NetBSD/sys/net/rtsock.c
christos af069eb3c7 Centralize the ROUNDUP and ADVANCE macro in a header file, give them an
RT_ prefix and use them appropriately, instead of making copies. Make
pppd use the RT_ROUNDUP macro; fixes proxyarp setting on 64 bit hosts.

XXX: All this should be pulled up to 5.0
2009-04-02 21:02:06 +00:00

1281 lines
33 KiB
C

/* $NetBSD: rtsock.c,v 1.125 2009/04/02 21:02:06 christos Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1988, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)rtsock.c 8.7 (Berkeley) 10/12/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.125 2009/04/02 21:02:06 christos Exp $");
#include "opt_inet.h"
#ifdef _KERNEL_OPT
#include "opt_compat_netbsd.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/sysctl.h>
#include <sys/kauth.h>
#include <sys/intr.h>
#ifdef RTSOCK_DEBUG
#include <netinet/in.h>
#endif /* RTSOCK_DEBUG */
#include <net/if.h>
#include <net/route.h>
#include <net/raw_cb.h>
#if defined(COMPAT_14) || defined(COMPAT_50)
#include <compat/net/if.h>
#endif
#include <machine/stdarg.h>
DOMAIN_DEFINE(routedomain); /* forward declare and add to link set */
struct sockaddr route_dst = { .sa_len = 2, .sa_family = PF_ROUTE, };
struct sockaddr route_src = { .sa_len = 2, .sa_family = PF_ROUTE, };
int route_maxqlen = IFQ_MAXLEN;
static struct ifqueue route_intrq;
static void *route_sih;
static int rt_msg2(int, struct rt_addrinfo *, void *, struct rt_walkarg *, int *);
static int rt_xaddrs(u_char, const char *, const char *, struct rt_addrinfo *);
static struct mbuf *rt_makeifannouncemsg(struct ifnet *, int, int,
struct rt_addrinfo *);
static int sysctl_dumpentry(struct rtentry *, void *);
static int sysctl_iflist(int, struct rt_walkarg *, int);
static int sysctl_rtable(SYSCTLFN_PROTO);
static void rt_adjustcount(int, int);
static void
rt_adjustcount(int af, int cnt)
{
route_cb.any_count += cnt;
switch (af) {
case AF_INET:
route_cb.ip_count += cnt;
return;
#ifdef INET6
case AF_INET6:
route_cb.ip6_count += cnt;
return;
#endif
case AF_IPX:
route_cb.ipx_count += cnt;
return;
case AF_NS:
route_cb.ns_count += cnt;
return;
case AF_ISO:
route_cb.iso_count += cnt;
return;
}
}
static void
cvtmetrics(struct rt_metrics *ortm, const struct nrt_metrics *rtm)
{
ortm->rmx_locks = rtm->rmx_locks;
ortm->rmx_mtu = rtm->rmx_mtu;
ortm->rmx_hopcount = rtm->rmx_hopcount;
ortm->rmx_expire = rtm->rmx_expire;
ortm->rmx_recvpipe = rtm->rmx_recvpipe;
ortm->rmx_sendpipe = rtm->rmx_sendpipe;
ortm->rmx_ssthresh = rtm->rmx_ssthresh;
ortm->rmx_rtt = rtm->rmx_rtt;
ortm->rmx_rttvar = rtm->rmx_rttvar;
ortm->rmx_pksent = rtm->rmx_pksent;
}
/*ARGSUSED*/
int
route_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
struct mbuf *control, struct lwp *l)
{
int error = 0;
struct rawcb *rp = sotorawcb(so);
int s;
if (req == PRU_ATTACH) {
sosetlock(so);
rp = malloc(sizeof(*rp), M_PCB, M_WAITOK|M_ZERO);
so->so_pcb = rp;
}
if (req == PRU_DETACH && rp)
rt_adjustcount(rp->rcb_proto.sp_protocol, -1);
s = splsoftnet();
/*
* Don't call raw_usrreq() in the attach case, because
* we want to allow non-privileged processes to listen on
* and send "safe" commands to the routing socket.
*/
if (req == PRU_ATTACH) {
if (l == NULL)
error = EACCES;
else
error = raw_attach(so, (int)(long)nam);
} else
error = raw_usrreq(so, req, m, nam, control, l);
rp = sotorawcb(so);
if (req == PRU_ATTACH && rp) {
if (error) {
free(rp, M_PCB);
splx(s);
return error;
}
rt_adjustcount(rp->rcb_proto.sp_protocol, 1);
rp->rcb_laddr = &route_src;
rp->rcb_faddr = &route_dst;
soisconnected(so);
so->so_options |= SO_USELOOPBACK;
}
splx(s);
return error;
}
static const struct sockaddr *
intern_netmask(const struct sockaddr *mask)
{
struct radix_node *rn;
extern struct radix_node_head *mask_rnhead;
if (mask != NULL &&
(rn = rn_search(mask, mask_rnhead->rnh_treetop)))
mask = (const struct sockaddr *)rn->rn_key;
return mask;
}
/*ARGSUSED*/
int
route_output(struct mbuf *m, ...)
{
struct sockproto proto = { .sp_family = PF_ROUTE, };
struct rt_msghdr *rtm = NULL;
struct rt_msghdr *old_rtm = NULL;
struct rtentry *rt = NULL;
struct rtentry *saved_nrt = NULL;
struct rt_addrinfo info;
int len, error = 0;
struct ifnet *ifp = NULL;
struct ifaddr *ifa = NULL;
struct socket *so;
va_list ap;
sa_family_t family;
va_start(ap, m);
so = va_arg(ap, struct socket *);
va_end(ap);
#define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0)
if (m == NULL || ((m->m_len < sizeof(int32_t)) &&
(m = m_pullup(m, sizeof(int32_t))) == NULL))
return ENOBUFS;
if ((m->m_flags & M_PKTHDR) == 0)
panic("route_output");
len = m->m_pkthdr.len;
if (len < sizeof(*rtm) ||
len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
info.rti_info[RTAX_DST] = NULL;
senderr(EINVAL);
}
R_Malloc(rtm, struct rt_msghdr *, len);
if (rtm == NULL) {
info.rti_info[RTAX_DST] = NULL;
senderr(ENOBUFS);
}
m_copydata(m, 0, len, rtm);
if (rtm->rtm_version != RTM_VERSION) {
info.rti_info[RTAX_DST] = NULL;
senderr(EPROTONOSUPPORT);
}
rtm->rtm_pid = curproc->p_pid;
memset(&info, 0, sizeof(info));
info.rti_addrs = rtm->rtm_addrs;
if (rt_xaddrs(rtm->rtm_type, (const char *)(rtm + 1), len + (char *)rtm,
&info))
senderr(EINVAL);
info.rti_flags = rtm->rtm_flags;
#ifdef RTSOCK_DEBUG
if (info.rti_info[RTAX_DST]->sa_family == AF_INET) {
printf("%s: extracted info.rti_info[RTAX_DST] %s\n", __func__,
inet_ntoa(((const struct sockaddr_in *)
info.rti_info[RTAX_DST])->sin_addr));
}
#endif /* RTSOCK_DEBUG */
if (info.rti_info[RTAX_DST] == NULL ||
(info.rti_info[RTAX_DST]->sa_family >= AF_MAX))
senderr(EINVAL);
if (info.rti_info[RTAX_GATEWAY] != NULL &&
(info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
senderr(EINVAL);
/*
* Verify that the caller has the appropriate privilege; RTM_GET
* is the only operation the non-superuser is allowed.
*/
if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_ROUTE,
0, rtm, NULL, NULL) != 0)
senderr(EACCES);
switch (rtm->rtm_type) {
case RTM_ADD:
if (info.rti_info[RTAX_GATEWAY] == NULL)
senderr(EINVAL);
error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
if (error == 0 && saved_nrt) {
rt_setmetrics(rtm->rtm_inits,
&rtm->rtm_rmx, &saved_nrt->rt_rmx);
saved_nrt->rt_refcnt--;
}
break;
case RTM_DELETE:
error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
if (error == 0) {
(rt = saved_nrt)->rt_refcnt++;
goto report;
}
break;
case RTM_GET:
case RTM_CHANGE:
case RTM_LOCK:
/* XXX This will mask info.rti_info[RTAX_DST] with
* info.rti_info[RTAX_NETMASK] before
* searching. It did not used to do that. --dyoung
*/
error = rtrequest1(RTM_GET, &info, &rt);
if (error != 0)
senderr(error);
if (rtm->rtm_type != RTM_GET) {/* XXX: too grotty */
struct radix_node *rn;
if (memcmp(info.rti_info[RTAX_DST], rt_getkey(rt),
info.rti_info[RTAX_DST]->sa_len) != 0)
senderr(ESRCH);
info.rti_info[RTAX_NETMASK] = intern_netmask(
info.rti_info[RTAX_NETMASK]);
for (rn = rt->rt_nodes; rn; rn = rn->rn_dupedkey)
if (info.rti_info[RTAX_NETMASK] ==
(const struct sockaddr *)rn->rn_mask)
break;
if (rn == NULL)
senderr(ETOOMANYREFS);
rt = (struct rtentry *)rn;
}
switch (rtm->rtm_type) {
case RTM_GET:
report:
info.rti_info[RTAX_DST] = rt_getkey(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
if ((rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) == 0)
;
else if ((ifp = rt->rt_ifp) != NULL) {
const struct ifaddr *rtifa;
info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
/* rtifa used to be simply rt->rt_ifa.
* If rt->rt_ifa != NULL, then
* rt_get_ifa() != NULL. So this
* ought to still be safe. --dyoung
*/
rtifa = rt_get_ifa(rt);
info.rti_info[RTAX_IFA] = rtifa->ifa_addr;
#ifdef RTSOCK_DEBUG
if (info.rti_info[RTAX_IFA]->sa_family ==
AF_INET) {
printf("%s: copying out RTAX_IFA %s ",
__func__, inet_ntoa(
(const struct sockaddr_in *)
info.rti_info[RTAX_IFA])->sin_addr);
printf("for info.rti_info[RTAX_DST] %s "
"ifa_getifa %p ifa_seqno %p\n",
inet_ntoa(
(const struct sockaddr_in *)
info.rti_info[RTAX_DST])->sin_addr),
(void *)rtifa->ifa_getifa,
rtifa->ifa_seqno);
}
#endif /* RTSOCK_DEBUG */
if (ifp->if_flags & IFF_POINTOPOINT) {
info.rti_info[RTAX_BRD] =
rtifa->ifa_dstaddr;
} else
info.rti_info[RTAX_BRD] = NULL;
rtm->rtm_index = ifp->if_index;
} else {
info.rti_info[RTAX_IFP] = NULL;
info.rti_info[RTAX_IFA] = NULL;
}
(void)rt_msg2(rtm->rtm_type, &info, NULL, NULL, &len);
if (len > rtm->rtm_msglen) {
old_rtm = rtm;
R_Malloc(rtm, struct rt_msghdr *, len);
if (rtm == NULL)
senderr(ENOBUFS);
(void)memcpy(rtm, old_rtm, old_rtm->rtm_msglen);
}
(void)rt_msg2(rtm->rtm_type, &info, rtm, NULL, 0);
rtm->rtm_flags = rt->rt_flags;
cvtmetrics(&rtm->rtm_rmx, &rt->rt_rmx);
rtm->rtm_addrs = info.rti_addrs;
break;
case RTM_CHANGE:
/*
* new gateway could require new ifaddr, ifp;
* flags may also be different; ifp may be specified
* by ll sockaddr when protocol address is ambiguous
*/
if ((error = rt_getifa(&info)) != 0)
senderr(error);
if (info.rti_info[RTAX_GATEWAY] &&
rt_setgate(rt, info.rti_info[RTAX_GATEWAY]))
senderr(EDQUOT);
/* new gateway could require new ifaddr, ifp;
flags may also be different; ifp may be specified
by ll sockaddr when protocol address is ambiguous */
if (info.rti_info[RTAX_IFP] &&
(ifa = ifa_ifwithnet(info.rti_info[RTAX_IFP])) &&
(ifp = ifa->ifa_ifp) && (info.rti_info[RTAX_IFA] ||
info.rti_info[RTAX_GATEWAY])) {
ifa = ifaof_ifpforaddr(info.rti_info[RTAX_IFA] ?
info.rti_info[RTAX_IFA] :
info.rti_info[RTAX_GATEWAY], ifp);
} else if ((info.rti_info[RTAX_IFA] &&
(ifa = ifa_ifwithaddr(info.rti_info[RTAX_IFA]))) ||
(info.rti_info[RTAX_GATEWAY] &&
(ifa = ifa_ifwithroute(rt->rt_flags,
rt_getkey(rt), info.rti_info[RTAX_GATEWAY])))) {
ifp = ifa->ifa_ifp;
}
if (ifa) {
struct ifaddr *oifa = rt->rt_ifa;
if (oifa != ifa) {
if (oifa && oifa->ifa_rtrequest) {
oifa->ifa_rtrequest(RTM_DELETE,
rt, &info);
}
rt_replace_ifa(rt, ifa);
rt->rt_ifp = ifp;
}
}
rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
&rt->rt_rmx);
if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
/*FALLTHROUGH*/
case RTM_LOCK:
rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
rt->rt_rmx.rmx_locks |=
(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
break;
}
break;
default:
senderr(EOPNOTSUPP);
}
flush:
if (rtm) {
if (error)
rtm->rtm_errno = error;
else
rtm->rtm_flags |= RTF_DONE;
}
family = info.rti_info[RTAX_DST] ? info.rti_info[RTAX_DST]->sa_family :
0;
/* We cannot free old_rtm until we have stopped using the
* pointers in info, some of which may point to sockaddrs
* in old_rtm.
*/
if (old_rtm != NULL)
Free(old_rtm);
if (rt)
rtfree(rt);
{
struct rawcb *rp = NULL;
/*
* Check to see if we don't want our own messages.
*/
if ((so->so_options & SO_USELOOPBACK) == 0) {
if (route_cb.any_count <= 1) {
if (rtm)
Free(rtm);
m_freem(m);
return error;
}
/* There is another listener, so construct message */
rp = sotorawcb(so);
}
if (rtm) {
m_copyback(m, 0, rtm->rtm_msglen, rtm);
if (m->m_pkthdr.len < rtm->rtm_msglen) {
m_freem(m);
m = NULL;
} else if (m->m_pkthdr.len > rtm->rtm_msglen)
m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
Free(rtm);
}
if (rp)
rp->rcb_proto.sp_family = 0; /* Avoid us */
if (family)
proto.sp_protocol = family;
if (m)
raw_input(m, &proto, &route_src, &route_dst);
if (rp)
rp->rcb_proto.sp_family = PF_ROUTE;
}
return error;
}
void
rt_setmetrics(u_long which, const struct rt_metrics *in, struct nrt_metrics *out)
{
#define metric(f, e) if (which & (f)) out->e = in->e;
metric(RTV_RPIPE, rmx_recvpipe);
metric(RTV_SPIPE, rmx_sendpipe);
metric(RTV_SSTHRESH, rmx_ssthresh);
metric(RTV_RTT, rmx_rtt);
metric(RTV_RTTVAR, rmx_rttvar);
metric(RTV_HOPCOUNT, rmx_hopcount);
metric(RTV_MTU, rmx_mtu);
/* XXX time_t: Will not work after February 2145 (u_long time) */
metric(RTV_EXPIRE, rmx_expire);
#undef metric
}
static int
rt_xaddrs(u_char rtmtype, const char *cp, const char *cplim,
struct rt_addrinfo *rtinfo)
{
const struct sockaddr *sa = NULL; /* Quell compiler warning */
int i;
for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
if ((rtinfo->rti_addrs & (1 << i)) == 0)
continue;
rtinfo->rti_info[i] = sa = (const struct sockaddr *)cp;
RT_ADVANCE(cp, sa);
}
/*
* Check for extra addresses specified, except RTM_GET asking
* for interface info.
*/
if (rtmtype == RTM_GET) {
if (((rtinfo->rti_addrs &
(~((1 << RTAX_IFP) | (1 << RTAX_IFA)))) & (~0 << i)) != 0)
return 1;
} else if ((rtinfo->rti_addrs & (~0 << i)) != 0)
return 1;
/* Check for bad data length. */
if (cp != cplim) {
if (i == RTAX_NETMASK + 1 && sa != NULL &&
cp - RT_ROUNDUP(sa->sa_len) + sa->sa_len == cplim)
/*
* The last sockaddr was info.rti_info[RTAX_NETMASK].
* We accept this for now for the sake of old
* binaries or third party softwares.
*/
;
else
return 1;
}
return 0;
}
struct mbuf *
rt_msg1(int type, struct rt_addrinfo *rtinfo, void *data, int datalen)
{
struct rt_msghdr *rtm;
struct mbuf *m;
int i;
const struct sockaddr *sa;
int len, dlen;
m = m_gethdr(M_DONTWAIT, MT_DATA);
if (m == NULL)
return m;
MCLAIM(m, &routedomain.dom_mowner);
switch (type) {
case RTM_DELADDR:
case RTM_NEWADDR:
len = sizeof(struct ifa_msghdr);
break;
#ifdef COMPAT_14
case RTM_OOIFINFO:
len = sizeof(struct if_msghdr14);
break;
#endif
#ifdef COMPAT_50
case RTM_OIFINFO:
len = sizeof(struct if_msghdr50);
break;
#endif
case RTM_IFINFO:
len = sizeof(struct if_msghdr);
break;
case RTM_IFANNOUNCE:
case RTM_IEEE80211:
len = sizeof(struct if_announcemsghdr);
break;
default:
len = sizeof(struct rt_msghdr);
}
if (len > MHLEN + MLEN)
panic("rt_msg1: message too long");
else if (len > MHLEN) {
m->m_next = m_get(M_DONTWAIT, MT_DATA);
if (m->m_next == NULL) {
m_freem(m);
return NULL;
}
MCLAIM(m->m_next, m->m_owner);
m->m_pkthdr.len = len;
m->m_len = MHLEN;
m->m_next->m_len = len - MHLEN;
} else {
m->m_pkthdr.len = m->m_len = len;
}
m->m_pkthdr.rcvif = NULL;
m_copyback(m, 0, datalen, data);
if (len > datalen)
(void)memset(mtod(m, char *) + datalen, 0, len - datalen);
rtm = mtod(m, struct rt_msghdr *);
for (i = 0; i < RTAX_MAX; i++) {
if ((sa = rtinfo->rti_info[i]) == NULL)
continue;
rtinfo->rti_addrs |= (1 << i);
dlen = RT_ROUNDUP(sa->sa_len);
m_copyback(m, len, dlen, sa);
len += dlen;
}
if (m->m_pkthdr.len != len) {
m_freem(m);
return NULL;
}
rtm->rtm_msglen = len;
rtm->rtm_version = RTM_VERSION;
rtm->rtm_type = type;
return m;
}
/*
* rt_msg2
*
* fills 'cp' or 'w'.w_tmem with the routing socket message and
* returns the length of the message in 'lenp'.
*
* if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold
* the message
* otherwise walkarg's w_needed is updated and if the user buffer is
* specified and w_needed indicates space exists the information is copied
* into the temp space (w_tmem). w_tmem is [re]allocated if necessary,
* if the allocation fails ENOBUFS is returned.
*/
static int
rt_msg2(int type, struct rt_addrinfo *rtinfo, void *cpv, struct rt_walkarg *w,
int *lenp)
{
int i;
int len, dlen, second_time = 0;
char *cp0, *cp = cpv;
rtinfo->rti_addrs = 0;
again:
switch (type) {
case RTM_DELADDR:
case RTM_NEWADDR:
len = sizeof(struct ifa_msghdr);
break;
#ifdef COMPAT_14
case RTM_OOIFINFO:
len = sizeof(struct if_msghdr14);
break;
#endif
#ifdef COMPAT_50
case RTM_OIFINFO:
len = sizeof(struct if_msghdr50);
break;
#endif
case RTM_IFINFO:
len = sizeof(struct if_msghdr);
break;
default:
len = sizeof(struct rt_msghdr);
}
if ((cp0 = cp) != NULL)
cp += len;
for (i = 0; i < RTAX_MAX; i++) {
const struct sockaddr *sa;
if ((sa = rtinfo->rti_info[i]) == NULL)
continue;
rtinfo->rti_addrs |= (1 << i);
dlen = RT_ROUNDUP(sa->sa_len);
if (cp) {
(void)memcpy(cp, sa, (size_t)dlen);
cp += dlen;
}
len += dlen;
}
if (cp == NULL && w != NULL && !second_time) {
struct rt_walkarg *rw = w;
rw->w_needed += len;
if (rw->w_needed <= 0 && rw->w_where) {
if (rw->w_tmemsize < len) {
if (rw->w_tmem)
free(rw->w_tmem, M_RTABLE);
rw->w_tmem = malloc(len, M_RTABLE, M_NOWAIT);
if (rw->w_tmem)
rw->w_tmemsize = len;
else
rw->w_tmemsize = 0;
}
if (rw->w_tmem) {
cp = rw->w_tmem;
second_time = 1;
goto again;
} else {
rw->w_tmemneeded = len;
return ENOBUFS;
}
}
}
if (cp) {
struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
rtm->rtm_version = RTM_VERSION;
rtm->rtm_type = type;
rtm->rtm_msglen = len;
}
if (lenp)
*lenp = len;
return 0;
}
/*
* This routine is called to generate a message from the routing
* socket indicating that a redirect has occurred, a routing lookup
* has failed, or that a protocol has detected timeouts to a particular
* destination.
*/
void
rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
{
struct rt_msghdr rtm;
struct mbuf *m;
const struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
if (route_cb.any_count == 0)
return;
memset(&rtm, 0, sizeof(rtm));
rtm.rtm_flags = RTF_DONE | flags;
rtm.rtm_errno = error;
m = rt_msg1(type, rtinfo, &rtm, sizeof(rtm));
if (m == NULL)
return;
mtod(m, struct rt_msghdr *)->rtm_addrs = rtinfo->rti_addrs;
route_enqueue(m, sa ? sa->sa_family : 0);
}
/*
* This routine is called to generate a message from the routing
* socket indicating that the status of a network interface has changed.
*/
void
rt_ifmsg(struct ifnet *ifp)
{
struct if_msghdr ifm;
struct mbuf *m;
struct rt_addrinfo info;
if (route_cb.any_count == 0)
return;
(void)memset(&info, 0, sizeof(info));
(void)memset(&ifm, 0, sizeof(ifm));
ifm.ifm_index = ifp->if_index;
ifm.ifm_flags = ifp->if_flags;
ifm.ifm_data = ifp->if_data;
ifm.ifm_addrs = 0;
m = rt_msg1(RTM_IFINFO, &info, &ifm, sizeof(ifm));
if (m == NULL)
return;
route_enqueue(m, 0);
#ifdef COMPAT_14
compat_14_rt_ifmsg(ifp, &ifm);
#endif
#ifdef COMPAT_50
compat_50_rt_ifmsg(ifp, &ifm);
#endif
}
/*
* This is called to generate messages from the routing socket
* indicating a network interface has had addresses associated with it.
* if we ever reverse the logic and replace messages TO the routing
* socket indicate a request to configure interfaces, then it will
* be unnecessary as the routing socket will automatically generate
* copies of it.
*/
void
rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
{
#define cmdpass(__cmd, __pass) (((__cmd) << 2) | (__pass))
struct rt_addrinfo info;
const struct sockaddr *sa;
int pass;
struct mbuf *m;
struct ifnet *ifp = ifa->ifa_ifp;
struct rt_msghdr rtm;
struct ifa_msghdr ifam;
int ncmd;
if (route_cb.any_count == 0)
return;
for (pass = 1; pass < 3; pass++) {
memset(&info, 0, sizeof(info));
switch (cmdpass(cmd, pass)) {
case cmdpass(RTM_ADD, 1):
case cmdpass(RTM_CHANGE, 1):
case cmdpass(RTM_DELETE, 2):
if (cmd == RTM_ADD)
ncmd = RTM_NEWADDR;
else
ncmd = RTM_DELADDR;
info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
memset(&ifam, 0, sizeof(ifam));
ifam.ifam_index = ifp->if_index;
ifam.ifam_metric = ifa->ifa_metric;
ifam.ifam_flags = ifa->ifa_flags;
m = rt_msg1(ncmd, &info, &ifam, sizeof(ifam));
if (m == NULL)
continue;
mtod(m, struct ifa_msghdr *)->ifam_addrs =
info.rti_addrs;
break;
case cmdpass(RTM_ADD, 2):
case cmdpass(RTM_CHANGE, 2):
case cmdpass(RTM_DELETE, 1):
if (rt == NULL)
continue;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_DST] = sa = rt_getkey(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
memset(&rtm, 0, sizeof(rtm));
rtm.rtm_index = ifp->if_index;
rtm.rtm_flags |= rt->rt_flags;
rtm.rtm_errno = error;
m = rt_msg1(cmd, &info, &rtm, sizeof(rtm));
if (m == NULL)
continue;
mtod(m, struct rt_msghdr *)->rtm_addrs = info.rti_addrs;
break;
default:
continue;
}
#ifdef DIAGNOSTIC
if (m == NULL)
panic("%s: called with wrong command", __func__);
#endif
route_enqueue(m, sa ? sa->sa_family : 0);
}
#undef cmdpass
}
static struct mbuf *
rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
struct rt_addrinfo *info)
{
struct if_announcemsghdr ifan;
memset(info, 0, sizeof(*info));
memset(&ifan, 0, sizeof(ifan));
ifan.ifan_index = ifp->if_index;
strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name));
ifan.ifan_what = what;
return rt_msg1(type, info, &ifan, sizeof(ifan));
}
/*
* This is called to generate routing socket messages indicating
* network interface arrival and departure.
*/
void
rt_ifannouncemsg(struct ifnet *ifp, int what)
{
struct mbuf *m;
struct rt_addrinfo info;
if (route_cb.any_count == 0)
return;
m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
if (m == NULL)
return;
route_enqueue(m, 0);
}
/*
* This is called to generate routing socket messages indicating
* IEEE80211 wireless events.
* XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
*/
void
rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
{
struct mbuf *m;
struct rt_addrinfo info;
if (route_cb.any_count == 0)
return;
m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
if (m == NULL)
return;
/*
* Append the ieee80211 data. Try to stick it in the
* mbuf containing the ifannounce msg; otherwise allocate
* a new mbuf and append.
*
* NB: we assume m is a single mbuf.
*/
if (data_len > M_TRAILINGSPACE(m)) {
struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
if (n == NULL) {
m_freem(m);
return;
}
(void)memcpy(mtod(n, void *), data, data_len);
n->m_len = data_len;
m->m_next = n;
} else if (data_len > 0) {
(void)memcpy(mtod(m, uint8_t *) + m->m_len, data, data_len);
m->m_len += data_len;
}
if (m->m_flags & M_PKTHDR)
m->m_pkthdr.len += data_len;
mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
route_enqueue(m, 0);
}
/*
* This is used in dumping the kernel table via sysctl().
*/
static int
sysctl_dumpentry(struct rtentry *rt, void *v)
{
struct rt_walkarg *w = v;
int error = 0, size;
struct rt_addrinfo info;
if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
return 0;
memset(&info, 0, sizeof(info));
info.rti_info[RTAX_DST] = rt_getkey(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
if (rt->rt_ifp) {
const struct ifaddr *rtifa;
info.rti_info[RTAX_IFP] = rt->rt_ifp->if_dl->ifa_addr;
/* rtifa used to be simply rt->rt_ifa. If rt->rt_ifa != NULL,
* then rt_get_ifa() != NULL. So this ought to still be safe.
* --dyoung
*/
rtifa = rt_get_ifa(rt);
info.rti_info[RTAX_IFA] = rtifa->ifa_addr;
if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
info.rti_info[RTAX_BRD] = rtifa->ifa_dstaddr;
}
if ((error = rt_msg2(RTM_GET, &info, 0, w, &size)))
return error;
if (w->w_where && w->w_tmem && w->w_needed <= 0) {
struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
rtm->rtm_flags = rt->rt_flags;
rtm->rtm_use = rt->rt_use;
cvtmetrics(&rtm->rtm_rmx, &rt->rt_rmx);
KASSERT(rt->rt_ifp != NULL);
rtm->rtm_index = rt->rt_ifp->if_index;
rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
rtm->rtm_addrs = info.rti_addrs;
if ((error = copyout(rtm, w->w_where, size)) != 0)
w->w_where = NULL;
else
w->w_where = (char *)w->w_where + size;
}
return error;
}
static int
sysctl_iflist(int af, struct rt_walkarg *w, int type)
{
struct ifnet *ifp;
struct ifaddr *ifa;
struct rt_addrinfo info;
int len, error = 0;
memset(&info, 0, sizeof(info));
IFNET_FOREACH(ifp) {
if (w->w_arg && w->w_arg != ifp->if_index)
continue;
if (IFADDR_EMPTY(ifp))
continue;
info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
switch (type) {
case NET_RT_IFLIST:
error = rt_msg2(RTM_IFINFO, &info, NULL, w, &len);
break;
#ifdef COMPAT_14
case NET_RT_OOIFLIST:
error = rt_msg2(RTM_OOIFINFO, &info, NULL, w, &len);
break;
#endif
#ifdef COMPAT_50
case NET_RT_OIFLIST:
error = rt_msg2(RTM_OIFINFO, &info, NULL, w, &len);
break;
#endif
default:
panic("sysctl_iflist(1)");
}
if (error)
return error;
info.rti_info[RTAX_IFP] = NULL;
if (w->w_where && w->w_tmem && w->w_needed <= 0) {
switch (type) {
case NET_RT_IFLIST: {
struct if_msghdr *ifm;
ifm = (struct if_msghdr *)w->w_tmem;
ifm->ifm_index = ifp->if_index;
ifm->ifm_flags = ifp->if_flags;
ifm->ifm_data = ifp->if_data;
ifm->ifm_addrs = info.rti_addrs;
error = copyout(ifm, w->w_where, len);
if (error)
return error;
w->w_where = (char *)w->w_where + len;
break;
}
#ifdef COMPAT_14
case NET_RT_OOIFLIST:
error = compat_14_iflist(ifp, w, &info, len);
if (error)
return error;
break;
#endif
#ifdef COMPAT_50
case NET_RT_OIFLIST:
error = compat_50_iflist(ifp, w, &info, len);
if (error)
return error;
break;
#endif
default:
panic("sysctl_iflist(2)");
}
}
IFADDR_FOREACH(ifa, ifp) {
if (af && af != ifa->ifa_addr->sa_family)
continue;
info.rti_info[RTAX_IFA] = ifa->ifa_addr;
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
if ((error = rt_msg2(RTM_NEWADDR, &info, 0, w, &len)))
return error;
if (w->w_where && w->w_tmem && w->w_needed <= 0) {
struct ifa_msghdr *ifam;
ifam = (struct ifa_msghdr *)w->w_tmem;
ifam->ifam_index = ifa->ifa_ifp->if_index;
ifam->ifam_flags = ifa->ifa_flags;
ifam->ifam_metric = ifa->ifa_metric;
ifam->ifam_addrs = info.rti_addrs;
error = copyout(w->w_tmem, w->w_where, len);
if (error)
return error;
w->w_where = (char *)w->w_where + len;
}
}
info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
info.rti_info[RTAX_BRD] = NULL;
}
return 0;
}
static int
sysctl_rtable(SYSCTLFN_ARGS)
{
void *where = oldp;
size_t *given = oldlenp;
const void *new = newp;
int i, s, error = EINVAL;
u_char af;
struct rt_walkarg w;
if (namelen == 1 && name[0] == CTL_QUERY)
return sysctl_query(SYSCTLFN_CALL(rnode));
if (new)
return EPERM;
if (namelen != 3)
return EINVAL;
af = name[0];
w.w_tmemneeded = 0;
w.w_tmemsize = 0;
w.w_tmem = NULL;
again:
/* we may return here if a later [re]alloc of the t_mem buffer fails */
if (w.w_tmemneeded) {
w.w_tmem = malloc(w.w_tmemneeded, M_RTABLE, M_WAITOK);
w.w_tmemsize = w.w_tmemneeded;
w.w_tmemneeded = 0;
}
w.w_op = name[1];
w.w_arg = name[2];
w.w_given = *given;
w.w_needed = 0 - w.w_given;
w.w_where = where;
s = splsoftnet();
switch (w.w_op) {
case NET_RT_DUMP:
case NET_RT_FLAGS:
for (i = 1; i <= AF_MAX; i++)
if ((af == 0 || af == i) &&
(error = rt_walktree(i, sysctl_dumpentry, &w)))
break;
break;
#ifdef COMPAT_14
case NET_RT_OOIFLIST:
error = sysctl_iflist(af, &w, w.w_op);
break;
#endif
#ifdef COMPAT_50
case NET_RT_OIFLIST:
error = sysctl_iflist(af, &w, w.w_op);
break;
#endif
case NET_RT_IFLIST:
error = sysctl_iflist(af, &w, w.w_op);
}
splx(s);
/* check to see if we couldn't allocate memory with NOWAIT */
if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded)
goto again;
if (w.w_tmem)
free(w.w_tmem, M_RTABLE);
w.w_needed += w.w_given;
if (where) {
*given = (char *)w.w_where - (char *)where;
if (*given < w.w_needed)
return ENOMEM;
} else {
*given = (11 * w.w_needed) / 10;
}
return error;
}
/*
* Routing message software interrupt routine
*/
static void
route_intr(void *cookie)
{
struct sockproto proto = { .sp_family = PF_ROUTE, };
struct mbuf *m;
int s;
mutex_enter(softnet_lock);
KERNEL_LOCK(1, NULL);
while (!IF_IS_EMPTY(&route_intrq)) {
s = splnet();
IF_DEQUEUE(&route_intrq, m);
splx(s);
if (m == NULL)
break;
proto.sp_protocol = M_GETCTX(m, uintptr_t);
raw_input(m, &proto, &route_src, &route_dst);
}
KERNEL_UNLOCK_ONE(NULL);
mutex_exit(softnet_lock);
}
/*
* Enqueue a message to the software interrupt routine.
*/
void
route_enqueue(struct mbuf *m, int family)
{
int s, wasempty;
s = splnet();
if (IF_QFULL(&route_intrq)) {
IF_DROP(&route_intrq);
m_freem(m);
} else {
wasempty = IF_IS_EMPTY(&route_intrq);
M_SETCTX(m, (uintptr_t)family);
IF_ENQUEUE(&route_intrq, m);
if (wasempty)
softint_schedule(route_sih);
}
splx(s);
}
void
rt_init(void)
{
route_intrq.ifq_maxlen = route_maxqlen;
route_sih = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
route_intr, NULL);
}
/*
* Definitions of protocols supported in the ROUTE domain.
*/
PR_WRAP_USRREQ(route_usrreq)
#define route_usrreq route_usrreq_wrapper
const struct protosw routesw[] = {
{
.pr_type = SOCK_RAW,
.pr_domain = &routedomain,
.pr_flags = PR_ATOMIC|PR_ADDR,
.pr_input = raw_input,
.pr_output = route_output,
.pr_ctlinput = raw_ctlinput,
.pr_usrreq = route_usrreq,
.pr_init = raw_init,
},
};
struct domain routedomain = {
.dom_family = PF_ROUTE,
.dom_name = "route",
.dom_init = route_init,
.dom_protosw = routesw,
.dom_protoswNPROTOSW = &routesw[__arraycount(routesw)],
};
SYSCTL_SETUP(sysctl_net_route_setup, "sysctl net.route subtree setup")
{
const struct sysctlnode *rnode = NULL;
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "net", NULL,
NULL, 0, NULL, 0,
CTL_NET, CTL_EOL);
sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "route",
SYSCTL_DESCR("PF_ROUTE information"),
NULL, 0, NULL, 0,
CTL_NET, PF_ROUTE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "rtable",
SYSCTL_DESCR("Routing table information"),
sysctl_rtable, 0, NULL, 0,
CTL_NET, PF_ROUTE, 0 /* any protocol */, CTL_EOL);
sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "stats",
SYSCTL_DESCR("Routing statistics"),
NULL, 0, &rtstat, sizeof(rtstat),
CTL_CREATE, CTL_EOL);
}