NetBSD/games/gomoku/pickmove.c

1509 lines
38 KiB
C

/* $NetBSD: pickmove.c,v 1.12 2007/12/15 19:44:40 perry Exp $ */
/*
* Copyright (c) 1994
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Ralph Campbell.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#ifndef lint
#if 0
static char sccsid[] = "@(#)pickmove.c 8.2 (Berkeley) 5/3/95";
#else
__RCSID("$NetBSD: pickmove.c,v 1.12 2007/12/15 19:44:40 perry Exp $");
#endif
#endif /* not lint */
#include <stdlib.h>
#include <string.h>
#include <curses.h>
#include <limits.h>
#include "gomoku.h"
#define BITS_PER_INT (sizeof(int) * CHAR_BIT)
#define MAPSZ (BAREA / BITS_PER_INT)
#define BIT_SET(a, b) ((a)[(b)/BITS_PER_INT] |= (1 << ((b) % BITS_PER_INT)))
#define BIT_CLR(a, b) ((a)[(b)/BITS_PER_INT] &= ~(1 << ((b) % BITS_PER_INT)))
#define BIT_TEST(a, b) ((a)[(b)/BITS_PER_INT] & (1 << ((b) % BITS_PER_INT)))
struct combostr *hashcombos[FAREA]; /* hash list for finding duplicates */
struct combostr *sortcombos; /* combos at higher levels */
int combolen; /* number of combos in sortcombos */
int nextcolor; /* color of next move */
int elistcnt; /* count of struct elist allocated */
int combocnt; /* count of struct combostr allocated */
int forcemap[MAPSZ]; /* map for blocking <1,x> combos */
int tmpmap[MAPSZ]; /* map for blocking <1,x> combos */
int nforce; /* count of opponent <1,x> combos */
int
pickmove(us)
int us;
{
struct spotstr *sp, *sp1, *sp2;
union comboval *Ocp, *Tcp;
int m;
/* first move is easy */
if (movenum == 1)
return (PT(K,10));
/* initialize all the board values */
for (sp = &board[PT(T,20)]; --sp >= &board[PT(A,1)]; ) {
sp->s_combo[BLACK].s = MAXCOMBO + 1;
sp->s_combo[WHITE].s = MAXCOMBO + 1;
sp->s_level[BLACK] = 255;
sp->s_level[WHITE] = 255;
sp->s_nforce[BLACK] = 0;
sp->s_nforce[WHITE] = 0;
sp->s_flg &= ~(FFLAGALL | MFLAGALL);
}
nforce = 0;
memset(forcemap, 0, sizeof(forcemap));
/* compute new values */
nextcolor = us;
scanframes(BLACK);
scanframes(WHITE);
/* find the spot with the highest value */
for (sp = sp1 = sp2 = &board[PT(T,19)]; --sp >= &board[PT(A,1)]; ) {
if (sp->s_occ != EMPTY)
continue;
if (debug && (sp->s_combo[BLACK].c.a == 1 ||
sp->s_combo[WHITE].c.a == 1)) {
sprintf(fmtbuf, "- %s %x/%d %d %x/%d %d %d", stoc(sp - board),
sp->s_combo[BLACK].s, sp->s_level[BLACK],
sp->s_nforce[BLACK],
sp->s_combo[WHITE].s, sp->s_level[WHITE],
sp->s_nforce[WHITE],
sp->s_wval);
dlog(fmtbuf);
}
/* pick the best black move */
if (better(sp, sp1, BLACK))
sp1 = sp;
/* pick the best white move */
if (better(sp, sp2, WHITE))
sp2 = sp;
}
if (debug) {
sprintf(fmtbuf, "B %s %x/%d %d %x/%d %d %d",
stoc(sp1 - board),
sp1->s_combo[BLACK].s, sp1->s_level[BLACK],
sp1->s_nforce[BLACK],
sp1->s_combo[WHITE].s, sp1->s_level[WHITE],
sp1->s_nforce[WHITE], sp1->s_wval);
dlog(fmtbuf);
sprintf(fmtbuf, "W %s %x/%d %d %x/%d %d %d",
stoc(sp2 - board),
sp2->s_combo[WHITE].s, sp2->s_level[WHITE],
sp2->s_nforce[WHITE],
sp2->s_combo[BLACK].s, sp2->s_level[BLACK],
sp2->s_nforce[BLACK], sp2->s_wval);
dlog(fmtbuf);
/*
* Check for more than one force that can't
* all be blocked with one move.
*/
sp = (us == BLACK) ? sp2 : sp1;
m = sp - board;
if (sp->s_combo[!us].c.a == 1 && !BIT_TEST(forcemap, m))
dlog("*** Can't be blocked");
}
if (us == BLACK) {
Ocp = &sp1->s_combo[BLACK];
Tcp = &sp2->s_combo[WHITE];
} else {
Tcp = &sp1->s_combo[BLACK];
Ocp = &sp2->s_combo[WHITE];
sp = sp1;
sp1 = sp2;
sp2 = sp;
}
/*
* Block their combo only if we have to (i.e., if they are one move
* away from completing a force and we don't have a force that
* we can complete which takes fewer moves to win).
*/
if (Tcp->c.a <= 1 && (Ocp->c.a > 1 ||
Tcp->c.a + Tcp->c.b < Ocp->c.a + Ocp->c.b))
return (sp2 - board);
return (sp1 - board);
}
/*
* Return true if spot 'sp' is better than spot 'sp1' for color 'us'.
*/
int
better(sp, sp1, us)
const struct spotstr *sp;
const struct spotstr *sp1;
int us;
{
int them, s, s1;
if (sp->s_combo[us].s < sp1->s_combo[us].s)
return (1);
if (sp->s_combo[us].s != sp1->s_combo[us].s)
return (0);
if (sp->s_level[us] < sp1->s_level[us])
return (1);
if (sp->s_level[us] != sp1->s_level[us])
return (0);
if (sp->s_nforce[us] > sp1->s_nforce[us])
return (1);
if (sp->s_nforce[us] != sp1->s_nforce[us])
return (0);
them = !us;
s = sp - board;
s1 = sp1 - board;
if (BIT_TEST(forcemap, s) && !BIT_TEST(forcemap, s1))
return (1);
if (!BIT_TEST(forcemap, s) && BIT_TEST(forcemap, s1))
return (0);
if (sp->s_combo[them].s < sp1->s_combo[them].s)
return (1);
if (sp->s_combo[them].s != sp1->s_combo[them].s)
return (0);
if (sp->s_level[them] < sp1->s_level[them])
return (1);
if (sp->s_level[them] != sp1->s_level[them])
return (0);
if (sp->s_nforce[them] > sp1->s_nforce[them])
return (1);
if (sp->s_nforce[them] != sp1->s_nforce[them])
return (0);
if (sp->s_wval > sp1->s_wval)
return (1);
if (sp->s_wval != sp1->s_wval)
return (0);
#ifdef SVR4
return (rand() & 1);
#else
return (random() & 1);
#endif
}
int curcolor; /* implicit parameter to makecombo() */
int curlevel; /* implicit parameter to makecombo() */
/*
* Scan the sorted list of non-empty frames and
* update the minimum combo values for each empty spot.
* Also, try to combine frames to find more complex (chained) moves.
*/
void
scanframes(color)
int color;
{
struct combostr *cbp, *ecbp;
struct spotstr *sp;
union comboval *cp;
struct elist *ep, *nep;
int i, r, d, n;
union comboval cb;
curcolor = color;
/* check for empty list of frames */
cbp = sortframes[color];
if (cbp == (struct combostr *)0)
return;
/* quick check for four in a row */
sp = &board[cbp->c_vertex];
cb.s = sp->s_fval[color][d = cbp->c_dir].s;
if (cb.s < 0x101) {
d = dd[d];
for (i = 5 + cb.c.b; --i >= 0; sp += d) {
if (sp->s_occ != EMPTY)
continue;
sp->s_combo[color].s = cb.s;
sp->s_level[color] = 1;
}
return;
}
/*
* Update the minimum combo value for each spot in the frame
* and try making all combinations of two frames intersecting at
* an empty spot.
*/
n = combolen;
ecbp = cbp;
do {
sp = &board[cbp->c_vertex];
cp = &sp->s_fval[color][r = cbp->c_dir];
d = dd[r];
if (cp->c.b) {
/*
* Since this is the first spot of an open ended
* frame, we treat it as a closed frame.
*/
cb.c.a = cp->c.a + 1;
cb.c.b = 0;
if (cb.s < sp->s_combo[color].s) {
sp->s_combo[color].s = cb.s;
sp->s_level[color] = 1;
}
/*
* Try combining other frames that intersect
* at this spot.
*/
makecombo2(cbp, sp, 0, cb.s);
if (cp->s != 0x101)
cb.s = cp->s;
else if (color != nextcolor)
memset(tmpmap, 0, sizeof(tmpmap));
sp += d;
i = 1;
} else {
cb.s = cp->s;
i = 0;
}
for (; i < 5; i++, sp += d) { /* for each spot */
if (sp->s_occ != EMPTY)
continue;
if (cp->s < sp->s_combo[color].s) {
sp->s_combo[color].s = cp->s;
sp->s_level[color] = 1;
}
if (cp->s == 0x101) {
sp->s_nforce[color]++;
if (color != nextcolor) {
n = sp - board;
BIT_SET(tmpmap, n);
}
}
/*
* Try combining other frames that intersect
* at this spot.
*/
makecombo2(cbp, sp, i, cb.s);
}
if (cp->s == 0x101 && color != nextcolor) {
if (nforce == 0)
memcpy(forcemap, tmpmap, sizeof(tmpmap));
else {
for (i = 0; (unsigned int)i < MAPSZ; i++)
forcemap[i] &= tmpmap[i];
}
}
/* mark frame as having been processed */
board[cbp->c_vertex].s_flg |= MFLAG << r;
} while ((cbp = cbp->c_next) != ecbp);
/*
* Try to make new 3rd level combos, 4th level, etc.
* Limit the search depth early in the game.
*/
d = 2;
while (d <= ((movenum + 1) >> 1) && combolen > n) {
if (debug) {
sprintf(fmtbuf, "%cL%d %d %d %d", "BW"[color],
d, combolen - n, combocnt, elistcnt);
dlog(fmtbuf);
refresh();
}
n = combolen;
addframes(d);
d++;
}
/* scan for combos at empty spots */
for (sp = &board[PT(T,20)]; --sp >= &board[PT(A,1)]; ) {
for (ep = sp->s_empty; ep; ep = nep) {
cbp = ep->e_combo;
if (cbp->c_combo.s <= sp->s_combo[color].s) {
if (cbp->c_combo.s != sp->s_combo[color].s) {
sp->s_combo[color].s = cbp->c_combo.s;
sp->s_level[color] = cbp->c_nframes;
} else if (cbp->c_nframes < sp->s_level[color])
sp->s_level[color] = cbp->c_nframes;
}
nep = ep->e_next;
free(ep);
elistcnt--;
}
sp->s_empty = (struct elist *)0;
for (ep = sp->s_nempty; ep; ep = nep) {
cbp = ep->e_combo;
if (cbp->c_combo.s <= sp->s_combo[color].s) {
if (cbp->c_combo.s != sp->s_combo[color].s) {
sp->s_combo[color].s = cbp->c_combo.s;
sp->s_level[color] = cbp->c_nframes;
} else if (cbp->c_nframes < sp->s_level[color])
sp->s_level[color] = cbp->c_nframes;
}
nep = ep->e_next;
free(ep);
elistcnt--;
}
sp->s_nempty = (struct elist *)0;
}
/* remove old combos */
if ((cbp = sortcombos) != (struct combostr *)0) {
struct combostr *ncbp;
/* scan the list */
ecbp = cbp;
do {
ncbp = cbp->c_next;
free(cbp);
combocnt--;
} while ((cbp = ncbp) != ecbp);
sortcombos = (struct combostr *)0;
}
combolen = 0;
#ifdef DEBUG
if (combocnt) {
sprintf(fmtbuf, "scanframes: %c combocnt %d", "BW"[color],
combocnt);
dlog(fmtbuf);
whatsup(0);
}
if (elistcnt) {
sprintf(fmtbuf, "scanframes: %c elistcnt %d", "BW"[color],
elistcnt);
dlog(fmtbuf);
whatsup(0);
}
#endif
}
/*
* Compute all level 2 combos of frames intersecting spot 'osp'
* within the frame 'ocbp' and combo value 's'.
*/
void
makecombo2(ocbp, osp, off, s)
struct combostr *ocbp;
struct spotstr *osp;
int off;
int s;
{
struct spotstr *fsp;
struct combostr *ncbp;
int f, r, d, c;
int baseB, fcnt, emask, bmask, n;
union comboval ocb, fcb;
struct combostr **scbpp, *fcbp;
/* try to combine a new frame with those found so far */
ocb.s = s;
baseB = ocb.c.a + ocb.c.b - 1;
fcnt = ocb.c.a - 2;
emask = fcnt ? ((ocb.c.b ? 0x1E : 0x1F) & ~(1 << off)) : 0;
for (r = 4; --r >= 0; ) { /* for each direction */
/* don't include frames that overlap in the same direction */
if (r == ocbp->c_dir)
continue;
d = dd[r];
/*
* Frame A combined with B is the same value as B combined with A
* so skip frames that have already been processed (MFLAG).
* Also skip blocked frames (BFLAG) and frames that are <1,x>
* since combining another frame with it isn't valid.
*/
bmask = (BFLAG | FFLAG | MFLAG) << r;
fsp = osp;
for (f = 0; f < 5; f++, fsp -= d) { /* for each frame */
if (fsp->s_occ == BORDER)
break;
if (fsp->s_flg & bmask)
continue;
/* don't include frames of the wrong color */
fcb.s = fsp->s_fval[curcolor][r].s;
if (fcb.c.a >= MAXA)
continue;
/*
* Get the combo value for this frame.
* If this is the end point of the frame,
* use the closed ended value for the frame.
*/
if ((f == 0 && fcb.c.b) || fcb.s == 0x101) {
fcb.c.a++;
fcb.c.b = 0;
}
/* compute combo value */
c = fcb.c.a + ocb.c.a - 3;
if (c > 4)
continue;
n = fcb.c.a + fcb.c.b - 1;
if (baseB < n)
n = baseB;
/* make a new combo! */
ncbp = (struct combostr *)malloc(sizeof(struct combostr) +
2 * sizeof(struct combostr *));
if (ncbp == NULL)
panic("Out of memory!");
scbpp = (struct combostr **)(ncbp + 1);
fcbp = fsp->s_frame[r];
if (ocbp < fcbp) {
scbpp[0] = ocbp;
scbpp[1] = fcbp;
} else {
scbpp[0] = fcbp;
scbpp[1] = ocbp;
}
ncbp->c_combo.c.a = c;
ncbp->c_combo.c.b = n;
ncbp->c_link[0] = ocbp;
ncbp->c_link[1] = fcbp;
ncbp->c_linkv[0].s = ocb.s;
ncbp->c_linkv[1].s = fcb.s;
ncbp->c_voff[0] = off;
ncbp->c_voff[1] = f;
ncbp->c_vertex = osp - board;
ncbp->c_nframes = 2;
ncbp->c_dir = 0;
ncbp->c_frameindex = 0;
ncbp->c_flg = (ocb.c.b) ? C_OPEN_0 : 0;
if (fcb.c.b)
ncbp->c_flg |= C_OPEN_1;
ncbp->c_framecnt[0] = fcnt;
ncbp->c_emask[0] = emask;
ncbp->c_framecnt[1] = fcb.c.a - 2;
ncbp->c_emask[1] = ncbp->c_framecnt[1] ?
((fcb.c.b ? 0x1E : 0x1F) & ~(1 << f)) : 0;
combocnt++;
if ((c == 1 && debug > 1) || debug > 3) {
sprintf(fmtbuf, "%c c %d %d m %x %x o %d %d",
"bw"[curcolor],
ncbp->c_framecnt[0], ncbp->c_framecnt[1],
ncbp->c_emask[0], ncbp->c_emask[1],
ncbp->c_voff[0], ncbp->c_voff[1]);
dlog(fmtbuf);
printcombo(ncbp, fmtbuf);
dlog(fmtbuf);
}
if (c > 1) {
/* record the empty spots that will complete this combo */
makeempty(ncbp);
/* add the new combo to the end of the list */
appendcombo(ncbp, curcolor);
} else {
updatecombo(ncbp, curcolor);
free(ncbp);
combocnt--;
}
#ifdef DEBUG
if (c == 1 && debug > 1 || debug > 5) {
markcombo(ncbp);
bdisp();
whatsup(0);
clearcombo(ncbp, 0);
}
#endif /* DEBUG */
}
}
}
/*
* Scan the sorted list of frames and try to add a frame to
* combinations of 'level' number of frames.
*/
void
addframes(level)
int level;
{
struct combostr *cbp, *ecbp;
struct spotstr *sp, *fsp;
struct elist *ep, *nep;
int i, r, d;
struct combostr **cbpp, *pcbp;
union comboval fcb, cb;
curlevel = level;
/* scan for combos at empty spots */
i = curcolor;
for (sp = &board[PT(T,20)]; --sp >= &board[PT(A,1)]; ) {
for (ep = sp->s_empty; ep; ep = nep) {
cbp = ep->e_combo;
if (cbp->c_combo.s <= sp->s_combo[i].s) {
if (cbp->c_combo.s != sp->s_combo[i].s) {
sp->s_combo[i].s = cbp->c_combo.s;
sp->s_level[i] = cbp->c_nframes;
} else if (cbp->c_nframes < sp->s_level[i])
sp->s_level[i] = cbp->c_nframes;
}
nep = ep->e_next;
free(ep);
elistcnt--;
}
sp->s_empty = sp->s_nempty;
sp->s_nempty = (struct elist *)0;
}
/* try to add frames to the uncompleted combos at level curlevel */
cbp = ecbp = sortframes[curcolor];
do {
fsp = &board[cbp->c_vertex];
r = cbp->c_dir;
/* skip frames that are part of a <1,x> combo */
if (fsp->s_flg & (FFLAG << r))
continue;
/*
* Don't include <1,x> combo frames,
* treat it as a closed three in a row instead.
*/
fcb.s = fsp->s_fval[curcolor][r].s;
if (fcb.s == 0x101)
fcb.s = 0x200;
/*
* If this is an open ended frame, use
* the combo value with the end closed.
*/
if (fsp->s_occ == EMPTY) {
if (fcb.c.b) {
cb.c.a = fcb.c.a + 1;
cb.c.b = 0;
} else
cb.s = fcb.s;
makecombo(cbp, fsp, 0, cb.s);
}
/*
* The next four spots are handled the same for both
* open and closed ended frames.
*/
d = dd[r];
sp = fsp + d;
for (i = 1; i < 5; i++, sp += d) {
if (sp->s_occ != EMPTY)
continue;
makecombo(cbp, sp, i, fcb.s);
}
} while ((cbp = cbp->c_next) != ecbp);
/* put all the combos in the hash list on the sorted list */
cbpp = &hashcombos[FAREA];
do {
cbp = *--cbpp;
if (cbp == (struct combostr *)0)
continue;
*cbpp = (struct combostr *)0;
ecbp = sortcombos;
if (ecbp == (struct combostr *)0)
sortcombos = cbp;
else {
/* append to sort list */
pcbp = ecbp->c_prev;
pcbp->c_next = cbp;
ecbp->c_prev = cbp->c_prev;
cbp->c_prev->c_next = ecbp;
cbp->c_prev = pcbp;
}
} while (cbpp != hashcombos);
}
/*
* Compute all level N combos of frames intersecting spot 'osp'
* within the frame 'ocbp' and combo value 's'.
*/
void
makecombo(ocbp, osp, off, s)
struct combostr *ocbp;
struct spotstr *osp;
int off;
int s;
{
struct combostr *cbp, *ncbp;
struct spotstr *sp;
struct elist *ep;
int n, c;
struct elist *nep;
struct combostr **scbpp;
int baseB, fcnt, emask, verts;
union comboval ocb;
struct ovlp_info vertices[1];
ocb.s = s;
baseB = ocb.c.a + ocb.c.b - 1;
fcnt = ocb.c.a - 2;
emask = fcnt ? ((ocb.c.b ? 0x1E : 0x1F) & ~(1 << off)) : 0;
for (ep = osp->s_empty; ep; ep = ep->e_next) {
/* check for various kinds of overlap */
cbp = ep->e_combo;
verts = checkframes(cbp, ocbp, osp, s, vertices);
if (verts < 0)
continue;
/* check to see if this frame forms a valid loop */
if (verts) {
sp = &board[vertices[0].o_intersect];
#ifdef DEBUG
if (sp->s_occ != EMPTY) {
sprintf(fmtbuf, "loop: %c %s", "BW"[curcolor],
stoc(sp - board));
dlog(fmtbuf);
whatsup(0);
}
#endif
/*
* It is a valid loop if the intersection spot
* of the frame we are trying to attach is one
* of the completion spots of the combostr
* we are trying to attach the frame to.
*/
for (nep = sp->s_empty; nep; nep = nep->e_next) {
if (nep->e_combo == cbp)
goto fnd;
if (nep->e_combo->c_nframes < cbp->c_nframes)
break;
}
/* frame overlaps but not at a valid spot */
continue;
fnd:
;
}
/* compute the first half of the combo value */
c = cbp->c_combo.c.a + ocb.c.a - verts - 3;
if (c > 4)
continue;
/* compute the second half of the combo value */
n = ep->e_fval.c.a + ep->e_fval.c.b - 1;
if (baseB < n)
n = baseB;
/* make a new combo! */
ncbp = (struct combostr *)malloc(sizeof(struct combostr) +
(cbp->c_nframes + 1) * sizeof(struct combostr *));
if (ncbp == NULL)
panic("Out of memory!");
scbpp = (struct combostr **)(ncbp + 1);
if (sortcombo(scbpp, (struct combostr **)(cbp + 1), ocbp)) {
free(ncbp);
continue;
}
combocnt++;
ncbp->c_combo.c.a = c;
ncbp->c_combo.c.b = n;
ncbp->c_link[0] = cbp;
ncbp->c_link[1] = ocbp;
ncbp->c_linkv[1].s = ocb.s;
ncbp->c_voff[1] = off;
ncbp->c_vertex = osp - board;
ncbp->c_nframes = cbp->c_nframes + 1;
ncbp->c_flg = ocb.c.b ? C_OPEN_1 : 0;
ncbp->c_frameindex = ep->e_frameindex;
/*
* Update the completion spot mask of the frame we
* are attaching 'ocbp' to so the intersection isn't
* listed twice.
*/
ncbp->c_framecnt[0] = ep->e_framecnt;
ncbp->c_emask[0] = ep->e_emask;
if (verts) {
ncbp->c_flg |= C_LOOP;
ncbp->c_dir = vertices[0].o_frameindex;
ncbp->c_framecnt[1] = fcnt - 1;
if (ncbp->c_framecnt[1]) {
n = (vertices[0].o_intersect - ocbp->c_vertex) /
dd[ocbp->c_dir];
ncbp->c_emask[1] = emask & ~(1 << n);
} else
ncbp->c_emask[1] = 0;
ncbp->c_voff[0] = vertices[0].o_off;
} else {
ncbp->c_dir = 0;
ncbp->c_framecnt[1] = fcnt;
ncbp->c_emask[1] = emask;
ncbp->c_voff[0] = ep->e_off;
}
if ((c == 1 && debug > 1) || debug > 3) {
sprintf(fmtbuf, "%c v%d i%d d%d c %d %d m %x %x o %d %d",
"bw"[curcolor], verts, ncbp->c_frameindex, ncbp->c_dir,
ncbp->c_framecnt[0], ncbp->c_framecnt[1],
ncbp->c_emask[0], ncbp->c_emask[1],
ncbp->c_voff[0], ncbp->c_voff[1]);
dlog(fmtbuf);
printcombo(ncbp, fmtbuf);
dlog(fmtbuf);
}
if (c > 1) {
/* record the empty spots that will complete this combo */
makeempty(ncbp);
combolen++;
} else {
/* update board values */
updatecombo(ncbp, curcolor);
}
#ifdef DEBUG
if (c == 1 && debug > 1 || debug > 4) {
markcombo(ncbp);
bdisp();
whatsup(0);
clearcombo(ncbp, 0);
}
#endif /* DEBUG */
}
}
#define MAXDEPTH 100
struct elist einfo[MAXDEPTH];
struct combostr *ecombo[MAXDEPTH]; /* separate from elist to save space */
/*
* Add the combostr 'ocbp' to the empty spots list for each empty spot
* in 'ocbp' that will complete the combo.
*/
void
makeempty(ocbp)
struct combostr *ocbp;
{
struct combostr *cbp, *tcbp, **cbpp;
struct elist *ep, *nep;
struct spotstr *sp;
int s, d, m, emask, i;
int nframes;
if (debug > 2) {
sprintf(fmtbuf, "E%c ", "bw"[curcolor]);
printcombo(ocbp, fmtbuf + 3);
dlog(fmtbuf);
}
/* should never happen but check anyway */
if ((nframes = ocbp->c_nframes) >= MAXDEPTH)
return;
/*
* The lower level combo can be pointed to by more than one
* higher level 'struct combostr' so we can't modify the
* lower level. Therefore, higher level combos store the
* real mask of the lower level frame in c_emask[0] and the
* frame number in c_frameindex.
*
* First we traverse the tree from top to bottom and save the
* connection info. Then we traverse the tree from bottom to
* top overwriting lower levels with the newer emask information.
*/
ep = &einfo[nframes];
cbpp = &ecombo[nframes];
for (cbp = ocbp; (tcbp = cbp->c_link[1]) != NULL;
cbp = cbp->c_link[0]) {
ep--;
ep->e_combo = cbp;
*--cbpp = cbp->c_link[1];
ep->e_off = cbp->c_voff[1];
ep->e_frameindex = cbp->c_frameindex;
ep->e_fval.s = cbp->c_linkv[1].s;
ep->e_framecnt = cbp->c_framecnt[1];
ep->e_emask = cbp->c_emask[1];
}
cbp = ep->e_combo;
ep--;
ep->e_combo = cbp;
*--cbpp = cbp->c_link[0];
ep->e_off = cbp->c_voff[0];
ep->e_frameindex = 0;
ep->e_fval.s = cbp->c_linkv[0].s;
ep->e_framecnt = cbp->c_framecnt[0];
ep->e_emask = cbp->c_emask[0];
/* now update the emask info */
s = 0;
for (i = 2, ep += 2; i < nframes; i++, ep++) {
cbp = ep->e_combo;
nep = &einfo[ep->e_frameindex];
nep->e_framecnt = cbp->c_framecnt[0];
nep->e_emask = cbp->c_emask[0];
if (cbp->c_flg & C_LOOP) {
s++;
/*
* Account for the fact that this frame connects
* to a previous one (thus forming a loop).
*/
nep = &einfo[cbp->c_dir];
if (--nep->e_framecnt)
nep->e_emask &= ~(1 << cbp->c_voff[0]);
else
nep->e_emask = 0;
}
}
/*
* We only need to update the emask values of "complete" loops
* to include the intersection spots.
*/
if (s && ocbp->c_combo.c.a == 2) {
/* process loops from the top down */
ep = &einfo[nframes];
do {
ep--;
cbp = ep->e_combo;
if (!(cbp->c_flg & C_LOOP))
continue;
/*
* Update the emask values to include the
* intersection spots.
*/
nep = &einfo[cbp->c_dir];
nep->e_framecnt = 1;
nep->e_emask = 1 << cbp->c_voff[0];
ep->e_framecnt = 1;
ep->e_emask = 1 << ep->e_off;
ep = &einfo[ep->e_frameindex];
do {
ep->e_framecnt = 1;
ep->e_emask = 1 << ep->e_off;
ep = &einfo[ep->e_frameindex];
} while (ep > nep);
} while (ep != einfo);
}
/* check all the frames for completion spots */
for (i = 0, ep = einfo, cbpp = ecombo; i < nframes; i++, ep++, cbpp++) {
/* skip this frame if there are no incomplete spots in it */
if ((emask = ep->e_emask) == 0)
continue;
cbp = *cbpp;
sp = &board[cbp->c_vertex];
d = dd[cbp->c_dir];
for (s = 0, m = 1; s < 5; s++, sp += d, m <<= 1) {
if (sp->s_occ != EMPTY || !(emask & m))
continue;
/* add the combo to the list of empty spots */
nep = (struct elist *)malloc(sizeof(struct elist));
if (nep == NULL)
panic("Out of memory!");
nep->e_combo = ocbp;
nep->e_off = s;
nep->e_frameindex = i;
if (ep->e_framecnt > 1) {
nep->e_framecnt = ep->e_framecnt - 1;
nep->e_emask = emask & ~m;
} else {
nep->e_framecnt = 0;
nep->e_emask = 0;
}
nep->e_fval.s = ep->e_fval.s;
if (debug > 2) {
sprintf(fmtbuf, "e %s o%d i%d c%d m%x %x",
stoc(sp - board),
nep->e_off,
nep->e_frameindex,
nep->e_framecnt,
nep->e_emask,
nep->e_fval.s);
dlog(fmtbuf);
}
/* sort by the number of frames in the combo */
nep->e_next = sp->s_nempty;
sp->s_nempty = nep;
elistcnt++;
}
}
}
/*
* Update the board value based on the combostr.
* This is called only if 'cbp' is a <1,x> combo.
* We handle things differently depending on whether the next move
* would be trying to "complete" the combo or trying to block it.
*/
void
updatecombo(cbp, color)
struct combostr *cbp;
int color;
{
struct spotstr *sp;
struct combostr *tcbp;
int i, d;
int nframes, flg, s;
union comboval cb;
flg = 0;
/* save the top level value for the whole combo */
cb.c.a = cbp->c_combo.c.a;
nframes = cbp->c_nframes;
if (color != nextcolor)
memset(tmpmap, 0, sizeof(tmpmap));
for (; (tcbp = cbp->c_link[1]) != NULL; cbp = cbp->c_link[0]) {
flg = cbp->c_flg;
cb.c.b = cbp->c_combo.c.b;
if (color == nextcolor) {
/* update the board value for the vertex */
sp = &board[cbp->c_vertex];
sp->s_nforce[color]++;
if (cb.s <= sp->s_combo[color].s) {
if (cb.s != sp->s_combo[color].s) {
sp->s_combo[color].s = cb.s;
sp->s_level[color] = nframes;
} else if (nframes < sp->s_level[color])
sp->s_level[color] = nframes;
}
} else {
/* update the board values for each spot in frame */
sp = &board[s = tcbp->c_vertex];
d = dd[tcbp->c_dir];
i = (flg & C_OPEN_1) ? 6 : 5;
for (; --i >= 0; sp += d, s += d) {
if (sp->s_occ != EMPTY)
continue;
sp->s_nforce[color]++;
if (cb.s <= sp->s_combo[color].s) {
if (cb.s != sp->s_combo[color].s) {
sp->s_combo[color].s = cb.s;
sp->s_level[color] = nframes;
} else if (nframes < sp->s_level[color])
sp->s_level[color] = nframes;
}
BIT_SET(tmpmap, s);
}
}
/* mark the frame as being part of a <1,x> combo */
board[tcbp->c_vertex].s_flg |= FFLAG << tcbp->c_dir;
}
if (color != nextcolor) {
/* update the board values for each spot in frame */
sp = &board[s = cbp->c_vertex];
d = dd[cbp->c_dir];
i = (flg & C_OPEN_0) ? 6 : 5;
for (; --i >= 0; sp += d, s += d) {
if (sp->s_occ != EMPTY)
continue;
sp->s_nforce[color]++;
if (cb.s <= sp->s_combo[color].s) {
if (cb.s != sp->s_combo[color].s) {
sp->s_combo[color].s = cb.s;
sp->s_level[color] = nframes;
} else if (nframes < sp->s_level[color])
sp->s_level[color] = nframes;
}
BIT_SET(tmpmap, s);
}
if (nforce == 0)
memcpy(forcemap, tmpmap, sizeof(tmpmap));
else {
for (i = 0; (unsigned int)i < MAPSZ; i++)
forcemap[i] &= tmpmap[i];
}
nforce++;
}
/* mark the frame as being part of a <1,x> combo */
board[cbp->c_vertex].s_flg |= FFLAG << cbp->c_dir;
}
/*
* Add combo to the end of the list.
*/
void
appendcombo(cbp, color)
struct combostr *cbp;
int color __unused;
{
struct combostr *pcbp, *ncbp;
combolen++;
ncbp = sortcombos;
if (ncbp == (struct combostr *)0) {
sortcombos = cbp;
cbp->c_next = cbp;
cbp->c_prev = cbp;
return;
}
pcbp = ncbp->c_prev;
cbp->c_next = ncbp;
cbp->c_prev = pcbp;
ncbp->c_prev = cbp;
pcbp->c_next = cbp;
}
/*
* Return zero if it is valid to combine frame 'fcbp' with the frames
* in 'cbp' and forms a linked chain of frames (i.e., a tree; no loops).
* Return positive if combining frame 'fcbp' to the frames in 'cbp'
* would form some kind of valid loop. Also return the intersection spots
* in 'vertices[]' beside the known intersection at spot 'osp'.
* Return -1 if 'fcbp' should not be combined with 'cbp'.
* 's' is the combo value for frame 'fcpb'.
*/
int
checkframes(cbp, fcbp, osp, s, vertices)
struct combostr *cbp;
struct combostr *fcbp;
struct spotstr *osp;
int s;
struct ovlp_info *vertices;
{
struct combostr *tcbp, *lcbp;
int i, n, mask, flg, verts, loop, index, fcnt;
union comboval cb;
u_char *str;
short *ip;
lcbp = NULL;
flg = 0;
cb.s = s;
fcnt = cb.c.a - 2;
verts = 0;
loop = 0;
index = cbp->c_nframes;
n = (fcbp - frames) * FAREA;
str = &overlap[n];
ip = &intersect[n];
/*
* i == which overlap bit to test based on whether 'fcbp' is
* an open or closed frame.
*/
i = cb.c.b ? 2 : 0;
for (; (tcbp = cbp->c_link[1]) != NULL;
lcbp = cbp, cbp = cbp->c_link[0]) {
if (tcbp == fcbp)
return (-1); /* fcbp is already included */
/* check for intersection of 'tcbp' with 'fcbp' */
index--;
mask = str[tcbp - frames];
flg = cbp->c_flg;
n = i + ((flg & C_OPEN_1) != 0);
if (mask & (1 << n)) {
/*
* The two frames are not independent if they
* both lie in the same line and intersect at
* more than one point.
*/
if (tcbp->c_dir == fcbp->c_dir && (mask & (0x10 << n)))
return (-1);
/*
* If this is not the spot we are attaching
* 'fcbp' to and it is a reasonable intersection
* spot, then there might be a loop.
*/
n = ip[tcbp - frames];
if (osp != &board[n]) {
/* check to see if this is a valid loop */
if (verts)
return (-1);
if (fcnt == 0 || cbp->c_framecnt[1] == 0)
return (-1);
/*
* Check to be sure the intersection is not
* one of the end points if it is an open
* ended frame.
*/
if ((flg & C_OPEN_1) &&
(n == tcbp->c_vertex ||
n == tcbp->c_vertex + 5 * dd[tcbp->c_dir]))
return (-1); /* invalid overlap */
if (cb.c.b &&
(n == fcbp->c_vertex ||
n == fcbp->c_vertex + 5 * dd[fcbp->c_dir]))
return (-1); /* invalid overlap */
vertices->o_intersect = n;
vertices->o_fcombo = cbp;
vertices->o_link = 1;
vertices->o_off = (n - tcbp->c_vertex) /
dd[tcbp->c_dir];
vertices->o_frameindex = index;
verts++;
}
}
n = i + ((flg & C_OPEN_0) != 0);
}
if (cbp == fcbp)
return (-1); /* fcbp is already included */
/* check for intersection of 'cbp' with 'fcbp' */
mask = str[cbp - frames];
if (mask & (1 << n)) {
/*
* The two frames are not independent if they
* both lie in the same line and intersect at
* more than one point.
*/
if (cbp->c_dir == fcbp->c_dir && (mask & (0x10 << n)))
return (-1);
/*
* If this is not the spot we are attaching
* 'fcbp' to and it is a reasonable intersection
* spot, then there might be a loop.
*/
n = ip[cbp - frames];
if (osp != &board[n]) {
/* check to see if this is a valid loop */
if (verts)
return (-1);
if (fcnt == 0 || lcbp->c_framecnt[0] == 0)
return (-1);
/*
* Check to be sure the intersection is not
* one of the end points if it is an open
* ended frame.
*/
if ((flg & C_OPEN_0) &&
(n == cbp->c_vertex ||
n == cbp->c_vertex + 5 * dd[cbp->c_dir]))
return (-1); /* invalid overlap */
if (cb.c.b &&
(n == fcbp->c_vertex ||
n == fcbp->c_vertex + 5 * dd[fcbp->c_dir]))
return (-1); /* invalid overlap */
vertices->o_intersect = n;
vertices->o_fcombo = lcbp;
vertices->o_link = 0;
vertices->o_off = (n - cbp->c_vertex) /
dd[cbp->c_dir];
vertices->o_frameindex = 0;
verts++;
}
}
return (verts);
}
/*
* Merge sort the frame 'fcbp' and the sorted list of frames 'cbpp' and
* store the result in 'scbpp'. 'curlevel' is the size of the 'cbpp' array.
* Return true if this list of frames is already in the hash list.
* Otherwise, add the new combo to the hash list.
*/
int
sortcombo(scbpp, cbpp, fcbp)
struct combostr **scbpp;
struct combostr **cbpp;
struct combostr *fcbp;
{
struct combostr **spp, **cpp;
struct combostr *cbp, *ecbp;
int n, inx;
#ifdef DEBUG
if (debug > 3) {
char *str;
sprintf(fmtbuf, "sortc: %s%c l%d", stoc(fcbp->c_vertex),
pdir[fcbp->c_dir], curlevel);
dlog(fmtbuf);
str = fmtbuf;
for (cpp = cbpp; cpp < cbpp + curlevel; cpp++) {
sprintf(str, " %s%c", stoc((*cpp)->c_vertex),
pdir[(*cpp)->c_dir]);
str += strlen(str);
}
dlog(fmtbuf);
}
#endif /* DEBUG */
/* first build the new sorted list */
n = curlevel + 1;
spp = scbpp + n;
cpp = cbpp + curlevel;
do {
cpp--;
if (fcbp > *cpp) {
*--spp = fcbp;
do
*--spp = *cpp;
while (cpp-- != cbpp);
goto inserted;
}
*--spp = *cpp;
} while (cpp != cbpp);
*--spp = fcbp;
inserted:
/* now check to see if this list of frames has already been seen */
cbp = hashcombos[inx = *scbpp - frames];
if (cbp == (struct combostr *)0) {
/*
* Easy case, this list hasn't been seen.
* Add it to the hash list.
*/
fcbp = (struct combostr *)
((char *)scbpp - sizeof(struct combostr));
hashcombos[inx] = fcbp;
fcbp->c_next = fcbp->c_prev = fcbp;
return (0);
}
ecbp = cbp;
do {
cbpp = (struct combostr **)(cbp + 1);
cpp = cbpp + n;
spp = scbpp + n;
cbpp++; /* first frame is always the same */
do {
if (*--spp != *--cpp)
goto next;
} while (cpp != cbpp);
/* we found a match */
#ifdef DEBUG
if (debug > 3) {
char *str;
sprintf(fmtbuf, "sort1: n%d", n);
dlog(fmtbuf);
str = fmtbuf;
for (cpp = scbpp; cpp < scbpp + n; cpp++) {
sprintf(str, " %s%c", stoc((*cpp)->c_vertex),
pdir[(*cpp)->c_dir]);
str += strlen(str);
}
dlog(fmtbuf);
printcombo(cbp, fmtbuf);
dlog(fmtbuf);
str = fmtbuf;
cbpp--;
for (cpp = cbpp; cpp < cbpp + n; cpp++) {
sprintf(str, " %s%c", stoc((*cpp)->c_vertex),
pdir[(*cpp)->c_dir]);
str += strlen(str);
}
dlog(fmtbuf);
}
#endif /* DEBUG */
return (1);
next:
;
} while ((cbp = cbp->c_next) != ecbp);
/*
* This list of frames hasn't been seen.
* Add it to the hash list.
*/
ecbp = cbp->c_prev;
fcbp = (struct combostr *)((char *)scbpp - sizeof(struct combostr));
fcbp->c_next = cbp;
fcbp->c_prev = ecbp;
cbp->c_prev = fcbp;
ecbp->c_next = fcbp;
return (0);
}
/*
* Print the combo into string 'str'.
*/
void
printcombo(cbp, str)
struct combostr *cbp;
char *str;
{
struct combostr *tcbp;
sprintf(str, "%x/%d", cbp->c_combo.s, cbp->c_nframes);
str += strlen(str);
for (; (tcbp = cbp->c_link[1]) != NULL; cbp = cbp->c_link[0]) {
sprintf(str, " %s%c%x", stoc(tcbp->c_vertex), pdir[tcbp->c_dir],
cbp->c_flg);
str += strlen(str);
}
sprintf(str, " %s%c", stoc(cbp->c_vertex), pdir[cbp->c_dir]);
}
#ifdef DEBUG
void
markcombo(ocbp)
struct combostr *ocbp;
{
struct combostr *cbp, *tcbp, **cbpp;
struct elist *ep, *nep, **epp;
struct spotstr *sp;
int s, d, m, i;
int nframes;
int r, n, flg, cmask, omask;
/* should never happen but check anyway */
if ((nframes = ocbp->c_nframes) >= MAXDEPTH)
return;
/*
* The lower level combo can be pointed to by more than one
* higher level 'struct combostr' so we can't modify the
* lower level. Therefore, higher level combos store the
* real mask of the lower level frame in c_emask[0] and the
* frame number in c_frameindex.
*
* First we traverse the tree from top to bottom and save the
* connection info. Then we traverse the tree from bottom to
* top overwriting lower levels with the newer emask information.
*/
ep = &einfo[nframes];
cbpp = &ecombo[nframes];
for (cbp = ocbp; tcbp = cbp->c_link[1]; cbp = cbp->c_link[0]) {
ep--;
ep->e_combo = cbp;
*--cbpp = cbp->c_link[1];
ep->e_off = cbp->c_voff[1];
ep->e_frameindex = cbp->c_frameindex;
ep->e_fval.s = cbp->c_linkv[1].s;
ep->e_framecnt = cbp->c_framecnt[1];
ep->e_emask = cbp->c_emask[1];
}
cbp = ep->e_combo;
ep--;
ep->e_combo = cbp;
*--cbpp = cbp->c_link[0];
ep->e_off = cbp->c_voff[0];
ep->e_frameindex = 0;
ep->e_fval.s = cbp->c_linkv[0].s;
ep->e_framecnt = cbp->c_framecnt[0];
ep->e_emask = cbp->c_emask[0];
/* now update the emask info */
s = 0;
for (i = 2, ep += 2; i < nframes; i++, ep++) {
cbp = ep->e_combo;
nep = &einfo[ep->e_frameindex];
nep->e_framecnt = cbp->c_framecnt[0];
nep->e_emask = cbp->c_emask[0];
if (cbp->c_flg & C_LOOP) {
s++;
/*
* Account for the fact that this frame connects
* to a previous one (thus forming a loop).
*/
nep = &einfo[cbp->c_dir];
if (--nep->e_framecnt)
nep->e_emask &= ~(1 << cbp->c_voff[0]);
else
nep->e_emask = 0;
}
}
/*
* We only need to update the emask values of "complete" loops
* to include the intersection spots.
*/
if (s && ocbp->c_combo.c.a == 2) {
/* process loops from the top down */
ep = &einfo[nframes];
do {
ep--;
cbp = ep->e_combo;
if (!(cbp->c_flg & C_LOOP))
continue;
/*
* Update the emask values to include the
* intersection spots.
*/
nep = &einfo[cbp->c_dir];
nep->e_framecnt = 1;
nep->e_emask = 1 << cbp->c_voff[0];
ep->e_framecnt = 1;
ep->e_emask = 1 << ep->e_off;
ep = &einfo[ep->e_frameindex];
do {
ep->e_framecnt = 1;
ep->e_emask = 1 << ep->e_off;
ep = &einfo[ep->e_frameindex];
} while (ep > nep);
} while (ep != einfo);
}
/* mark all the frames with the completion spots */
for (i = 0, ep = einfo, cbpp = ecombo; i < nframes; i++, ep++, cbpp++) {
m = ep->e_emask;
cbp = *cbpp;
sp = &board[cbp->c_vertex];
d = dd[s = cbp->c_dir];
cmask = CFLAG << s;
omask = (IFLAG | CFLAG) << s;
s = ep->e_fval.c.b ? 6 : 5;
for (; --s >= 0; sp += d, m >>= 1)
sp->s_flg |= (m & 1) ? omask : cmask;
}
}
void
clearcombo(cbp, open)
struct combostr *cbp;
int open;
{
struct spotstr *sp;
struct combostr *tcbp;
int d, n, mask;
for (; tcbp = cbp->c_link[1]; cbp = cbp->c_link[0]) {
clearcombo(tcbp, cbp->c_flg & C_OPEN_1);
open = cbp->c_flg & C_OPEN_0;
}
sp = &board[cbp->c_vertex];
d = dd[n = cbp->c_dir];
mask = ~((IFLAG | CFLAG) << n);
n = open ? 6 : 5;
for (; --n >= 0; sp += d)
sp->s_flg &= mask;
}
int
list_eq(scbpp, cbpp, n)
struct combostr **scbpp;
struct combostr **cbpp;
int n;
{
struct combostr **spp, **cpp;
spp = scbpp + n;
cpp = cbpp + n;
do {
if (*--spp != *--cpp)
return (0);
} while (cpp != cbpp);
/* we found a match */
return (1);
}
#endif /* DEBUG */