NetBSD/sys/arch/arm/arm32/bus_dma.c

1136 lines
29 KiB
C

/* $NetBSD: bus_dma.c,v 1.49 2006/04/10 03:07:40 simonb Exp $ */
/*-
* Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#define _ARM32_BUS_DMA_PRIVATE
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.49 2006/04/10 03:07:40 simonb Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/reboot.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/vnode.h>
#include <sys/device.h>
#include <uvm/uvm_extern.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <arm/cpufunc.h>
int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
bus_size_t, struct vmspace *, int);
struct arm32_dma_range *_bus_dma_inrange(struct arm32_dma_range *,
int, bus_addr_t);
/*
* Check to see if the specified page is in an allowed DMA range.
*/
inline struct arm32_dma_range *
_bus_dma_inrange(struct arm32_dma_range *ranges, int nranges,
bus_addr_t curaddr)
{
struct arm32_dma_range *dr;
int i;
for (i = 0, dr = ranges; i < nranges; i++, dr++) {
if (curaddr >= dr->dr_sysbase &&
round_page(curaddr) <= (dr->dr_sysbase + dr->dr_len))
return (dr);
}
return (NULL);
}
/*
* Common function to load the specified physical address into the
* DMA map, coalescing segments and boundary checking as necessary.
*/
static int
_bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
bus_addr_t paddr, bus_size_t size)
{
bus_dma_segment_t * const segs = map->dm_segs;
int nseg = map->dm_nsegs;
bus_addr_t lastaddr = 0xdead; /* XXX gcc */
bus_addr_t bmask = ~(map->_dm_boundary - 1);
bus_addr_t curaddr;
bus_size_t sgsize;
if (nseg > 0)
lastaddr = segs[nseg-1].ds_addr + segs[nseg-1].ds_len;
again:
sgsize = size;
/* Make sure we're in an allowed DMA range. */
if (t->_ranges != NULL) {
/* XXX cache last result? */
const struct arm32_dma_range * const dr =
_bus_dma_inrange(t->_ranges, t->_nranges, paddr);
if (dr == NULL)
return (EINVAL);
/*
* In a valid DMA range. Translate the physical
* memory address to an address in the DMA window.
*/
curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
} else
curaddr = paddr;
/*
* Make sure we don't cross any boundaries.
*/
if (map->_dm_boundary > 0) {
bus_addr_t baddr; /* next boundary address */
baddr = (curaddr + map->_dm_boundary) & bmask;
if (sgsize > (baddr - curaddr))
sgsize = (baddr - curaddr);
}
/*
* Insert chunk into a segment, coalescing with the
* previous segment if possible.
*/
if (nseg > 0 && curaddr == lastaddr &&
segs[nseg-1].ds_len + sgsize <= map->dm_maxsegsz &&
(map->_dm_boundary == 0 ||
(segs[nseg-1].ds_addr & bmask) == (curaddr & bmask))) {
/* coalesce */
segs[nseg-1].ds_len += sgsize;
} else if (nseg >= map->_dm_segcnt) {
return (EFBIG);
} else {
/* new segment */
segs[nseg].ds_addr = curaddr;
segs[nseg].ds_len = sgsize;
nseg++;
}
lastaddr = curaddr + sgsize;
paddr += sgsize;
size -= sgsize;
if (size > 0)
goto again;
map->dm_nsegs = nseg;
return (0);
}
/*
* Common function for DMA map creation. May be called by bus-specific
* DMA map creation functions.
*/
int
_bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
{
struct arm32_bus_dmamap *map;
void *mapstore;
size_t mapsize;
#ifdef DEBUG_DMA
printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx flags=%x\n",
t, size, nsegments, maxsegsz, boundary, flags);
#endif /* DEBUG_DMA */
/*
* Allocate and initialize the DMA map. The end of the map
* is a variable-sized array of segments, so we allocate enough
* room for them in one shot.
*
* Note we don't preserve the WAITOK or NOWAIT flags. Preservation
* of ALLOCNOW notifies others that we've reserved these resources,
* and they are not to be freed.
*
* The bus_dmamap_t includes one bus_dma_segment_t, hence
* the (nsegments - 1).
*/
mapsize = sizeof(struct arm32_bus_dmamap) +
(sizeof(bus_dma_segment_t) * (nsegments - 1));
if ((mapstore = malloc(mapsize, M_DMAMAP,
(flags & BUS_DMA_NOWAIT) ? M_NOWAIT : M_WAITOK)) == NULL)
return (ENOMEM);
memset(mapstore, 0, mapsize);
map = (struct arm32_bus_dmamap *)mapstore;
map->_dm_size = size;
map->_dm_segcnt = nsegments;
map->_dm_maxmaxsegsz = maxsegsz;
map->_dm_boundary = boundary;
map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
map->_dm_origbuf = NULL;
map->_dm_buftype = ARM32_BUFTYPE_INVALID;
map->_dm_vmspace = vmspace_kernel();
map->dm_maxsegsz = maxsegsz;
map->dm_mapsize = 0; /* no valid mappings */
map->dm_nsegs = 0;
*dmamp = map;
#ifdef DEBUG_DMA
printf("dmamap_create:map=%p\n", map);
#endif /* DEBUG_DMA */
return (0);
}
/*
* Common function for DMA map destruction. May be called by bus-specific
* DMA map destruction functions.
*/
void
_bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
{
#ifdef DEBUG_DMA
printf("dmamap_destroy: t=%p map=%p\n", t, map);
#endif /* DEBUG_DMA */
/*
* Explicit unload.
*/
map->dm_maxsegsz = map->_dm_maxmaxsegsz;
map->dm_mapsize = 0;
map->dm_nsegs = 0;
map->_dm_origbuf = NULL;
map->_dm_buftype = ARM32_BUFTYPE_INVALID;
map->_dm_vmspace = NULL;
free(map, M_DMAMAP);
}
/*
* Common function for loading a DMA map with a linear buffer. May
* be called by bus-specific DMA map load functions.
*/
int
_bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
bus_size_t buflen, struct proc *p, int flags)
{
int error;
struct vmspace *vm;
#ifdef DEBUG_DMA
printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
t, map, buf, buflen, p, flags);
#endif /* DEBUG_DMA */
/*
* Make sure that on error condition we return "no valid mappings".
*/
map->dm_mapsize = 0;
map->dm_nsegs = 0;
KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
if (buflen > map->_dm_size)
return (EINVAL);
if (p != NULL) {
vm = p->p_vmspace;
} else {
vm = vmspace_kernel();
}
/* _bus_dmamap_load_buffer() clears this if we're not... */
map->_dm_flags |= ARM32_DMAMAP_COHERENT;
error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
if (error == 0) {
map->dm_mapsize = buflen;
map->_dm_origbuf = buf;
map->_dm_buftype = ARM32_BUFTYPE_LINEAR;
map->_dm_vmspace = vm;
}
#ifdef DEBUG_DMA
printf("dmamap_load: error=%d\n", error);
#endif /* DEBUG_DMA */
return (error);
}
/*
* Like _bus_dmamap_load(), but for mbufs.
*/
int
_bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
int flags)
{
int error;
struct mbuf *m;
#ifdef DEBUG_DMA
printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
t, map, m0, flags);
#endif /* DEBUG_DMA */
/*
* Make sure that on error condition we return "no valid mappings."
*/
map->dm_mapsize = 0;
map->dm_nsegs = 0;
KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
#ifdef DIAGNOSTIC
if ((m0->m_flags & M_PKTHDR) == 0)
panic("_bus_dmamap_load_mbuf: no packet header");
#endif /* DIAGNOSTIC */
if (m0->m_pkthdr.len > map->_dm_size)
return (EINVAL);
/*
* Mbuf chains should almost never have coherent (i.e.
* un-cached) mappings, so clear that flag now.
*/
map->_dm_flags &= ~ARM32_DMAMAP_COHERENT;
error = 0;
for (m = m0; m != NULL && error == 0; m = m->m_next) {
int offset;
int remainbytes;
const struct vm_page * const *pgs;
paddr_t paddr;
int size;
if (m->m_len == 0)
continue;
switch (m->m_flags & (M_EXT|M_CLUSTER|M_EXT_PAGES)) {
case M_EXT|M_CLUSTER:
/* XXX KDASSERT */
KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
paddr = m->m_ext.ext_paddr +
(m->m_data - m->m_ext.ext_buf);
size = m->m_len;
error = _bus_dmamap_load_paddr(t, map, paddr, size);
break;
case M_EXT|M_EXT_PAGES:
KASSERT(m->m_ext.ext_buf <= m->m_data);
KASSERT(m->m_data <=
m->m_ext.ext_buf + m->m_ext.ext_size);
offset = (vaddr_t)m->m_data -
trunc_page((vaddr_t)m->m_ext.ext_buf);
remainbytes = m->m_len;
/* skip uninteresting pages */
pgs = (const struct vm_page * const *)
m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
offset &= PAGE_MASK; /* offset in the first page */
/* load each page */
while (remainbytes > 0) {
const struct vm_page *pg;
size = MIN(remainbytes, PAGE_SIZE - offset);
pg = *pgs++;
KASSERT(pg);
paddr = VM_PAGE_TO_PHYS(pg) + offset;
error = _bus_dmamap_load_paddr(t, map,
paddr, size);
if (error)
break;
offset = 0;
remainbytes -= size;
}
break;
case 0:
paddr = m->m_paddr + M_BUFOFFSET(m) +
(m->m_data - M_BUFADDR(m));
size = m->m_len;
error = _bus_dmamap_load_paddr(t, map, paddr, size);
break;
default:
error = _bus_dmamap_load_buffer(t, map, m->m_data,
m->m_len, vmspace_kernel(), flags);
}
}
if (error == 0) {
map->dm_mapsize = m0->m_pkthdr.len;
map->_dm_origbuf = m0;
map->_dm_buftype = ARM32_BUFTYPE_MBUF;
map->_dm_vmspace = vmspace_kernel(); /* always kernel */
}
#ifdef DEBUG_DMA
printf("dmamap_load_mbuf: error=%d\n", error);
#endif /* DEBUG_DMA */
return (error);
}
/*
* Like _bus_dmamap_load(), but for uios.
*/
int
_bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
int flags)
{
int i, error;
bus_size_t minlen, resid;
struct iovec *iov;
caddr_t addr;
/*
* Make sure that on error condition we return "no valid mappings."
*/
map->dm_mapsize = 0;
map->dm_nsegs = 0;
KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
resid = uio->uio_resid;
iov = uio->uio_iov;
/* _bus_dmamap_load_buffer() clears this if we're not... */
map->_dm_flags |= ARM32_DMAMAP_COHERENT;
error = 0;
for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
/*
* Now at the first iovec to load. Load each iovec
* until we have exhausted the residual count.
*/
minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
addr = (caddr_t)iov[i].iov_base;
error = _bus_dmamap_load_buffer(t, map, addr, minlen,
uio->uio_vmspace, flags);
resid -= minlen;
}
if (error == 0) {
map->dm_mapsize = uio->uio_resid;
map->_dm_origbuf = uio;
map->_dm_buftype = ARM32_BUFTYPE_UIO;
map->_dm_vmspace = uio->uio_vmspace;
}
return (error);
}
/*
* Like _bus_dmamap_load(), but for raw memory allocated with
* bus_dmamem_alloc().
*/
int
_bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
bus_dma_segment_t *segs, int nsegs, bus_size_t size, int flags)
{
panic("_bus_dmamap_load_raw: not implemented");
}
/*
* Common function for unloading a DMA map. May be called by
* bus-specific DMA map unload functions.
*/
void
_bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
{
#ifdef DEBUG_DMA
printf("dmamap_unload: t=%p map=%p\n", t, map);
#endif /* DEBUG_DMA */
/*
* No resources to free; just mark the mappings as
* invalid.
*/
map->dm_mapsize = 0;
map->dm_nsegs = 0;
map->_dm_origbuf = NULL;
map->_dm_buftype = ARM32_BUFTYPE_INVALID;
map->_dm_vmspace = NULL;
}
static inline void
_bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
bus_size_t len, int ops)
{
vaddr_t addr = (vaddr_t) map->_dm_origbuf;
addr += offset;
switch (ops) {
case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
cpu_dcache_wbinv_range(addr, len);
break;
case BUS_DMASYNC_PREREAD:
if (((addr | len) & arm_dcache_align_mask) == 0)
cpu_dcache_inv_range(addr, len);
else
cpu_dcache_wbinv_range(addr, len);
break;
case BUS_DMASYNC_PREWRITE:
cpu_dcache_wb_range(addr, len);
break;
}
}
static inline void
_bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
bus_size_t len, int ops)
{
struct mbuf *m, *m0 = map->_dm_origbuf;
bus_size_t minlen, moff;
vaddr_t maddr;
for (moff = offset, m = m0; m != NULL && len != 0; m = m->m_next) {
/* Find the beginning mbuf. */
if (moff >= m->m_len) {
moff -= m->m_len;
continue;
}
/*
* Now at the first mbuf to sync; nail each one until
* we have exhausted the length.
*/
minlen = m->m_len - moff;
if (len < minlen)
minlen = len;
maddr = mtod(m, vaddr_t);
maddr += moff;
/*
* We can save a lot of work here if we know the mapping
* is read-only at the MMU:
*
* If a mapping is read-only, no dirty cache blocks will
* exist for it. If a writable mapping was made read-only,
* we know any dirty cache lines for the range will have
* been cleaned for us already. Therefore, if the upper
* layer can tell us we have a read-only mapping, we can
* skip all cache cleaning.
*
* NOTE: This only works if we know the pmap cleans pages
* before making a read-write -> read-only transition. If
* this ever becomes non-true (e.g. Physically Indexed
* cache), this will have to be revisited.
*/
switch (ops) {
case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
if (! M_ROMAP(m)) {
cpu_dcache_wbinv_range(maddr, minlen);
break;
}
/* else FALLTHROUGH */
case BUS_DMASYNC_PREREAD:
if (((maddr | minlen) & arm_dcache_align_mask) == 0)
cpu_dcache_inv_range(maddr, minlen);
else
cpu_dcache_wbinv_range(maddr, minlen);
break;
case BUS_DMASYNC_PREWRITE:
if (! M_ROMAP(m))
cpu_dcache_wb_range(maddr, minlen);
break;
}
moff = 0;
len -= minlen;
}
}
static inline void
_bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
bus_size_t len, int ops)
{
struct uio *uio = map->_dm_origbuf;
struct iovec *iov;
bus_size_t minlen, ioff;
vaddr_t addr;
for (iov = uio->uio_iov, ioff = offset; len != 0; iov++) {
/* Find the beginning iovec. */
if (ioff >= iov->iov_len) {
ioff -= iov->iov_len;
continue;
}
/*
* Now at the first iovec to sync; nail each one until
* we have exhausted the length.
*/
minlen = iov->iov_len - ioff;
if (len < minlen)
minlen = len;
addr = (vaddr_t) iov->iov_base;
addr += ioff;
switch (ops) {
case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
cpu_dcache_wbinv_range(addr, minlen);
break;
case BUS_DMASYNC_PREREAD:
if (((addr | minlen) & arm_dcache_align_mask) == 0)
cpu_dcache_inv_range(addr, minlen);
else
cpu_dcache_wbinv_range(addr, minlen);
break;
case BUS_DMASYNC_PREWRITE:
cpu_dcache_wb_range(addr, minlen);
break;
}
ioff = 0;
len -= minlen;
}
}
/*
* Common function for DMA map synchronization. May be called
* by bus-specific DMA map synchronization functions.
*
* This version works for the Virtually Indexed Virtually Tagged
* cache found on 32-bit ARM processors.
*
* XXX Should have separate versions for write-through vs.
* XXX write-back caches. We currently assume write-back
* XXX here, which is not as efficient as it could be for
* XXX the write-through case.
*/
void
_bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
bus_size_t len, int ops)
{
#ifdef DEBUG_DMA
printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
t, map, offset, len, ops);
#endif /* DEBUG_DMA */
/*
* Mixing of PRE and POST operations is not allowed.
*/
if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
(ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
panic("_bus_dmamap_sync: mix PRE and POST");
#ifdef DIAGNOSTIC
if (offset >= map->dm_mapsize)
panic("_bus_dmamap_sync: bad offset %lu (map size is %lu)",
offset, map->dm_mapsize);
if (len == 0 || (offset + len) > map->dm_mapsize)
panic("_bus_dmamap_sync: bad length");
#endif
/*
* For a virtually-indexed write-back cache, we need
* to do the following things:
*
* PREREAD -- Invalidate the D-cache. We do this
* here in case a write-back is required by the back-end.
*
* PREWRITE -- Write-back the D-cache. Note that if
* we are doing a PREREAD|PREWRITE, we can collapse
* the whole thing into a single Wb-Inv.
*
* POSTREAD -- Nothing.
*
* POSTWRITE -- Nothing.
*/
ops &= (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
if (ops == 0)
return;
/* Skip cache frobbing if mapping was COHERENT. */
if (map->_dm_flags & ARM32_DMAMAP_COHERENT) {
/* Drain the write buffer. */
cpu_drain_writebuf();
return;
}
/*
* If the mapping belongs to a non-kernel vmspace, and the
* vmspace has not been active since the last time a full
* cache flush was performed, we don't need to do anything.
*/
if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
return;
switch (map->_dm_buftype) {
case ARM32_BUFTYPE_LINEAR:
_bus_dmamap_sync_linear(t, map, offset, len, ops);
break;
case ARM32_BUFTYPE_MBUF:
_bus_dmamap_sync_mbuf(t, map, offset, len, ops);
break;
case ARM32_BUFTYPE_UIO:
_bus_dmamap_sync_uio(t, map, offset, len, ops);
break;
case ARM32_BUFTYPE_RAW:
panic("_bus_dmamap_sync: ARM32_BUFTYPE_RAW");
break;
case ARM32_BUFTYPE_INVALID:
panic("_bus_dmamap_sync: ARM32_BUFTYPE_INVALID");
break;
default:
printf("unknown buffer type %d\n", map->_dm_buftype);
panic("_bus_dmamap_sync");
}
/* Drain the write buffer. */
cpu_drain_writebuf();
}
/*
* Common function for DMA-safe memory allocation. May be called
* by bus-specific DMA memory allocation functions.
*/
extern paddr_t physical_start;
extern paddr_t physical_end;
int
_bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
int flags)
{
struct arm32_dma_range *dr;
int error, i;
#ifdef DEBUG_DMA
printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
"segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
boundary, segs, nsegs, rsegs, flags);
#endif
if ((dr = t->_ranges) != NULL) {
error = ENOMEM;
for (i = 0; i < t->_nranges; i++, dr++) {
if (dr->dr_len == 0)
continue;
error = _bus_dmamem_alloc_range(t, size, alignment,
boundary, segs, nsegs, rsegs, flags,
trunc_page(dr->dr_sysbase),
trunc_page(dr->dr_sysbase + dr->dr_len));
if (error == 0)
break;
}
} else {
error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
segs, nsegs, rsegs, flags, trunc_page(physical_start),
trunc_page(physical_end));
}
#ifdef DEBUG_DMA
printf("dmamem_alloc: =%d\n", error);
#endif
return(error);
}
/*
* Common function for freeing DMA-safe memory. May be called by
* bus-specific DMA memory free functions.
*/
void
_bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
{
struct vm_page *m;
bus_addr_t addr;
struct pglist mlist;
int curseg;
#ifdef DEBUG_DMA
printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
#endif /* DEBUG_DMA */
/*
* Build a list of pages to free back to the VM system.
*/
TAILQ_INIT(&mlist);
for (curseg = 0; curseg < nsegs; curseg++) {
for (addr = segs[curseg].ds_addr;
addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
addr += PAGE_SIZE) {
m = PHYS_TO_VM_PAGE(addr);
TAILQ_INSERT_TAIL(&mlist, m, pageq);
}
}
uvm_pglistfree(&mlist);
}
/*
* Common function for mapping DMA-safe memory. May be called by
* bus-specific DMA memory map functions.
*/
int
_bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
size_t size, caddr_t *kvap, int flags)
{
vaddr_t va;
bus_addr_t addr;
int curseg;
pt_entry_t *ptep/*, pte*/;
const uvm_flag_t kmflags =
(flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0;
#ifdef DEBUG_DMA
printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
segs, nsegs, (unsigned long)size, flags);
#endif /* DEBUG_DMA */
size = round_page(size);
va = uvm_km_alloc(kernel_map, size, 0, UVM_KMF_VAONLY | kmflags);
if (va == 0)
return (ENOMEM);
*kvap = (caddr_t)va;
for (curseg = 0; curseg < nsegs; curseg++) {
for (addr = segs[curseg].ds_addr;
addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
addr += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
#ifdef DEBUG_DMA
printf("wiring p%lx to v%lx", addr, va);
#endif /* DEBUG_DMA */
if (size == 0)
panic("_bus_dmamem_map: size botch");
pmap_enter(pmap_kernel(), va, addr,
VM_PROT_READ | VM_PROT_WRITE,
VM_PROT_READ | VM_PROT_WRITE | PMAP_WIRED);
/*
* If the memory must remain coherent with the
* cache then we must make the memory uncacheable
* in order to maintain virtual cache coherency.
* We must also guarantee the cache does not already
* contain the virtal addresses we are making
* uncacheable.
*/
if (flags & BUS_DMA_COHERENT) {
cpu_dcache_wbinv_range(va, PAGE_SIZE);
cpu_drain_writebuf();
ptep = vtopte(va);
*ptep &= ~L2_S_CACHE_MASK;
PTE_SYNC(ptep);
tlb_flush();
}
#ifdef DEBUG_DMA
ptep = vtopte(va);
printf(" pte=v%p *pte=%x\n", ptep, *ptep);
#endif /* DEBUG_DMA */
}
}
pmap_update(pmap_kernel());
#ifdef DEBUG_DMA
printf("dmamem_map: =%p\n", *kvap);
#endif /* DEBUG_DMA */
return (0);
}
/*
* Common function for unmapping DMA-safe memory. May be called by
* bus-specific DMA memory unmapping functions.
*/
void
_bus_dmamem_unmap(bus_dma_tag_t t, caddr_t kva, size_t size)
{
#ifdef DEBUG_DMA
printf("dmamem_unmap: t=%p kva=%p size=%lx\n", t, kva,
(unsigned long)size);
#endif /* DEBUG_DMA */
#ifdef DIAGNOSTIC
if ((u_long)kva & PGOFSET)
panic("_bus_dmamem_unmap");
#endif /* DIAGNOSTIC */
size = round_page(size);
pmap_remove(pmap_kernel(), (vaddr_t)kva, (vaddr_t)kva + size);
pmap_update(pmap_kernel());
uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
}
/*
* Common functin for mmap(2)'ing DMA-safe memory. May be called by
* bus-specific DMA mmap(2)'ing functions.
*/
paddr_t
_bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
off_t off, int prot, int flags)
{
int i;
for (i = 0; i < nsegs; i++) {
#ifdef DIAGNOSTIC
if (off & PGOFSET)
panic("_bus_dmamem_mmap: offset unaligned");
if (segs[i].ds_addr & PGOFSET)
panic("_bus_dmamem_mmap: segment unaligned");
if (segs[i].ds_len & PGOFSET)
panic("_bus_dmamem_mmap: segment size not multiple"
" of page size");
#endif /* DIAGNOSTIC */
if (off >= segs[i].ds_len) {
off -= segs[i].ds_len;
continue;
}
return (arm_btop((u_long)segs[i].ds_addr + off));
}
/* Page not found. */
return (-1);
}
/**********************************************************************
* DMA utility functions
**********************************************************************/
/*
* Utility function to load a linear buffer. lastaddrp holds state
* between invocations (for multiple-buffer loads). segp contains
* the starting segment on entrace, and the ending segment on exit.
* first indicates if this is the first invocation of this function.
*/
int
_bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
bus_size_t buflen, struct vmspace *vm, int flags)
{
bus_size_t sgsize;
bus_addr_t curaddr;
vaddr_t vaddr = (vaddr_t)buf;
pd_entry_t *pde;
pt_entry_t pte;
int error;
pmap_t pmap;
pt_entry_t *ptep;
#ifdef DEBUG_DMA
printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
buf, buflen, flags);
#endif /* DEBUG_DMA */
pmap = vm_map_pmap(&vm->vm_map);
while (buflen > 0) {
/*
* Get the physical address for this segment.
*
* XXX Don't support checking for coherent mappings
* XXX in user address space.
*/
if (__predict_true(pmap == pmap_kernel())) {
(void) pmap_get_pde_pte(pmap, vaddr, &pde, &ptep);
if (__predict_false(pmap_pde_section(pde))) {
curaddr = (*pde & L1_S_FRAME) |
(vaddr & L1_S_OFFSET);
if (*pde & L1_S_CACHE_MASK) {
map->_dm_flags &=
~ARM32_DMAMAP_COHERENT;
}
} else {
pte = *ptep;
KDASSERT((pte & L2_TYPE_MASK) != L2_TYPE_INV);
if (__predict_false((pte & L2_TYPE_MASK)
== L2_TYPE_L)) {
curaddr = (pte & L2_L_FRAME) |
(vaddr & L2_L_OFFSET);
if (pte & L2_L_CACHE_MASK) {
map->_dm_flags &=
~ARM32_DMAMAP_COHERENT;
}
} else {
curaddr = (pte & L2_S_FRAME) |
(vaddr & L2_S_OFFSET);
if (pte & L2_S_CACHE_MASK) {
map->_dm_flags &=
~ARM32_DMAMAP_COHERENT;
}
}
}
} else {
(void) pmap_extract(pmap, vaddr, &curaddr);
map->_dm_flags &= ~ARM32_DMAMAP_COHERENT;
}
/*
* Compute the segment size, and adjust counts.
*/
sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
if (buflen < sgsize)
sgsize = buflen;
error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize);
if (error)
return (error);
vaddr += sgsize;
buflen -= sgsize;
}
return (0);
}
/*
* Allocate physical memory from the given physical address range.
* Called by DMA-safe memory allocation methods.
*/
int
_bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
int flags, paddr_t low, paddr_t high)
{
paddr_t curaddr, lastaddr;
struct vm_page *m;
struct pglist mlist;
int curseg, error;
#ifdef DEBUG_DMA
printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
#endif /* DEBUG_DMA */
/* Always round the size. */
size = round_page(size);
/*
* Allocate pages from the VM system.
*/
error = uvm_pglistalloc(size, low, high, alignment, boundary,
&mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
if (error)
return (error);
/*
* Compute the location, size, and number of segments actually
* returned by the VM code.
*/
m = TAILQ_FIRST(&mlist);
curseg = 0;
lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
segs[curseg].ds_len = PAGE_SIZE;
#ifdef DEBUG_DMA
printf("alloc: page %lx\n", lastaddr);
#endif /* DEBUG_DMA */
m = TAILQ_NEXT(m, pageq);
for (; m != NULL; m = TAILQ_NEXT(m, pageq)) {
curaddr = VM_PAGE_TO_PHYS(m);
#ifdef DIAGNOSTIC
if (curaddr < low || curaddr >= high) {
printf("uvm_pglistalloc returned non-sensical"
" address 0x%lx\n", curaddr);
panic("_bus_dmamem_alloc_range");
}
#endif /* DIAGNOSTIC */
#ifdef DEBUG_DMA
printf("alloc: page %lx\n", curaddr);
#endif /* DEBUG_DMA */
if (curaddr == (lastaddr + PAGE_SIZE))
segs[curseg].ds_len += PAGE_SIZE;
else {
curseg++;
segs[curseg].ds_addr = curaddr;
segs[curseg].ds_len = PAGE_SIZE;
}
lastaddr = curaddr;
}
*rsegs = curseg + 1;
return (0);
}
/*
* Check if a memory region intersects with a DMA range, and return the
* page-rounded intersection if it does.
*/
int
arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
{
struct arm32_dma_range *dr;
int i;
if (ranges == NULL)
return (0);
for (i = 0, dr = ranges; i < nranges; i++, dr++) {
if (dr->dr_sysbase <= pa &&
pa < (dr->dr_sysbase + dr->dr_len)) {
/*
* Beginning of region intersects with this range.
*/
*pap = trunc_page(pa);
*sizep = round_page(min(pa + size,
dr->dr_sysbase + dr->dr_len) - pa);
return (1);
}
if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
/*
* End of region intersects with this range.
*/
*pap = trunc_page(dr->dr_sysbase);
*sizep = round_page(min((pa + size) - dr->dr_sysbase,
dr->dr_len));
return (1);
}
}
/* No intersection found. */
return (0);
}