NetBSD/sys/arch/sparc64/dev/upa.c

839 lines
22 KiB
C

/* $NetBSD: upa.c,v 1.4 1998/09/05 23:57:25 eeh Exp $ */
/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Kranenburg.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)sbus.c 8.1 (Berkeley) 6/11/93
*/
/* #define DEBUG_1 */
/*
* UPA bus stuff.
*/
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <vm/vm.h>
#include <machine/bus.h>
#include <sparc64/dev/upavar.h>
#include <machine/autoconf.h>
#include <machine/ctlreg.h>
#include <machine/cpu.h>
void upareset __P((int));
static bus_space_tag_t upa_alloc_bustag __P((struct upa_softc *));
static int upa_get_intr __P((struct upa_softc *, int, int *));
static int upa_bus_mmap __P((bus_space_tag_t, bus_type_t, bus_addr_t,
int, bus_space_handle_t *));
static int _upa_bus_map __P((
bus_space_tag_t,
bus_type_t, /*slot*/
bus_addr_t, /*offset*/
bus_size_t, /*size*/
int, /*flags*/
vaddr_t, /*preferred virtual address */
bus_space_handle_t *));
static void *upa_intr_establish __P((
bus_space_tag_t,
int, /*level*/
int, /*flags*/
int (*) __P((void *)), /*handler*/
void *)); /*handler arg*/
/* autoconfiguration driver */
int upa_match_mainbus __P((struct device *, struct cfdata *, void *));
void upa_attach_mainbus __P((struct device *, struct device *, void *));
struct cfattach upa_ca = {
sizeof(struct upa_softc), upa_match, upa_attach
};
extern struct cfdriver upa_cd;
/*
* Print the location of some upa-attached device (called just
* before attaching that device). If `upa' is not NULL, the
* device was found but not configured; print the upa as well.
* Return UNCONF (config_find ignores this if the device was configured).
*/
int
upa_print(args, busname)
void *args;
const char *busname;
{
struct upa_attach_args *ua = args;
if (busname)
printf("%s at %s", ua->ua_name, busname);
if (ua->ua_interrupts) {
int level = ua->ua_pri;
struct upa_softc *sc =
(struct upa_softc *) ua->ua_bustag->cookie;
printf(" interrupt %x", ua->ua_interrupts);
}
return (UNCONF);
}
int
upa_match(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct mainbus_attach_args *ma = aux;
return (strcmp(cf->cf_driver->cd_name, ma->ma_name) == 0);
}
int
upa_match_iommu(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct iommu_attach_args *ia = aux;
if (CPU_ISSUN4)
return (0);
return (strcmp(cf->cf_driver->cd_name, ia->iom_name) == 0);
}
int
upa_match_xbox(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct xbox_attach_args *xa = aux;
if (CPU_ISSUN4)
return (0);
return (strcmp(cf->cf_driver->cd_name, xa->xa_name) == 0);
}
/*
* Attach an Upa.
*/
void
upa_attach_mainbus(parent, self, aux)
struct device *parent;
struct device *self;
void *aux;
{
struct upa_softc *sc = (struct upa_softc *)self;
struct mainbus_attach_args *ma = aux;
int node = ma->ma_node;
/*
* XXX there is only one Upa, for now -- do not know how to
* address children on others
*/
if (sc->sc_dev.dv_unit > 0) {
printf(" unsupported\n");
return;
}
sc->sc_bustag = ma->ma_bustag;
sc->sc_dmatag = ma->ma_dmatag;
/* Setup interrupt translation tables */
sc->sc_intr2ipl = CPU_ISSUN4C
? intr_upa2ipl_4c
: intr_upa2ipl_4m;
/*
* Record clock frequency for synchronous SCSI.
* IS THIS THE CORRECT DEFAULT??
*/
sc->sc_clockfreq = getpropint(node, "clock-frequency", 25*1000*1000);
printf(": clock = %s MHz\n", clockfreq(sc->sc_clockfreq));
upa_attach(sc, "upa", node, ma->ma_bp, NULL);
}
void
upa_attach_iommu(parent, self, aux)
struct device *parent;
struct device *self;
void *aux;
{
struct upa_softc *sc = (struct upa_softc *)self;
struct iommu_attach_args *ia = aux;
int node = ia->iom_node;
sc->sc_bustag = ia->iom_bustag;
sc->sc_dmatag = ia->iom_dmatag;
/* Setup interrupt translation tables */
sc->sc_intr2ipl = CPU_ISSUN4C ? intr_upa2ipl_4c : intr_upa2ipl_4m;
/*
* Record clock frequency for synchronous SCSI.
* IS THIS THE CORRECT DEFAULT??
*/
sc->sc_clockfreq = getpropint(node, "clock-frequency", 25*1000*1000);
printf(": clock = %s MHz\n", clockfreq(sc->sc_clockfreq));
upa_attach(sc, "upa", node, ia->iom_bp, NULL);
}
void
upa_attach_xbox(parent, self, aux)
struct device *parent;
struct device *self;
void *aux;
{
struct upa_softc *sc = (struct upa_softc *)self;
struct xbox_attach_args *xa = aux;
int node = xa->xa_node;
sc->sc_bustag = xa->xa_bustag;
sc->sc_dmatag = xa->xa_dmatag;
/* Setup interrupt translation tables */
sc->sc_intr2ipl = CPU_ISSUN4C ? intr_upa2ipl_4c : intr_upa2ipl_4m;
/*
* Record clock frequency for synchronous SCSI.
* IS THIS THE CORRECT DEFAULT??
*/
sc->sc_clockfreq = getpropint(node, "clock-frequency", 25*1000*1000);
printf(": clock = %s MHz\n", clockfreq(sc->sc_clockfreq));
upa_attach(sc, "upa", node, xa->xa_bp, NULL);
}
void
upa_attach(sc, busname, busnode, bp, specials)
struct upa_softc *sc;
char *busname;
int busnode;
struct bootpath *bp;
const char * const *specials;
{
int node0, node, error;
const char *sp;
const char *const *ssp;
bus_space_tag_t sbt;
struct upa_attach_args ua;
sbt = upa_alloc_bustag(sc);
/*
* Get the Upa burst transfer size if burst transfers are supported
*/
sc->sc_burst = getpropint(busnode, "burst-sizes", 0);
/* Propagate bootpath */
if (bp != NULL && strcmp(bp->name, busname) == 0)
bp++;
else
bp = NULL;
/*
* Collect address translations from the OBP.
*/
error = getprop(busnode, "ranges", sizeof(struct rom_range),
&sc->sc_nrange, (void **)&sc->sc_range);
switch (error) {
case 0:
break;
case ENOENT:
/* Fall back to our own `range' construction */
sc->sc_range = upa_translations;
sc->sc_nrange =
sizeof(upa_translations)/sizeof(upa_translations[0]);
break;
default:
panic("%s: error getting ranges property", sc->sc_dev.dv_xname);
}
/* WARNING -- this stuff needs to be set somewhere */
sc->sc_sysio = (struct sysioreg*) ra->ra_vaddr; /* Use prom mapping for sysio. */
sc->sc_ign = ra->ra_interrupt[0] & INTMAP_IGN; /* Find interrupt group no */
/*
* Setup the iommu.
*
* The sun4u iommu is part of the UPA controller so we will
* deal with it here. We could try to fake a device node so
* we can eventually share it with the PCI bus run by psyco,
* but I don't want to get into that sort of cruft.
*/
#ifdef NOTDEF_DEBUG
{
/* Probe the iommu */
int64_t cr, tsb;
printf("\niommu regs at: cr=%x tsb=%x flush=%x\n", &sc->sc_sysio->sys_iommu.iommu_cr,
&sc->sc_sysio->sys_iommu.iommu_tsb, &sc->sc_sysio->sys_iommu.iommu_flush);
cr = sc->sc_sysio->sys_iommu.iommu_cr;
tsb = sc->sc_sysio->sys_iommu.iommu_tsb;
printf("iommu cr=%x:%x tsb=%x:%x\n", (long)(cr>>32), (long)cr, (long)(tsb>>32), (long)tsb);
delay(1000000); /* 1 s */
}
#endif
/*
* All IOMMUs will share the same TSB which is allocated in pmap_bootstrap.
*
* This makes device management easier.
*/
sc->sc_tsbsize = iotsbsize;
sc->sc_tsb = iotsb;
sc->sc_ptsb = iotsbp;
#if 0
/* Need to do 64-bit stores */
sc->sc_sysio->sys_iommu.iommu_cr = (IOMMUCR_TSB1K|IOMMUCR_8KPG|IOMMUCR_EN);
sc->sc_sysio->sys_iommu.iommu_tsb = sc->sc_ptsb;
#else
stxa(&sc->sc_sysio->sys_iommu.iommu_cr,ASI_NUCLEUS,(IOMMUCR_TSB1K|IOMMUCR_8KPG|IOMMUCR_EN));
stxa(&sc->sc_sysio->sys_iommu.iommu_tsb,ASI_NUCLEUS,sc->sc_ptsb);
#endif
/*
* Loop through ROM children, fixing any relative addresses
* and then configuring each device.
* `specials' is an array of device names that are treated
* specially:
*/
node0 = firstchild(busnode);
for (ssp = specials ; ssp != NULL && *(sp = *ssp) != 0; ssp++) {
if ((node = findnode(node0, sp)) == 0) {
panic("could not find %s amongst %s devices",
sp, busname);
}
if (upa_setup_attach_args(sc, sbt, sc->sc_dmatag,
node, bp, &ua) != 0) {
panic("upa_attach: %s: incomplete", sp);
}
(void) config_found(&sc->sc_dev, (void *)&ua, upa_print);
}
for (node = node0; node; node = nextsibling(node)) {
char *name = getpropstring(node, "name");
for (ssp = specials, sp = NULL;
ssp != NULL && (sp = *ssp) != NULL;
ssp++)
if (strcmp(name, sp) == 0)
break;
if (sp != NULL)
/* Already configured as an "early" device */
continue;
<<<<<<<<<<<<<< variant A
upa_translate(self, &oca);
oca.ca_bustype = BUS_UPA;
/* Now we need to enable this interrupt if a handler has been registered */
if( config_found(&sc->sc_dev, (void *)&oca, upa_print) != NULL )
for( i=0; i<oca.ca_ra.ra_ninterrupt; i++) {
#ifdef IRQEN_DEBUG
printf("\nupa: intr[%d]%x: %x\n", i, oca.ca_ra.ra_interrupt[i],
intrlev[oca.ca_ra.ra_interrupt[i]]);
#endif
if( intrlev[oca.ca_ra.ra_interrupt[i]] ) {
/* Hunt for proper register UGH! */
#ifdef IRQEN_DEBUG
printf("Hunting for IRQ...\n");
#endif
for( intrptr=&sc->sc_sysio->scsi_int_map;
intrptr < &sc->sc_sysio->reserved_int_map &&
((intrmap=*intrptr)&INTMAP_INR)
!= oca.ca_ra.ra_interrupt[i];
intrptr++);
if((intrmap&INTMAP_INR) ==
oca.ca_ra.ra_interrupt[i]) {
#ifdef IRQEN_DEBUG
printf("Found %x IRQ as %x:%x in slot\n",
oca.ca_ra.ra_interrupt[i], (int)(intrmap>>32), (int)intrmap,
intrptr - &sc->sc_sysio->scsi_int_map);
#endif
/* Enable the interrupt */
intrmap |= INTMAP_V;
stxa(intrptr, ASI_NUCLEUS, intrmap);
/* Register the map and clear intr registers */
intrlev[oca.ca_ra.ra_interrupt[i]]->ih_map = intrptr;
intrlev[oca.ca_ra.ra_interrupt[i]]->ih_clr =
&sc->sc_sysio->scsi_clr_int +
(intrptr - &sc->sc_sysio->scsi_int_map);
}
}
}
#ifdef IRQEN_DEBUG
for( i=0; i<140000000; i++);
#endif
>>>>>>>>>>>>>> variant B
if (upa_setup_attach_args(sc, sbt, sc->sc_dmatag,
node, bp, &ua) != 0) {
printf("upa_attach: %s: incomplete\n", name);
continue;
}
(void) config_found(&sc->sc_dev, (void *)&ua, upa_print);
======= end of combination
}
}
int
upa_setup_attach_args(sc, bustag, dmatag, node, bp, ua)
struct upa_softc *sc;
bus_space_tag_t bustag;
bus_dma_tag_t dmatag;
int node;
struct bootpath *bp;
struct upa_attach_args *ua;
{
struct rom_reg romreg;
int base;
int error;
bzero(ua, sizeof(struct upa_attach_args));
ua->ua_name = getpropstring(node, "name");
ua->ua_bustag = bustag;
ua->ua_dmatag = dmatag;
ua->ua_node = node;
ua->ua_bp = bp;
if ((error = getprop_reg1(node, &romreg)) != 0)
return (error);
/* We pass only the first "reg" property */
base = (int)romreg.rr_paddr;
if (UPA_ABS(base)) {
ua->ua_slot = UPA_ABS_TO_SLOT(base);
ua->ua_offset = UPA_ABS_TO_OFFSET(base);
} else {
ua->ua_slot = romreg.rr_iospace;
ua->ua_offset = base;
}
ua->ua_size = romreg.rr_len;
if ((error = upa_get_intr(sc, node, &ua->ua_pri)) != 0)
return (error);
if ((error = getprop_address1(node, &ua->ua_promvaddr)) != 0)
return (error);
return (0);
}
int
_upa_bus_map(t, btype, offset, size, flags, vaddr, hp)
bus_space_tag_t t;
bus_type_t btype;
bus_addr_t offset;
bus_size_t size;
int flags;
vaddr_t vaddr;
bus_space_handle_t *hp;
{
struct upa_softc *sc = t->cookie;
int slot = btype;
int i;
for (i = 0; i < sc->sc_nrange; i++) {
bus_addr_t paddr;
bus_type_t iospace;
if (sc->sc_range[i].cspace != slot)
continue;
/* We've found the connection to the parent bus */
paddr = sc->sc_range[i].poffset + offset;
iospace = sc->sc_range[i].pspace;
return (bus_space_map2(sc->sc_bustag, iospace, paddr,
size, flags, vaddr, hp));
}
return (EINVAL);
}
int
upa_bus_mmap(t, btype, paddr, flags, hp)
bus_space_tag_t t;
bus_type_t btype;
bus_addr_t paddr;
int flags;
bus_space_handle_t *hp;
{
int slot = (int)btype;
int offset = (int)paddr;
struct upa_softc *sc = t->cookie;
int i;
for (i = 0; i < sc->sc_nrange; i++) {
bus_addr_t paddr;
bus_addr_t iospace;
if (sc->sc_range[i].cspace != slot)
continue;
paddr = sc->sc_range[i].poffset + offset;
iospace = (bus_addr_t)sc->sc_range[i].pspace;
return (bus_space_mmap(sc->sc_bustag, iospace, paddr,
flags, hp));
}
return (-1);
}
/*
* Each attached device calls upa_establish after it initializes
* its upadev portion.
*/
void
upa_establish(sd, dev)
register struct upadev *sd;
register struct device *dev;
{
register struct upa_softc *sc;
register struct device *curdev;
/*
* We have to look for the upa by name, since it is not necessarily
* our immediate parent (i.e. sun4m /iommu/upa/espdma/esp)
* We don't just use the device structure of the above-attached
* upa, since we might (in the future) support multiple upa's.
*/
for (curdev = dev->dv_parent; ; curdev = curdev->dv_parent) {
if (!curdev || !curdev->dv_xname)
panic("upa_establish: can't find upa parent for %s",
sd->sd_dev->dv_xname
? sd->sd_dev->dv_xname
: "<unknown>" );
if (strncmp(curdev->dv_xname, "upa", 4) == 0)
break;
}
sc = (struct upa_softc *) curdev;
sd->sd_dev = dev;
sd->sd_bchain = sc->sc_sbdev;
sc->sc_sbdev = sd;
}
/*
* Reset the given upa. (???)
*/
void
upareset(upa)
int upa;
{
register struct upadev *sd;
struct upa_softc *sc = upa_cd.cd_devs[upa];
struct device *dev;
printf("reset %s:", sc->sc_dev.dv_xname);
for (sd = sc->sc_sbdev; sd != NULL; sd = sd->sd_bchain) {
if (sd->sd_reset) {
dev = sd->sd_dev;
(*sd->sd_reset)(dev);
printf(" %s", dev->dv_xname);
}
}
#if 0
/* Reload iommu regs */
sc->sc_sysio->sys_iommu.iommu_cr = (IOMMUCR_TSB1K|IOMMUCR_8KPG|IOMMUCR_EN);
sc->sc_sysio->sys_iommu.iommu_tsb = sc->sc_ptsb;
#else
/* Reload iommu regs */
stxa(&sc->sc_sysio->sys_iommu.iommu_cr,ASI_NUCLEUS,(IOMMUCR_TSB1K|IOMMUCR_8KPG|IOMMUCR_EN));
stxa(&sc->sc_sysio->sys_iommu.iommu_tsb,ASI_NUCLEUS,sc->sc_ptsb);
#endif
}
/*
* Here are the iommu control routines.
*/
void
upa_enter(va, pa)
vaddr_t va;
paddr_t pa;
{
struct upa_softc *sc = upa_sc;
int64_t tte;
#ifdef DIAGNOSTIC
if (va < sc->sc_dvmabase)
panic("upa_enter: va 0x%x not in DVMA space",va);
#endif
#ifdef 1
/* Streaming */
tte = MAKEIOTTE(pa, 1, 1, 1);
#else
/* Consistent */
tte = MAKEIOTTE(pa, 1, 1, 0);
#endif
sc->sc_tsb[IOTSBSLOT(va,sc->sc_tsbsize)] = tte;
#if 0
sc->sc_sysio->sys_iommu.iommu_flush = va;
#else
stxa(&sc->sc_sysio->sys_iommu.iommu_flush,ASI_NUCLEUS,va);
#endif
#ifdef DEBUG_1
printf("upa_enter: added xlation va %x pa %x:%x TSB[%x]=%x:%x\n",
va, (int)(pa>>32), (int)pa, IOTSBSLOT(va,sc->sc_tsbsize), (int)(tte>>32), (int)tte);
#endif
}
/*
* upa_clear: clears mappings created by upa_enter
*/
void
upa_remove(va, len)
register vaddr_t va;
register u_int len;
{
register struct upa_softc *sc = upa_sc;
#ifdef DIAGNOSTIC
if (va < sc->sc_dvmabase)
panic("upa_remove: va 0x%x not in DVMA space", va);
#endif
while (len > 0) {
static volatile int flushdone;
int flushtimeout;
extern u_int ksegv;
extern u_int64_t ksegp;
/*
* Streaming buffer flushes:
*
* 1 Tell strbuf to flush by storing va to strbuf_pgflush
* If we're not on a cache line boundary (64-bits):
* 2 Store 0 in flag
* 3 Store pointer to flag in flushsync
* 4 wait till flushsync becomes 0x1
*
* If it takes more than .5 sec, something went wrong.
*/
#if 0
sc->sc_sysio->sys_strbuf.strbuf_pgflush = va;
#else
stxa(&(sc->sc_sysio->sys_strbuf.strbuf_pgflush), ASI_NUCLEUS, va);
#endif
if( len < NBPG && ((va+len) & 0x3f) ) {
flushdone = 0;
/*
* KLUGE ALERT KLUGE ALERT
*
* In order not to bother with pmap_extract() to do the vtop
* translation, flushdone is a static variable that resides in
* the kernel's 4MB locked TTE. This means that this routine
* is NOT re-entrant. Since we're single-threaded and poll
* on this value, this is currently not a problem.
*/
#ifdef DEBUG_1
printf("upa_remove: flush = %x at va = %x pa = %x\n", flushdone, &flushdone, (long)(((long)&flushdone) - ksegv + ksegp));
#endif
#if 0
sc->sc_sysio->sys_strbuf.strbuf_flushsync = (long)(((long)&flushdone) - ksegv + ksegp);
#else
stxa(&sc->sc_sysio->sys_strbuf.strbuf_flushsync, ASI_NUCLEUS, (long)(((long)&flushdone) - ksegv + ksegp));
#endif
flushtimeout = 250000000; /* 1 sec on a 250MHz machine */
while( !flushdone && flushtimeout--) membar_sync();
#ifdef DIAGNOSTIC
if( !flushdone )
printf("upa_remove: flush timeout %x at %x\n", flushdone, (long)(((long)&flushdone) - ksegv + ksegp)); /* panic? */
#endif
}
sc->sc_tsb[IOTSBSLOT(va,sc->sc_tsbsize)] = 0;
#if 0
sc->sc_sysio->sys_iommu.iommu_flush = va;
#else
stxa(&sc->sc_sysio->sys_iommu.iommu_flush, ASI_NUCLEUS, va);
#endif
len -= NBPG;
va += NBPG;
}
}
/*
* Get interrupt attributes for an Upa device.
*/
int
upa_get_intr(sc, node, ip)
struct upa_softc *sc;
int node;
int *ip;
{
struct rom_intr *rip;
int *ipl;
int n;
/*
* The `interrupts' property contains the Upa interrupt level.
*/
ipl = NULL;
if (getprop(node, "interrupts", sizeof(int), &n, (void **)&ipl) == 0) {
*ip = ipl[0];
free(ipl, M_DEVBUF);
return (0);
}
/*
* Fall back on `intr' property.
*/
rip = NULL;
switch (getprop(node, "intr", sizeof(*rip), &n, (void **)&rip)) {
case 0:
*ip = (rip[0].int_pri & 0xf) | UPA_INTR_COMPAT;
free(rip, M_DEVBUF);
return (0);
case ENOENT:
*ip = 0;
return (0);
}
return (-1);
}
/*
* Install an interrupt handler for an Upa device.
*/
void *
upa_intr_establish(t, level, flags, handler, arg)
bus_space_tag_t t;
int level;
int flags;
int (*handler) __P((void *));
void *arg;
{
struct upa_softc *sc = t->cookie;
struct intrhand *ih;
int ipl;
ih = (struct intrhand *)
malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
if (ih == NULL)
return (NULL);
if ((flags & BUS_INTR_ESTABLISH_SOFTINTR) != 0)
ipl = level;
else if ((level & UPA_INTR_COMPAT) != 0)
ipl = level & ~UPA_INTR_COMPAT;
else
ipl = sc->sc_intr2ipl[level];
ih->ih_fun = handler;
ih->ih_arg = arg;
if ((flags & BUS_INTR_ESTABLISH_FASTTRAP) != 0)
intr_fasttrap(ipl, (void (*)__P((void)))handler);
else
intr_establish(ipl, ih);
return (ih);
}
static bus_space_tag_t
upa_alloc_bustag(sc)
struct upa_softc *sc;
{
bus_space_tag_t sbt;
sbt = (bus_space_tag_t)
malloc(sizeof(struct sparc_bus_space_tag), M_DEVBUF, M_NOWAIT);
if (sbt == NULL)
return (NULL);
bzero(sbt, sizeof *sbt);
sbt->cookie = sc;
sbt->parent = sc->sc_bustag;
sbt->sparc_bus_map = _upa_bus_map;
sbt->sparc_bus_mmap = upa_bus_mmap;
sbt->sparc_intr_establish = upa_intr_establish;
return (sbt);
}