1370 lines
36 KiB
C
1370 lines
36 KiB
C
/* $NetBSD: if_sq.c,v 1.33 2007/03/04 06:00:39 christos Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2001 Rafal K. Boni
|
|
* Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Portions of this code are derived from software contributed to The
|
|
* NetBSD Foundation by Jason R. Thorpe of the Numerical Aerospace
|
|
* Simulation Facility, NASA Ames Research Center.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: if_sq.c,v 1.33 2007/03/04 06:00:39 christos Exp $");
|
|
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/device.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/syslog.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <machine/endian.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/intr.h>
|
|
#include <machine/sysconf.h>
|
|
|
|
#include <dev/ic/seeq8003reg.h>
|
|
|
|
#include <sgimips/hpc/sqvar.h>
|
|
#include <sgimips/hpc/hpcvar.h>
|
|
#include <sgimips/hpc/hpcreg.h>
|
|
|
|
#include <dev/arcbios/arcbios.h>
|
|
#include <dev/arcbios/arcbiosvar.h>
|
|
|
|
#define static
|
|
|
|
/*
|
|
* Short TODO list:
|
|
* (1) Do counters for bad-RX packets.
|
|
* (2) Allow multi-segment transmits, instead of copying to a single,
|
|
* contiguous mbuf.
|
|
* (3) Verify sq_stop() turns off enough stuff; I was still getting
|
|
* seeq interrupts after sq_stop().
|
|
* (4) Implement EDLC modes: especially packet auto-pad and simplex
|
|
* mode.
|
|
* (5) Should the driver filter out its own transmissions in non-EDLC
|
|
* mode?
|
|
* (6) Multicast support -- multicast filter, address management, ...
|
|
* (7) Deal with RB0 (recv buffer overflow) on reception. Will need
|
|
* to figure out if RB0 is read-only as stated in one spot in the
|
|
* HPC spec or read-write (ie, is the 'write a one to clear it')
|
|
* the correct thing?
|
|
*/
|
|
|
|
#if defined(SQ_DEBUG)
|
|
int sq_debug = 0;
|
|
#define SQ_DPRINTF(x) if (sq_debug) printf x
|
|
#else
|
|
#define SQ_DPRINTF(x)
|
|
#endif
|
|
|
|
static int sq_match(struct device *, struct cfdata *, void *);
|
|
static void sq_attach(struct device *, struct device *, void *);
|
|
static int sq_init(struct ifnet *);
|
|
static void sq_start(struct ifnet *);
|
|
static void sq_stop(struct ifnet *, int);
|
|
static void sq_watchdog(struct ifnet *);
|
|
static int sq_ioctl(struct ifnet *, u_long, void *);
|
|
|
|
static void sq_set_filter(struct sq_softc *);
|
|
static int sq_intr(void *);
|
|
static int sq_rxintr(struct sq_softc *);
|
|
static int sq_txintr(struct sq_softc *);
|
|
static void sq_txring_hpc1(struct sq_softc *);
|
|
static void sq_txring_hpc3(struct sq_softc *);
|
|
static void sq_reset(struct sq_softc *);
|
|
static int sq_add_rxbuf(struct sq_softc *, int);
|
|
static void sq_dump_buffer(u_int32_t addr, u_int32_t len);
|
|
static void sq_trace_dump(struct sq_softc *);
|
|
|
|
static void enaddr_aton(const char*, u_int8_t*);
|
|
|
|
CFATTACH_DECL(sq, sizeof(struct sq_softc),
|
|
sq_match, sq_attach, NULL, NULL);
|
|
|
|
#define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
|
|
|
|
#define sq_seeq_read(sc, off) \
|
|
bus_space_read_1(sc->sc_regt, sc->sc_regh, off)
|
|
#define sq_seeq_write(sc, off, val) \
|
|
bus_space_write_1(sc->sc_regt, sc->sc_regh, off, val)
|
|
|
|
#define sq_hpc_read(sc, off) \
|
|
bus_space_read_4(sc->sc_hpct, sc->sc_hpch, off)
|
|
#define sq_hpc_write(sc, off, val) \
|
|
bus_space_write_4(sc->sc_hpct, sc->sc_hpch, off, val)
|
|
|
|
/* MAC address offset for non-onboard implementations */
|
|
#define SQ_HPC_EEPROM_ENADDR 250
|
|
|
|
#define SGI_OUI_0 0x08
|
|
#define SGI_OUI_1 0x00
|
|
#define SGI_OUI_2 0x69
|
|
|
|
static int
|
|
sq_match(struct device *parent, struct cfdata *cf, void *aux)
|
|
{
|
|
struct hpc_attach_args *ha = aux;
|
|
|
|
if (strcmp(ha->ha_name, cf->cf_name) == 0) {
|
|
uint32_t reset, txstat;
|
|
|
|
reset = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
|
|
ha->ha_dmaoff + ha->hpc_regs->enetr_reset);
|
|
txstat = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
|
|
ha->ha_devoff + (SEEQ_TXSTAT << 2));
|
|
|
|
if (platform.badaddr((void *)reset, sizeof(reset)))
|
|
return (0);
|
|
|
|
*(volatile uint32_t *)reset = 0x1;
|
|
delay(20);
|
|
*(volatile uint32_t *)reset = 0x0;
|
|
|
|
if (platform.badaddr((void *)txstat, sizeof(txstat)))
|
|
return (0);
|
|
|
|
if ((*(volatile uint32_t *)txstat & 0xff) == TXSTAT_OLDNEW)
|
|
return (1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sq_attach(struct device *parent, struct device *self, void *aux)
|
|
{
|
|
int i, err;
|
|
const char* macaddr;
|
|
struct sq_softc *sc = (void *)self;
|
|
struct hpc_attach_args *haa = aux;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
sc->sc_hpct = haa->ha_st;
|
|
sc->hpc_regs = haa->hpc_regs; /* HPC register definitions */
|
|
|
|
if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
|
|
haa->ha_dmaoff,
|
|
sc->hpc_regs->enet_regs_size,
|
|
&sc->sc_hpch)) != 0) {
|
|
printf(": unable to map HPC DMA registers, error = %d\n", err);
|
|
goto fail_0;
|
|
}
|
|
|
|
sc->sc_regt = haa->ha_st;
|
|
if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
|
|
haa->ha_devoff,
|
|
sc->hpc_regs->enet_devregs_size,
|
|
&sc->sc_regh)) != 0) {
|
|
printf(": unable to map Seeq registers, error = %d\n", err);
|
|
goto fail_0;
|
|
}
|
|
|
|
sc->sc_dmat = haa->ha_dmat;
|
|
|
|
if ((err = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sq_control),
|
|
PAGE_SIZE, PAGE_SIZE, &sc->sc_cdseg,
|
|
1, &sc->sc_ncdseg, BUS_DMA_NOWAIT)) != 0) {
|
|
printf(": unable to allocate control data, error = %d\n", err);
|
|
goto fail_0;
|
|
}
|
|
|
|
if ((err = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg,
|
|
sizeof(struct sq_control),
|
|
(void **)&sc->sc_control,
|
|
BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
|
|
printf(": unable to map control data, error = %d\n", err);
|
|
goto fail_1;
|
|
}
|
|
|
|
if ((err = bus_dmamap_create(sc->sc_dmat, sizeof(struct sq_control),
|
|
1, sizeof(struct sq_control), PAGE_SIZE,
|
|
BUS_DMA_NOWAIT, &sc->sc_cdmap)) != 0) {
|
|
printf(": unable to create DMA map for control data, error "
|
|
"= %d\n", err);
|
|
goto fail_2;
|
|
}
|
|
|
|
if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_cdmap, sc->sc_control,
|
|
sizeof(struct sq_control),
|
|
NULL, BUS_DMA_NOWAIT)) != 0) {
|
|
printf(": unable to load DMA map for control data, error "
|
|
"= %d\n", err);
|
|
goto fail_3;
|
|
}
|
|
|
|
memset(sc->sc_control, 0, sizeof(struct sq_control));
|
|
|
|
/* Create transmit buffer DMA maps */
|
|
for (i = 0; i < SQ_NTXDESC; i++) {
|
|
if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
|
|
0, BUS_DMA_NOWAIT,
|
|
&sc->sc_txmap[i])) != 0) {
|
|
printf(": unable to create tx DMA map %d, error = %d\n",
|
|
i, err);
|
|
goto fail_4;
|
|
}
|
|
}
|
|
|
|
/* Create receive buffer DMA maps */
|
|
for (i = 0; i < SQ_NRXDESC; i++) {
|
|
if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
|
|
0, BUS_DMA_NOWAIT,
|
|
&sc->sc_rxmap[i])) != 0) {
|
|
printf(": unable to create rx DMA map %d, error = %d\n",
|
|
i, err);
|
|
goto fail_5;
|
|
}
|
|
}
|
|
|
|
/* Pre-allocate the receive buffers. */
|
|
for (i = 0; i < SQ_NRXDESC; i++) {
|
|
if ((err = sq_add_rxbuf(sc, i)) != 0) {
|
|
printf(": unable to allocate or map rx buffer %d\n,"
|
|
" error = %d\n", i, err);
|
|
goto fail_6;
|
|
}
|
|
}
|
|
|
|
memcpy(sc->sc_enaddr, &haa->hpc_eeprom[SQ_HPC_EEPROM_ENADDR],
|
|
ETHER_ADDR_LEN);
|
|
|
|
/*
|
|
* If our mac address is bogus, obtain it from ARCBIOS. This will
|
|
* be true of the onboard HPC3 on IP22, since there is no eeprom,
|
|
* but rather the DS1386 RTC's battery-backed ram is used.
|
|
*/
|
|
if (sc->sc_enaddr[0] != SGI_OUI_0 || sc->sc_enaddr[1] != SGI_OUI_1 ||
|
|
sc->sc_enaddr[2] != SGI_OUI_2) {
|
|
macaddr = ARCBIOS->GetEnvironmentVariable("eaddr");
|
|
if (macaddr == NULL) {
|
|
printf(": unable to get MAC address!\n");
|
|
goto fail_6;
|
|
}
|
|
enaddr_aton(macaddr, sc->sc_enaddr);
|
|
}
|
|
|
|
evcnt_attach_dynamic(&sc->sq_intrcnt, EVCNT_TYPE_INTR, NULL,
|
|
self->dv_xname, "intr");
|
|
|
|
if ((cpu_intr_establish(haa->ha_irq, IPL_NET, sq_intr, sc)) == NULL) {
|
|
printf(": unable to establish interrupt!\n");
|
|
goto fail_6;
|
|
}
|
|
|
|
/* Reset the chip to a known state. */
|
|
sq_reset(sc);
|
|
|
|
/*
|
|
* Determine if we're an 8003 or 80c03 by setting the first
|
|
* MAC address register to non-zero, and then reading it back.
|
|
* If it's zero, we have an 80c03, because we will have read
|
|
* the TxCollLSB register.
|
|
*/
|
|
sq_seeq_write(sc, SEEQ_TXCOLLS0, 0xa5);
|
|
if (sq_seeq_read(sc, SEEQ_TXCOLLS0) == 0)
|
|
sc->sc_type = SQ_TYPE_80C03;
|
|
else
|
|
sc->sc_type = SQ_TYPE_8003;
|
|
sq_seeq_write(sc, SEEQ_TXCOLLS0, 0x00);
|
|
|
|
printf(": SGI Seeq %s\n",
|
|
sc->sc_type == SQ_TYPE_80C03 ? "80c03" : "8003");
|
|
|
|
printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
|
|
ether_sprintf(sc->sc_enaddr));
|
|
|
|
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
|
|
ifp->if_softc = sc;
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_init = sq_init;
|
|
ifp->if_stop = sq_stop;
|
|
ifp->if_start = sq_start;
|
|
ifp->if_ioctl = sq_ioctl;
|
|
ifp->if_watchdog = sq_watchdog;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_NOTRAILERS | IFF_MULTICAST;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, sc->sc_enaddr);
|
|
|
|
memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
|
|
/* Done! */
|
|
return;
|
|
|
|
/*
|
|
* Free any resources we've allocated during the failed attach
|
|
* attempt. Do this in reverse order and fall through.
|
|
*/
|
|
fail_6:
|
|
for (i = 0; i < SQ_NRXDESC; i++) {
|
|
if (sc->sc_rxmbuf[i] != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[i]);
|
|
m_freem(sc->sc_rxmbuf[i]);
|
|
}
|
|
}
|
|
fail_5:
|
|
for (i = 0; i < SQ_NRXDESC; i++) {
|
|
if (sc->sc_rxmap[i] != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmap[i]);
|
|
}
|
|
fail_4:
|
|
for (i = 0; i < SQ_NTXDESC; i++) {
|
|
if (sc->sc_txmap[i] != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap[i]);
|
|
}
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_cdmap);
|
|
fail_3:
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdmap);
|
|
fail_2:
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control,
|
|
sizeof(struct sq_control));
|
|
fail_1:
|
|
bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg);
|
|
fail_0:
|
|
return;
|
|
}
|
|
|
|
/* Set up data to get the interface up and running. */
|
|
int
|
|
sq_init(struct ifnet *ifp)
|
|
{
|
|
int i;
|
|
struct sq_softc *sc = ifp->if_softc;
|
|
|
|
/* Cancel any in-progress I/O */
|
|
sq_stop(ifp, 0);
|
|
|
|
sc->sc_nextrx = 0;
|
|
|
|
sc->sc_nfreetx = SQ_NTXDESC;
|
|
sc->sc_nexttx = sc->sc_prevtx = 0;
|
|
|
|
SQ_TRACE(SQ_RESET, sc, 0, 0);
|
|
|
|
/* Set into 8003 mode, bank 0 to program ethernet address */
|
|
sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_BANK0);
|
|
|
|
/* Now write the address */
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
sq_seeq_write(sc, i, sc->sc_enaddr[i]);
|
|
|
|
sc->sc_rxcmd = RXCMD_IE_CRC |
|
|
RXCMD_IE_DRIB |
|
|
RXCMD_IE_SHORT |
|
|
RXCMD_IE_END |
|
|
RXCMD_IE_GOOD;
|
|
|
|
/*
|
|
* Set the receive filter -- this will add some bits to the
|
|
* prototype RXCMD register. Do this before setting the
|
|
* transmit config register, since we might need to switch
|
|
* banks.
|
|
*/
|
|
sq_set_filter(sc);
|
|
|
|
/* Set up Seeq transmit command register */
|
|
sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_IE_UFLOW |
|
|
TXCMD_IE_COLL |
|
|
TXCMD_IE_16COLL |
|
|
TXCMD_IE_GOOD);
|
|
|
|
/* Now write the receive command register. */
|
|
sq_seeq_write(sc, SEEQ_RXCMD, sc->sc_rxcmd);
|
|
|
|
/*
|
|
* Set up HPC ethernet PIO and DMA configurations.
|
|
*
|
|
* The PROM appears to do most of this for the onboard HPC3, but
|
|
* not for the Challenge S's IOPLUS chip. We copy how the onboard
|
|
* chip is configured and assume that it's correct for both.
|
|
*/
|
|
if (sc->hpc_regs->revision == 3) {
|
|
u_int32_t dmareg, pioreg;
|
|
|
|
pioreg = HPC3_ENETR_PIOCFG_P1(1) |
|
|
HPC3_ENETR_PIOCFG_P2(6) |
|
|
HPC3_ENETR_PIOCFG_P3(1);
|
|
|
|
dmareg = HPC3_ENETR_DMACFG_D1(6) |
|
|
HPC3_ENETR_DMACFG_D2(2) |
|
|
HPC3_ENETR_DMACFG_D3(0) |
|
|
HPC3_ENETR_DMACFG_FIX_RXDC |
|
|
HPC3_ENETR_DMACFG_FIX_INTR |
|
|
HPC3_ENETR_DMACFG_FIX_EOP |
|
|
HPC3_ENETR_DMACFG_TIMEOUT;
|
|
|
|
sq_hpc_write(sc, HPC3_ENETR_PIOCFG, pioreg);
|
|
sq_hpc_write(sc, HPC3_ENETR_DMACFG, dmareg);
|
|
}
|
|
|
|
/* Pass the start of the receive ring to the HPC */
|
|
sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc, 0));
|
|
|
|
/* And turn on the HPC ethernet receive channel */
|
|
sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
|
|
sc->hpc_regs->enetr_ctl_active);
|
|
|
|
/*
|
|
* Turn off delayed receive interrupts on HPC1.
|
|
* (see Hollywood HPC Specification 2.1.4.3)
|
|
*/
|
|
if (sc->hpc_regs->revision != 3)
|
|
sq_hpc_write(sc, HPC1_ENET_INTDELAY, HPC1_ENET_INTDELAY_OFF);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
sq_set_filter(struct sq_softc *sc)
|
|
{
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
|
|
/*
|
|
* Check for promiscuous mode. Also implies
|
|
* all-multicast.
|
|
*/
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
sc->sc_rxcmd |= RXCMD_REC_ALL;
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The 8003 has no hash table. If we have any multicast
|
|
* addresses on the list, enable reception of all multicast
|
|
* frames.
|
|
*
|
|
* XXX The 80c03 has a hash table. We should use it.
|
|
*/
|
|
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
|
|
if (enm == NULL) {
|
|
sc->sc_rxcmd &= ~RXCMD_REC_MASK;
|
|
sc->sc_rxcmd |= RXCMD_REC_BROAD;
|
|
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
return;
|
|
}
|
|
|
|
sc->sc_rxcmd |= RXCMD_REC_MULTI;
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
}
|
|
|
|
int
|
|
sq_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
int s, error = 0;
|
|
|
|
SQ_TRACE(SQ_IOCTL, (struct sq_softc *)ifp->if_softc, 0, 0);
|
|
|
|
s = splnet();
|
|
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
if (error == ENETRESET) {
|
|
/*
|
|
* Multicast list has changed; set the hardware filter
|
|
* accordingly.
|
|
*/
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
error = sq_init(ifp);
|
|
else
|
|
error = 0;
|
|
}
|
|
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
sq_start(struct ifnet *ifp)
|
|
{
|
|
struct sq_softc *sc = ifp->if_softc;
|
|
u_int32_t status;
|
|
struct mbuf *m0, *m;
|
|
bus_dmamap_t dmamap;
|
|
int err, totlen, nexttx, firsttx, lasttx = -1, ofree, seg;
|
|
|
|
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
/*
|
|
* Remember the previous number of free descriptors and
|
|
* the first descriptor we'll use.
|
|
*/
|
|
ofree = sc->sc_nfreetx;
|
|
firsttx = sc->sc_nexttx;
|
|
|
|
/*
|
|
* Loop through the send queue, setting up transmit descriptors
|
|
* until we drain the queue, or use up all available transmit
|
|
* descriptors.
|
|
*/
|
|
while (sc->sc_nfreetx != 0) {
|
|
/*
|
|
* Grab a packet off the queue.
|
|
*/
|
|
IFQ_POLL(&ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
m = NULL;
|
|
|
|
dmamap = sc->sc_txmap[sc->sc_nexttx];
|
|
|
|
/*
|
|
* Load the DMA map. If this fails, the packet either
|
|
* didn't fit in the alloted number of segments, or we were
|
|
* short on resources. In this case, we'll copy and try
|
|
* again.
|
|
* Also copy it if we need to pad, so that we are sure there
|
|
* is room for the pad buffer.
|
|
* XXX the right way of doing this is to use a static buffer
|
|
* for padding and adding it to the transmit descriptor (see
|
|
* sys/dev/pci/if_tl.c for example). We can't do this here yet
|
|
* because we can't send packets with more than one fragment.
|
|
*/
|
|
if (m0->m_pkthdr.len < ETHER_PAD_LEN ||
|
|
bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
|
|
BUS_DMA_NOWAIT) != 0) {
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
printf("%s: unable to allocate Tx mbuf\n",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
}
|
|
if (m0->m_pkthdr.len > MHLEN) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
printf("%s: unable to allocate Tx "
|
|
"cluster\n", sc->sc_dev.dv_xname);
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
}
|
|
|
|
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
|
|
if (m0->m_pkthdr.len < ETHER_PAD_LEN) {
|
|
memset(mtod(m, char *) + m0->m_pkthdr.len, 0,
|
|
ETHER_PAD_LEN - m0->m_pkthdr.len);
|
|
m->m_pkthdr.len = m->m_len = ETHER_PAD_LEN;
|
|
} else
|
|
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
|
|
|
|
if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
|
|
m, BUS_DMA_NOWAIT)) != 0) {
|
|
printf("%s: unable to load Tx buffer, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, err);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ensure we have enough descriptors free to describe
|
|
* the packet.
|
|
*/
|
|
if (dmamap->dm_nsegs > sc->sc_nfreetx) {
|
|
/*
|
|
* Not enough free descriptors to transmit this
|
|
* packet. We haven't committed to anything yet,
|
|
* so just unload the DMA map, put the packet
|
|
* back on the queue, and punt. Notify the upper
|
|
* layer that there are no more slots left.
|
|
*
|
|
* XXX We could allocate an mbuf and copy, but
|
|
* XXX it is worth it?
|
|
*/
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
bus_dmamap_unload(sc->sc_dmat, dmamap);
|
|
if (m != NULL)
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Pass the packet to any BPF listeners.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m0);
|
|
#endif /* NBPFILTER > 0 */
|
|
if (m != NULL) {
|
|
m_freem(m0);
|
|
m0 = m;
|
|
}
|
|
|
|
/*
|
|
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
|
|
*/
|
|
|
|
SQ_TRACE(SQ_ENQUEUE, sc, sc->sc_nexttx, 0);
|
|
|
|
/* Sync the DMA map. */
|
|
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Initialize the transmit descriptors.
|
|
*/
|
|
for (nexttx = sc->sc_nexttx, seg = 0, totlen = 0;
|
|
seg < dmamap->dm_nsegs;
|
|
seg++, nexttx = SQ_NEXTTX(nexttx)) {
|
|
if (sc->hpc_regs->revision == 3) {
|
|
sc->sc_txdesc[nexttx].hpc3_hdd_bufptr =
|
|
dmamap->dm_segs[seg].ds_addr;
|
|
sc->sc_txdesc[nexttx].hpc3_hdd_ctl =
|
|
dmamap->dm_segs[seg].ds_len;
|
|
} else {
|
|
sc->sc_txdesc[nexttx].hpc1_hdd_bufptr =
|
|
dmamap->dm_segs[seg].ds_addr;
|
|
sc->sc_txdesc[nexttx].hpc1_hdd_ctl =
|
|
dmamap->dm_segs[seg].ds_len;
|
|
}
|
|
sc->sc_txdesc[nexttx].hdd_descptr=
|
|
SQ_CDTXADDR(sc, SQ_NEXTTX(nexttx));
|
|
lasttx = nexttx;
|
|
totlen += dmamap->dm_segs[seg].ds_len;
|
|
}
|
|
|
|
/* Last descriptor gets end-of-packet */
|
|
KASSERT(lasttx != -1);
|
|
if (sc->hpc_regs->revision == 3)
|
|
sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
|
|
HPC3_HDD_CTL_EOPACKET;
|
|
else
|
|
sc->sc_txdesc[lasttx].hpc1_hdd_ctl |=
|
|
HPC1_HDD_CTL_EOPACKET;
|
|
|
|
SQ_DPRINTF(("%s: transmit %d-%d, len %d\n", sc->sc_dev.dv_xname,
|
|
sc->sc_nexttx, lasttx,
|
|
totlen));
|
|
|
|
if (ifp->if_flags & IFF_DEBUG) {
|
|
printf(" transmit chain:\n");
|
|
for (seg = sc->sc_nexttx;; seg = SQ_NEXTTX(seg)) {
|
|
printf(" descriptor %d:\n", seg);
|
|
printf(" hdd_bufptr: 0x%08x\n",
|
|
(sc->hpc_regs->revision == 3) ?
|
|
sc->sc_txdesc[seg].hpc3_hdd_bufptr :
|
|
sc->sc_txdesc[seg].hpc1_hdd_bufptr);
|
|
printf(" hdd_ctl: 0x%08x\n",
|
|
(sc->hpc_regs->revision == 3) ?
|
|
sc->sc_txdesc[seg].hpc3_hdd_ctl:
|
|
sc->sc_txdesc[seg].hpc1_hdd_ctl);
|
|
printf(" hdd_descptr: 0x%08x\n",
|
|
sc->sc_txdesc[seg].hdd_descptr);
|
|
|
|
if (seg == lasttx)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Sync the descriptors we're using. */
|
|
SQ_CDTXSYNC(sc, sc->sc_nexttx, dmamap->dm_nsegs,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Store a pointer to the packet so we can free it later */
|
|
sc->sc_txmbuf[sc->sc_nexttx] = m0;
|
|
|
|
/* Advance the tx pointer. */
|
|
sc->sc_nfreetx -= dmamap->dm_nsegs;
|
|
sc->sc_nexttx = nexttx;
|
|
}
|
|
|
|
/* All transmit descriptors used up, let upper layers know */
|
|
if (sc->sc_nfreetx == 0)
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
|
|
if (sc->sc_nfreetx != ofree) {
|
|
SQ_DPRINTF(("%s: %d packets enqueued, first %d, INTR on %d\n",
|
|
sc->sc_dev.dv_xname, lasttx - firsttx + 1,
|
|
firsttx, lasttx));
|
|
|
|
/*
|
|
* Cause a transmit interrupt to happen on the
|
|
* last packet we enqueued, mark it as the last
|
|
* descriptor.
|
|
*
|
|
* HPC1_HDD_CTL_INTR will generate an interrupt on
|
|
* HPC1. HPC3 requires HPC3_HDD_CTL_EOPACKET in
|
|
* addition to HPC3_HDD_CTL_INTR to interrupt.
|
|
*/
|
|
KASSERT(lasttx != -1);
|
|
if (sc->hpc_regs->revision == 3) {
|
|
sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
|
|
HPC3_HDD_CTL_INTR | HPC3_HDD_CTL_EOCHAIN;
|
|
} else {
|
|
sc->sc_txdesc[lasttx].hpc1_hdd_ctl |= HPC1_HDD_CTL_INTR;
|
|
sc->sc_txdesc[lasttx].hpc1_hdd_bufptr |=
|
|
HPC1_HDD_CTL_EOCHAIN;
|
|
}
|
|
|
|
SQ_CDTXSYNC(sc, lasttx, 1,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* There is a potential race condition here if the HPC
|
|
* DMA channel is active and we try and either update
|
|
* the 'next descriptor' pointer in the HPC PIO space
|
|
* or the 'next descriptor' pointer in a previous desc-
|
|
* riptor.
|
|
*
|
|
* To avoid this, if the channel is active, we rely on
|
|
* the transmit interrupt routine noticing that there
|
|
* are more packets to send and restarting the HPC DMA
|
|
* engine, rather than mucking with the DMA state here.
|
|
*/
|
|
status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
|
|
|
|
if ((status & sc->hpc_regs->enetx_ctl_active) != 0) {
|
|
SQ_TRACE(SQ_ADD_TO_DMA, sc, firsttx, status);
|
|
|
|
/*
|
|
* NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
|
|
* HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
|
|
*/
|
|
sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc3_hdd_ctl &=
|
|
~HPC3_HDD_CTL_EOCHAIN;
|
|
|
|
if (sc->hpc_regs->revision != 3)
|
|
sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc1_hdd_ctl
|
|
&= ~HPC1_HDD_CTL_INTR;
|
|
|
|
SQ_CDTXSYNC(sc, SQ_PREVTX(firsttx), 1,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
} else if (sc->hpc_regs->revision == 3) {
|
|
SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
|
|
|
|
sq_hpc_write(sc, HPC3_ENETX_NDBP, SQ_CDTXADDR(sc,
|
|
firsttx));
|
|
|
|
/* Kick DMA channel into life */
|
|
sq_hpc_write(sc, HPC3_ENETX_CTL, HPC3_ENETX_CTL_ACTIVE);
|
|
} else {
|
|
/*
|
|
* In the HPC1 case where transmit DMA is
|
|
* inactive, we can either kick off if
|
|
* the ring was previously empty, or call
|
|
* our transmit interrupt handler to
|
|
* figure out if the ring stopped short
|
|
* and restart at the right place.
|
|
*/
|
|
if (ofree == SQ_NTXDESC) {
|
|
SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
|
|
|
|
sq_hpc_write(sc, HPC1_ENETX_NDBP,
|
|
SQ_CDTXADDR(sc, firsttx));
|
|
sq_hpc_write(sc, HPC1_ENETX_CFXBP,
|
|
SQ_CDTXADDR(sc, firsttx));
|
|
sq_hpc_write(sc, HPC1_ENETX_CBP,
|
|
SQ_CDTXADDR(sc, firsttx));
|
|
|
|
/* Kick DMA channel into life */
|
|
sq_hpc_write(sc, HPC1_ENETX_CTL,
|
|
HPC1_ENETX_CTL_ACTIVE);
|
|
} else
|
|
sq_txring_hpc1(sc);
|
|
}
|
|
|
|
/* Set a watchdog timer in case the chip flakes out. */
|
|
ifp->if_timer = 5;
|
|
}
|
|
}
|
|
|
|
void
|
|
sq_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
int i;
|
|
struct sq_softc *sc = ifp->if_softc;
|
|
|
|
for (i =0; i < SQ_NTXDESC; i++) {
|
|
if (sc->sc_txmbuf[i] != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
|
|
m_freem(sc->sc_txmbuf[i]);
|
|
sc->sc_txmbuf[i] = NULL;
|
|
}
|
|
}
|
|
|
|
/* Clear Seeq transmit/receive command registers */
|
|
sq_seeq_write(sc, SEEQ_TXCMD, 0);
|
|
sq_seeq_write(sc, SEEQ_RXCMD, 0);
|
|
|
|
sq_reset(sc);
|
|
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
/* Device timeout/watchdog routine. */
|
|
void
|
|
sq_watchdog(struct ifnet *ifp)
|
|
{
|
|
u_int32_t status;
|
|
struct sq_softc *sc = ifp->if_softc;
|
|
|
|
status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
|
|
log(LOG_ERR, "%s: device timeout (prev %d, next %d, free %d, "
|
|
"status %08x)\n", sc->sc_dev.dv_xname, sc->sc_prevtx,
|
|
sc->sc_nexttx, sc->sc_nfreetx, status);
|
|
|
|
sq_trace_dump(sc);
|
|
|
|
memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
|
|
sc->sq_trace_idx = 0;
|
|
|
|
++ifp->if_oerrors;
|
|
|
|
sq_init(ifp);
|
|
}
|
|
|
|
static void
|
|
sq_trace_dump(struct sq_softc *sc)
|
|
{
|
|
int i;
|
|
const char *act;
|
|
|
|
for (i = 0; i < sc->sq_trace_idx; i++) {
|
|
switch (sc->sq_trace[i].action) {
|
|
case SQ_RESET: act = "SQ_RESET"; break;
|
|
case SQ_ADD_TO_DMA: act = "SQ_ADD_TO_DMA"; break;
|
|
case SQ_START_DMA: act = "SQ_START_DMA"; break;
|
|
case SQ_DONE_DMA: act = "SQ_DONE_DMA"; break;
|
|
case SQ_RESTART_DMA: act = "SQ_RESTART_DMA"; break;
|
|
case SQ_TXINTR_ENTER: act = "SQ_TXINTR_ENTER"; break;
|
|
case SQ_TXINTR_EXIT: act = "SQ_TXINTR_EXIT"; break;
|
|
case SQ_TXINTR_BUSY: act = "SQ_TXINTR_BUSY"; break;
|
|
case SQ_IOCTL: act = "SQ_IOCTL"; break;
|
|
case SQ_ENQUEUE: act = "SQ_ENQUEUE"; break;
|
|
default: act = "UNKNOWN";
|
|
}
|
|
|
|
printf("%s: [%03d] action %-16s buf %03d free %03d "
|
|
"status %08x line %d\n", sc->sc_dev.dv_xname, i, act,
|
|
sc->sq_trace[i].bufno, sc->sq_trace[i].freebuf,
|
|
sc->sq_trace[i].status, sc->sq_trace[i].line);
|
|
}
|
|
}
|
|
|
|
static int
|
|
sq_intr(void *arg)
|
|
{
|
|
struct sq_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
int handled = 0;
|
|
u_int32_t stat;
|
|
|
|
stat = sq_hpc_read(sc, sc->hpc_regs->enetr_reset);
|
|
|
|
if ((stat & 2) == 0)
|
|
SQ_DPRINTF(("%s: Unexpected interrupt!\n",
|
|
sc->sc_dev.dv_xname));
|
|
else
|
|
sq_hpc_write(sc, sc->hpc_regs->enetr_reset, (stat | 2));
|
|
|
|
/*
|
|
* If the interface isn't running, the interrupt couldn't
|
|
* possibly have come from us.
|
|
*/
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0)
|
|
return 0;
|
|
|
|
sc->sq_intrcnt.ev_count++;
|
|
|
|
/* Always check for received packets */
|
|
if (sq_rxintr(sc) != 0)
|
|
handled++;
|
|
|
|
/* Only handle transmit interrupts if we actually sent something */
|
|
if (sc->sc_nfreetx < SQ_NTXDESC) {
|
|
sq_txintr(sc);
|
|
handled++;
|
|
}
|
|
|
|
#if NRND > 0
|
|
if (handled)
|
|
rnd_add_uint32(&sc->rnd_source, stat);
|
|
#endif
|
|
return (handled);
|
|
}
|
|
|
|
static int
|
|
sq_rxintr(struct sq_softc *sc)
|
|
{
|
|
int count = 0;
|
|
struct mbuf* m;
|
|
int i, framelen;
|
|
u_int8_t pktstat;
|
|
u_int32_t status;
|
|
u_int32_t ctl_reg;
|
|
int new_end, orig_end;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
for (i = sc->sc_nextrx;; i = SQ_NEXTRX(i)) {
|
|
SQ_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD |
|
|
BUS_DMASYNC_POSTWRITE);
|
|
|
|
/*
|
|
* If this is a CPU-owned buffer, we're at the end of the list.
|
|
*/
|
|
if (sc->hpc_regs->revision == 3)
|
|
ctl_reg = sc->sc_rxdesc[i].hpc3_hdd_ctl &
|
|
HPC3_HDD_CTL_OWN;
|
|
else
|
|
ctl_reg = sc->sc_rxdesc[i].hpc1_hdd_ctl &
|
|
HPC1_HDD_CTL_OWN;
|
|
|
|
if (ctl_reg) {
|
|
#if defined(SQ_DEBUG)
|
|
u_int32_t reg;
|
|
|
|
reg = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
|
|
SQ_DPRINTF(("%s: rxintr: done at %d (ctl %08x)\n",
|
|
sc->sc_dev.dv_xname, i, reg));
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
count++;
|
|
|
|
m = sc->sc_rxmbuf[i];
|
|
framelen = m->m_ext.ext_size - 3;
|
|
if (sc->hpc_regs->revision == 3)
|
|
framelen -=
|
|
HPC3_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc3_hdd_ctl);
|
|
else
|
|
framelen -=
|
|
HPC1_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc1_hdd_ctl);
|
|
|
|
/* Now sync the actual packet data */
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
|
|
sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
|
|
pktstat = *((u_int8_t*)m->m_data + framelen + 2);
|
|
|
|
if ((pktstat & RXSTAT_GOOD) == 0) {
|
|
ifp->if_ierrors++;
|
|
|
|
if (pktstat & RXSTAT_OFLOW)
|
|
printf("%s: receive FIFO overflow\n",
|
|
sc->sc_dev.dv_xname);
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
|
|
sc->sc_rxmap[i]->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD);
|
|
SQ_INIT_RXDESC(sc, i);
|
|
SQ_DPRINTF(("%s: sq_rxintr: buf %d no RXSTAT_GOOD\n",
|
|
sc->sc_dev.dv_xname, i));
|
|
continue;
|
|
}
|
|
|
|
if (sq_add_rxbuf(sc, i) != 0) {
|
|
ifp->if_ierrors++;
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
|
|
sc->sc_rxmap[i]->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD);
|
|
SQ_INIT_RXDESC(sc, i);
|
|
SQ_DPRINTF(("%s: sq_rxintr: buf %d sq_add_rxbuf() "
|
|
"failed\n", sc->sc_dev.dv_xname, i));
|
|
continue;
|
|
}
|
|
|
|
|
|
m->m_data += 2;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = framelen;
|
|
|
|
ifp->if_ipackets++;
|
|
|
|
SQ_DPRINTF(("%s: sq_rxintr: buf %d len %d\n",
|
|
sc->sc_dev.dv_xname, i, framelen));
|
|
|
|
#if NBPFILTER > 0
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
#endif
|
|
(*ifp->if_input)(ifp, m);
|
|
}
|
|
|
|
|
|
/* If anything happened, move ring start/end pointers to new spot */
|
|
if (i != sc->sc_nextrx) {
|
|
/*
|
|
* NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
|
|
* HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
|
|
*/
|
|
|
|
new_end = SQ_PREVRX(i);
|
|
sc->sc_rxdesc[new_end].hpc3_hdd_ctl |= HPC3_HDD_CTL_EOCHAIN;
|
|
SQ_CDRXSYNC(sc, new_end, BUS_DMASYNC_PREREAD |
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
orig_end = SQ_PREVRX(sc->sc_nextrx);
|
|
sc->sc_rxdesc[orig_end].hpc3_hdd_ctl &= ~HPC3_HDD_CTL_EOCHAIN;
|
|
SQ_CDRXSYNC(sc, orig_end, BUS_DMASYNC_PREREAD |
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
sc->sc_nextrx = i;
|
|
}
|
|
|
|
status = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
|
|
|
|
/* If receive channel is stopped, restart it... */
|
|
if ((status & sc->hpc_regs->enetr_ctl_active) == 0) {
|
|
/* Pass the start of the receive ring to the HPC */
|
|
sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc,
|
|
sc->sc_nextrx));
|
|
|
|
/* And turn on the HPC ethernet receive channel */
|
|
sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
|
|
sc->hpc_regs->enetr_ctl_active);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static int
|
|
sq_txintr(struct sq_softc *sc)
|
|
{
|
|
int shift = 0;
|
|
u_int32_t status, tmp;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
if (sc->hpc_regs->revision != 3)
|
|
shift = 16;
|
|
|
|
status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl) >> shift;
|
|
|
|
SQ_TRACE(SQ_TXINTR_ENTER, sc, sc->sc_prevtx, status);
|
|
|
|
tmp = (sc->hpc_regs->enetx_ctl_active >> shift) | TXSTAT_GOOD;
|
|
if ((status & tmp) == 0) {
|
|
if (status & TXSTAT_COLL)
|
|
ifp->if_collisions++;
|
|
|
|
if (status & TXSTAT_UFLOW) {
|
|
printf("%s: transmit underflow\n", sc->sc_dev.dv_xname);
|
|
ifp->if_oerrors++;
|
|
}
|
|
|
|
if (status & TXSTAT_16COLL) {
|
|
printf("%s: max collisions reached\n",
|
|
sc->sc_dev.dv_xname);
|
|
ifp->if_oerrors++;
|
|
ifp->if_collisions += 16;
|
|
}
|
|
}
|
|
|
|
/* prevtx now points to next xmit packet not yet finished */
|
|
if (sc->hpc_regs->revision == 3)
|
|
sq_txring_hpc3(sc);
|
|
else
|
|
sq_txring_hpc1(sc);
|
|
|
|
/* If we have buffers free, let upper layers know */
|
|
if (sc->sc_nfreetx > 0)
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/* If all packets have left the coop, cancel watchdog */
|
|
if (sc->sc_nfreetx == SQ_NTXDESC)
|
|
ifp->if_timer = 0;
|
|
|
|
SQ_TRACE(SQ_TXINTR_EXIT, sc, sc->sc_prevtx, status);
|
|
sq_start(ifp);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Reclaim used transmit descriptors and restart the transmit DMA
|
|
* engine if necessary.
|
|
*/
|
|
static void
|
|
sq_txring_hpc1(struct sq_softc *sc)
|
|
{
|
|
/*
|
|
* HPC1 doesn't tag transmitted descriptors, however,
|
|
* the NDBP register points to the next descriptor that
|
|
* has not yet been processed. If DMA is not in progress,
|
|
* we can safely reclaim all descriptors up to NDBP, and,
|
|
* if necessary, restart DMA at NDBP. Otherwise, if DMA
|
|
* is active, we can only safely reclaim up to CBP.
|
|
*
|
|
* For now, we'll only reclaim on inactive DMA and assume
|
|
* that a sufficiently large ring keeps us out of trouble.
|
|
*/
|
|
u_int32_t reclaimto, status;
|
|
int reclaimall, i = sc->sc_prevtx;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
status = sq_hpc_read(sc, HPC1_ENETX_CTL);
|
|
if (status & HPC1_ENETX_CTL_ACTIVE) {
|
|
SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
|
|
return;
|
|
} else
|
|
reclaimto = sq_hpc_read(sc, HPC1_ENETX_NDBP);
|
|
|
|
if (sc->sc_nfreetx == 0 && SQ_CDTXADDR(sc, i) == reclaimto)
|
|
reclaimall = 1;
|
|
else
|
|
reclaimall = 0;
|
|
|
|
while (sc->sc_nfreetx < SQ_NTXDESC) {
|
|
if (SQ_CDTXADDR(sc, i) == reclaimto && !reclaimall)
|
|
break;
|
|
|
|
SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
/* Sync the packet data, unload DMA map, free mbuf */
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i], 0,
|
|
sc->sc_txmap[i]->dm_mapsize,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
|
|
m_freem(sc->sc_txmbuf[i]);
|
|
sc->sc_txmbuf[i] = NULL;
|
|
|
|
ifp->if_opackets++;
|
|
sc->sc_nfreetx++;
|
|
|
|
SQ_TRACE(SQ_DONE_DMA, sc, i, status);
|
|
|
|
i = SQ_NEXTTX(i);
|
|
}
|
|
|
|
if (sc->sc_nfreetx < SQ_NTXDESC) {
|
|
SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
|
|
|
|
KASSERT(reclaimto == SQ_CDTXADDR(sc, i));
|
|
|
|
sq_hpc_write(sc, HPC1_ENETX_CFXBP, reclaimto);
|
|
sq_hpc_write(sc, HPC1_ENETX_CBP, reclaimto);
|
|
|
|
/* Kick DMA channel into life */
|
|
sq_hpc_write(sc, HPC1_ENETX_CTL, HPC1_ENETX_CTL_ACTIVE);
|
|
|
|
/*
|
|
* Set a watchdog timer in case the chip
|
|
* flakes out.
|
|
*/
|
|
ifp->if_timer = 5;
|
|
}
|
|
|
|
sc->sc_prevtx = i;
|
|
}
|
|
|
|
/*
|
|
* Reclaim used transmit descriptors and restart the transmit DMA
|
|
* engine if necessary.
|
|
*/
|
|
static void
|
|
sq_txring_hpc3(struct sq_softc *sc)
|
|
{
|
|
/*
|
|
* HPC3 tags descriptors with a bit once they've been
|
|
* transmitted. We need only free each XMITDONE'd
|
|
* descriptor, and restart the DMA engine if any
|
|
* descriptors are left over.
|
|
*/
|
|
int i;
|
|
u_int32_t status = 0;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
i = sc->sc_prevtx;
|
|
while (sc->sc_nfreetx < SQ_NTXDESC) {
|
|
/*
|
|
* Check status first so we don't end up with a case of
|
|
* the buffer not being finished while the DMA channel
|
|
* has gone idle.
|
|
*/
|
|
status = sq_hpc_read(sc, HPC3_ENETX_CTL);
|
|
|
|
SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
/* Check for used descriptor and restart DMA chain if needed */
|
|
if (!(sc->sc_txdesc[i].hpc3_hdd_ctl & HPC3_HDD_CTL_XMITDONE)) {
|
|
if ((status & HPC3_ENETX_CTL_ACTIVE) == 0) {
|
|
SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
|
|
|
|
sq_hpc_write(sc, HPC3_ENETX_NDBP,
|
|
SQ_CDTXADDR(sc, i));
|
|
|
|
/* Kick DMA channel into life */
|
|
sq_hpc_write(sc, HPC3_ENETX_CTL,
|
|
HPC3_ENETX_CTL_ACTIVE);
|
|
|
|
/*
|
|
* Set a watchdog timer in case the chip
|
|
* flakes out.
|
|
*/
|
|
ifp->if_timer = 5;
|
|
} else
|
|
SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
|
|
break;
|
|
}
|
|
|
|
/* Sync the packet data, unload DMA map, free mbuf */
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i], 0,
|
|
sc->sc_txmap[i]->dm_mapsize,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
|
|
m_freem(sc->sc_txmbuf[i]);
|
|
sc->sc_txmbuf[i] = NULL;
|
|
|
|
ifp->if_opackets++;
|
|
sc->sc_nfreetx++;
|
|
|
|
SQ_TRACE(SQ_DONE_DMA, sc, i, status);
|
|
i = SQ_NEXTTX(i);
|
|
}
|
|
|
|
sc->sc_prevtx = i;
|
|
}
|
|
|
|
void
|
|
sq_reset(struct sq_softc *sc)
|
|
{
|
|
/* Stop HPC dma channels */
|
|
sq_hpc_write(sc, sc->hpc_regs->enetr_ctl, 0);
|
|
sq_hpc_write(sc, sc->hpc_regs->enetx_ctl, 0);
|
|
|
|
sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 3);
|
|
delay(20);
|
|
sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 0);
|
|
}
|
|
|
|
/* sq_add_rxbuf: Add a receive buffer to the indicated descriptor. */
|
|
int
|
|
sq_add_rxbuf(struct sq_softc *sc, int idx)
|
|
{
|
|
int err;
|
|
struct mbuf *m;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
if (sc->sc_rxmbuf[idx] != NULL)
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[idx]);
|
|
|
|
sc->sc_rxmbuf[idx] = m;
|
|
|
|
if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_rxmap[idx],
|
|
m->m_ext.ext_buf, m->m_ext.ext_size,
|
|
NULL, BUS_DMA_NOWAIT)) != 0) {
|
|
printf("%s: can't load rx DMA map %d, error = %d\n",
|
|
sc->sc_dev.dv_xname, idx, err);
|
|
panic("sq_add_rxbuf"); /* XXX */
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[idx], 0,
|
|
sc->sc_rxmap[idx]->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
|
|
SQ_INIT_RXDESC(sc, idx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
sq_dump_buffer(u_int32_t addr, u_int32_t len)
|
|
{
|
|
u_int i;
|
|
u_char* physaddr = (char*) MIPS_PHYS_TO_KSEG1((void *)addr);
|
|
|
|
if (len == 0)
|
|
return;
|
|
|
|
printf("%p: ", physaddr);
|
|
|
|
for (i = 0; i < len; i++) {
|
|
printf("%02x ", *(physaddr + i) & 0xff);
|
|
if ((i % 16) == 15 && i != len - 1)
|
|
printf("\n%p: ", physaddr + i);
|
|
}
|
|
|
|
printf("\n");
|
|
}
|
|
|
|
void
|
|
enaddr_aton(const char* str, u_int8_t* eaddr)
|
|
{
|
|
int i;
|
|
char c;
|
|
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++) {
|
|
if (*str == ':')
|
|
str++;
|
|
|
|
c = *str++;
|
|
if (isdigit(c)) {
|
|
eaddr[i] = (c - '0');
|
|
} else if (isxdigit(c)) {
|
|
eaddr[i] = (toupper(c) + 10 - 'A');
|
|
}
|
|
|
|
c = *str++;
|
|
if (isdigit(c)) {
|
|
eaddr[i] = (eaddr[i] << 4) | (c - '0');
|
|
} else if (isxdigit(c)) {
|
|
eaddr[i] = (eaddr[i] << 4) | (toupper(c) + 10 - 'A');
|
|
}
|
|
}
|
|
}
|