755 lines
18 KiB
C
755 lines
18 KiB
C
/* $NetBSD: pktqueue.c,v 1.21 2022/09/04 17:34:43 thorpej Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2014 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Mindaugas Rasiukevicius.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* The packet queue (pktqueue) interface is a lockless IP input queue
|
|
* which also abstracts and handles network ISR scheduling. It provides
|
|
* a mechanism to enable receiver-side packet steering (RPS).
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: pktqueue.c,v 1.21 2022/09/04 17:34:43 thorpej Exp $");
|
|
|
|
#ifdef _KERNEL_OPT
|
|
#include "opt_net_mpsafe.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/atomic.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/pcq.h>
|
|
#include <sys/intr.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/percpu.h>
|
|
#include <sys/xcall.h>
|
|
#include <sys/once.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/rwlock.h>
|
|
|
|
#include <net/pktqueue.h>
|
|
#include <net/rss_config.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip6.h>
|
|
|
|
struct pktqueue {
|
|
/*
|
|
* The lock used for a barrier mechanism. The barrier counter,
|
|
* as well as the drop counter, are managed atomically though.
|
|
* Ensure this group is in a separate cache line.
|
|
*/
|
|
union {
|
|
struct {
|
|
kmutex_t pq_lock;
|
|
volatile u_int pq_barrier;
|
|
};
|
|
uint8_t _pad[COHERENCY_UNIT];
|
|
};
|
|
|
|
/* The size of the queue, counters and the interrupt handler. */
|
|
u_int pq_maxlen;
|
|
percpu_t * pq_counters;
|
|
void * pq_sih;
|
|
|
|
/* The per-CPU queues. */
|
|
struct percpu * pq_pcq; /* struct pcq * */
|
|
|
|
/* The linkage on the list of all pktqueues. */
|
|
LIST_ENTRY(pktqueue) pq_list;
|
|
};
|
|
|
|
/* The counters of the packet queue. */
|
|
#define PQCNT_ENQUEUE 0
|
|
#define PQCNT_DEQUEUE 1
|
|
#define PQCNT_DROP 2
|
|
#define PQCNT_NCOUNTERS 3
|
|
|
|
typedef struct {
|
|
uint64_t count[PQCNT_NCOUNTERS];
|
|
} pktq_counters_t;
|
|
|
|
/* Special marker value used by pktq_barrier() mechanism. */
|
|
#define PKTQ_MARKER ((void *)(~0ULL))
|
|
|
|
/*
|
|
* This is a list of all pktqueues. This list is used by
|
|
* pktq_ifdetach() to issue a barrier on every pktqueue.
|
|
*
|
|
* The r/w lock is acquired for writing in pktq_create() and
|
|
* pktq_destroy(), and for reading in pktq_ifdetach().
|
|
*
|
|
* This list is not performance critical, and will seldom be
|
|
* accessed.
|
|
*/
|
|
static LIST_HEAD(, pktqueue) pktqueue_list __read_mostly;
|
|
static krwlock_t pktqueue_list_lock __read_mostly;
|
|
static once_t pktqueue_list_init_once __read_mostly;
|
|
|
|
static int
|
|
pktqueue_list_init(void)
|
|
{
|
|
LIST_INIT(&pktqueue_list);
|
|
rw_init(&pktqueue_list_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
pktq_init_cpu(void *vqp, void *vpq, struct cpu_info *ci)
|
|
{
|
|
struct pcq **qp = vqp;
|
|
struct pktqueue *pq = vpq;
|
|
|
|
*qp = pcq_create(pq->pq_maxlen, KM_SLEEP);
|
|
}
|
|
|
|
static void
|
|
pktq_fini_cpu(void *vqp, void *vpq, struct cpu_info *ci)
|
|
{
|
|
struct pcq **qp = vqp, *q = *qp;
|
|
|
|
KASSERT(pcq_peek(q) == NULL);
|
|
pcq_destroy(q);
|
|
*qp = NULL; /* paranoia */
|
|
}
|
|
|
|
static struct pcq *
|
|
pktq_pcq(struct pktqueue *pq, struct cpu_info *ci)
|
|
{
|
|
struct pcq **qp, *q;
|
|
|
|
/*
|
|
* As long as preemption is disabled, the xcall to swap percpu
|
|
* buffers can't complete, so it is safe to read the pointer.
|
|
*/
|
|
KASSERT(kpreempt_disabled());
|
|
|
|
qp = percpu_getptr_remote(pq->pq_pcq, ci);
|
|
q = *qp;
|
|
|
|
return q;
|
|
}
|
|
|
|
pktqueue_t *
|
|
pktq_create(size_t maxlen, void (*intrh)(void *), void *sc)
|
|
{
|
|
const u_int sflags = SOFTINT_NET | SOFTINT_MPSAFE | SOFTINT_RCPU;
|
|
pktqueue_t *pq;
|
|
percpu_t *pc;
|
|
void *sih;
|
|
|
|
RUN_ONCE(&pktqueue_list_init_once, pktqueue_list_init);
|
|
|
|
pc = percpu_alloc(sizeof(pktq_counters_t));
|
|
if ((sih = softint_establish(sflags, intrh, sc)) == NULL) {
|
|
percpu_free(pc, sizeof(pktq_counters_t));
|
|
return NULL;
|
|
}
|
|
|
|
pq = kmem_zalloc(sizeof(*pq), KM_SLEEP);
|
|
mutex_init(&pq->pq_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
pq->pq_maxlen = maxlen;
|
|
pq->pq_counters = pc;
|
|
pq->pq_sih = sih;
|
|
pq->pq_pcq = percpu_create(sizeof(struct pcq *),
|
|
pktq_init_cpu, pktq_fini_cpu, pq);
|
|
|
|
rw_enter(&pktqueue_list_lock, RW_WRITER);
|
|
LIST_INSERT_HEAD(&pktqueue_list, pq, pq_list);
|
|
rw_exit(&pktqueue_list_lock);
|
|
|
|
return pq;
|
|
}
|
|
|
|
void
|
|
pktq_destroy(pktqueue_t *pq)
|
|
{
|
|
|
|
KASSERT(pktqueue_list_init_once.o_status == ONCE_DONE);
|
|
|
|
rw_enter(&pktqueue_list_lock, RW_WRITER);
|
|
LIST_REMOVE(pq, pq_list);
|
|
rw_exit(&pktqueue_list_lock);
|
|
|
|
percpu_free(pq->pq_pcq, sizeof(struct pcq *));
|
|
percpu_free(pq->pq_counters, sizeof(pktq_counters_t));
|
|
softint_disestablish(pq->pq_sih);
|
|
mutex_destroy(&pq->pq_lock);
|
|
kmem_free(pq, sizeof(*pq));
|
|
}
|
|
|
|
/*
|
|
* - pktq_inc_counter: increment the counter given an ID.
|
|
* - pktq_collect_counts: handler to sum up the counts from each CPU.
|
|
* - pktq_getcount: return the effective count given an ID.
|
|
*/
|
|
|
|
static inline void
|
|
pktq_inc_count(pktqueue_t *pq, u_int i)
|
|
{
|
|
percpu_t *pc = pq->pq_counters;
|
|
pktq_counters_t *c;
|
|
|
|
c = percpu_getref(pc);
|
|
c->count[i]++;
|
|
percpu_putref(pc);
|
|
}
|
|
|
|
static void
|
|
pktq_collect_counts(void *mem, void *arg, struct cpu_info *ci)
|
|
{
|
|
const pktq_counters_t *c = mem;
|
|
pktq_counters_t *sum = arg;
|
|
|
|
int s = splnet();
|
|
|
|
for (u_int i = 0; i < PQCNT_NCOUNTERS; i++) {
|
|
sum->count[i] += c->count[i];
|
|
}
|
|
|
|
splx(s);
|
|
}
|
|
|
|
static uint64_t
|
|
pktq_get_count(pktqueue_t *pq, pktq_count_t c)
|
|
{
|
|
pktq_counters_t sum;
|
|
|
|
if (c != PKTQ_MAXLEN) {
|
|
memset(&sum, 0, sizeof(sum));
|
|
percpu_foreach_xcall(pq->pq_counters,
|
|
XC_HIGHPRI_IPL(IPL_SOFTNET), pktq_collect_counts, &sum);
|
|
}
|
|
switch (c) {
|
|
case PKTQ_NITEMS:
|
|
return sum.count[PQCNT_ENQUEUE] - sum.count[PQCNT_DEQUEUE];
|
|
case PKTQ_DROPS:
|
|
return sum.count[PQCNT_DROP];
|
|
case PKTQ_MAXLEN:
|
|
return pq->pq_maxlen;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint32_t
|
|
pktq_rps_hash(const pktq_rps_hash_func_t *funcp, const struct mbuf *m)
|
|
{
|
|
pktq_rps_hash_func_t func = atomic_load_relaxed(funcp);
|
|
|
|
KASSERT(func != NULL);
|
|
|
|
return (*func)(m);
|
|
}
|
|
|
|
static uint32_t
|
|
pktq_rps_hash_zero(const struct mbuf *m __unused)
|
|
{
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t
|
|
pktq_rps_hash_curcpu(const struct mbuf *m __unused)
|
|
{
|
|
|
|
return cpu_index(curcpu());
|
|
}
|
|
|
|
static uint32_t
|
|
pktq_rps_hash_toeplitz(const struct mbuf *m)
|
|
{
|
|
struct ip *ip;
|
|
/*
|
|
* Disable UDP port - IP fragments aren't currently being handled
|
|
* and so we end up with a mix of 2-tuple and 4-tuple
|
|
* traffic.
|
|
*/
|
|
const u_int flag = RSS_TOEPLITZ_USE_TCP_PORT;
|
|
|
|
/* glance IP version */
|
|
if ((m->m_flags & M_PKTHDR) == 0)
|
|
return 0;
|
|
|
|
ip = mtod(m, struct ip *);
|
|
if (ip->ip_v == IPVERSION) {
|
|
if (__predict_false(m->m_len < sizeof(struct ip)))
|
|
return 0;
|
|
return rss_toeplitz_hash_from_mbuf_ipv4(m, flag);
|
|
} else if (ip->ip_v == 6) {
|
|
if (__predict_false(m->m_len < sizeof(struct ip6_hdr)))
|
|
return 0;
|
|
return rss_toeplitz_hash_from_mbuf_ipv6(m, flag);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* toeplitz without curcpu.
|
|
* Generally, this has better performance than toeplitz.
|
|
*/
|
|
static uint32_t
|
|
pktq_rps_hash_toeplitz_othercpus(const struct mbuf *m)
|
|
{
|
|
uint32_t hash;
|
|
|
|
if (ncpu == 1)
|
|
return 0;
|
|
|
|
hash = pktq_rps_hash_toeplitz(m);
|
|
hash %= ncpu - 1;
|
|
if (hash >= cpu_index(curcpu()))
|
|
return hash + 1;
|
|
else
|
|
return hash;
|
|
}
|
|
|
|
static struct pktq_rps_hash_table {
|
|
const char* prh_type;
|
|
pktq_rps_hash_func_t prh_func;
|
|
} const pktq_rps_hash_tab[] = {
|
|
{ "zero", pktq_rps_hash_zero },
|
|
{ "curcpu", pktq_rps_hash_curcpu },
|
|
{ "toeplitz", pktq_rps_hash_toeplitz },
|
|
{ "toeplitz-othercpus", pktq_rps_hash_toeplitz_othercpus },
|
|
};
|
|
const pktq_rps_hash_func_t pktq_rps_hash_default =
|
|
#ifdef NET_MPSAFE
|
|
pktq_rps_hash_curcpu;
|
|
#else
|
|
pktq_rps_hash_zero;
|
|
#endif
|
|
|
|
static const char *
|
|
pktq_get_rps_hash_type(pktq_rps_hash_func_t func)
|
|
{
|
|
|
|
for (int i = 0; i < __arraycount(pktq_rps_hash_tab); i++) {
|
|
if (func == pktq_rps_hash_tab[i].prh_func) {
|
|
return pktq_rps_hash_tab[i].prh_type;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
pktq_set_rps_hash_type(pktq_rps_hash_func_t *func, const char *type)
|
|
{
|
|
|
|
if (strcmp(type, pktq_get_rps_hash_type(*func)) == 0)
|
|
return 0;
|
|
|
|
for (int i = 0; i < __arraycount(pktq_rps_hash_tab); i++) {
|
|
if (strcmp(type, pktq_rps_hash_tab[i].prh_type) == 0) {
|
|
atomic_store_relaxed(func, pktq_rps_hash_tab[i].prh_func);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return ENOENT;
|
|
}
|
|
|
|
int
|
|
sysctl_pktq_rps_hash_handler(SYSCTLFN_ARGS)
|
|
{
|
|
struct sysctlnode node;
|
|
pktq_rps_hash_func_t *func;
|
|
int error;
|
|
char type[PKTQ_RPS_HASH_NAME_LEN];
|
|
|
|
node = *rnode;
|
|
func = node.sysctl_data;
|
|
|
|
strlcpy(type, pktq_get_rps_hash_type(*func), PKTQ_RPS_HASH_NAME_LEN);
|
|
|
|
node.sysctl_data = &type;
|
|
node.sysctl_size = sizeof(type);
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return error;
|
|
|
|
error = pktq_set_rps_hash_type(func, type);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* pktq_enqueue: inject the packet into the end of the queue.
|
|
*
|
|
* => Must be called from the interrupt or with the preemption disabled.
|
|
* => Consumes the packet and returns true on success.
|
|
* => Returns false on failure; caller is responsible to free the packet.
|
|
*/
|
|
bool
|
|
pktq_enqueue(pktqueue_t *pq, struct mbuf *m, const u_int hash __unused)
|
|
{
|
|
#if defined(_RUMPKERNEL) || defined(_RUMP_NATIVE_ABI)
|
|
struct cpu_info *ci = curcpu();
|
|
#else
|
|
struct cpu_info *ci = cpu_lookup(hash % ncpu);
|
|
#endif
|
|
|
|
KASSERT(kpreempt_disabled());
|
|
|
|
if (__predict_false(!pcq_put(pktq_pcq(pq, ci), m))) {
|
|
pktq_inc_count(pq, PQCNT_DROP);
|
|
return false;
|
|
}
|
|
softint_schedule_cpu(pq->pq_sih, ci);
|
|
pktq_inc_count(pq, PQCNT_ENQUEUE);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* pktq_dequeue: take a packet from the queue.
|
|
*
|
|
* => Must be called with preemption disabled.
|
|
* => Must ensure there are not concurrent dequeue calls.
|
|
*/
|
|
struct mbuf *
|
|
pktq_dequeue(pktqueue_t *pq)
|
|
{
|
|
struct cpu_info *ci = curcpu();
|
|
struct mbuf *m;
|
|
|
|
KASSERT(kpreempt_disabled());
|
|
|
|
m = pcq_get(pktq_pcq(pq, ci));
|
|
if (__predict_false(m == PKTQ_MARKER)) {
|
|
/* Note the marker entry. */
|
|
atomic_inc_uint(&pq->pq_barrier);
|
|
|
|
/* Get the next queue entry. */
|
|
m = pcq_get(pktq_pcq(pq, ci));
|
|
|
|
/*
|
|
* There can only be one barrier operation pending
|
|
* on a pktqueue at any given time, so we can assert
|
|
* that the next item is not a marker.
|
|
*/
|
|
KASSERT(m != PKTQ_MARKER);
|
|
}
|
|
if (__predict_true(m != NULL)) {
|
|
pktq_inc_count(pq, PQCNT_DEQUEUE);
|
|
}
|
|
return m;
|
|
}
|
|
|
|
/*
|
|
* pktq_barrier: waits for a grace period when all packets enqueued at
|
|
* the moment of calling this routine will be processed. This is used
|
|
* to ensure that e.g. packets referencing some interface were drained.
|
|
*/
|
|
void
|
|
pktq_barrier(pktqueue_t *pq)
|
|
{
|
|
CPU_INFO_ITERATOR cii;
|
|
struct cpu_info *ci;
|
|
u_int pending = 0;
|
|
|
|
mutex_enter(&pq->pq_lock);
|
|
KASSERT(pq->pq_barrier == 0);
|
|
|
|
for (CPU_INFO_FOREACH(cii, ci)) {
|
|
struct pcq *q;
|
|
|
|
kpreempt_disable();
|
|
q = pktq_pcq(pq, ci);
|
|
kpreempt_enable();
|
|
|
|
/* If the queue is empty - nothing to do. */
|
|
if (pcq_peek(q) == NULL) {
|
|
continue;
|
|
}
|
|
/* Otherwise, put the marker and entry. */
|
|
while (!pcq_put(q, PKTQ_MARKER)) {
|
|
kpause("pktqsync", false, 1, NULL);
|
|
}
|
|
kpreempt_disable();
|
|
softint_schedule_cpu(pq->pq_sih, ci);
|
|
kpreempt_enable();
|
|
pending++;
|
|
}
|
|
|
|
/* Wait for each queue to process the markers. */
|
|
while (pq->pq_barrier != pending) {
|
|
kpause("pktqsync", false, 1, NULL);
|
|
}
|
|
pq->pq_barrier = 0;
|
|
mutex_exit(&pq->pq_lock);
|
|
}
|
|
|
|
/*
|
|
* pktq_ifdetach: issue a barrier on all pktqueues when a network
|
|
* interface is detached.
|
|
*/
|
|
void
|
|
pktq_ifdetach(void)
|
|
{
|
|
pktqueue_t *pq;
|
|
|
|
/* Just in case no pktqueues have been created yet... */
|
|
RUN_ONCE(&pktqueue_list_init_once, pktqueue_list_init);
|
|
|
|
rw_enter(&pktqueue_list_lock, RW_READER);
|
|
LIST_FOREACH(pq, &pktqueue_list, pq_list) {
|
|
pktq_barrier(pq);
|
|
}
|
|
rw_exit(&pktqueue_list_lock);
|
|
}
|
|
|
|
/*
|
|
* pktq_flush: free mbufs in all queues.
|
|
*
|
|
* => The caller must ensure there are no concurrent writers or flush calls.
|
|
*/
|
|
void
|
|
pktq_flush(pktqueue_t *pq)
|
|
{
|
|
CPU_INFO_ITERATOR cii;
|
|
struct cpu_info *ci;
|
|
struct mbuf *m, *m0 = NULL;
|
|
|
|
ASSERT_SLEEPABLE();
|
|
|
|
/*
|
|
* Run a dummy softint at IPL_SOFTNET on all CPUs to ensure that any
|
|
* already running handler for this pktqueue is no longer running.
|
|
*/
|
|
xc_barrier(XC_HIGHPRI_IPL(IPL_SOFTNET));
|
|
|
|
/*
|
|
* Acquire the barrier lock. While the caller ensures that
|
|
* no explcit pktq_barrier() calls will be issued, this holds
|
|
* off any implicit pktq_barrier() calls that would happen
|
|
* as the result of pktq_ifdetach().
|
|
*/
|
|
mutex_enter(&pq->pq_lock);
|
|
|
|
for (CPU_INFO_FOREACH(cii, ci)) {
|
|
struct pcq *q;
|
|
|
|
kpreempt_disable();
|
|
q = pktq_pcq(pq, ci);
|
|
kpreempt_enable();
|
|
|
|
/*
|
|
* Pull the packets off the pcq and chain them into
|
|
* a list to be freed later.
|
|
*/
|
|
while ((m = pcq_get(q)) != NULL) {
|
|
pktq_inc_count(pq, PQCNT_DEQUEUE);
|
|
m->m_nextpkt = m0;
|
|
m0 = m;
|
|
}
|
|
}
|
|
|
|
mutex_exit(&pq->pq_lock);
|
|
|
|
/* Free the packets now that the critical section is over. */
|
|
while ((m = m0) != NULL) {
|
|
m0 = m->m_nextpkt;
|
|
m_freem(m);
|
|
}
|
|
}
|
|
|
|
static void
|
|
pktq_set_maxlen_cpu(void *vpq, void *vqs)
|
|
{
|
|
struct pktqueue *pq = vpq;
|
|
struct pcq **qp, *q, **qs = vqs;
|
|
unsigned i = cpu_index(curcpu());
|
|
int s;
|
|
|
|
s = splnet();
|
|
qp = percpu_getref(pq->pq_pcq);
|
|
q = *qp;
|
|
*qp = qs[i];
|
|
qs[i] = q;
|
|
percpu_putref(pq->pq_pcq);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* pktq_set_maxlen: create per-CPU queues using a new size and replace
|
|
* the existing queues without losing any packets.
|
|
*
|
|
* XXX ncpu must remain stable throughout.
|
|
*/
|
|
int
|
|
pktq_set_maxlen(pktqueue_t *pq, size_t maxlen)
|
|
{
|
|
const u_int slotbytes = ncpu * sizeof(pcq_t *);
|
|
pcq_t **qs;
|
|
|
|
if (!maxlen || maxlen > PCQ_MAXLEN)
|
|
return EINVAL;
|
|
if (pq->pq_maxlen == maxlen)
|
|
return 0;
|
|
|
|
/* First, allocate the new queues. */
|
|
qs = kmem_zalloc(slotbytes, KM_SLEEP);
|
|
for (u_int i = 0; i < ncpu; i++) {
|
|
qs[i] = pcq_create(maxlen, KM_SLEEP);
|
|
}
|
|
|
|
/*
|
|
* Issue an xcall to replace the queue pointers on each CPU.
|
|
* This implies all the necessary memory barriers.
|
|
*/
|
|
mutex_enter(&pq->pq_lock);
|
|
xc_wait(xc_broadcast(XC_HIGHPRI, pktq_set_maxlen_cpu, pq, qs));
|
|
pq->pq_maxlen = maxlen;
|
|
mutex_exit(&pq->pq_lock);
|
|
|
|
/*
|
|
* At this point, the new packets are flowing into the new
|
|
* queues. However, the old queues may have some packets
|
|
* present which are no longer being processed. We are going
|
|
* to re-enqueue them. This may change the order of packet
|
|
* arrival, but it is not considered an issue.
|
|
*
|
|
* There may be in-flight interrupts calling pktq_dequeue()
|
|
* which reference the old queues. Issue a barrier to ensure
|
|
* that we are going to be the only pcq_get() callers on the
|
|
* old queues.
|
|
*/
|
|
pktq_barrier(pq);
|
|
|
|
for (u_int i = 0; i < ncpu; i++) {
|
|
struct pcq *q;
|
|
struct mbuf *m;
|
|
|
|
kpreempt_disable();
|
|
q = pktq_pcq(pq, cpu_lookup(i));
|
|
kpreempt_enable();
|
|
|
|
while ((m = pcq_get(qs[i])) != NULL) {
|
|
while (!pcq_put(q, m)) {
|
|
kpause("pktqrenq", false, 1, NULL);
|
|
}
|
|
}
|
|
pcq_destroy(qs[i]);
|
|
}
|
|
|
|
/* Well, that was fun. */
|
|
kmem_free(qs, slotbytes);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sysctl_pktq_maxlen(SYSCTLFN_ARGS)
|
|
{
|
|
struct sysctlnode node = *rnode;
|
|
pktqueue_t * const pq = node.sysctl_data;
|
|
u_int nmaxlen = pktq_get_count(pq, PKTQ_MAXLEN);
|
|
int error;
|
|
|
|
node.sysctl_data = &nmaxlen;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return error;
|
|
return pktq_set_maxlen(pq, nmaxlen);
|
|
}
|
|
|
|
static int
|
|
sysctl_pktq_count(SYSCTLFN_ARGS, u_int count_id)
|
|
{
|
|
struct sysctlnode node = *rnode;
|
|
pktqueue_t * const pq = node.sysctl_data;
|
|
uint64_t count = pktq_get_count(pq, count_id);
|
|
|
|
node.sysctl_data = &count;
|
|
return sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
}
|
|
|
|
static int
|
|
sysctl_pktq_nitems(SYSCTLFN_ARGS)
|
|
{
|
|
return sysctl_pktq_count(SYSCTLFN_CALL(rnode), PKTQ_NITEMS);
|
|
}
|
|
|
|
static int
|
|
sysctl_pktq_drops(SYSCTLFN_ARGS)
|
|
{
|
|
return sysctl_pktq_count(SYSCTLFN_CALL(rnode), PKTQ_DROPS);
|
|
}
|
|
|
|
/*
|
|
* pktqueue_sysctl_setup: set up the sysctl nodes for a pktqueue
|
|
* using standardized names at the specified parent node and
|
|
* node ID (or CTL_CREATE).
|
|
*/
|
|
void
|
|
pktq_sysctl_setup(pktqueue_t * const pq, struct sysctllog ** const clog,
|
|
const struct sysctlnode * const parent_node, const int qid)
|
|
{
|
|
const struct sysctlnode *rnode = parent_node, *cnode;
|
|
|
|
KASSERT(pq != NULL);
|
|
KASSERT(parent_node != NULL);
|
|
KASSERT(qid == CTL_CREATE || qid >= 0);
|
|
|
|
/* Create the "ifq" node below the parent node. */
|
|
sysctl_createv(clog, 0, &rnode, &cnode,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "ifq",
|
|
SYSCTL_DESCR("Protocol input queue controls"),
|
|
NULL, 0, NULL, 0,
|
|
qid, CTL_EOL);
|
|
|
|
/* Now create the standard child nodes below "ifq". */
|
|
rnode = cnode;
|
|
|
|
sysctl_createv(clog, 0, &rnode, &cnode,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_QUAD, "len",
|
|
SYSCTL_DESCR("Current input queue length"),
|
|
sysctl_pktq_nitems, 0, (void *)pq, 0,
|
|
IFQCTL_LEN, CTL_EOL);
|
|
sysctl_createv(clog, 0, &rnode, &cnode,
|
|
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "maxlen",
|
|
SYSCTL_DESCR("Maximum allowed input queue length"),
|
|
sysctl_pktq_maxlen, 0, (void *)pq, 0,
|
|
IFQCTL_MAXLEN, CTL_EOL);
|
|
sysctl_createv(clog, 0, &rnode, &cnode,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_QUAD, "drops",
|
|
SYSCTL_DESCR("Packets dropped due to full input queue"),
|
|
sysctl_pktq_drops, 0, (void *)pq, 0,
|
|
IFQCTL_DROPS, CTL_EOL);
|
|
}
|