_REV_C0)
return;
/*
* Vendor PHY magic.
* 1000BT/AZ, wrong cable length
*/
if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL6, &len);
len = (len >> EXT_CLDCTL6_CAB_LEN_SHIFT) &
EXT_CLDCTL6_CAB_LEN_MASK;
/* XXX: used to be (alc >> shift) & mask which is 0 */
alc_miidbg_readreg(sc, MII_DBG_AGC, &agc);
agc &= DBG_AGC_2_VGA_MASK;
agc >>= DBG_AGC_2_VGA_SHIFT;
if ((media == IFM_1000_T && len > EXT_CLDCTL6_CAB_LEN_SHORT1G &&
agc > DBG_AGC_LONG1G_LIMT) ||
(media == IFM_100_TX && len > DBG_AGC_LONG100M_LIMT &&
agc > DBG_AGC_LONG1G_LIMT)) {
alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT,
DBG_AZ_ANADECT_LONG);
alc_miiext_readreg(sc, MII_EXT_ANEG,
MII_EXT_ANEG_AFE, &val);
val |= ANEG_AFEE_10BT_100M_TH;
alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE,
val);
} else {
alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT,
DBG_AZ_ANADECT_DEFAULT);
alc_miiext_readreg(sc, MII_EXT_ANEG,
MII_EXT_ANEG_AFE, &val);
val &= ~ANEG_AFEE_10BT_100M_TH;
alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE,
val);
}
if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 &&
AR816X_REV(sc->alc_rev) == AR816X_REV_B0) {
if (media == IFM_1000_T) {
/*
* Giga link threshold, raise the tolerance of
* noise 50%.
*/
alc_miidbg_readreg(sc, MII_DBG_MSE20DB, &val);
val &= ~DBG_MSE20DB_TH_MASK;
val |= (DBG_MSE20DB_TH_HI <<
DBG_MSE20DB_TH_SHIFT);
alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val);
} else if (media == IFM_100_TX)
alc_miidbg_writereg(sc, MII_DBG_MSE16DB,
DBG_MSE16DB_UP);
}
} else {
alc_miiext_readreg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE, &val);
val &= ~ANEG_AFEE_10BT_100M_TH;
alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE, val);
if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 &&
AR816X_REV(sc->alc_rev) == AR816X_REV_B0) {
alc_miidbg_writereg(sc, MII_DBG_MSE16DB,
DBG_MSE16DB_DOWN);
alc_miidbg_readreg(sc, MII_DBG_MSE20DB, &val);
val &= ~DBG_MSE20DB_TH_MASK;
val |= (DBG_MSE20DB_TH_DEFAULT << DBG_MSE20DB_TH_SHIFT);
alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val);
}
}
}
static void
alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct alc_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_miibus;
if ((ifp->if_flags & IFF_UP) == 0)
return;
mii_pollstat(mii);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = mii->mii_media_active;
}
static int
alc_mediachange(struct ifnet *ifp)
{
struct alc_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_miibus;
int error;
if (mii->mii_instance != 0) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
error = mii_mediachg(mii);
return (error);
}
static const struct alc_ident *
alc_find_ident(struct pci_attach_args *pa)
{
const struct alc_ident *ident;
uint16_t vendor, devid;
vendor = PCI_VENDOR(pa->pa_id);
devid = PCI_PRODUCT(pa->pa_id);
for (ident = alc_ident_table; ident->name != NULL; ident++) {
if (vendor == ident->vendorid && devid == ident->deviceid)
return (ident);
}
return (NULL);
}
static int
alc_match(device_t dev, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = aux;
return alc_find_ident(pa) != NULL;
}
static void
alc_get_macaddr(struct alc_softc *sc)
{
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
alc_get_macaddr_816x(sc);
else
alc_get_macaddr_813x(sc);
}
static void
alc_get_macaddr_813x(struct alc_softc *sc)
{
uint32_t opt;
uint16_t val;
int eeprom, i;
eeprom = 0;
opt = CSR_READ_4(sc, ALC_OPT_CFG);
if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
(CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
/*
* EEPROM found, let TWSI reload EEPROM configuration.
* This will set ethernet address of controller.
*/
eeprom++;
switch (sc->alc_ident->deviceid) {
case PCI_PRODUCT_ATTANSIC_AR8131:
case PCI_PRODUCT_ATTANSIC_AR8132:
if ((opt & OPT_CFG_CLK_ENB) == 0) {
opt |= OPT_CFG_CLK_ENB;
CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
CSR_READ_4(sc, ALC_OPT_CFG);
DELAY(1000);
}
break;
case PCI_PRODUCT_ATTANSIC_AR8151:
case PCI_PRODUCT_ATTANSIC_AR8151_V2:
case PCI_PRODUCT_ATTANSIC_AR8152_B:
case PCI_PRODUCT_ATTANSIC_AR8152_B2:
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x00);
alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, &val);
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, val & 0xFF7F);
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x3B);
alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, &val);
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, val | 0x0008);
DELAY(20);
break;
}
CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
CSR_READ_4(sc, ALC_WOL_CFG);
CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
TWSI_CFG_SW_LD_START);
for (i = 100; i > 0; i--) {
DELAY(1000);
if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
TWSI_CFG_SW_LD_START) == 0)
break;
}
if (i == 0)
printf("%s: reloading EEPROM timeout!\n",
device_xname(sc->sc_dev));
} else {
if (alcdebug)
printf("%s: EEPROM not found!\n", device_xname(sc->sc_dev));
}
if (eeprom != 0) {
switch (sc->alc_ident->deviceid) {
case PCI_PRODUCT_ATTANSIC_AR8131:
case PCI_PRODUCT_ATTANSIC_AR8132:
if ((opt & OPT_CFG_CLK_ENB) != 0) {
opt &= ~OPT_CFG_CLK_ENB;
CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
CSR_READ_4(sc, ALC_OPT_CFG);
DELAY(1000);
}
break;
case PCI_PRODUCT_ATTANSIC_AR8151:
case PCI_PRODUCT_ATTANSIC_AR8151_V2:
case PCI_PRODUCT_ATTANSIC_AR8152_B:
case PCI_PRODUCT_ATTANSIC_AR8152_B2:
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x00);
alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, &val);
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, val | 0x0080);
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x3B);
alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, &val);
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, val & 0xFFF7);
DELAY(20);
break;
}
}
alc_get_macaddr_par(sc);
}
static void
alc_get_macaddr_816x(struct alc_softc *sc)
{
uint32_t reg;
int i, reloaded;
reloaded = 0;
/* Try to reload station address via TWSI. */
for (i = 100; i > 0; i--) {
reg = CSR_READ_4(sc, ALC_SLD);
if ((reg & (SLD_PROGRESS | SLD_START)) == 0)
break;
DELAY(1000);
}
if (i != 0) {
CSR_WRITE_4(sc, ALC_SLD, reg | SLD_START);
for (i = 100; i > 0; i--) {
DELAY(1000);
reg = CSR_READ_4(sc, ALC_SLD);
if ((reg & SLD_START) == 0)
break;
}
if (i != 0)
reloaded++;
else if (alcdebug)
printf("%s: reloading station address via TWSI timed out!\n",
device_xname(sc->sc_dev));
}
/* Try to reload station address from EEPROM or FLASH. */
if (reloaded == 0) {
reg = CSR_READ_4(sc, ALC_EEPROM_LD);
if ((reg & (EEPROM_LD_EEPROM_EXIST |
EEPROM_LD_FLASH_EXIST)) != 0) {
for (i = 100; i > 0; i--) {
reg = CSR_READ_4(sc, ALC_EEPROM_LD);
if ((reg & (EEPROM_LD_PROGRESS |
EEPROM_LD_START)) == 0)
break;
DELAY(1000);
}
if (i != 0) {
CSR_WRITE_4(sc, ALC_EEPROM_LD, reg |
EEPROM_LD_START);
for (i = 100; i > 0; i--) {
DELAY(1000);
reg = CSR_READ_4(sc, ALC_EEPROM_LD);
if ((reg & EEPROM_LD_START) == 0)
break;
}
} else if (alcdebug)
printf("%s: reloading EEPROM/FLASH timed out!\n",
device_xname(sc->sc_dev));
}
}
alc_get_macaddr_par(sc);
}
static void
alc_get_macaddr_par(struct alc_softc *sc)
{
uint32_t ea[2];
ea[0] = CSR_READ_4(sc, ALC_PAR0);
ea[1] = CSR_READ_4(sc, ALC_PAR1);
sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
}
static void
alc_disable_l0s_l1(struct alc_softc *sc)
{
uint32_t pmcfg;
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
/* Another magic from vendor. */
pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
PM_CFG_MAC_ASPM_CHK | PM_CFG_SERDES_PD_EX_L1);
pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB |
PM_CFG_SERDES_PLL_L1_ENB | PM_CFG_SERDES_L1_ENB;
CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
}
}
static void
alc_phy_reset(struct alc_softc *sc)
{
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
alc_phy_reset_816x(sc);
else
alc_phy_reset_813x(sc);
}
static void
alc_phy_reset_813x(struct alc_softc *sc)
{
uint16_t data;
/* Reset magic from Linux. */
CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_SEL_ANA_RESET);
CSR_READ_2(sc, ALC_GPHY_CFG);
DELAY(10 * 1000);
CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
GPHY_CFG_SEL_ANA_RESET);
CSR_READ_2(sc, ALC_GPHY_CFG);
DELAY(10 * 1000);
/* DSP fixup, Vendor magic. */
if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x000A);
alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, &data);
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data & 0xDFFF);
}
if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x003B);
alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, &data);
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data & 0xFFF7);
DELAY(20 * 1000);
}
if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151) {
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x0029);
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, 0x929D);
}
if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132 ||
sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, 0x0029);
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, 0xB6DD);
}
/* Load DSP codes, vendor magic. */
data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, MII_ANA_CFG18);
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data);
data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
ANA_SERDES_EN_LCKDT;
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, MII_ANA_CFG5);
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data);
data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
ANA_LONG_CABLE_TH_100_MASK) |
((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
ANA_SHORT_CABLE_TH_100_SHIFT) |
ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, MII_ANA_CFG54);
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data);
data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, MII_ANA_CFG4);
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data);
data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
ANA_OEN_125M;
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_ADDR, MII_ANA_CFG0);
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, data);
DELAY(1000);
/* Disable hibernation. */
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
0x0029);
alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, &data);
data &= ~0x8000;
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
data);
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
0x000B);
alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
ALC_MII_DBG_DATA, &data);
data &= ~0x8000;
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
data);
}
static void
alc_phy_reset_816x(struct alc_softc *sc)
{
uint32_t val;
uint16_t phyval;
val = CSR_READ_4(sc, ALC_GPHY_CFG);
val &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE |
GPHY_CFG_GATE_25M_ENB | GPHY_CFG_PHY_IDDQ | GPHY_CFG_PHY_PLL_ON |
GPHY_CFG_PWDOWN_HW | GPHY_CFG_100AB_ENB);
val |= GPHY_CFG_SEL_ANA_RESET;
#ifdef notyet
val |= GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN | GPHY_CFG_SEL_ANA_RESET;
#else
/* Disable PHY hibernation. */
val &= ~(GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN);
#endif
CSR_WRITE_4(sc, ALC_GPHY_CFG, val);
DELAY(10);
CSR_WRITE_4(sc, ALC_GPHY_CFG, val | GPHY_CFG_EXT_RESET);
DELAY(800);
/* Vendor PHY magic. */
#ifdef notyet
alc_miidbg_writereg(sc, MII_DBG_LEGCYPS, DBG_LEGCYPS_DEFAULT);
alc_miidbg_writereg(sc, MII_DBG_SYSMODCTL, DBG_SYSMODCTL_DEFAULT);
alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_VDRVBIAS,
EXT_VDRVBIAS_DEFAULT);
#else
/* Disable PHY hibernation. */
alc_miidbg_writereg(sc, MII_DBG_LEGCYPS,
DBG_LEGCYPS_DEFAULT & ~DBG_LEGCYPS_ENB);
alc_miidbg_writereg(sc, MII_DBG_HIBNEG,
DBG_HIBNEG_DEFAULT & ~(DBG_HIBNEG_PSHIB_EN | DBG_HIBNEG_HIB_PULSE));
alc_miidbg_writereg(sc, MII_DBG_GREENCFG, DBG_GREENCFG_DEFAULT);
#endif
/* XXX Disable EEE. */
val = CSR_READ_4(sc, ALC_LPI_CTL);
val &= ~LPI_CTL_ENB;
CSR_WRITE_4(sc, ALC_LPI_CTL, val);
alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_LOCAL_EEEADV, 0);
/* PHY power saving. */
alc_miidbg_writereg(sc, MII_DBG_TST10BTCFG, DBG_TST10BTCFG_DEFAULT);
alc_miidbg_writereg(sc, MII_DBG_SRDSYSMOD, DBG_SRDSYSMOD_DEFAULT);
alc_miidbg_writereg(sc, MII_DBG_TST100BTCFG, DBG_TST100BTCFG_DEFAULT);
alc_miidbg_writereg(sc, MII_DBG_ANACTL, DBG_ANACTL_DEFAULT);
alc_miidbg_readreg(sc, MII_DBG_GREENCFG2, &phyval);
phyval &= ~DBG_GREENCFG2_GATE_DFSE_EN;
alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, phyval);
/* RTL8139C, 120m issue. */
alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_NLP78,
ANEG_NLP78_120M_DEFAULT);
alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_S3DIG10,
ANEG_S3DIG10_DEFAULT);
if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0) {
/* Turn off half amplitude. */
alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3, &phyval);
phyval |= EXT_CLDCTL3_BP_CABLE1TH_DET_GT;
alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3, phyval);
/* Turn off Green feature. */
alc_miidbg_readreg(sc, MII_DBG_GREENCFG2, &phyval);
phyval |= DBG_GREENCFG2_BP_GREEN;
alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, phyval);
/* Turn off half bias. */
alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5, &phyval);
val |= EXT_CLDCTL5_BP_VD_HLFBIAS;
alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5, phyval);
}
}
static void
alc_phy_down(struct alc_softc *sc)
{
uint32_t gphy;
switch (sc->alc_ident->deviceid) {
case PCI_PRODUCT_ATTANSIC_AR8161:
case PCI_PRODUCT_ATTANSIC_E2200:
case PCI_PRODUCT_ATTANSIC_E2400:
case PCI_PRODUCT_ATTANSIC_E2500:
case PCI_PRODUCT_ATTANSIC_AR8162:
case PCI_PRODUCT_ATTANSIC_AR8171:
case PCI_PRODUCT_ATTANSIC_AR8172:
gphy = CSR_READ_4(sc, ALC_GPHY_CFG);
gphy &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE |
GPHY_CFG_100AB_ENB | GPHY_CFG_PHY_PLL_ON);
gphy |= GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
GPHY_CFG_SEL_ANA_RESET;
gphy |= GPHY_CFG_PHY_IDDQ | GPHY_CFG_PWDOWN_HW;
CSR_WRITE_4(sc, ALC_GPHY_CFG, gphy);
break;
case PCI_PRODUCT_ATTANSIC_AR8151:
case PCI_PRODUCT_ATTANSIC_AR8151_V2:
case PCI_PRODUCT_ATTANSIC_AR8152_B:
case PCI_PRODUCT_ATTANSIC_AR8152_B2:
/*
* GPHY power down caused more problems on AR8151 v2.0.
* When driver is reloaded after GPHY power down,
* accesses to PHY/MAC registers hung the system. Only
* cold boot recovered from it. I'm not sure whether
* AR8151 v1.0 also requires this one though. I don't
* have AR8151 v1.0 controller in hand.
* The only option left is to isolate the PHY and
* initiates power down the PHY which in turn saves
* more power when driver is unloaded.
*/
alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
MII_BMCR, BMCR_ISO | BMCR_PDOWN);
break;
default:
/* Force PHY down. */
CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
GPHY_CFG_PWDOWN_HW);
DELAY(1000);
break;
}
}
static void
alc_aspm(struct alc_softc *sc, int init, int media)
{
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
alc_aspm_816x(sc, init);
else
alc_aspm_813x(sc, media);
}
static void
alc_aspm_813x(struct alc_softc *sc, int media)
{
uint32_t pmcfg;
uint16_t linkcfg;
pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
(ALC_FLAG_APS | ALC_FLAG_PCIE))
linkcfg = CSR_READ_2(sc, sc->alc_expcap +
PCIE_LCSR);
else
linkcfg = 0;
pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
pmcfg |= PM_CFG_MAC_ASPM_CHK;
pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
/* Disable extended sync except AR8152 B v1.0 */
linkcfg &= ~0x80;
if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
sc->alc_rev == ATHEROS_AR8152_B_V10)
linkcfg |= 0x80;
CSR_WRITE_2(sc, sc->alc_expcap + PCIE_LCSR,
linkcfg);
pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
PM_CFG_HOTRST);
pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
PM_CFG_L1_ENTRY_TIMER_SHIFT);
pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
PM_CFG_PM_REQ_TIMER_SHIFT);
pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
}
if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
pmcfg |= PM_CFG_ASPM_L0S_ENB;
if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
pmcfg |= PM_CFG_ASPM_L1_ENB;
if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
if (sc->alc_ident->deviceid ==
PCI_PRODUCT_ATTANSIC_AR8152_B)
pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
PM_CFG_SERDES_PLL_L1_ENB |
PM_CFG_SERDES_BUDS_RX_L1_ENB);
pmcfg |= PM_CFG_CLK_SWH_L1;
if (media == IFM_100_TX || media == IFM_1000_T) {
pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
switch (sc->alc_ident->deviceid) {
case PCI_PRODUCT_ATTANSIC_AR8152_B:
pmcfg |= (7 <<
PM_CFG_L1_ENTRY_TIMER_SHIFT);
break;
case PCI_PRODUCT_ATTANSIC_AR8152_B2:
case PCI_PRODUCT_ATTANSIC_AR8151_V2:
pmcfg |= (4 <<
PM_CFG_L1_ENTRY_TIMER_SHIFT);
break;
default:
pmcfg |= (15 <<
PM_CFG_L1_ENTRY_TIMER_SHIFT);
break;
}
}
} else {
pmcfg |= PM_CFG_SERDES_L1_ENB |
PM_CFG_SERDES_PLL_L1_ENB |
PM_CFG_SERDES_BUDS_RX_L1_ENB;
pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
}
} else {
pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
PM_CFG_SERDES_PLL_L1_ENB);
pmcfg |= PM_CFG_CLK_SWH_L1;
if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
pmcfg |= PM_CFG_ASPM_L1_ENB;
}
CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
}
static void
alc_aspm_816x(struct alc_softc *sc, int init)
{
uint32_t pmcfg;
pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_816X_MASK;
pmcfg |= PM_CFG_L1_ENTRY_TIMER_816X_DEFAULT;
pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
pmcfg |= PM_CFG_PM_REQ_TIMER_816X_DEFAULT;
pmcfg &= ~PM_CFG_LCKDET_TIMER_MASK;
pmcfg |= PM_CFG_LCKDET_TIMER_DEFAULT;
pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_CLK_SWH_L1 | PM_CFG_PCIE_RECV;
pmcfg &= ~(PM_CFG_RX_L1_AFTER_L0S | PM_CFG_TX_L1_AFTER_L0S |
PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB |
PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SA_DLY_ENB |
PM_CFG_MAC_ASPM_CHK | PM_CFG_HOTRST);
if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
(sc->alc_rev & 0x01) != 0)
pmcfg |= PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB;
if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
/* Link up, enable both L0s, L1s. */
pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
PM_CFG_MAC_ASPM_CHK;
} else {
if (init != 0)
pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
PM_CFG_MAC_ASPM_CHK;
else if ((sc->sc_ec.ec_if.if_flags & IFF_RUNNING) != 0)
pmcfg |= PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK;
}
CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
}
static void
alc_init_pcie(struct alc_softc *sc)
{
const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
uint32_t cap, ctl, val;
int state;
/* Clear data link and flow-control protocol error. */
val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
PCIE_PHYMISC_FORCE_RCV_DET);
if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
sc->alc_rev == ATHEROS_AR8152_B_V10) {
val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
PCIE_PHYMISC2_SERDES_TH_MASK);
val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
}
/* Disable ASPM L0S and L1. */
cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
sc->alc_expcap + PCIE_LCAP) >> 16;
if ((cap & PCIE_LCAP_ASPM) != 0) {
ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
sc->alc_expcap + PCIE_LCSR) >> 16;
if ((ctl & 0x08) != 0)
sc->alc_rcb = DMA_CFG_RCB_128;
if (alcdebug)
printf("%s: RCB %u bytes\n",
device_xname(sc->sc_dev),
sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
state = ctl & 0x03;
if (state & 0x01)
sc->alc_flags |= ALC_FLAG_L0S;
if (state & 0x02)
sc->alc_flags |= ALC_FLAG_L1S;
if (alcdebug)
printf("%s: ASPM %s %s\n",
device_xname(sc->sc_dev),
aspm_state[state],
state == 0 ? "disabled" : "enabled");
alc_disable_l0s_l1(sc);
} else {
aprint_debug_dev(sc->sc_dev, "no ASPM support\n");
}
} else {
val = CSR_READ_4(sc, ALC_PDLL_TRNS1);
val &= ~PDLL_TRNS1_D3PLLOFF_ENB;
CSR_WRITE_4(sc, ALC_PDLL_TRNS1, val);
val = CSR_READ_4(sc, ALC_MASTER_CFG);
if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
(sc->alc_rev & 0x01) != 0) {
if ((val & MASTER_WAKEN_25M) == 0 ||
(val & MASTER_CLK_SEL_DIS) == 0) {
val |= MASTER_WAKEN_25M | MASTER_CLK_SEL_DIS;
CSR_WRITE_4(sc, ALC_MASTER_CFG, val);
}
} else {
if ((val & MASTER_WAKEN_25M) == 0 ||
(val & MASTER_CLK_SEL_DIS) != 0) {
val |= MASTER_WAKEN_25M;
val &= ~MASTER_CLK_SEL_DIS;
CSR_WRITE_4(sc, ALC_MASTER_CFG, val);
}
}
}
alc_aspm(sc, 1, IFM_UNKNOWN);
}
static void
alc_attach(device_t parent, device_t self, void *aux)
{
struct alc_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr;
struct ifnet *ifp;
struct mii_data * const mii = &sc->sc_miibus;
pcireg_t memtype;
uint16_t burst;
int base, mii_flags, error = 0;
char intrbuf[PCI_INTRSTR_LEN];
sc->alc_ident = alc_find_ident(pa);
sc->alc_rev = PCI_REVISION(pa->pa_class);
aprint_naive("\n");
aprint_normal(": %s\n", sc->alc_ident->name);
sc->sc_dev = self;
sc->sc_pct = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
if (pci_dma64_available(pa))
sc->sc_dmat = pa->pa_dmat64;
else
sc->sc_dmat = pa->pa_dmat;
/*
* Allocate IO memory
*/
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR);
switch (memtype) {
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
break;
default:
aprint_error_dev(self, "invalid base address register\n");
break;
}
if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
&sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
aprint_error_dev(self, "could not map mem space\n");
return;
}
if (pci_intr_map(pa, &ih) != 0) {
printf(": can't map interrupt\n");
goto fail;
}
/*
* Allocate IRQ
*/
intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
sc->sc_irq_handle = pci_intr_establish_xname(pc, ih, IPL_NET, alc_intr,
sc, device_xname(self));
if (sc->sc_irq_handle == NULL) {
printf(": could not establish interrupt");
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
goto fail;
}
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
/* Set PHY address. */
sc->alc_phyaddr = ALC_PHY_ADDR;
/* Initialize DMA parameters. */
sc->alc_dma_rd_burst = 0;
sc->alc_dma_wr_burst = 0;
sc->alc_rcb = DMA_CFG_RCB_64;
if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
&base, NULL)) {
sc->alc_flags |= ALC_FLAG_PCIE;
sc->alc_expcap = base;
burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
base + PCIE_DCSR) >> 16;
sc->alc_dma_rd_burst = (burst & 0x7000) >> 12;
sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5;
if (alcdebug) {
printf("%s: Read request size : %u bytes.\n",
device_xname(sc->sc_dev),
alc_dma_burst[sc->alc_dma_rd_burst]);
printf("%s: TLP payload size : %u bytes.\n",
device_xname(sc->sc_dev),
alc_dma_burst[sc->alc_dma_wr_burst]);
}
if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
sc->alc_dma_rd_burst = 3;
if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
sc->alc_dma_wr_burst = 3;
/*
* Force maximum payload size to 128 bytes for
* E2200/E2400/E2500.
* Otherwise it triggers DMA write error.
*/
if ((sc->alc_flags & ALC_FLAG_E2X00) != 0)
sc->alc_dma_wr_burst = 0;
alc_init_pcie(sc);
}
/* Reset PHY. */
alc_phy_reset(sc);
/* Reset the ethernet controller. */
alc_stop_mac(sc);
alc_reset(sc);
/*
* One odd thing is AR8132 uses the same PHY hardware(F1
* gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
* the PHY supports 1000Mbps but that's not true. The PHY
* used in AR8132 can't establish gigabit link even if it
* shows the same PHY model/revision number of AR8131.
*/
switch (sc->alc_ident->deviceid) {
case PCI_PRODUCT_ATTANSIC_E2200:
case PCI_PRODUCT_ATTANSIC_E2400:
case PCI_PRODUCT_ATTANSIC_E2500:
sc->alc_flags |= ALC_FLAG_E2X00;
/* FALLTHROUGH */
case PCI_PRODUCT_ATTANSIC_AR8161:
if (PCI_SUBSYS_ID(pci_conf_read(
sc->sc_pct, sc->sc_pcitag, PCI_SUBSYS_ID_REG)) == 0x0091 &&
sc->alc_rev == 0)
sc->alc_flags |= ALC_FLAG_LINK_WAR;
/* FALLTHROUGH */
case PCI_PRODUCT_ATTANSIC_AR8171:
sc->alc_flags |= ALC_FLAG_AR816X_FAMILY;
break;
case PCI_PRODUCT_ATTANSIC_AR8162:
case PCI_PRODUCT_ATTANSIC_AR8172:
sc->alc_flags |= ALC_FLAG_FASTETHER | ALC_FLAG_AR816X_FAMILY;
break;
case PCI_PRODUCT_ATTANSIC_AR8152_B:
case PCI_PRODUCT_ATTANSIC_AR8152_B2:
sc->alc_flags |= ALC_FLAG_APS;
/* FALLTHROUGH */
case PCI_PRODUCT_ATTANSIC_AR8132:
sc->alc_flags |= ALC_FLAG_FASTETHER;
break;
case PCI_PRODUCT_ATTANSIC_AR8151:
case PCI_PRODUCT_ATTANSIC_AR8151_V2:
sc->alc_flags |= ALC_FLAG_APS;
/* FALLTHROUGH */
default:
break;
}
sc->alc_flags |= ALC_FLAG_JUMBO;
/*
* It seems that AR813x/AR815x has silicon bug for SMB. In
* addition, Atheros said that enabling SMB wouldn't improve
* performance. However I think it's bad to access lots of
* registers to extract MAC statistics.
*/
sc->alc_flags |= ALC_FLAG_SMB_BUG;
/*
* Don't use Tx CMB. It is known to have silicon bug.
*/
sc->alc_flags |= ALC_FLAG_CMB_BUG;
sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
MASTER_CHIP_REV_SHIFT;
if (alcdebug) {
printf("%s: PCI device revision : 0x%04x\n",
device_xname(sc->sc_dev), sc->alc_rev);
printf("%s: Chip id/revision : 0x%04x\n",
device_xname(sc->sc_dev), sc->alc_chip_rev);
printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
}
error = alc_dma_alloc(sc);
if (error)
goto fail;
callout_init(&sc->sc_tick_ch, 0);
callout_setfunc(&sc->sc_tick_ch, alc_tick, sc);
/* Load station address. */
alc_get_macaddr(sc);
aprint_normal_dev(self, "Ethernet address %s\n",
ether_sprintf(sc->alc_eaddr));
ifp = &sc->sc_ec.ec_if;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = alc_init;
ifp->if_ioctl = alc_ioctl;
ifp->if_start = alc_start;
ifp->if_stop = alc_stop;
ifp->if_watchdog = alc_watchdog;
IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1);
IFQ_SET_READY(&ifp->if_snd);
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
#ifdef ALC_CHECKSUM
ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
#endif
#if NVLAN > 0
sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
sc->sc_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
#endif
/*
* XXX
* It seems enabling Tx checksum offloading makes more trouble.
* Sometimes the controller does not receive any frames when
* Tx checksum offloading is enabled. I'm not sure whether this
* is a bug in Tx checksum offloading logic or I got broken
* sample boards. To safety, don't enable Tx checksum offloading
* by default but give chance to users to toggle it if they know
* their controllers work without problems.
* Fortunately, Tx checksum offloading for AR816x family
* seems to work.
*/
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
ifp->if_capenable &= ~IFCAP_CSUM_IPv4_Tx;
ifp->if_capabilities &= ~ALC_CSUM_FEATURES;
}
/* Set up MII bus. */
mii->mii_ifp = ifp;
mii->mii_readreg = alc_miibus_readreg;
mii->mii_writereg = alc_miibus_writereg;
mii->mii_statchg = alc_miibus_statchg;
sc->sc_ec.ec_mii = mii;
ifmedia_init(&mii->mii_media, 0, alc_mediachange, alc_mediastatus);
mii_flags = 0;
if ((sc->alc_flags & ALC_FLAG_JUMBO) != 0)
mii_flags |= MIIF_DOPAUSE;
mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, mii_flags);
if (LIST_FIRST(&mii->mii_phys) == NULL) {
printf("%s: no PHY found!\n", device_xname(sc->sc_dev));
ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
0, NULL);
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
} else
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
if_attach(ifp);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, sc->alc_eaddr);
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
else
pmf_class_network_register(self, ifp);
return;
fail:
alc_dma_free(sc);
if (sc->sc_irq_handle != NULL) {
pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
sc->sc_irq_handle = NULL;
}
if (sc->sc_mem_size) {
bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
sc->sc_mem_size = 0;
}
}
static int
alc_detach(device_t self, int flags)
{
struct alc_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_ec.ec_if;
int s;
s = splnet();
alc_stop(ifp, 0);
splx(s);
mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
ether_ifdetach(ifp);
if_detach(ifp);
alc_dma_free(sc);
/* Delete all remaining media. */
ifmedia_fini(&sc->sc_miibus.mii_media);
alc_phy_down(sc);
if (sc->sc_irq_handle != NULL) {
pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
sc->sc_irq_handle = NULL;
}
if (sc->sc_mem_size) {
bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
sc->sc_mem_size = 0;
}
return (0);
}
static int
alc_dma_alloc(struct alc_softc *sc)
{
struct alc_txdesc *txd;
struct alc_rxdesc *rxd;
int nsegs, error, i;
/*
* Create DMA stuffs for TX ring
*/
error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1,
ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map);
if (error) {
sc->alc_cdata.alc_tx_ring_map = NULL;
return (ENOBUFS);
}
/* Allocate DMA'able memory for TX ring */
error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ,
PAGE_SIZE, 0, &sc->alc_rdata.alc_tx_ring_seg, 1,
&nsegs, BUS_DMA_NOWAIT);
if (error) {
printf("%s: could not allocate DMA'able memory for Tx ring.\n",
device_xname(sc->sc_dev));
return error;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg,
nsegs, ALC_TX_RING_SZ, (void **)&sc->alc_rdata.alc_tx_ring,
BUS_DMA_NOWAIT);
if (error)
return (ENOBUFS);
/* Load the DMA map for Tx ring. */
error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map,
sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for Tx ring.\n",
device_xname(sc->sc_dev));
bus_dmamem_free(sc->sc_dmat,
&sc->alc_rdata.alc_tx_ring_seg, 1);
return error;
}
sc->alc_rdata.alc_tx_ring_paddr =
sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr;
/*
* Create DMA stuffs for RX ring
*/
error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1,
ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map);
if (error)
return (ENOBUFS);
/* Allocate DMA'able memory for RX ring */
error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ,
PAGE_SIZE, 0, &sc->alc_rdata.alc_rx_ring_seg, 1,
&nsegs, BUS_DMA_NOWAIT);
if (error) {
printf("%s: could not allocate DMA'able memory for Rx ring.\n",
device_xname(sc->sc_dev));
return error;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg,
nsegs, ALC_RX_RING_SZ, (void **)&sc->alc_rdata.alc_rx_ring,
BUS_DMA_NOWAIT);
if (error)
return (ENOBUFS);
/* Load the DMA map for Rx ring. */
error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map,
sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for Rx ring.\n",
device_xname(sc->sc_dev));
bus_dmamem_free(sc->sc_dmat,
&sc->alc_rdata.alc_rx_ring_seg, 1);
return error;
}
sc->alc_rdata.alc_rx_ring_paddr =
sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr;
/*
* Create DMA stuffs for RX return ring
*/
error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1,
ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map);
if (error)
return (ENOBUFS);
/* Allocate DMA'able memory for RX return ring */
error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ,
PAGE_SIZE, 0, &sc->alc_rdata.alc_rr_ring_seg, 1,
&nsegs, BUS_DMA_NOWAIT);
if (error) {
printf("%s: could not allocate DMA'able memory for Rx "
"return ring.\n", device_xname(sc->sc_dev));
return error;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg,
nsegs, ALC_RR_RING_SZ, (void **)&sc->alc_rdata.alc_rr_ring,
BUS_DMA_NOWAIT);
if (error)
return (ENOBUFS);
/* Load the DMA map for Rx return ring. */
error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map,
sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for Rx return ring."
"\n", device_xname(sc->sc_dev));
bus_dmamem_free(sc->sc_dmat,
&sc->alc_rdata.alc_rr_ring_seg, 1);
return error;
}
sc->alc_rdata.alc_rr_ring_paddr =
sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr;
/*
* All of the memory we allocated for the Rx ring / Rx Return
* ring need to be in the same 4GB segment. Make sure this is
* so.
*
* XXX We don't care WHAT 4GB segment they're in, just that
* XXX they're all in the same one. Need some bus_dma API
* XXX help to make this easier to enforce when we actually
* XXX perform the allocation.
*/
if (ALC_ADDR_HI(sc->alc_rdata.alc_rx_ring_paddr) !=
ALC_ADDR_HI(sc->alc_rdata.alc_rr_ring_paddr)) {
aprint_error_dev(sc->sc_dev,
"Rx control data allocation constraints failed\n");
return ENOBUFS;
}
/*
* Create DMA stuffs for CMB block
*/
error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1,
ALC_CMB_SZ, 0, BUS_DMA_NOWAIT,
&sc->alc_cdata.alc_cmb_map);
if (error)
return (ENOBUFS);
/* Allocate DMA'able memory for CMB block */
error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ,
PAGE_SIZE, 0, &sc->alc_rdata.alc_cmb_seg, 1,
&nsegs, BUS_DMA_NOWAIT);
if (error) {
printf("%s: could not allocate DMA'able memory for "
"CMB block\n", device_xname(sc->sc_dev));
return error;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg,
nsegs, ALC_CMB_SZ, (void **)&sc->alc_rdata.alc_cmb,
BUS_DMA_NOWAIT);
if (error)
return (ENOBUFS);
/* Load the DMA map for CMB block. */
error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map,
sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL,
BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for CMB block\n",
device_xname(sc->sc_dev));
bus_dmamem_free(sc->sc_dmat,
&sc->alc_rdata.alc_cmb_seg, 1);
return error;
}
sc->alc_rdata.alc_cmb_paddr =
sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr;
/*
* Create DMA stuffs for SMB block
*/
error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1,
ALC_SMB_SZ, 0, BUS_DMA_NOWAIT,
&sc->alc_cdata.alc_smb_map);
if (error)
return (ENOBUFS);
/* Allocate DMA'able memory for SMB block */
error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ,
PAGE_SIZE, 0, &sc->alc_rdata.alc_smb_seg, 1,
&nsegs, BUS_DMA_NOWAIT);
if (error) {
printf("%s: could not allocate DMA'able memory for "
"SMB block\n", device_xname(sc->sc_dev));
return error;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg,
nsegs, ALC_SMB_SZ, (void **)&sc->alc_rdata.alc_smb,
BUS_DMA_NOWAIT);
if (error)
return (ENOBUFS);
/* Load the DMA map for SMB block */
error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map,
sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL,
BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for SMB block\n",
device_xname(sc->sc_dev));
bus_dmamem_free(sc->sc_dmat,
&sc->alc_rdata.alc_smb_seg, 1);
return error;
}
sc->alc_rdata.alc_smb_paddr =
sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr;
/* Create DMA maps for Tx buffers. */
for (i = 0; i < ALC_TX_RING_CNT; i++) {
txd = &sc->alc_cdata.alc_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE,
ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
&txd->tx_dmamap);
if (error) {
printf("%s: could not create Tx dmamap.\n",
device_xname(sc->sc_dev));
return error;
}
}
/* Create DMA maps for Rx buffers. */
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap);
if (error) {
printf("%s: could not create spare Rx dmamap.\n",
device_xname(sc->sc_dev));
return error;
}
for (i = 0; i < ALC_RX_RING_CNT; i++) {
rxd = &sc->alc_cdata.alc_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
if (error) {
printf("%s: could not create Rx dmamap.\n",
device_xname(sc->sc_dev));
return error;
}
}
return (0);
}
static void
alc_dma_free(struct alc_softc *sc)
{
struct alc_txdesc *txd;
struct alc_rxdesc *rxd;
int i;
/* Tx buffers */
for (i = 0; i < ALC_TX_RING_CNT; i++) {
txd = &sc->alc_cdata.alc_txdesc[i];
if (txd->tx_dmamap != NULL) {
bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
/* Rx buffers */
for (i = 0; i < ALC_RX_RING_CNT; i++) {
rxd = &sc->alc_cdata.alc_rxdesc[i];
if (rxd->rx_dmamap != NULL) {
bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc->alc_cdata.alc_rx_sparemap != NULL) {
bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap);
sc->alc_cdata.alc_rx_sparemap = NULL;
}
/* Tx ring. */
if (sc->alc_cdata.alc_tx_ring_map != NULL)
bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map);
if (sc->alc_cdata.alc_tx_ring_map != NULL &&
sc->alc_rdata.alc_tx_ring != NULL)
bus_dmamem_free(sc->sc_dmat,
&sc->alc_rdata.alc_tx_ring_seg, 1);
sc->alc_rdata.alc_tx_ring = NULL;
sc->alc_cdata.alc_tx_ring_map = NULL;
/* Rx ring. */
if (sc->alc_cdata.alc_rx_ring_map != NULL)
bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map);
if (sc->alc_cdata.alc_rx_ring_map != NULL &&
sc->alc_rdata.alc_rx_ring != NULL)
bus_dmamem_free(sc->sc_dmat,
&sc->alc_rdata.alc_rx_ring_seg, 1);
sc->alc_rdata.alc_rx_ring = NULL;
sc->alc_cdata.alc_rx_ring_map = NULL;
/* Rx return ring. */
if (sc->alc_cdata.alc_rr_ring_map != NULL)
bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map);
if (sc->alc_cdata.alc_rr_ring_map != NULL &&
sc->alc_rdata.alc_rr_ring != NULL)
bus_dmamem_free(sc->sc_dmat,
&sc->alc_rdata.alc_rr_ring_seg, 1);
sc->alc_rdata.alc_rr_ring = NULL;
sc->alc_cdata.alc_rr_ring_map = NULL;
/* CMB block */
if (sc->alc_cdata.alc_cmb_map != NULL)
bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map);
if (sc->alc_cdata.alc_cmb_map != NULL &&
sc->alc_rdata.alc_cmb != NULL)
bus_dmamem_free(sc->sc_dmat,
&sc->alc_rdata.alc_cmb_seg, 1);
sc->alc_rdata.alc_cmb = NULL;
sc->alc_cdata.alc_cmb_map = NULL;
/* SMB block */
if (sc->alc_cdata.alc_smb_map != NULL)
bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map);
if (sc->alc_cdata.alc_smb_map != NULL &&
sc->alc_rdata.alc_smb != NULL)
bus_dmamem_free(sc->sc_dmat,
&sc->alc_rdata.alc_smb_seg, 1);
sc->alc_rdata.alc_smb = NULL;
sc->alc_cdata.alc_smb_map = NULL;
}
static int
alc_encap(struct alc_softc *sc, struct mbuf **m_head)
{
struct alc_txdesc *txd, *txd_last;
struct tx_desc *desc;
struct mbuf *m;
bus_dmamap_t map;
uint32_t cflags, poff, vtag;
int error, idx, nsegs, prod;
m = *m_head;
cflags = vtag = 0;
poff = 0;
prod = sc->alc_cdata.alc_tx_prod;
txd = &sc->alc_cdata.alc_txdesc[prod];
txd_last = txd;
map = txd->tx_dmamap;
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
if (error == EFBIG) {
error = 0;
*m_head = m_pullup(*m_head, MHLEN);
if (*m_head == NULL) {
printf("%s: can't defrag TX mbuf\n",
device_xname(sc->sc_dev));
return ENOBUFS;
}
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load defragged TX mbuf\n",
device_xname(sc->sc_dev));
m_freem(*m_head);
*m_head = NULL;
return error;
}
} else if (error) {
printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
return (error);
}
nsegs = map->dm_nsegs;
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/* Check descriptor overrun. */
if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
bus_dmamap_unload(sc->sc_dmat, map);
return (ENOBUFS);
}
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
m = *m_head;
desc = NULL;
idx = 0;
#if NVLAN > 0
/* Configure VLAN hardware tag insertion. */
if (vlan_has_tag(m)) {
vtag = htons(vlan_get_tag(m));
vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
cflags |= TD_INS_VLAN_TAG;
}
#endif
/* Configure Tx checksum offload. */
if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
cflags |= TD_CUSTOM_CSUM;
/* Set checksum start offset. */
cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
TD_PLOAD_OFFSET_MASK;
}
for (; idx < nsegs; idx++) {
desc = &sc->alc_rdata.alc_tx_ring[prod];
desc->len =
htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag);
desc->flags = htole32(cflags);
desc->addr = htole64(map->dm_segs[idx].ds_addr);
sc->alc_cdata.alc_tx_cnt++;
ALC_DESC_INC(prod, ALC_TX_RING_CNT);
}
/* Update producer index. */
sc->alc_cdata.alc_tx_prod = prod;
/* Finally set EOP on the last descriptor. */
prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
desc = &sc->alc_rdata.alc_tx_ring[prod];
desc->flags |= htole32(TD_EOP);
/* Swap dmamap of the first and the last. */
txd = &sc->alc_cdata.alc_txdesc[prod];
map = txd_last->tx_dmamap;
txd_last->tx_dmamap = txd->tx_dmamap;
txd->tx_dmamap = map;
txd->tx_m = m;
return (0);
}
static void
alc_start(struct ifnet *ifp)
{
struct alc_softc *sc = ifp->if_softc;
struct mbuf *m_head;
int enq;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
if ((sc->alc_flags & ALC_FLAG_LINK) == 0)
return;
if (IFQ_IS_EMPTY(&ifp->if_snd))
return;
/* Reclaim transmitted frames. */
if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
alc_txeof(sc);
enq = 0;
for (;;) {
IFQ_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (alc_encap(sc, &m_head)) {
if (m_head == NULL)
break;
ifp->if_flags |= IFF_OACTIVE;
break;
}
enq = 1;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
bpf_mtap(ifp, m_head, BPF_D_OUT);
}
if (enq) {
/* Sync descriptors. */
bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/* Kick. Assume we're using normal Tx priority queue. */
CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
(sc->alc_cdata.alc_tx_prod <<
MBOX_TD_PROD_LO_IDX_SHIFT) &
MBOX_TD_PROD_LO_IDX_MASK);
/* Set a timeout in case the chip goes out to lunch. */
ifp->if_timer = ALC_TX_TIMEOUT;
}
}
static void
alc_watchdog(struct ifnet *ifp)
{
struct alc_softc *sc = ifp->if_softc;
if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
printf("%s: watchdog timeout (missed link)\n",
device_xname(sc->sc_dev));
if_statinc(ifp, if_oerrors);
alc_init_backend(ifp, false);
return;
}
printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
if_statinc(ifp, if_oerrors);
alc_init_backend(ifp, false);
alc_start(ifp);
}
static int
alc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct alc_softc *sc = ifp->if_softc;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
error = ether_ioctl(ifp, cmd, data);
ifp->if_flags |= IFF_UP;
if (!(ifp->if_flags & IFF_RUNNING))
alc_init(ifp);
break;
case SIOCSIFFLAGS:
error = ether_ioctl(ifp, cmd, data);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING)
error = ENETRESET;
else
alc_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
alc_stop(ifp, 0);
}
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
alc_iff(sc);
error = 0;
}
splx(s);
return (error);
}
static void
alc_mac_config(struct alc_softc *sc)
{
struct mii_data *mii;
uint32_t reg;
mii = &sc->sc_miibus;
reg = CSR_READ_4(sc, ALC_MAC_CFG);
reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
MAC_CFG_SPEED_MASK);
if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
/* Reprogram MAC with resolved speed/duplex. */
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
reg |= MAC_CFG_SPEED_10_100;
break;
case IFM_1000_T:
reg |= MAC_CFG_SPEED_1000;
break;
}
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
reg |= MAC_CFG_FULL_DUPLEX;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
reg |= MAC_CFG_TX_FC;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
reg |= MAC_CFG_RX_FC;
}
CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
}
static void
alc_stats_clear(struct alc_softc *sc)
{
struct smb sb, *smb;
uint32_t *reg;
int i;
if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
sc->alc_cdata.alc_smb_map->dm_mapsize,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
smb = sc->alc_rdata.alc_smb;
/* Update done, clear. */
smb->updated = 0;
bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
sc->alc_cdata.alc_smb_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
} else {
for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
reg++) {
CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
i += sizeof(uint32_t);
}
/* Read Tx statistics. */
for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
reg++) {
CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
i += sizeof(uint32_t);
}
}
}
static void
alc_stats_update(struct alc_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct alc_hw_stats *stat;
struct smb sb, *smb;
uint32_t *reg;
int i;
stat = &sc->alc_stats;
if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
sc->alc_cdata.alc_smb_map->dm_mapsize,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
smb = sc->alc_rdata.alc_smb;
if (smb->updated == 0)
return;
} else {
smb = &sb;
/* Read Rx statistics. */
for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
reg++) {
*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
i += sizeof(uint32_t);
}
/* Read Tx statistics. */
for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
reg++) {
*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
i += sizeof(uint32_t);
}
}
/* Rx stats. */
stat->rx_frames += smb->rx_frames;
stat->rx_bcast_frames += smb->rx_bcast_frames;
stat->rx_mcast_frames += smb->rx_mcast_frames;
stat->rx_pause_frames += smb->rx_pause_frames;
stat->rx_control_frames += smb->rx_control_frames;
stat->rx_crcerrs += smb->rx_crcerrs;
stat->rx_lenerrs += smb->rx_lenerrs;
stat->rx_bytes += smb->rx_bytes;
stat->rx_runts += smb->rx_runts;
stat->rx_fragments += smb->rx_fragments;
stat->rx_pkts_64 += smb->rx_pkts_64;
stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
stat->rx_pkts_truncated += smb->rx_pkts_truncated;
stat->rx_fifo_oflows += smb->rx_fifo_oflows;
stat->rx_rrs_errs += smb->rx_rrs_errs;
stat->rx_alignerrs += smb->rx_alignerrs;
stat->rx_bcast_bytes += smb->rx_bcast_bytes;
stat->rx_mcast_bytes += smb->rx_mcast_bytes;
stat->rx_pkts_filtered += smb->rx_pkts_filtered;
/* Tx stats. */
stat->tx_frames += smb->tx_frames;
stat->tx_bcast_frames += smb->tx_bcast_frames;
stat->tx_mcast_frames += smb->tx_mcast_frames;
stat->tx_pause_frames += smb->tx_pause_frames;
stat->tx_excess_defer += smb->tx_excess_defer;
stat->tx_control_frames += smb->tx_control_frames;
stat->tx_deferred += smb->tx_deferred;
stat->tx_bytes += smb->tx_bytes;
stat->tx_pkts_64 += smb->tx_pkts_64;
stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
stat->tx_single_colls += smb->tx_single_colls;
stat->tx_multi_colls += smb->tx_multi_colls;
stat->tx_late_colls += smb->tx_late_colls;
stat->tx_excess_colls += smb->tx_excess_colls;
stat->tx_underrun += smb->tx_underrun;
stat->tx_desc_underrun += smb->tx_desc_underrun;
stat->tx_lenerrs += smb->tx_lenerrs;
stat->tx_pkts_truncated += smb->tx_pkts_truncated;
stat->tx_bcast_bytes += smb->tx_bcast_bytes;
stat->tx_mcast_bytes += smb->tx_mcast_bytes;
/* Update counters in ifnet. */
net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
if_statadd_ref(nsr, if_opackets, smb->tx_frames);
if_statadd_ref(nsr, if_collisions,
smb->tx_single_colls +
smb->tx_multi_colls * 2 + smb->tx_late_colls +
smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
if_statadd_ref(nsr, if_oerrors,
smb->tx_late_colls + smb->tx_excess_colls +
smb->tx_underrun + smb->tx_pkts_truncated);
if_statadd_ref(nsr, if_ierrors,
smb->rx_crcerrs + smb->rx_lenerrs +
smb->rx_runts + smb->rx_pkts_truncated +
smb->rx_fifo_oflows + smb->rx_rrs_errs +
smb->rx_alignerrs);
IF_STAT_PUTREF(ifp);
if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
/* Update done, clear. */
smb->updated = 0;
bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
sc->alc_cdata.alc_smb_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
}
static int
alc_intr(void *arg)
{
struct alc_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ec.ec_if;
uint32_t status;
status = CSR_READ_4(sc, ALC_INTR_STATUS);
if ((status & ALC_INTRS) == 0)
return (0);
/* Acknowledge and disable interrupts. */
CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
if (ifp->if_flags & IFF_RUNNING) {
if (status & INTR_RX_PKT) {
int error;
error = alc_rxintr(sc);
if (error) {
alc_init_backend(ifp, false);
return (0);
}
}
if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
INTR_TXQ_TO_RST)) {
if (status & INTR_DMA_RD_TO_RST)
printf("%s: DMA read error! -- resetting\n",
device_xname(sc->sc_dev));
if (status & INTR_DMA_WR_TO_RST)
printf("%s: DMA write error! -- resetting\n",
device_xname(sc->sc_dev));
if (status & INTR_TXQ_TO_RST)
printf("%s: TxQ reset! -- resetting\n",
device_xname(sc->sc_dev));
alc_init_backend(ifp, false);
return (0);
}
alc_txeof(sc);
if_schedule_deferred_start(ifp);
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
return (1);
}
static void
alc_txeof(struct alc_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct alc_txdesc *txd;
uint32_t cons, prod;
int prog;
if (sc->alc_cdata.alc_tx_cnt == 0)
return;
bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
BUS_DMASYNC_POSTREAD);
if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
sc->alc_cdata.alc_cmb_map->dm_mapsize,
BUS_DMASYNC_POSTREAD);
prod = sc->alc_rdata.alc_cmb->cons;
} else
prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
/* Assume we're using normal Tx priority queue. */
prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
MBOX_TD_CONS_LO_IDX_SHIFT;
cons = sc->alc_cdata.alc_tx_cons;
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
for (prog = 0; cons != prod; prog++,
ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
if (sc->alc_cdata.alc_tx_cnt <= 0)
break;
prog++;
ifp->if_flags &= ~IFF_OACTIVE;
sc->alc_cdata.alc_tx_cnt--;
txd = &sc->alc_cdata.alc_txdesc[cons];
if (txd->tx_m != NULL) {
/* Reclaim transmitted mbufs. */
bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREREAD);
sc->alc_cdata.alc_tx_cons = cons;
/*
* Unarm watchdog timer only when there is no pending
* frames in Tx queue.
*/
if (sc->alc_cdata.alc_tx_cnt == 0)
ifp->if_timer = 0;
}
static int
alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, bool init)
{
struct mbuf *m;
bus_dmamap_t map;
int error;
MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
return (ENOBUFS);
}
m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
error = bus_dmamap_load_mbuf(sc->sc_dmat,
sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(m);
if (init)
printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
return (error);
}
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
sc->alc_cdata.alc_rx_sparemap = map;
bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
return (0);
}
static int
alc_rxintr(struct alc_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct rx_rdesc *rrd;
uint32_t nsegs, status;
int rr_cons, prog;
bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
rr_cons = sc->alc_cdata.alc_rr_cons;
for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
status = le32toh(rrd->status);
if ((status & RRD_VALID) == 0)
break;
nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
if (nsegs == 0) {
/* This should not happen! */
if (alcdebug)
printf("%s: unexpected segment count -- "
"resetting\n", device_xname(sc->sc_dev));
return (EIO);
}
alc_rxeof(sc, rrd);
/* Clear Rx return status. */
rrd->status = 0;
ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
sc->alc_cdata.alc_rx_cons += nsegs;
sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
prog += nsegs;
}
if (prog > 0) {
/* Update the consumer index. */
sc->alc_cdata.alc_rr_cons = rr_cons;
/* Sync Rx return descriptors. */
bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/*
* Sync updated Rx descriptors such that controller see
* modified buffer addresses.
*/
bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/*
* Let controller know availability of new Rx buffers.
* Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
* it may be possible to update ALC_MBOX_RD0_PROD_IDX
* only when Rx buffer pre-fetching is required. In
* addition we already set ALC_RX_RD_FREE_THRESH to
* RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
* it still seems that pre-fetching needs more
* experimentation.
*/
CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
sc->alc_cdata.alc_rx_cons);
}
return (0);
}
/* Receive a frame. */
static void
alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct alc_rxdesc *rxd;
struct mbuf *mp, *m;
uint32_t rdinfo, status;
int count, nsegs, rx_cons;
status = le32toh(rrd->status);
rdinfo = le32toh(rrd->rdinfo);
rx_cons = RRD_RD_IDX(rdinfo);
nsegs = RRD_RD_CNT(rdinfo);
sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) {
/*
* We want to pass the following frames to upper
* layer regardless of error status of Rx return
* ring.
*
* o IP/TCP/UDP checksum is bad.
* o frame length and protocol specific length
* does not match.
*
* Force network stack compute checksum for
* errored frames.
*/
status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
return;
}
for (count = 0; count < nsegs; count++,
ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
mp = rxd->rx_m;
/* Add a new receive buffer to the ring. */
if (alc_newbuf(sc, rxd, false) != 0) {
if_statinc(ifp, if_iqdrops);
/* Reuse Rx buffers. */
if (sc->alc_cdata.alc_rxhead != NULL)
m_freem(sc->alc_cdata.alc_rxhead);
break;
}
/*
* Assume we've received a full sized frame.
* Actual size is fixed when we encounter the end of
* multi-segmented frame.
*/
mp->m_len = sc->alc_buf_size;
/* Chain received mbufs. */
if (sc->alc_cdata.alc_rxhead == NULL) {
sc->alc_cdata.alc_rxhead = mp;
sc->alc_cdata.alc_rxtail = mp;
} else {
m_remove_pkthdr(mp);
sc->alc_cdata.alc_rxprev_tail =
sc->alc_cdata.alc_rxtail;
sc->alc_cdata.alc_rxtail->m_next = mp;
sc->alc_cdata.alc_rxtail = mp;
}
if (count == nsegs - 1) {
/* Last desc. for this frame. */
m = sc->alc_cdata.alc_rxhead;
KASSERT(m->m_flags & M_PKTHDR);
/*
* It seems that L1C/L2C controller has no way
* to tell hardware to strip CRC bytes.
*/
m->m_pkthdr.len =
sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
if (nsegs > 1) {
/* Set last mbuf size. */
mp->m_len = sc->alc_cdata.alc_rxlen -
(nsegs - 1) * sc->alc_buf_size;
/* Remove the CRC bytes in chained mbufs. */
if (mp->m_len <= ETHER_CRC_LEN) {
sc->alc_cdata.alc_rxtail =
sc->alc_cdata.alc_rxprev_tail;
sc->alc_cdata.alc_rxtail->m_len -=
(ETHER_CRC_LEN - mp->m_len);
sc->alc_cdata.alc_rxtail->m_next = NULL;
m_freem(mp);
} else {
mp->m_len -= ETHER_CRC_LEN;
}
} else
m->m_len = m->m_pkthdr.len;
m_set_rcvif(m, ifp);
#if NVLAN > 0
/*
* Due to hardware bugs, Rx checksum offloading
* was intentionally disabled.
*/
if (status & RRD_VLAN_TAG) {
uint32_t vtag = RRD_VLAN(le32toh(rrd->vtag));
vlan_set_tag(m, ntohs(vtag));
}
#endif
/* Pass it on. */
if_percpuq_enqueue(ifp->if_percpuq, m);
}
}
/* Reset mbuf chains. */
ALC_RXCHAIN_RESET(sc);
}
static void
alc_tick(void *xsc)
{
struct alc_softc *sc = xsc;
struct mii_data *mii = &sc->sc_miibus;
int s;
s = splnet();
mii_tick(mii);
alc_stats_update(sc);
splx(s);
callout_schedule(&sc->sc_tick_ch, hz);
}
static void
alc_osc_reset(struct alc_softc *sc)
{
uint32_t reg;
reg = CSR_READ_4(sc, ALC_MISC3);
reg &= ~MISC3_25M_BY_SW;
reg |= MISC3_25M_NOTO_INTNL;
CSR_WRITE_4(sc, ALC_MISC3, reg);
reg = CSR_READ_4(sc, ALC_MISC);
if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0) {
/*
* Restore over-current protection default value.
* This value could be reset by MAC reset.
*/
reg &= ~MISC_PSW_OCP_MASK;
reg |= (MISC_PSW_OCP_DEFAULT << MISC_PSW_OCP_SHIFT);
reg &= ~MISC_INTNLOSC_OPEN;
CSR_WRITE_4(sc, ALC_MISC, reg);
CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN);
reg = CSR_READ_4(sc, ALC_MISC2);
reg &= ~MISC2_CALB_START;
CSR_WRITE_4(sc, ALC_MISC2, reg);
CSR_WRITE_4(sc, ALC_MISC2, reg | MISC2_CALB_START);
} else {
reg &= ~MISC_INTNLOSC_OPEN;
/* Disable isolate for revision A devices. */
if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1)
reg &= ~MISC_ISO_ENB;
CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN);
CSR_WRITE_4(sc, ALC_MISC, reg);
}
DELAY(20);
}
static void
alc_reset(struct alc_softc *sc)
{
uint32_t pmcfg, reg;
int i;
pmcfg = 0;
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
/* Reset workaround. */
CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, 1);
if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
(sc->alc_rev & 0x01) != 0) {
/* Disable L0s/L1s before reset. */
pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB))
!= 0) {
pmcfg &= ~(PM_CFG_ASPM_L0S_ENB |
PM_CFG_ASPM_L1_ENB);
CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
}
}
}
reg = CSR_READ_4(sc, ALC_MASTER_CFG);
reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
DELAY(10);
if (CSR_READ_4(sc, ALC_MBOX_RD0_PROD_IDX) == 0)
break;
}
if (i == 0)
printf("%s: MAC reset timeout!\n", device_xname(sc->sc_dev));
}
for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
DELAY(10);
if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
break;
}
if (i == 0)
printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC |
IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
break;
DELAY(10);
}
if (i == 0)
printf("%s: reset timeout(0x%08x)!\n",
device_xname(sc->sc_dev), reg);
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
(sc->alc_rev & 0x01) != 0) {
reg = CSR_READ_4(sc, ALC_MASTER_CFG);
reg |= MASTER_CLK_SEL_DIS;
CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
/* Restore L0s/L1s config. */
if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB))
!= 0)
CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
}
alc_osc_reset(sc);
reg = CSR_READ_4(sc, ALC_MISC3);
reg &= ~MISC3_25M_BY_SW;
reg |= MISC3_25M_NOTO_INTNL;
CSR_WRITE_4(sc, ALC_MISC3, reg);
reg = CSR_READ_4(sc, ALC_MISC);
reg &= ~MISC_INTNLOSC_OPEN;
if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1)
reg &= ~MISC_ISO_ENB;
CSR_WRITE_4(sc, ALC_MISC, reg);
DELAY(20);
}
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 ||
sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2)
CSR_WRITE_4(sc, ALC_SERDES_LOCK,
CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
SERDES_PHY_CLK_SLOWDOWN);
}
static int
alc_init(struct ifnet *ifp)
{
return alc_init_backend(ifp, true);
}
static int
alc_init_backend(struct ifnet *ifp, bool init)
{
struct alc_softc *sc = ifp->if_softc;
struct mii_data *mii;
uint8_t eaddr[ETHER_ADDR_LEN];
bus_addr_t paddr;
uint32_t reg, rxf_hi, rxf_lo;
int error;
/*
* Cancel any pending I/O.
*/
alc_stop(ifp, 0);
/*
* Reset the chip to a known state.
*/
alc_reset(sc);
/* Initialize Rx descriptors. */
error = alc_init_rx_ring(sc, init);
if (error != 0) {
printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
alc_stop(ifp, 0);
return (error);
}
alc_init_rr_ring(sc);
alc_init_tx_ring(sc);
alc_init_cmb(sc);
alc_init_smb(sc);
/* Enable all clocks. */
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, CLK_GATING_DMAW_ENB |
CLK_GATING_DMAR_ENB | CLK_GATING_TXQ_ENB |
CLK_GATING_RXQ_ENB | CLK_GATING_TXMAC_ENB |
CLK_GATING_RXMAC_ENB);
if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0)
CSR_WRITE_4(sc, ALC_IDLE_DECISN_TIMER,
IDLE_DECISN_TIMER_DEFAULT_1MS);
} else
CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
/* Reprogram the station address. */
memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
CSR_WRITE_4(sc, ALC_PAR0, (uint32_t)eaddr[2] << 24
| eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
/*
* Clear WOL status and disable all WOL feature as WOL
* would interfere Rx operation under normal environments.
*/
CSR_READ_4(sc, ALC_WOL_CFG);
CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
/* Set Tx descriptor base addresses. */
paddr = sc->alc_rdata.alc_tx_ring_paddr;
CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
/* We don't use high priority ring. */
CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
/* Set Tx descriptor counter. */
CSR_WRITE_4(sc, ALC_TD_RING_CNT,
(ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
/* Set Rx descriptor base addresses. */
paddr = sc->alc_rdata.alc_rx_ring_paddr;
CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
/* We use one Rx ring. */
CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
}
/* Set Rx descriptor counter. */
CSR_WRITE_4(sc, ALC_RD_RING_CNT,
(ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
/*
* Let hardware split jumbo frames into alc_max_buf_sized chunks.
* if it do not fit the buffer size. Rx return descriptor holds
* a counter that indicates how many fragments were made by the
* hardware. The buffer size should be multiple of 8 bytes.
* Since hardware has limit on the size of buffer size, always
* use the maximum value.
* For strict-alignment architectures make sure to reduce buffer
* size by 8 bytes to make room for alignment fixup.
*/
sc->alc_buf_size = RX_BUF_SIZE_MAX;
CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
paddr = sc->alc_rdata.alc_rr_ring_paddr;
/* Set Rx return descriptor base addresses. */
CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
/* We use one Rx return ring. */
CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
}
/* Set Rx return descriptor counter. */
CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
(ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
paddr = sc->alc_rdata.alc_cmb_paddr;
CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
paddr = sc->alc_rdata.alc_smb_paddr;
CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
/* Reconfigure SRAM - Vendor magic. */
CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
}
/* Tell hardware that we're ready to load DMA blocks. */
CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
/* Configure interrupt moderation timer. */
sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0)
reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
/*
* We don't want to automatic interrupt clear as task queue
* for the interrupt should know interrupt status.
*/
reg = CSR_READ_4(sc, ALC_MASTER_CFG);
reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
reg |= MASTER_SA_TIMER_ENB;
if (ALC_USECS(sc->alc_int_rx_mod) != 0)
reg |= MASTER_IM_RX_TIMER_ENB;
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0 &&
ALC_USECS(sc->alc_int_tx_mod) != 0)
reg |= MASTER_IM_TX_TIMER_ENB;
CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
/*
* Disable interrupt re-trigger timer. We don't want automatic
* re-triggering of un-ACKed interrupts.
*/
CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
/* Configure CMB. */
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, ALC_TX_RING_CNT / 3);
CSR_WRITE_4(sc, ALC_CMB_TX_TIMER,
ALC_USECS(sc->alc_int_tx_mod));
} else {
if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
} else
CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
}
/*
* Hardware can be configured to issue SMB interrupt based
* on programmed interval. Since there is a callout that is
* invoked for every hz in driver we use that instead of
* relying on periodic SMB interrupt.
*/
CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
/* Clear MAC statistics. */
alc_stats_clear(sc);
/*
* Always use maximum frame size that controller can support.
* Otherwise received frames that has larger frame length
* than alc(4) MTU would be silently dropped in hardware. This
* would make path-MTU discovery hard as sender wouldn't get
* any responses from receiver. alc(4) supports
* multi-fragmented frames on Rx path so it has no issue on
* assembling fragmented frames. Using maximum frame size also
* removes the need to reinitialize hardware when interface
* MTU configuration was changed.
*
* Be conservative in what you do, be liberal in what you
* accept from others - RFC 793.
*/
CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
/* Disable header split(?) */
CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
/* Configure IPG/IFG parameters. */
CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) &
IPG_IFG_IPGT_MASK) |
((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) &
IPG_IFG_MIFG_MASK) |
((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) &
IPG_IFG_IPG1_MASK) |
((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) &
IPG_IFG_IPG2_MASK));
/* Set parameters for half-duplex media. */
CSR_WRITE_4(sc, ALC_HDPX_CFG,
((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
HDPX_CFG_LCOL_MASK) |
((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
HDPX_CFG_ABEBT_MASK) |
((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
HDPX_CFG_JAMIPG_MASK));
}
/*
* Set TSO/checksum offload threshold. For frames that is
* larger than this threshold, hardware wouldn't do
* TSO/checksum offloading.
*/
reg = (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
TSO_OFFLOAD_THRESH_MASK;
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
reg |= TSO_OFFLOAD_ERRLGPKT_DROP_ENB;
CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH, reg);
/* Configure TxQ. */
reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
reg >>= 1;
reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
TXQ_CFG_TD_BURST_MASK;
reg |= TXQ_CFG_IP_OPTION_ENB | TXQ_CFG_8023_ENB;
CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
reg = (TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q1_BURST_SHIFT |
TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q2_BURST_SHIFT |
TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q3_BURST_SHIFT |
HQTD_CFG_BURST_ENB);
CSR_WRITE_4(sc, ALC_HQTD_CFG, reg);
reg = WRR_PRI_RESTRICT_NONE;
reg |= (WRR_PRI_DEFAULT << WRR_PRI0_SHIFT |
WRR_PRI_DEFAULT << WRR_PRI1_SHIFT |
WRR_PRI_DEFAULT << WRR_PRI2_SHIFT |
WRR_PRI_DEFAULT << WRR_PRI3_SHIFT);
CSR_WRITE_4(sc, ALC_WRR, reg);
} else {
/* Configure Rx free descriptor pre-fetching. */
CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
((RX_RD_FREE_THRESH_HI_DEFAULT <<
RX_RD_FREE_THRESH_HI_SHIFT) & RX_RD_FREE_THRESH_HI_MASK) |
((RX_RD_FREE_THRESH_LO_DEFAULT <<
RX_RD_FREE_THRESH_LO_SHIFT) & RX_RD_FREE_THRESH_LO_MASK));
}
/*
* Configure flow control parameters.
* XON : 80% of Rx FIFO
* XOFF : 30% of Rx FIFO
*/
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
reg &= SRAM_RX_FIFO_LEN_MASK;
reg *= 8;
if (reg > 8 * 1024)
reg -= RX_FIFO_PAUSE_816X_RSVD;
else
reg -= RX_BUF_SIZE_MAX;
reg /= 8;
CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
((reg << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
RX_FIFO_PAUSE_THRESH_LO_MASK) |
(((RX_FIFO_PAUSE_816X_RSVD / 8) <<
RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
RX_FIFO_PAUSE_THRESH_HI_MASK));
} else if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132) {
reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
rxf_hi = (reg * 8) / 10;
rxf_lo = (reg * 3) / 10;
CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
RX_FIFO_PAUSE_THRESH_LO_MASK) |
((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
RX_FIFO_PAUSE_THRESH_HI_MASK));
}
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
/* Disable RSS until I understand L1C/L2C's RSS logic. */
CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
}
/* Configure RxQ. */
reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
RXQ_CFG_RD_BURST_MASK;
reg |= RXQ_CFG_RSS_MODE_DIS;
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
reg |= (RXQ_CFG_816X_IDT_TBL_SIZE_DEFAULT <<
RXQ_CFG_816X_IDT_TBL_SIZE_SHIFT) &
RXQ_CFG_816X_IDT_TBL_SIZE_MASK;
if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_100M;
} else {
if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0 &&
sc->alc_ident->deviceid != PCI_PRODUCT_ATTANSIC_AR8151_V2)
reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_100M;
}
CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
/* Configure DMA parameters. */
reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
reg |= sc->alc_rcb;
if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
reg |= DMA_CFG_CMB_ENB;
if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
reg |= DMA_CFG_SMB_ENB;
else
reg |= DMA_CFG_SMB_DIS;
reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
DMA_CFG_RD_BURST_SHIFT;
reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
DMA_CFG_WR_BURST_SHIFT;
reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
DMA_CFG_RD_DELAY_CNT_MASK;
reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
DMA_CFG_WR_DELAY_CNT_MASK;
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
switch (AR816X_REV(sc->alc_rev)) {
case AR816X_REV_A0:
case AR816X_REV_A1:
reg |= DMA_CFG_RD_CHNL_SEL_2;
break;
case AR816X_REV_B0:
/* FALLTHROUGH */
default:
reg |= DMA_CFG_RD_CHNL_SEL_4;
break;
}
}
CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
/*
* Configure Tx/Rx MACs.
* - Auto-padding for short frames.
* - Enable CRC generation.
* Actual reconfiguration of MAC for resolved speed/duplex
* is followed after detection of link establishment.
* AR813x/AR815x always does checksum computation regardless
* of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
* have bug in protocol field in Rx return structure so
* these controllers can't handle fragmented frames. Disable
* Rx checksum offloading until there is a newer controller
* that has sane implementation.
*/
reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
MAC_CFG_PREAMBLE_MASK);
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 ||
sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
reg |= MAC_CFG_SPEED_10_100;
else
reg |= MAC_CFG_SPEED_1000;
CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
/* Set up the receive filter. */
alc_iff(sc);
alc_rxvlan(sc);
/* Acknowledge all pending interrupts and clear it. */
CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
sc->alc_flags &= ~ALC_FLAG_LINK;
/* Switch to the current media. */
mii = &sc->sc_miibus;
mii_mediachg(mii);
callout_schedule(&sc->sc_tick_ch, hz);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
return (0);
}
static void
alc_stop(struct ifnet *ifp, int disable)
{
struct alc_softc *sc = ifp->if_softc;
struct alc_txdesc *txd;
struct alc_rxdesc *rxd;
uint32_t reg;
int i;
callout_stop(&sc->sc_tick_ch);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
sc->alc_flags &= ~ALC_FLAG_LINK;
alc_stats_update(sc);
mii_down(&sc->sc_miibus);
/* Disable interrupts. */
CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
/* Disable DMA. */
reg = CSR_READ_4(sc, ALC_DMA_CFG);
reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
reg |= DMA_CFG_SMB_DIS;
CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
DELAY(1000);
/* Stop Rx/Tx MACs. */
alc_stop_mac(sc);
/* Disable interrupts which might be touched in taskq handler. */
CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
/* Disable L0s/L1s */
alc_aspm(sc, 0, IFM_UNKNOWN);
/* Reclaim Rx buffers that have been processed. */
if (sc->alc_cdata.alc_rxhead != NULL)
m_freem(sc->alc_cdata.alc_rxhead);
ALC_RXCHAIN_RESET(sc);
/*
* Free Tx/Rx mbufs still in the queues.
*/
for (i = 0; i < ALC_RX_RING_CNT; i++) {
rxd = &sc->alc_cdata.alc_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < ALC_TX_RING_CNT; i++) {
txd = &sc->alc_cdata.alc_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
}
static void
alc_stop_mac(struct alc_softc *sc)
{
uint32_t reg;
int i;
alc_stop_queue(sc);
/* Disable Rx/Tx MAC. */
reg = CSR_READ_4(sc, ALC_MAC_CFG);
if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
}
for (i = ALC_TIMEOUT; i > 0; i--) {
reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC)) == 0)
break;
DELAY(10);
}
if (i == 0)
printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n",
device_xname(sc->sc_dev), reg);
}
static void
alc_start_queue(struct alc_softc *sc)
{
uint32_t qcfg[] = {
0,
RXQ_CFG_QUEUE0_ENB,
RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
RXQ_CFG_ENB
};
uint32_t cfg;
/* Enable RxQ. */
cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
cfg &= ~RXQ_CFG_ENB;
cfg |= qcfg[1];
} else
cfg |= RXQ_CFG_QUEUE0_ENB;
CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
/* Enable TxQ. */
cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
cfg |= TXQ_CFG_ENB;
CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
}
static void
alc_stop_queue(struct alc_softc *sc)
{
uint32_t reg;
int i;
/* Disable RxQ. */
reg = CSR_READ_4(sc, ALC_RXQ_CFG);
if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
if ((reg & RXQ_CFG_ENB) != 0) {
reg &= ~RXQ_CFG_ENB;
CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
}
} else {
if ((reg & RXQ_CFG_QUEUE0_ENB) != 0) {
reg &= ~RXQ_CFG_QUEUE0_ENB;
CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
}
}
/* Disable TxQ. */
reg = CSR_READ_4(sc, ALC_TXQ_CFG);
if ((reg & TXQ_CFG_ENB) != 0) {
reg &= ~TXQ_CFG_ENB;
CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
}
DELAY(40);
for (i = ALC_TIMEOUT; i > 0; i--) {
reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
break;
DELAY(10);
}
if (i == 0)
printf("%s: could not disable RxQ/TxQ (0x%08x)!\n",
device_xname(sc->sc_dev), reg);
}
static void
alc_init_tx_ring(struct alc_softc *sc)
{
struct alc_ring_data *rd;
struct alc_txdesc *txd;
int i;
sc->alc_cdata.alc_tx_prod = 0;
sc->alc_cdata.alc_tx_cons = 0;
sc->alc_cdata.alc_tx_cnt = 0;
rd = &sc->alc_rdata;
memset(rd->alc_tx_ring, 0, ALC_TX_RING_SZ);
for (i = 0; i < ALC_TX_RING_CNT; i++) {
txd = &sc->alc_cdata.alc_txdesc[i];
txd->tx_m = NULL;
}
bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
}
static int
alc_init_rx_ring(struct alc_softc *sc, bool init)
{
struct alc_ring_data *rd;
struct alc_rxdesc *rxd;
int i;
sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
rd = &sc->alc_rdata;
memset(rd->alc_rx_ring, 0, ALC_RX_RING_SZ);
for (i = 0; i < ALC_RX_RING_CNT; i++) {
rxd = &sc->alc_cdata.alc_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_desc = &rd->alc_rx_ring[i];
if (alc_newbuf(sc, rxd, init) != 0)
return (ENOBUFS);
}
/*
* Since controller does not update Rx descriptors, driver
* does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
* is enough to ensure coherence.
*/
bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
/* Let controller know availability of new Rx buffers. */
CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
return (0);
}
static void
alc_init_rr_ring(struct alc_softc *sc)
{
struct alc_ring_data *rd;
sc->alc_cdata.alc_rr_cons = 0;
ALC_RXCHAIN_RESET(sc);
rd = &sc->alc_rdata;
memset(rd->alc_rr_ring, 0, ALC_RR_RING_SZ);
bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
alc_init_cmb(struct alc_softc *sc)
{
struct alc_ring_data *rd;
rd = &sc->alc_rdata;
memset(rd->alc_cmb, 0, ALC_CMB_SZ);
bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
sc->alc_cdata.alc_cmb_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
alc_init_smb(struct alc_softc *sc)
{
struct alc_ring_data *rd;
rd = &sc->alc_rdata;
memset(rd->alc_smb, 0, ALC_SMB_SZ);
bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
sc->alc_cdata.alc_smb_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
alc_rxvlan(struct alc_softc *sc)
{
uint32_t reg;
reg = CSR_READ_4(sc, ALC_MAC_CFG);
if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
reg |= MAC_CFG_VLAN_TAG_STRIP;
else
reg &= ~MAC_CFG_VLAN_TAG_STRIP;
CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
}
static void
alc_iff(struct alc_softc *sc)
{
struct ethercom *ec = &sc->sc_ec;
struct ifnet *ifp = &ec->ec_if;
struct ether_multi *enm;
struct ether_multistep step;
uint32_t crc;
uint32_t mchash[2];
uint32_t rxcfg;
rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
ifp->if_flags &= ~IFF_ALLMULTI;
/*
* Always accept broadcast frames.
*/
rxcfg |= MAC_CFG_BCAST;
/* Program new filter. */
if ((ifp->if_flags & IFF_PROMISC) != 0)
goto update;
memset(mchash, 0, sizeof(mchash));
ETHER_LOCK(ec);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/* XXX Use ETHER_F_ALLMULTI in future. */
ifp->if_flags |= IFF_ALLMULTI;
ETHER_UNLOCK(ec);
goto update;
}
crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
mchash[crc >> 31] |= 1U << ((crc >> 26) & 0x1f);
ETHER_NEXT_MULTI(step, enm);
}
ETHER_UNLOCK(ec);
update:
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
if (ifp->if_flags & IFF_PROMISC) {
rxcfg |= MAC_CFG_PROMISC;
/* XXX Use ETHER_F_ALLMULTI in future. */
ifp->if_flags |= IFF_ALLMULTI;
} else
rxcfg |= MAC_CFG_ALLMULTI;
mchash[0] = mchash[1] = 0xFFFFFFFF;
}
CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
}
MODULE(MODULE_CLASS_DRIVER, if_alc, "pci");
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
if_alc_modcmd(modcmd_t cmd, void *opaque)
{
int error = 0;
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
error = config_init_component(cfdriver_ioconf_if_alc,
cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
#endif
return error;
case MODULE_CMD_FINI:
#ifdef _MODULE
error = config_fini_component(cfdriver_ioconf_if_alc,
cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
#endif
return error;
default:
return ENOTTY;
}
}