NetBSD/sys/arch/vax/vsa/hdc9224.c
1997-03-15 16:32:16 +00:00

1150 lines
27 KiB
C

/* $NetBSD: hdc9224.c,v 1.6 1997/03/15 16:32:22 ragge Exp $ */
/*
* Copyright (c) 1996 Ludd, University of Lule}, Sweden.
* All rights reserved.
*
* This code is derived from software contributed to Ludd by Bertram Barth.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed at Ludd, University of
* Lule}, Sweden and its contributors.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* with much help from (in alphabetical order):
* Jeremy
* Roger Ivie
* Rick Macklem
* Mike Young
*/
/* #define DEBUG /* */
/* #define TRACE /* */
static int haveLock = 0;
static int keepLock = 0;
#define F_READ 11
#define F_WRITE 12
#define trace(x)
#define debug(x)
#include "hdc.h"
#if NHDC > 0
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/map.h>
#include <sys/device.h>
#include <sys/dkstat.h>
#include <sys/disklabel.h>
#include <sys/disk.h>
#include <sys/syslog.h>
#include <sys/reboot.h>
#include <machine/pte.h>
#include <machine/sid.h>
#include <machine/cpu.h>
#include <machine/uvax.h>
#include <machine/ka410.h>
#include <machine/vsbus.h>
#include <machine/rpb.h>
#include <vax/vsa/hdc9224.h>
/*
* some definitions
*/
#define CTLRNAME "hdc"
#define UNITNAME "rd"
#define HDC_PRI LOG_INFO
/* Bits in minor device */
#define HDCUNIT(dev) DISKUNIT(dev)
#define HDCPART(dev) DISKPART(dev)
#define HDCCTLR(dev) 0
#define HDCLABELDEV(dev) (MAKEDISKDEV(major(dev),HDCUNIT(dev),RAW_PART))
#define MAX_WAIT (1000*1000) /* # of loop-instructions in seconds */
/*
* on-disk geometry block
*/
#define _aP __attribute__ ((packed)) /* force byte-alignment */
struct rdgeom {
char mbz[10]; /* 10 bytes of zero */
long xbn_count _aP; /* number of XBNs */
long dbn_count _aP; /* number of DBNs */
long lbn_count _aP; /* number of LBNs (Logical-Block-Numbers) */
long rbn_count _aP; /* number of RBNs (Replacement-Block-Numbers) */
short nspt; /* number of sectors per track */
short ntracks; /* number of tracks */
short ncylinders; /* number of cylinders */
short precomp; /* first cylinder for write precompensation */
short reduced; /* first cylinder for reduced write current */
short seek_rate; /* seek rate or zero for buffered seeks */
short crc_eec; /* 0 if CRC is being used or 1 if ECC is being used */
short rct; /* "replacement control table" (RCT) */
short rct_ncopies; /* number of copies of the RCT */
long media_id _aP; /* media identifier */
short interleave; /* sector-to-sector interleave */
short headskew; /* head-to-head skew */
short cylskew; /* cylinder-to-cylinder skew */
short gap0_size; /* size of GAP 0 in the MFM format */
short gap1_size; /* size of GAP 1 in the MFM format */
short gap2_size; /* size of GAP 2 in the MFM format */
short gap3_size; /* size of GAP 3 in the MFM format */
short sync_value; /* sync value used to start a track when formatting */
char reserved[32]; /* reserved for use by the RQDX1/2/3 formatter */
short serial_number; /* serial number */
#if 0 /* we don't need these 412 useless bytes ... */
char fill[412-2]; /* Filler bytes to the end of the block */
short checksum; /* checksum over the XBN */
#endif
};
/*
* Software status
*/
struct rdsoftc {
struct device sc_dev; /* must be here! (pseudo-OOP:) */
struct disk sc_dk; /* disklabel etc. */
struct rdgeom sc_xbn; /* on-disk geometry information */
struct rdparams {
u_short cylinders; /* number of cylinders */
u_char heads; /* number of heads (tracks) */
u_char sectors; /* number of sectors/track */
u_long diskblks; /* number of sectors/disk */
u_long disklbns; /* number of available sectors */
u_long blksize; /* number of bytes/sector */
u_long diskbytes; /* number of bytes/disk */
char diskname[8];
} sc_param;
int sc_drive; /* physical unit number */
int sc_flags;
int sc_state;
int sc_mode;
};
struct hdcsoftc {
struct device sc_dev; /* must be here (pseudo-OOP:) */
struct hdc9224_DKCreg *sc_dkc; /* I/O address of the controller */
struct hdc9224_UDCreg sc_creg; /* (command) registers to be written */
struct hdc9224_UDCreg sc_sreg; /* (status) registers being read */
struct confargs *sc_cfargs; /* remember args being probed with */
char *sc_dmabase; /* */
long sc_dmasize; /* */
long sc_ioaddr; /* unmapped I/O address */
long sc_ivec; /* interrupt vector address */
short sc_ibit; /* bit-value in interrupt register */
short sc_status; /* copy of status register */
short sc_state;
short sc_flags;
short sc_errors;
};
/*
* Device definition for (new) autoconfiguration.
*/
int hdcmatch __P((struct device *parent, void *cfdata, void *aux));
void hdcattach __P((struct device *parent, struct device *self, void *aux));
int hdcprint __P((void *aux, const char *name));
struct cfdriver hdc_cd = {
NULL, "hdc", DV_DULL
};
struct cfattach hdc_ca = {
sizeof(struct hdcsoftc), hdcmatch, hdcattach
};
int rdmatch __P((struct device *parent, void *cfdata, void *aux));
void rdattach __P((struct device *parent, struct device *self, void *aux));
int rdprint __P((void *aux, const char *name));
void rdstrategy __P((struct buf *bp));
struct cfdriver rd_cd = {
NULL, "rd", DV_DISK
};
struct cfattach rd_ca = {
sizeof(struct rdsoftc), rdmatch, rdattach
};
struct dkdriver rddkdriver = { rdstrategy };
/*
* prototypes for (almost) all the internal routines
*/
int hdc_reset __P((struct hdcsoftc *sc));
int hdc_select __P((struct hdcsoftc *sc, int drive));
int hdc_command __P((struct hdcsoftc *sc, int cmd));
int hdc_getdata __P((struct hdcsoftc *hdc, struct rdsoftc *rd, int drive));
int hdc_getlabel __P((struct hdcsoftc *hdc, struct rdsoftc *rd, int drive));
void rdgetlabel __P((struct rdsoftc *sc));
/*
* new-config's hdcmatch() is similiar to old-config's hdcprobe(),
* thus we probe for the existence of the controller and reset it.
* NB: we can't initialize the controller yet, since space for hdcsoftc
* is not yet allocated. Thus we do this in hdcattach()...
*/
int
hdcmatch(parent, match, aux)
struct device *parent;
void *match, *aux;
{
struct cfdata *cf = match;
struct confargs *ca = aux;
trace(("hdcmatch(0x%x, %d, %s)\n", parent, cf->cf_unit, ca->ca_name));
if (strcmp(ca->ca_name, "hdc") &&
strcmp(ca->ca_name, "hdc9224") &&
strcmp(ca->ca_name, "HDC9224"))
return (0);
/*
* only(?) VS2000/KA410 has exactly one HDC9224 controller
*/
if (vax_boardtype != VAX_BTYP_410) {
printf ("unexpected boardtype 0x%x in hdcmatch()\n",
vax_boardtype);
return (0);
}
if (cf->cf_unit != 0)
return (0);
return (1);
}
struct hdc_attach_args {
int ha_drive;
};
int
rdprint(aux, name)
void *aux;
const char *name;
{
struct hdc_attach_args *ha = aux;
trace(("rdprint(%d, %s)\n", ha->ha_drive, name));
if (!name)
printf (" drive %d", ha->ha_drive);
return (QUIET);
}
/*
* hdc_attach() probes for all possible devices
*/
void
hdcattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct hdcsoftc *sc = (void*)self;
struct confargs *ca = aux;
struct hdc_attach_args ha;
trace(("hdcattach(0x%x, 0x%x, %s)\n", parent, self, ca->ca_name));
printf ("\n");
/*
* first reset/initialize the controller
*/
sc->sc_cfargs = ca;
sc->sc_ioaddr = ca->ca_ioaddr;
sc->sc_dkc = (void*)uvax_phys2virt(sc->sc_ioaddr);
sc->sc_ibit = ca->ca_intbit;
sc->sc_ivec = ca->ca_intvec;
sc->sc_status = 0;
sc->sc_state = 0;
sc->sc_flags = 0;
sc->sc_errors = 0;
sc->sc_dkc = (void*)uvax_phys2virt(KA410_DKC_BASE);
sc->sc_dmabase = (void*)uvax_phys2virt(KA410_DMA_BASE);
sc->sc_dmasize = KA410_DMA_SIZE;
if (hdc_reset(sc) != 0) {
delay(500*1000); /* wait .5 seconds */
if (hdc_reset(sc) != 0)
printf ("problems with hdc_reset()...\n");
}
/*
* now probe for all possible disks
*/
for (ha.ha_drive=0; ha.ha_drive<3; ha.ha_drive++)
(void)config_found(self, (void*)&ha, rdprint);
#ifdef notyet
/*
* now that probing is done, we can register and enable interrupts
*/
vsbus_intr_register(XXX);
vsbus_intr_enable(XXX);
#endif
}
/*
* rdmatch() probes for the existence of a RD-type disk/floppy
*/
int
rdmatch(parent, match, aux)
struct device *parent;
void *match, *aux;
{
struct hdcsoftc *hdc = (void*)parent;
struct cfdata *cf = match;
struct hdc_attach_args *ha = aux;
int drive = ha->ha_drive;
int res;
trace(("rdmatch(%d, %d)\n", cf->cf_unit, drive));
if (cf->cf_unit != ha->ha_drive)
return (0);
switch (drive) {
case 0:
case 1:
case 2:
res = hdc_select(hdc, drive);
break;
default:
printf ("rdmatch: invalid unit-number %d\n", drive);
return (0);
}
debug (("cstat: %x dstat: %x\n", hdc->sc_sreg.udc_cstat,
hdc->sc_sreg.udc_dstat));
if (drive == 1)
return (0); /* XXX */
return (1);
}
void
rdattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct hdcsoftc *hdc = (void*)parent;
struct rdsoftc *rd = (void*)self;
struct hdc_attach_args *ha = aux;
struct rdparams *rp = &rd->sc_param;
trace(("rdattach(%d)\n", ha->ha_drive));
rd->sc_drive = ha->ha_drive;
/*
* Initialize and attach the disk structure.
*/
rd->sc_dk.dk_driver = &rddkdriver;
rd->sc_dk.dk_name = rd->sc_dev.dv_xname;
disk_attach(&rd->sc_dk);
/*
* if it's not a floppy then evaluate the on-disk geometry.
* if neccessary correct the label...
*/
printf("\n%s: ", rd->sc_dev.dv_xname);
if (rd->sc_drive == 2) {
printf("floppy (RX33)\n");
}
else {
hdc_getdata(hdc, rd, rd->sc_drive);
printf("%s, %d MB, %d LBN, %d cyl, %d head, %d sect/track\n",
rp->diskname, rp->diskblks/2048, rp->disklbns,
rp->cylinders, rp->heads, rp->sectors);
}
/*
* Know where we booted from.
*/
if ((B_TYPE(bootdev) == BDEV_RD) && (rd->sc_drive == B_UNIT(bootdev)))
booted_from = self;
}
/*
* Read/write routine for a buffer. For now we poll the controller,
* thus this routine waits for the transfer to complete.
*/
void
rdstrategy(bp)
struct buf *bp;
{
struct rdsoftc *rd = rd_cd.cd_devs[HDCUNIT(bp->b_dev)];
struct hdcsoftc *hdc = (void *)rd->sc_dev.dv_parent;
struct partition *p;
int blkno, i, s;
trace (("rdstrategy(#%d/%d)\n", bp->b_blkno, bp->b_bcount));
/* XXX should make some checks... */
/*
* If it's a null transfer, return immediatly
*/
if (bp->b_bcount == 0)
goto done;
/*
* what follows now should not be here but in rdstart...
*/
/*------------------------------*/
blkno = bp->b_blkno / (rd->sc_dk.dk_label->d_secsize / DEV_BSIZE);
p = &rd->sc_dk.dk_label->d_partitions[HDCPART(bp->b_dev)];
blkno += p->p_offset;
/* nblks = howmany(bp->b_bcount, sd->sc_dk.dk_label->d_secsize); */
if (hdc_strategy(hdc, rd, HDCUNIT(bp->b_dev),
((bp->b_flags & B_READ) ? F_READ : F_WRITE),
blkno, bp->b_bcount, bp->b_data) == 0)
goto done;
/*------------------------------*/
bad:
bp->b_flags |= B_ERROR;
done:
/*
* Correctly set the buf to indicate a completed xfer
*/
bp->b_resid = 0; /* ??? bertram */
biodone(bp);
}
int
hdc_strategy(hdc, rd, unit, func, dblk, size, buf)
struct hdcsoftc *hdc;
struct rdsoftc *rd;
int unit;
int func;
int dblk;
int size;
char *buf;
{
struct hdc9224_UDCreg *p = &hdc->sc_creg;
struct disklabel *lp = rd->sc_dk.dk_label;
int sect, head, cyl;
int scount;
int cmd, res = 0;
trace (("hdc_strategy(%d, %d, %d, %d, 0x%x)\n",
unit, func, dblk, size, buf));
hdc_select(hdc, unit); /* select drive right now */
if (unit != 2 && dblk == -1) { /* read the on-disk geometry */
p->udc_dma7 = 0;
p->udc_dma15 = 0;
p->udc_dma23 = 0;
p->udc_dsect = 0;
p->udc_dhead = 0;
p->udc_dcyl = 0;
p->udc_scnt = size/512;
p->udc_rtcnt = 0xF0;
p->udc_mode = 0xC0;
p->udc_term = 0xB4;
vsbus_lockDMA(hdc->sc_cfargs); /* bertram XXX */
haveLock = 1;
keepLock = 1;
#ifdef PARANOID
bzero (hdc->sc_dmabase, size); /* clear disk buffer */
#endif
cmd = 0x5C | 0x03; /* bypass bad sectors */
cmd = 0x5C | 0x01; /* terminate if bad sector */
res = hdc_command (hdc, cmd);
/* hold the locking ! */
bcopy (hdc->sc_dmabase, buf, size); /* copy to buf */
/* now release the locking */
vsbus_unlockDMA(hdc->sc_cfargs);
haveLock = 0;
keepLock = 0;
return (res);
}
scount = size / 512;
while (scount) {
/*
* prepare drive/operation parameter
*/
cyl = dblk / lp->d_secpercyl;
sect = dblk % lp->d_secpercyl;
head = sect / lp->d_nsectors;
sect = sect % lp->d_nsectors;
if (unit == 2)
sect++;
else
cyl++; /* first cylinder is reserved */
size = 512 * min(scount, lp->d_nsectors - sect);
debug (("hdc_strategy: block #%d ==> s/t/c=%d/%d/%d (%d/%d)\n",
dblk, sect, head, cyl, scount, size));
/*
* now initialize the register values ...
*/
p->udc_dma7 = 0;
p->udc_dma15 = 0;
p->udc_dma23 = 0;
p->udc_dsect = sect;
head |= (cyl >> 4) & 0x70;
p->udc_dhead = head;
p->udc_dcyl = cyl;
p->udc_scnt = size/512;
if (unit == 2) { /* floppy */
p->udc_rtcnt = 0xF2;
p->udc_mode = 0x81; /* RX33 with RX50 media */
p->udc_mode = 0x82; /* RX33 with RX33 media */
p->udc_term = 0xB4;
} else { /* disk */
p->udc_rtcnt = 0xF0;
p->udc_mode = 0xC0;
p->udc_term = 0xB4;
}
vsbus_lockDMA(hdc->sc_cfargs);
haveLock = 1;
keepLock = 1;
if (func == F_WRITE) {
bcopy (buf, hdc->sc_dmabase, size); /* copy from buf */
cmd = 0xA0 | (unit==2 ? 1 : 0);
res = hdc_command (hdc, cmd);
}
else {
#ifdef PARANOID
bzero (hdc->sc_dmabase, size); /* clear disk buffer */
#endif
cmd = 0x5C | 0x03; /* bypass bad sectors */
cmd = 0x5C | 0x01; /* terminate if bad sector */
res = hdc_command (hdc, cmd);
bcopy (hdc->sc_dmabase, buf, size); /* copy to buf */
}
vsbus_unlockDMA(hdc->sc_cfargs);
haveLock = 0;
keepLock = 0;
scount -= size/512;
dblk += size/512;
buf += size;
}
if (unit != 2) /* deselect drive, if not floppy */
hdc_command (hdc, DKC_CMD_DRDESELECT);
return 0;
}
char hdc_iobuf[17*512]; /* we won't need more */
#ifdef DEBUG
/*
* display the contents of the on-disk geometry structure
*/
int
hdc_printgeom(p)
struct rdgeom *p;
{
char dname[8];
hdc_mid2str(p->media_id, dname);
printf ("**DiskData** XBNs: %d, DBNs: %d, LBNs: %d, RBNs: %d\n",
p->xbn_count, p->dbn_count, p->lbn_count, p->rbn_count);
printf ("sec/track: %d, tracks: %d, cyl: %d, precomp/reduced: %d/%d\n",
p->nspt, p->ntracks, p->ncylinders, p->precomp, p->reduced);
printf ("seek-rate: %d, crc/eec: %s, RCT: %d, RCT-copies: %d\n",
p->seek_rate, p->crc_eec?"EEC":"CRC", p->rct, p->rct_ncopies);
printf ("media-ID: %s, interleave: %d, headskew: %d, cylskew: %d\n",
dname, p->interleave, p->headskew, p->cylskew);
printf ("gap0: %d, gap1: %d, gap2: %d, gap3: %d, sync-value: %d\n",
p->gap0_size, p->gap1_size, p->gap2_size, p->gap3_size,
p->sync_value);
}
#endif
/*
* Convert media_id to string/name (encoding is documented in mscp.h)
*/
int
hdc_mid2str(media_id, name)
long media_id;
char *name;
{
struct { /* For RD32 this struct holds: */
u_long mt:7; /* number in name: 0x20 == 32 */
u_long a2:5; /* ' ' encoded as 0x0 */
u_long a1:5; /* 'D' encoded with base '@' */
u_long a0:5; /* 'R' encoded with base '@' */
u_long d1:5; /* 'U' encoded with base '@' */
u_long d0:5; /* 'D' encoded with base '@' */
} *p = (void*)&media_id;
#define MIDCHR(x) (x ? x + '@' : ' ')
sprintf (name, "%c%c%d", MIDCHR(p->a0), MIDCHR(p->a1), p->mt);
}
int
hdc_getdata(hdc, rd, unit)
struct hdcsoftc *hdc;
struct rdsoftc *rd;
int unit;
{
struct disklabel *lp = rd->sc_dk.dk_label;
struct rdparams *rp = &rd->sc_param;
int res;
trace (("hdc_getdata(%d)\n", unit));
bzero(rd->sc_dk.dk_label, sizeof(struct disklabel));
bzero(rd->sc_dk.dk_cpulabel, sizeof(struct cpu_disklabel));
if (unit == 2) {
lp->d_secsize = DEV_BSIZE;
lp->d_ntracks = 2;
lp->d_nsectors = 15;
lp->d_ncylinders = 80;
lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
return (0);
}
res = hdc_strategy(hdc, rd, unit, F_READ, -1, 4096, hdc_iobuf);
bcopy (hdc_iobuf, &rd->sc_xbn, sizeof(struct rdgeom));
#ifdef DEBUG
hdc_printgeom(&rd->sc_xbn);
#endif
lp->d_secsize = DEV_BSIZE;
lp->d_ntracks = rd->sc_xbn.ntracks;
lp->d_nsectors = rd->sc_xbn.nspt;
lp->d_ncylinders = rd->sc_xbn.ncylinders;
lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
rp->cylinders = rd->sc_xbn.ncylinders;
rp->heads = rd->sc_xbn.ntracks;
rp->sectors = rd->sc_xbn.nspt;
rp->diskblks = rp->cylinders * rp->heads * rp->sectors;
rp->disklbns = rd->sc_xbn.lbn_count;
rp->blksize = DEV_BSIZE;
rp->diskbytes = rp->disklbns * rp->blksize;
hdc_mid2str(rd->sc_xbn.media_id, rp->diskname);
return (0);
}
int
hdc_getlabel(hdc, rd, unit)
struct hdcsoftc *hdc;
struct rdsoftc *rd;
int unit;
{
struct disklabel *lp = rd->sc_dk.dk_label;
struct disklabel *xp = (void*)(hdc_iobuf + 64);
int res;
trace (("hdc_getlabel(%d)\n", unit));
#define LBL_CHECK(x) if (xp->x != lp->x) { \
printf ("%d-->%d\n", xp->x, lp->x); \
xp->x = lp->x; \
}
res = hdc_strategy(hdc, rd, unit, F_READ, 0, DEV_BSIZE, hdc_iobuf);
LBL_CHECK(d_secsize);
LBL_CHECK(d_ntracks);
LBL_CHECK(d_nsectors);
LBL_CHECK(d_ncylinders);
LBL_CHECK(d_secpercyl);
bcopy(xp, lp, sizeof(struct disklabel));
return (0);
}
/*
* Return the size of a partition, if known, or -1 if not.
*/
hdcsize(dev)
dev_t dev;
{
int unit = HDCUNIT(dev);
int part = HDCPART(dev);
struct rdsoftc *rd = rd_cd.cd_devs[unit];
int size;
trace (("hdcsize(%x == %d/%d)\n", dev, unit, part));
if (hdcopen(dev, 0, S_IFBLK) != 0)
return (-1);
#if 0
if (rd->sc_dk.dk_label->d_partitions[part].p_fstype != FS_SWAP)
size = -1;
else
#endif
size = rd->sc_dk.dk_label->d_partitions[part].p_size;
if (hdcclose(dev, 0, S_IFBLK) != 0)
return (-1);
debug (("hdcsize: size=%d\n", size));
return (size);
}
/*
*
*/
int
hdcopen (dev, flag, fmt)
dev_t dev;
int flag;
int fmt;
{
int unit = HDCUNIT(dev);
int part = HDCPART(dev);
struct hdcsoftc *hdc;
struct rdsoftc *rd;
int res, error;
trace (("hdcopen(0x%x = %d/%d)\n", dev, unit, part));
if (unit >= rd_cd.cd_ndevs) {
printf ("hdcopen: invalid unit %d\n", unit);
return ENXIO;
}
rd = rd_cd.cd_devs[unit];
if (!rd) {
printf("hdcopen: null-pointer in rdsoftc.\n");
return (ENXIO);
}
hdc = (void *)rd->sc_dev.dv_parent;
/* XXX here's much more to do! XXX */
hdc_getdata (hdc, rd, unit);
hdc_getlabel (hdc, rd, unit);
return (0);
}
/*
*
*/
int
hdcclose (dev, flag)
dev_t dev;
int flag;
{
trace (("hdcclose()\n"));
return (0);
}
/*
*
*/
void
hdcstrategy(bp)
register struct buf *bp;
{
trace (("hdcstrategy()\n"));
rdstrategy(bp);
debug (("hdcstrategy done.\n"));
}
/*
*
*/
int
hdcioctl(dev, cmd, data, flag, p)
dev_t dev;
int cmd;
caddr_t data; /* aka: addr */
int flag;
struct proc *p;
{
struct rdsoftc *rd = rd_cd.cd_devs[HDCUNIT(dev)];
struct hdcsoftc *hdc = (void *)rd->sc_dev.dv_parent;
int error;
trace (("hdcioctl(%x, %x)\n", dev, cmd));
/*
* If the device is not valid.. abandon ship
*/
/* XXX */
switch (cmd) {
case DIOCGDINFO:
*(struct disklabel *)data = *(rd->sc_dk.dk_label);
return (0);
case DIOCGPART:
((struct partinfo *)data)->disklab = rd->sc_dk.dk_label;
((struct partinfo *)data)->part =
&rd->sc_dk.dk_label->d_partitions[HDCPART(dev)];
return (0);
case DIOCWDINFO:
case DIOCSDINFO:
/* XXX
if ((flag & FWRITE) == 0)
return EBADF;
if ((error = sdlock(sd)) != 0)
return error;
sd->flags |= SDF_LABELLING;
*/
error = setdisklabel(rd->sc_dk.dk_label,
(struct disklabel *)data, 0, rd->sc_dk.dk_cpulabel);
if (error == 0) {
if (cmd == DIOCWDINFO)
error = writedisklabel(HDCLABELDEV(dev),
rdstrategy, rd->sc_dk.dk_label,
rd->sc_dk.dk_cpulabel);
}
/* XXX
sd->flags &= ~SDF_LABELLING;
sdunlock(sd);
*/
return (error);
case DIOCWLABEL:
if ((flag & FWRITE) == 0)
return (EBADF);
/* XXX
if (*(int *)data)
sd->flags |= SDF_WLABEL;
else
sd->flags &= ~SDF_WLABEL;
*/
return (0);
default:
if (HDCPART(dev) != RAW_PART)
return ENOTTY;
printf ("IOCTL %x not implemented.\n", cmd);
return (-1);
}
}
/*
*
*/
int
hdcintr()
{
trace (("hdcintr()\n"));
}
/*
*
*/
int
hdcread (dev, uio)
dev_t dev;
struct uio *uio;
{
trace (("hdcread()\n"));
return (physio (hdcstrategy, NULL, dev, B_READ, minphys, uio));
}
/*
*
*/
int
hdcwrite (dev, uio)
dev_t dev;
struct uio *uio;
{
trace (("hdcwrite()\n"));
return (physio (hdcstrategy, NULL, dev, B_WRITE, minphys, uio));
}
/*
*
*/
int
hdcdump(dev)
dev_t dev;
{
trace (("hdcdump (%x)\n", dev));
}
/*
* we have to wait 0.7 usec between two accesses to any of the
* dkc-registers, on a VS2000 with 1 MIPS, this is roughly one
* instruction. Thus the loop-overhead will be enough...
*/
void
hdc_readregs(sc)
struct hdcsoftc *sc;
{
int i;
char *p;
trace(("hdc_readregs()\n"));
sc->sc_dkc->dkc_cmd = 0x40; /* set internal counter to zero */
p = (void*)&sc->sc_sreg;
for (i=0; i<10; i++)
*p++ = sc->sc_dkc->dkc_reg; /* dkc_reg auto-increments */
}
void
hdc_writeregs(sc)
struct hdcsoftc *sc;
{
int i;
char *p;
trace(("hdc_writeregs()\n"));
sc->sc_dkc->dkc_cmd = 0x40; /* set internal counter to zero */
p = (void*)&sc->sc_creg;
for (i=0; i<10; i++)
sc->sc_dkc->dkc_reg = *p++; /* dkc_reg auto-increments */
}
/*
* hdc_command() issues a command and polls the intreq-register
* to find when command has completed
*/
int
hdc_command(sc, cmd)
struct hdcsoftc *sc;
int cmd;
{
volatile u_char *intreq = (void*)uvax_phys2virt(KA410_INTREQ);
volatile u_char *intclr = (void*)uvax_phys2virt(KA410_INTCLR);
volatile u_char *intmsk = (void*)uvax_phys2virt(KA410_INTMSK);
int i, c;
trace (("hdc_command(%x)\n", cmd));
debug (("intr-state: %x %x %x\n", *intreq, *intclr, *intmsk));
if (!haveLock) {
vsbus_lockDMA(sc->sc_cfargs);
haveLock = 1;
}
hdc_writeregs(sc); /* write the prepared registers */
*intclr = INTR_DC; /* clear any old interrupt */
sc->sc_dkc->dkc_cmd = cmd; /* issue the command */
for (i=0; i<MAX_WAIT; i++) {
if ((c = *intreq) & INTR_DC)
break;
}
if ((c & INTR_DC) == 0) {
printf ("hdc_command: timeout in command 0x%x\n", cmd);
}
hdc_readregs(sc); /* read the status registers */
sc->sc_status = sc->sc_dkc->dkc_stat;
if (!keepLock) {
vsbus_unlockDMA(sc->sc_cfargs);
haveLock = 0;
}
if (sc->sc_status != DKC_ST_DONE|DKC_TC_SUCCESS) {
printf ("command 0x%x completed with status 0x%x\n",
cmd, sc->sc_status);
return (-1);
}
return (0);
}
/*
* writing zero into the command-register will reset the controller.
* This will not interrupt data-transfer commands!
* Also no interrupt is generated, thus we don't use hdc_command()
*/
int
hdc_reset(sc)
struct hdcsoftc *sc;
{
trace (("hdc_reset()\n"));
sc->sc_dkc->dkc_cmd = DKC_CMD_RESET; /* issue RESET command */
hdc_readregs(sc); /* read the status registers */
sc->sc_status = sc->sc_dkc->dkc_stat;
if (sc->sc_status != DKC_ST_DONE|DKC_TC_SUCCESS) {
printf ("RESET command completed with status 0x%x\n",
sc->sc_status);
return (-1);
}
return (0);
}
int
hdc_rxselect(sc, unit)
struct hdcsoftc *sc;
int unit;
{
register struct hdc9224_UDCreg *p = &sc->sc_creg;
register struct hdc9224_UDCreg *q = &sc->sc_sreg;
int error;
/*
* bring command-regs in some known-to-work state and
* select the drive with the DRIVE SELECT command.
*/
p->udc_dma7 = 0;
p->udc_dma15 = 0;
p->udc_dma23 = 0;
p->udc_dsect = 1; /* sectors are numbered 1..15 !!! */
p->udc_dhead = 0;
p->udc_dcyl = 0;
p->udc_scnt = 0;
p->udc_rtcnt = UDC_RC_RX33READ;
p->udc_mode = UDC_MD_RX33;
p->udc_term = UDC_TC_FDD;
/*
* this is ...
*/
error = hdc_command (sc, DKC_CMD_DRSEL_RX33 | unit);
if ((error != 0) || (q->udc_dstat & UDC_DS_READY == 0)) {
printf("\nfloppy-drive not ready (new floppy inserted?)\n\n");
p->udc_rtcnt &= ~UDC_RC_INVRDY; /* clear INVRDY-flag */
error = hdc_command(sc, DKC_CMD_DRSEL_RX33 | unit);
if ((error != 0) || (q->udc_dstat & UDC_DS_READY == 0)) {
printf("diskette not ready(1): %x/%x\n", error, q->udc_dstat);
printf("floppy-drive offline?\n");
return (-1);
}
if (q->udc_dstat & UDC_DS_TRK00) /* if track-0 */
error = hdc_command(sc, DKC_CMD_STEPIN_FDD); /* step inwards */
else /* else */
error = hdc_command(sc, DKC_CMD_STEPOUT_FDD); /* step outwards */
if ((error != 0) || (q->udc_dstat & UDC_DS_READY == 1)) {
printf("diskette not ready(2): %x/%x\n", error, q->udc_dstat);
printf("No floppy inserted or drive offline\n");
/* return (-1); */
}
p->udc_rtcnt |= UDC_RC_INVRDY;
error = hdc_command(sc, DKC_CMD_DRSEL_RX33 | unit);
if ((error != 0) || (q->udc_dstat & UDC_DS_READY == 0)) {
printf("diskette not ready(3): %x/%x\n", error, q->udc_dstat);
printf("no floppy inserted or floppy-door open\n");
return(-1);
}
printf("floppy-drive reselected.\n");
}
if (error)
error = hdc_command (sc, DKC_CMD_DRSEL_RX33 | unit);
return (error);
}
int
hdc_rdselect(sc, unit)
struct hdcsoftc *sc;
int unit;
{
register struct hdc9224_UDCreg *p = &sc->sc_creg;
register struct hdc9224_UDCreg *q = &sc->sc_sreg;
int error;
/*
* bring "creg" in some known-to-work state and
* select the drive with the DRIVE SELECT command.
*/
p->udc_dma7 = 0;
p->udc_dma15 = 0;
p->udc_dma23 = 0;
p->udc_dsect = 0; /* sectors are numbered 0..16 */
p->udc_dhead = 0;
p->udc_dcyl = 0;
p->udc_scnt = 0;
p->udc_rtcnt = UDC_RC_HDD_READ;
p->udc_mode = UDC_MD_HDD;
p->udc_term = UDC_TC_HDD;
error = hdc_command (sc, DKC_CMD_DRSEL_HDD | unit);
if (error)
error = hdc_command (sc, DKC_CMD_DRSEL_HDD | unit);
return (error);
}
/*
* bring command-regs into some known-to-work state and select
* the drive with the DRIVE SELECT command.
*/
int
hdc_select(sc, unit)
struct hdcsoftc *sc;
int unit;
{
int error;
trace (("hdc_select(%x,%d)\n", sc, unit));
switch (unit) {
case 0:
case 1:
error = hdc_rdselect(sc, unit);
break;
case 2:
error = hdc_rxselect(sc, unit);
/* bertram: delay ??? XXX */
break;
default:
printf("invalid unit %d in hdc_select()\n", unit);
error = -1;
}
return (error);
}
#endif /* NHDC > 0 */