72f0a6dfb0
route_in6, struct route_iso), replacing all caches with a struct route. The principle benefit of this change is that all of the protocol families can benefit from route cache-invalidation, which is necessary for correct routing. Route-cache invalidation fixes an ancient PR, kern/3508, at long last; it fixes various other PRs, also. Discussions with and ideas from Joerg Sonnenberger influenced this work tremendously. Of course, all design oversights and bugs are mine. DETAILS 1 I added to each address family a pool of sockaddrs. I have introduced routines for allocating, copying, and duplicating, and freeing sockaddrs: struct sockaddr *sockaddr_alloc(sa_family_t af, int flags); struct sockaddr *sockaddr_copy(struct sockaddr *dst, const struct sockaddr *src); struct sockaddr *sockaddr_dup(const struct sockaddr *src, int flags); void sockaddr_free(struct sockaddr *sa); sockaddr_alloc() returns either a sockaddr from the pool belonging to the specified family, or NULL if the pool is exhausted. The returned sockaddr has the right size for that family; sa_family and sa_len fields are initialized to the family and sockaddr length---e.g., sa_family = AF_INET and sa_len = sizeof(struct sockaddr_in). sockaddr_free() puts the given sockaddr back into its family's pool. sockaddr_dup() and sockaddr_copy() work analogously to strdup() and strcpy(), respectively. sockaddr_copy() KASSERTs that the family of the destination and source sockaddrs are alike. The 'flags' argumet for sockaddr_alloc() and sockaddr_dup() is passed directly to pool_get(9). 2 I added routines for initializing sockaddrs in each address family, sockaddr_in_init(), sockaddr_in6_init(), sockaddr_iso_init(), etc. They are fairly self-explanatory. 3 structs route_in6 and route_iso are no more. All protocol families use struct route. I have changed the route cache, 'struct route', so that it does not contain storage space for a sockaddr. Instead, struct route points to a sockaddr coming from the pool the sockaddr belongs to. I added a new method to struct route, rtcache_setdst(), for setting the cache destination: int rtcache_setdst(struct route *, const struct sockaddr *); rtcache_setdst() returns 0 on success, or ENOMEM if no memory is available to create the sockaddr storage. It is now possible for rtcache_getdst() to return NULL if, say, rtcache_setdst() failed. I check the return value for NULL everywhere in the kernel. 4 Each routing domain (struct domain) has a list of live route caches, dom_rtcache. rtflushall(sa_family_t af) looks up the domain indicated by 'af', walks the domain's list of route caches and invalidates each one.
2343 lines
60 KiB
C
2343 lines
60 KiB
C
/* $NetBSD: tcp_subr.c,v 1.214 2007/05/02 20:40:25 dyoung Exp $ */
|
|
|
|
/*
|
|
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the project nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
|
|
* Facility, NASA Ames Research Center.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.214 2007/05/02 20:40:25 dyoung Exp $");
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_tcp_compat_42.h"
|
|
#include "opt_inet_csum.h"
|
|
#include "opt_mbuftrace.h"
|
|
#include "rnd.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/pool.h>
|
|
#if NRND > 0
|
|
#include <sys/md5.h>
|
|
#include <sys/rnd.h>
|
|
#endif
|
|
|
|
#include <net/route.h>
|
|
#include <net/if.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/ip_icmp.h>
|
|
|
|
#ifdef INET6
|
|
#ifndef INET
|
|
#include <netinet/in.h>
|
|
#endif
|
|
#include <netinet/ip6.h>
|
|
#include <netinet6/in6_pcb.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet6/in6_var.h>
|
|
#include <netinet6/ip6protosw.h>
|
|
#include <netinet/icmp6.h>
|
|
#include <netinet6/nd6.h>
|
|
#endif
|
|
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/tcp_fsm.h>
|
|
#include <netinet/tcp_seq.h>
|
|
#include <netinet/tcp_timer.h>
|
|
#include <netinet/tcp_var.h>
|
|
#include <netinet/tcp_congctl.h>
|
|
#include <netinet/tcpip.h>
|
|
|
|
#ifdef IPSEC
|
|
#include <netinet6/ipsec.h>
|
|
#include <netkey/key.h>
|
|
#endif /*IPSEC*/
|
|
|
|
#ifdef FAST_IPSEC
|
|
#include <netipsec/ipsec.h>
|
|
#include <netipsec/xform.h>
|
|
#ifdef INET6
|
|
#include <netipsec/ipsec6.h>
|
|
#endif
|
|
#include <netipsec/key.h>
|
|
#endif /* FAST_IPSEC*/
|
|
|
|
|
|
struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
|
|
struct tcpstat tcpstat; /* tcp statistics */
|
|
u_int32_t tcp_now; /* for RFC 1323 timestamps */
|
|
|
|
/* patchable/settable parameters for tcp */
|
|
int tcp_mssdflt = TCP_MSS;
|
|
int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
|
|
int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
|
|
#if NRND > 0
|
|
int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
|
|
#endif
|
|
int tcp_do_sack = 1; /* selective acknowledgement */
|
|
int tcp_do_win_scale = 1; /* RFC1323 window scaling */
|
|
int tcp_do_timestamps = 1; /* RFC1323 timestamps */
|
|
int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
|
|
int tcp_do_ecn = 0; /* Explicit Congestion Notification */
|
|
#ifndef TCP_INIT_WIN
|
|
#define TCP_INIT_WIN 0 /* initial slow start window */
|
|
#endif
|
|
#ifndef TCP_INIT_WIN_LOCAL
|
|
#define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
|
|
#endif
|
|
int tcp_init_win = TCP_INIT_WIN;
|
|
int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
|
|
int tcp_mss_ifmtu = 0;
|
|
#ifdef TCP_COMPAT_42
|
|
int tcp_compat_42 = 1;
|
|
#else
|
|
int tcp_compat_42 = 0;
|
|
#endif
|
|
int tcp_rst_ppslim = 100; /* 100pps */
|
|
int tcp_ackdrop_ppslim = 100; /* 100pps */
|
|
int tcp_do_loopback_cksum = 0;
|
|
int tcp_do_abc = 1; /* RFC3465 Appropriate byte counting. */
|
|
int tcp_abc_aggressive = 1; /* 1: L=2*SMSS 0: L=1*SMSS */
|
|
int tcp_sack_tp_maxholes = 32;
|
|
int tcp_sack_globalmaxholes = 1024;
|
|
int tcp_sack_globalholes = 0;
|
|
int tcp_ecn_maxretries = 1;
|
|
|
|
/* tcb hash */
|
|
#ifndef TCBHASHSIZE
|
|
#define TCBHASHSIZE 128
|
|
#endif
|
|
int tcbhashsize = TCBHASHSIZE;
|
|
|
|
/* syn hash parameters */
|
|
#define TCP_SYN_HASH_SIZE 293
|
|
#define TCP_SYN_BUCKET_SIZE 35
|
|
int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
|
|
int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
|
|
int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
|
|
struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
|
|
|
|
int tcp_freeq(struct tcpcb *);
|
|
|
|
#ifdef INET
|
|
void tcp_mtudisc_callback(struct in_addr);
|
|
#endif
|
|
#ifdef INET6
|
|
void tcp6_mtudisc_callback(struct in6_addr *);
|
|
#endif
|
|
|
|
#ifdef INET6
|
|
void tcp6_mtudisc(struct in6pcb *, int);
|
|
#endif
|
|
|
|
POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL,
|
|
IPL_SOFTNET);
|
|
|
|
#ifdef TCP_CSUM_COUNTERS
|
|
#include <sys/device.h>
|
|
|
|
#if defined(INET)
|
|
struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
NULL, "tcp", "hwcsum bad");
|
|
struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
NULL, "tcp", "hwcsum ok");
|
|
struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
NULL, "tcp", "hwcsum data");
|
|
struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
NULL, "tcp", "swcsum");
|
|
|
|
EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
|
|
EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
|
|
EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
|
|
EVCNT_ATTACH_STATIC(tcp_swcsum);
|
|
#endif /* defined(INET) */
|
|
|
|
#if defined(INET6)
|
|
struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
NULL, "tcp6", "hwcsum bad");
|
|
struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
NULL, "tcp6", "hwcsum ok");
|
|
struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
NULL, "tcp6", "hwcsum data");
|
|
struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
NULL, "tcp6", "swcsum");
|
|
|
|
EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
|
|
EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
|
|
EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
|
|
EVCNT_ATTACH_STATIC(tcp6_swcsum);
|
|
#endif /* defined(INET6) */
|
|
#endif /* TCP_CSUM_COUNTERS */
|
|
|
|
|
|
#ifdef TCP_OUTPUT_COUNTERS
|
|
#include <sys/device.h>
|
|
|
|
struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
NULL, "tcp", "output big header");
|
|
struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
NULL, "tcp", "output predict hit");
|
|
struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
NULL, "tcp", "output predict miss");
|
|
struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
NULL, "tcp", "output copy small");
|
|
struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
NULL, "tcp", "output copy big");
|
|
struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
NULL, "tcp", "output reference big");
|
|
|
|
EVCNT_ATTACH_STATIC(tcp_output_bigheader);
|
|
EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
|
|
EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
|
|
EVCNT_ATTACH_STATIC(tcp_output_copysmall);
|
|
EVCNT_ATTACH_STATIC(tcp_output_copybig);
|
|
EVCNT_ATTACH_STATIC(tcp_output_refbig);
|
|
|
|
#endif /* TCP_OUTPUT_COUNTERS */
|
|
|
|
#ifdef TCP_REASS_COUNTERS
|
|
#include <sys/device.h>
|
|
|
|
struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
NULL, "tcp_reass", "calls");
|
|
struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
&tcp_reass_, "tcp_reass", "insert into empty queue");
|
|
struct evcnt tcp_reass_iteration[8] = {
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
|
|
};
|
|
struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
&tcp_reass_, "tcp_reass", "prepend to first");
|
|
struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
&tcp_reass_, "tcp_reass", "prepend");
|
|
struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
&tcp_reass_, "tcp_reass", "insert");
|
|
struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
&tcp_reass_, "tcp_reass", "insert at tail");
|
|
struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
&tcp_reass_, "tcp_reass", "append");
|
|
struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
&tcp_reass_, "tcp_reass", "append to tail fragment");
|
|
struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
&tcp_reass_, "tcp_reass", "overlap at end");
|
|
struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
&tcp_reass_, "tcp_reass", "overlap at start");
|
|
struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
&tcp_reass_, "tcp_reass", "duplicate segment");
|
|
struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
|
|
&tcp_reass_, "tcp_reass", "duplicate fragment");
|
|
|
|
EVCNT_ATTACH_STATIC(tcp_reass_);
|
|
EVCNT_ATTACH_STATIC(tcp_reass_empty);
|
|
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
|
|
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
|
|
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
|
|
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
|
|
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
|
|
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
|
|
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
|
|
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
|
|
EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
|
|
EVCNT_ATTACH_STATIC(tcp_reass_prepend);
|
|
EVCNT_ATTACH_STATIC(tcp_reass_insert);
|
|
EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
|
|
EVCNT_ATTACH_STATIC(tcp_reass_append);
|
|
EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
|
|
EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
|
|
EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
|
|
EVCNT_ATTACH_STATIC(tcp_reass_segdup);
|
|
EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
|
|
|
|
#endif /* TCP_REASS_COUNTERS */
|
|
|
|
#ifdef MBUFTRACE
|
|
struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
|
|
struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
|
|
struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
|
|
struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
|
|
struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
|
|
struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
|
|
#endif
|
|
|
|
/*
|
|
* Tcp initialization
|
|
*/
|
|
void
|
|
tcp_init(void)
|
|
{
|
|
int hlen;
|
|
|
|
/* Initialize the TCPCB template. */
|
|
tcp_tcpcb_template();
|
|
|
|
in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
|
|
|
|
hlen = sizeof(struct ip) + sizeof(struct tcphdr);
|
|
#ifdef INET6
|
|
if (sizeof(struct ip) < sizeof(struct ip6_hdr))
|
|
hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
|
|
#endif
|
|
if (max_protohdr < hlen)
|
|
max_protohdr = hlen;
|
|
if (max_linkhdr + hlen > MHLEN)
|
|
panic("tcp_init");
|
|
|
|
#ifdef INET
|
|
icmp_mtudisc_callback_register(tcp_mtudisc_callback);
|
|
#endif
|
|
#ifdef INET6
|
|
icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
|
|
#endif
|
|
|
|
/* Initialize timer state. */
|
|
tcp_timer_init();
|
|
|
|
/* Initialize the compressed state engine. */
|
|
syn_cache_init();
|
|
|
|
/* Initialize the congestion control algorithms. */
|
|
tcp_congctl_init();
|
|
|
|
MOWNER_ATTACH(&tcp_tx_mowner);
|
|
MOWNER_ATTACH(&tcp_rx_mowner);
|
|
MOWNER_ATTACH(&tcp_reass_mowner);
|
|
MOWNER_ATTACH(&tcp_sock_mowner);
|
|
MOWNER_ATTACH(&tcp_sock_tx_mowner);
|
|
MOWNER_ATTACH(&tcp_sock_rx_mowner);
|
|
MOWNER_ATTACH(&tcp_mowner);
|
|
}
|
|
|
|
/*
|
|
* Create template to be used to send tcp packets on a connection.
|
|
* Call after host entry created, allocates an mbuf and fills
|
|
* in a skeletal tcp/ip header, minimizing the amount of work
|
|
* necessary when the connection is used.
|
|
*/
|
|
struct mbuf *
|
|
tcp_template(struct tcpcb *tp)
|
|
{
|
|
struct inpcb *inp = tp->t_inpcb;
|
|
#ifdef INET6
|
|
struct in6pcb *in6p = tp->t_in6pcb;
|
|
#endif
|
|
struct tcphdr *n;
|
|
struct mbuf *m;
|
|
int hlen;
|
|
|
|
switch (tp->t_family) {
|
|
case AF_INET:
|
|
hlen = sizeof(struct ip);
|
|
if (inp)
|
|
break;
|
|
#ifdef INET6
|
|
if (in6p) {
|
|
/* mapped addr case */
|
|
if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
|
|
&& IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
|
|
break;
|
|
}
|
|
#endif
|
|
return NULL; /*EINVAL*/
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
hlen = sizeof(struct ip6_hdr);
|
|
if (in6p) {
|
|
/* more sainty check? */
|
|
break;
|
|
}
|
|
return NULL; /*EINVAL*/
|
|
#endif
|
|
default:
|
|
hlen = 0; /*pacify gcc*/
|
|
return NULL; /*EAFNOSUPPORT*/
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
if (hlen + sizeof(struct tcphdr) > MCLBYTES)
|
|
panic("mclbytes too small for t_template");
|
|
#endif
|
|
m = tp->t_template;
|
|
if (m && m->m_len == hlen + sizeof(struct tcphdr))
|
|
;
|
|
else {
|
|
if (m)
|
|
m_freem(m);
|
|
m = tp->t_template = NULL;
|
|
MGETHDR(m, M_DONTWAIT, MT_HEADER);
|
|
if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_free(m);
|
|
m = NULL;
|
|
}
|
|
}
|
|
if (m == NULL)
|
|
return NULL;
|
|
MCLAIM(m, &tcp_mowner);
|
|
m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
|
|
}
|
|
|
|
bzero(mtod(m, void *), m->m_len);
|
|
|
|
n = (struct tcphdr *)(mtod(m, char *) + hlen);
|
|
|
|
switch (tp->t_family) {
|
|
case AF_INET:
|
|
{
|
|
struct ipovly *ipov;
|
|
mtod(m, struct ip *)->ip_v = 4;
|
|
mtod(m, struct ip *)->ip_hl = hlen >> 2;
|
|
ipov = mtod(m, struct ipovly *);
|
|
ipov->ih_pr = IPPROTO_TCP;
|
|
ipov->ih_len = htons(sizeof(struct tcphdr));
|
|
if (inp) {
|
|
ipov->ih_src = inp->inp_laddr;
|
|
ipov->ih_dst = inp->inp_faddr;
|
|
}
|
|
#ifdef INET6
|
|
else if (in6p) {
|
|
/* mapped addr case */
|
|
bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
|
|
sizeof(ipov->ih_src));
|
|
bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
|
|
sizeof(ipov->ih_dst));
|
|
}
|
|
#endif
|
|
/*
|
|
* Compute the pseudo-header portion of the checksum
|
|
* now. We incrementally add in the TCP option and
|
|
* payload lengths later, and then compute the TCP
|
|
* checksum right before the packet is sent off onto
|
|
* the wire.
|
|
*/
|
|
n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
|
|
ipov->ih_dst.s_addr,
|
|
htons(sizeof(struct tcphdr) + IPPROTO_TCP));
|
|
break;
|
|
}
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
{
|
|
struct ip6_hdr *ip6;
|
|
mtod(m, struct ip *)->ip_v = 6;
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
ip6->ip6_nxt = IPPROTO_TCP;
|
|
ip6->ip6_plen = htons(sizeof(struct tcphdr));
|
|
ip6->ip6_src = in6p->in6p_laddr;
|
|
ip6->ip6_dst = in6p->in6p_faddr;
|
|
ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
|
|
if (ip6_auto_flowlabel) {
|
|
ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
|
|
ip6->ip6_flow |=
|
|
(htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
|
|
}
|
|
ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
|
|
ip6->ip6_vfc |= IPV6_VERSION;
|
|
|
|
/*
|
|
* Compute the pseudo-header portion of the checksum
|
|
* now. We incrementally add in the TCP option and
|
|
* payload lengths later, and then compute the TCP
|
|
* checksum right before the packet is sent off onto
|
|
* the wire.
|
|
*/
|
|
n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
|
|
&in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
|
|
htonl(IPPROTO_TCP));
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
if (inp) {
|
|
n->th_sport = inp->inp_lport;
|
|
n->th_dport = inp->inp_fport;
|
|
}
|
|
#ifdef INET6
|
|
else if (in6p) {
|
|
n->th_sport = in6p->in6p_lport;
|
|
n->th_dport = in6p->in6p_fport;
|
|
}
|
|
#endif
|
|
n->th_seq = 0;
|
|
n->th_ack = 0;
|
|
n->th_x2 = 0;
|
|
n->th_off = 5;
|
|
n->th_flags = 0;
|
|
n->th_win = 0;
|
|
n->th_urp = 0;
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Send a single message to the TCP at address specified by
|
|
* the given TCP/IP header. If m == 0, then we make a copy
|
|
* of the tcpiphdr at ti and send directly to the addressed host.
|
|
* This is used to force keep alive messages out using the TCP
|
|
* template for a connection tp->t_template. If flags are given
|
|
* then we send a message back to the TCP which originated the
|
|
* segment ti, and discard the mbuf containing it and any other
|
|
* attached mbufs.
|
|
*
|
|
* In any case the ack and sequence number of the transmitted
|
|
* segment are as specified by the parameters.
|
|
*/
|
|
int
|
|
tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
|
|
struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
|
|
{
|
|
struct route *ro;
|
|
int error, tlen, win = 0;
|
|
int hlen;
|
|
struct ip *ip;
|
|
#ifdef INET6
|
|
struct ip6_hdr *ip6;
|
|
#endif
|
|
int family; /* family on packet, not inpcb/in6pcb! */
|
|
struct tcphdr *th;
|
|
struct socket *so;
|
|
|
|
if (tp != NULL && (flags & TH_RST) == 0) {
|
|
#ifdef DIAGNOSTIC
|
|
if (tp->t_inpcb && tp->t_in6pcb)
|
|
panic("tcp_respond: both t_inpcb and t_in6pcb are set");
|
|
#endif
|
|
#ifdef INET
|
|
if (tp->t_inpcb)
|
|
win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
|
|
#endif
|
|
#ifdef INET6
|
|
if (tp->t_in6pcb)
|
|
win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
|
|
#endif
|
|
}
|
|
|
|
th = NULL; /* Quell uninitialized warning */
|
|
ip = NULL;
|
|
#ifdef INET6
|
|
ip6 = NULL;
|
|
#endif
|
|
if (m == 0) {
|
|
if (!template)
|
|
return EINVAL;
|
|
|
|
/* get family information from template */
|
|
switch (mtod(template, struct ip *)->ip_v) {
|
|
case 4:
|
|
family = AF_INET;
|
|
hlen = sizeof(struct ip);
|
|
break;
|
|
#ifdef INET6
|
|
case 6:
|
|
family = AF_INET6;
|
|
hlen = sizeof(struct ip6_hdr);
|
|
break;
|
|
#endif
|
|
default:
|
|
return EAFNOSUPPORT;
|
|
}
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_HEADER);
|
|
if (m) {
|
|
MCLAIM(m, &tcp_tx_mowner);
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_free(m);
|
|
m = NULL;
|
|
}
|
|
}
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
|
|
if (tcp_compat_42)
|
|
tlen = 1;
|
|
else
|
|
tlen = 0;
|
|
|
|
m->m_data += max_linkhdr;
|
|
bcopy(mtod(template, void *), mtod(m, void *),
|
|
template->m_len);
|
|
switch (family) {
|
|
case AF_INET:
|
|
ip = mtod(m, struct ip *);
|
|
th = (struct tcphdr *)(ip + 1);
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
th = (struct tcphdr *)(ip6 + 1);
|
|
break;
|
|
#endif
|
|
#if 0
|
|
default:
|
|
/* noone will visit here */
|
|
m_freem(m);
|
|
return EAFNOSUPPORT;
|
|
#endif
|
|
}
|
|
flags = TH_ACK;
|
|
} else {
|
|
|
|
if ((m->m_flags & M_PKTHDR) == 0) {
|
|
#if 0
|
|
printf("non PKTHDR to tcp_respond\n");
|
|
#endif
|
|
m_freem(m);
|
|
return EINVAL;
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
if (!th0)
|
|
panic("th0 == NULL in tcp_respond");
|
|
#endif
|
|
|
|
/* get family information from m */
|
|
switch (mtod(m, struct ip *)->ip_v) {
|
|
case 4:
|
|
family = AF_INET;
|
|
hlen = sizeof(struct ip);
|
|
ip = mtod(m, struct ip *);
|
|
break;
|
|
#ifdef INET6
|
|
case 6:
|
|
family = AF_INET6;
|
|
hlen = sizeof(struct ip6_hdr);
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
break;
|
|
#endif
|
|
default:
|
|
m_freem(m);
|
|
return EAFNOSUPPORT;
|
|
}
|
|
/* clear h/w csum flags inherited from rx packet */
|
|
m->m_pkthdr.csum_flags = 0;
|
|
|
|
if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
|
|
tlen = sizeof(*th0);
|
|
else
|
|
tlen = th0->th_off << 2;
|
|
|
|
if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
|
|
mtod(m, char *) + hlen == (char *)th0) {
|
|
m->m_len = hlen + tlen;
|
|
m_freem(m->m_next);
|
|
m->m_next = NULL;
|
|
} else {
|
|
struct mbuf *n;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (max_linkhdr + hlen + tlen > MCLBYTES) {
|
|
m_freem(m);
|
|
return EMSGSIZE;
|
|
}
|
|
#endif
|
|
MGETHDR(n, M_DONTWAIT, MT_HEADER);
|
|
if (n && max_linkhdr + hlen + tlen > MHLEN) {
|
|
MCLGET(n, M_DONTWAIT);
|
|
if ((n->m_flags & M_EXT) == 0) {
|
|
m_freem(n);
|
|
n = NULL;
|
|
}
|
|
}
|
|
if (!n) {
|
|
m_freem(m);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
MCLAIM(n, &tcp_tx_mowner);
|
|
n->m_data += max_linkhdr;
|
|
n->m_len = hlen + tlen;
|
|
m_copyback(n, 0, hlen, mtod(m, void *));
|
|
m_copyback(n, hlen, tlen, (void *)th0);
|
|
|
|
m_freem(m);
|
|
m = n;
|
|
n = NULL;
|
|
}
|
|
|
|
#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
|
|
switch (family) {
|
|
case AF_INET:
|
|
ip = mtod(m, struct ip *);
|
|
th = (struct tcphdr *)(ip + 1);
|
|
ip->ip_p = IPPROTO_TCP;
|
|
xchg(ip->ip_dst, ip->ip_src, struct in_addr);
|
|
ip->ip_p = IPPROTO_TCP;
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
th = (struct tcphdr *)(ip6 + 1);
|
|
ip6->ip6_nxt = IPPROTO_TCP;
|
|
xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
|
|
ip6->ip6_nxt = IPPROTO_TCP;
|
|
break;
|
|
#endif
|
|
#if 0
|
|
default:
|
|
/* noone will visit here */
|
|
m_freem(m);
|
|
return EAFNOSUPPORT;
|
|
#endif
|
|
}
|
|
xchg(th->th_dport, th->th_sport, u_int16_t);
|
|
#undef xchg
|
|
tlen = 0; /*be friendly with the following code*/
|
|
}
|
|
th->th_seq = htonl(seq);
|
|
th->th_ack = htonl(ack);
|
|
th->th_x2 = 0;
|
|
if ((flags & TH_SYN) == 0) {
|
|
if (tp)
|
|
win >>= tp->rcv_scale;
|
|
if (win > TCP_MAXWIN)
|
|
win = TCP_MAXWIN;
|
|
th->th_win = htons((u_int16_t)win);
|
|
th->th_off = sizeof (struct tcphdr) >> 2;
|
|
tlen += sizeof(*th);
|
|
} else
|
|
tlen += th->th_off << 2;
|
|
m->m_len = hlen + tlen;
|
|
m->m_pkthdr.len = hlen + tlen;
|
|
m->m_pkthdr.rcvif = (struct ifnet *) 0;
|
|
th->th_flags = flags;
|
|
th->th_urp = 0;
|
|
|
|
switch (family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
{
|
|
struct ipovly *ipov = (struct ipovly *)ip;
|
|
bzero(ipov->ih_x1, sizeof ipov->ih_x1);
|
|
ipov->ih_len = htons((u_int16_t)tlen);
|
|
|
|
th->th_sum = 0;
|
|
th->th_sum = in_cksum(m, hlen + tlen);
|
|
ip->ip_len = htons(hlen + tlen);
|
|
ip->ip_ttl = ip_defttl;
|
|
break;
|
|
}
|
|
#endif
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
{
|
|
th->th_sum = 0;
|
|
th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
|
|
tlen);
|
|
ip6->ip6_plen = htons(tlen);
|
|
if (tp && tp->t_in6pcb) {
|
|
struct ifnet *oifp;
|
|
ro = (struct route *)&tp->t_in6pcb->in6p_route;
|
|
oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
|
|
ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
|
|
} else
|
|
ip6->ip6_hlim = ip6_defhlim;
|
|
ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
|
|
if (ip6_auto_flowlabel) {
|
|
ip6->ip6_flow |=
|
|
(htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if (tp && tp->t_inpcb)
|
|
so = tp->t_inpcb->inp_socket;
|
|
#ifdef INET6
|
|
else if (tp && tp->t_in6pcb)
|
|
so = tp->t_in6pcb->in6p_socket;
|
|
#endif
|
|
else
|
|
so = NULL;
|
|
|
|
if (tp != NULL && tp->t_inpcb != NULL) {
|
|
ro = &tp->t_inpcb->inp_route;
|
|
#ifdef DIAGNOSTIC
|
|
if (family != AF_INET)
|
|
panic("tcp_respond: address family mismatch");
|
|
if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
|
|
panic("tcp_respond: ip_dst %x != inp_faddr %x",
|
|
ntohl(ip->ip_dst.s_addr),
|
|
ntohl(tp->t_inpcb->inp_faddr.s_addr));
|
|
}
|
|
#endif
|
|
}
|
|
#ifdef INET6
|
|
else if (tp != NULL && tp->t_in6pcb != NULL) {
|
|
ro = (struct route *)&tp->t_in6pcb->in6p_route;
|
|
#ifdef DIAGNOSTIC
|
|
if (family == AF_INET) {
|
|
if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
|
|
panic("tcp_respond: not mapped addr");
|
|
if (bcmp(&ip->ip_dst,
|
|
&tp->t_in6pcb->in6p_faddr.s6_addr32[3],
|
|
sizeof(ip->ip_dst)) != 0) {
|
|
panic("tcp_respond: ip_dst != in6p_faddr");
|
|
}
|
|
} else if (family == AF_INET6) {
|
|
if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
|
|
&tp->t_in6pcb->in6p_faddr))
|
|
panic("tcp_respond: ip6_dst != in6p_faddr");
|
|
} else
|
|
panic("tcp_respond: address family mismatch");
|
|
#endif
|
|
}
|
|
#endif
|
|
else
|
|
ro = NULL;
|
|
|
|
switch (family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
error = ip_output(m, NULL, ro,
|
|
(tp && tp->t_mtudisc ? IP_MTUDISC : 0),
|
|
(struct ip_moptions *)0, so);
|
|
break;
|
|
#endif
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
|
|
break;
|
|
#endif
|
|
default:
|
|
error = EAFNOSUPPORT;
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Template TCPCB. Rather than zeroing a new TCPCB and initializing
|
|
* a bunch of members individually, we maintain this template for the
|
|
* static and mostly-static components of the TCPCB, and copy it into
|
|
* the new TCPCB instead.
|
|
*/
|
|
static struct tcpcb tcpcb_template = {
|
|
/*
|
|
* If TCP_NTIMERS ever changes, we'll need to update this
|
|
* initializer.
|
|
*/
|
|
.t_timer = {
|
|
CALLOUT_INITIALIZER,
|
|
CALLOUT_INITIALIZER,
|
|
CALLOUT_INITIALIZER,
|
|
CALLOUT_INITIALIZER,
|
|
},
|
|
.t_delack_ch = CALLOUT_INITIALIZER,
|
|
|
|
.t_srtt = TCPTV_SRTTBASE,
|
|
.t_rttmin = TCPTV_MIN,
|
|
|
|
.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
|
|
.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
|
|
.snd_numholes = 0,
|
|
|
|
.t_partialacks = -1,
|
|
.t_bytes_acked = 0,
|
|
};
|
|
|
|
/*
|
|
* Updates the TCPCB template whenever a parameter that would affect
|
|
* the template is changed.
|
|
*/
|
|
void
|
|
tcp_tcpcb_template(void)
|
|
{
|
|
struct tcpcb *tp = &tcpcb_template;
|
|
int flags;
|
|
|
|
tp->t_peermss = tcp_mssdflt;
|
|
tp->t_ourmss = tcp_mssdflt;
|
|
tp->t_segsz = tcp_mssdflt;
|
|
|
|
flags = 0;
|
|
if (tcp_do_rfc1323 && tcp_do_win_scale)
|
|
flags |= TF_REQ_SCALE;
|
|
if (tcp_do_rfc1323 && tcp_do_timestamps)
|
|
flags |= TF_REQ_TSTMP;
|
|
tp->t_flags = flags;
|
|
|
|
/*
|
|
* Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
|
|
* rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
|
|
* reasonable initial retransmit time.
|
|
*/
|
|
tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
|
|
TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
|
|
TCPTV_MIN, TCPTV_REXMTMAX);
|
|
}
|
|
|
|
/*
|
|
* Create a new TCP control block, making an
|
|
* empty reassembly queue and hooking it to the argument
|
|
* protocol control block.
|
|
*/
|
|
/* family selects inpcb, or in6pcb */
|
|
struct tcpcb *
|
|
tcp_newtcpcb(int family, void *aux)
|
|
{
|
|
struct tcpcb *tp;
|
|
int i;
|
|
|
|
/* XXX Consider using a pool_cache for speed. */
|
|
tp = pool_get(&tcpcb_pool, PR_NOWAIT); /* splsoftnet via tcp_usrreq */
|
|
if (tp == NULL)
|
|
return (NULL);
|
|
memcpy(tp, &tcpcb_template, sizeof(*tp));
|
|
TAILQ_INIT(&tp->segq);
|
|
TAILQ_INIT(&tp->timeq);
|
|
tp->t_family = family; /* may be overridden later on */
|
|
TAILQ_INIT(&tp->snd_holes);
|
|
LIST_INIT(&tp->t_sc); /* XXX can template this */
|
|
|
|
/* Don't sweat this loop; hopefully the compiler will unroll it. */
|
|
for (i = 0; i < TCPT_NTIMERS; i++)
|
|
TCP_TIMER_INIT(tp, i);
|
|
|
|
switch (family) {
|
|
case AF_INET:
|
|
{
|
|
struct inpcb *inp = (struct inpcb *)aux;
|
|
|
|
inp->inp_ip.ip_ttl = ip_defttl;
|
|
inp->inp_ppcb = (void *)tp;
|
|
|
|
tp->t_inpcb = inp;
|
|
tp->t_mtudisc = ip_mtudisc;
|
|
break;
|
|
}
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
{
|
|
struct in6pcb *in6p = (struct in6pcb *)aux;
|
|
|
|
in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
|
|
in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
|
|
: NULL);
|
|
in6p->in6p_ppcb = (void *)tp;
|
|
|
|
tp->t_in6pcb = in6p;
|
|
/* for IPv6, always try to run path MTU discovery */
|
|
tp->t_mtudisc = 1;
|
|
break;
|
|
}
|
|
#endif /* INET6 */
|
|
default:
|
|
pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_usrreq */
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Initialize our timebase. When we send timestamps, we take
|
|
* the delta from tcp_now -- this means each connection always
|
|
* gets a timebase of 0, which makes it, among other things,
|
|
* more difficult to determine how long a system has been up,
|
|
* and thus how many TCP sequence increments have occurred.
|
|
*/
|
|
tp->ts_timebase = tcp_now;
|
|
|
|
tp->t_congctl = tcp_congctl_global;
|
|
tp->t_congctl->refcnt++;
|
|
|
|
return (tp);
|
|
}
|
|
|
|
/*
|
|
* Drop a TCP connection, reporting
|
|
* the specified error. If connection is synchronized,
|
|
* then send a RST to peer.
|
|
*/
|
|
struct tcpcb *
|
|
tcp_drop(struct tcpcb *tp, int errno)
|
|
{
|
|
struct socket *so = NULL;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (tp->t_inpcb && tp->t_in6pcb)
|
|
panic("tcp_drop: both t_inpcb and t_in6pcb are set");
|
|
#endif
|
|
#ifdef INET
|
|
if (tp->t_inpcb)
|
|
so = tp->t_inpcb->inp_socket;
|
|
#endif
|
|
#ifdef INET6
|
|
if (tp->t_in6pcb)
|
|
so = tp->t_in6pcb->in6p_socket;
|
|
#endif
|
|
if (!so)
|
|
return NULL;
|
|
|
|
if (TCPS_HAVERCVDSYN(tp->t_state)) {
|
|
tp->t_state = TCPS_CLOSED;
|
|
(void) tcp_output(tp);
|
|
tcpstat.tcps_drops++;
|
|
} else
|
|
tcpstat.tcps_conndrops++;
|
|
if (errno == ETIMEDOUT && tp->t_softerror)
|
|
errno = tp->t_softerror;
|
|
so->so_error = errno;
|
|
return (tcp_close(tp));
|
|
}
|
|
|
|
/*
|
|
* Return whether this tcpcb is marked as dead, indicating
|
|
* to the calling timer function that no further action should
|
|
* be taken, as we are about to release this tcpcb. The release
|
|
* of the storage will be done if this is the last timer running.
|
|
*
|
|
* This should be called from the callout handler function after
|
|
* callout_ack() is done, so that the number of invoking timer
|
|
* functions is 0.
|
|
*/
|
|
int
|
|
tcp_isdead(struct tcpcb *tp)
|
|
{
|
|
int dead = (tp->t_flags & TF_DEAD);
|
|
|
|
if (__predict_false(dead)) {
|
|
if (tcp_timers_invoking(tp) > 0)
|
|
/* not quite there yet -- count separately? */
|
|
return dead;
|
|
tcpstat.tcps_delayed_free++;
|
|
pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_timer.c */
|
|
}
|
|
return dead;
|
|
}
|
|
|
|
/*
|
|
* Close a TCP control block:
|
|
* discard all space held by the tcp
|
|
* discard internet protocol block
|
|
* wake up any sleepers
|
|
*/
|
|
struct tcpcb *
|
|
tcp_close(struct tcpcb *tp)
|
|
{
|
|
struct inpcb *inp;
|
|
#ifdef INET6
|
|
struct in6pcb *in6p;
|
|
#endif
|
|
struct socket *so;
|
|
#ifdef RTV_RTT
|
|
struct rtentry *rt;
|
|
#endif
|
|
struct route *ro;
|
|
|
|
inp = tp->t_inpcb;
|
|
#ifdef INET6
|
|
in6p = tp->t_in6pcb;
|
|
#endif
|
|
so = NULL;
|
|
ro = NULL;
|
|
if (inp) {
|
|
so = inp->inp_socket;
|
|
ro = &inp->inp_route;
|
|
}
|
|
#ifdef INET6
|
|
else if (in6p) {
|
|
so = in6p->in6p_socket;
|
|
ro = (struct route *)&in6p->in6p_route;
|
|
}
|
|
#endif
|
|
|
|
#ifdef RTV_RTT
|
|
/*
|
|
* If we sent enough data to get some meaningful characteristics,
|
|
* save them in the routing entry. 'Enough' is arbitrarily
|
|
* defined as the sendpipesize (default 4K) * 16. This would
|
|
* give us 16 rtt samples assuming we only get one sample per
|
|
* window (the usual case on a long haul net). 16 samples is
|
|
* enough for the srtt filter to converge to within 5% of the correct
|
|
* value; fewer samples and we could save a very bogus rtt.
|
|
*
|
|
* Don't update the default route's characteristics and don't
|
|
* update anything that the user "locked".
|
|
*/
|
|
if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
|
|
ro && (rt = ro->ro_rt) &&
|
|
!in_nullhost(satosin(rt_key(rt))->sin_addr)) {
|
|
u_long i = 0;
|
|
|
|
if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
|
|
i = tp->t_srtt *
|
|
((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
|
|
if (rt->rt_rmx.rmx_rtt && i)
|
|
/*
|
|
* filter this update to half the old & half
|
|
* the new values, converting scale.
|
|
* See route.h and tcp_var.h for a
|
|
* description of the scaling constants.
|
|
*/
|
|
rt->rt_rmx.rmx_rtt =
|
|
(rt->rt_rmx.rmx_rtt + i) / 2;
|
|
else
|
|
rt->rt_rmx.rmx_rtt = i;
|
|
}
|
|
if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
|
|
i = tp->t_rttvar *
|
|
((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
|
|
if (rt->rt_rmx.rmx_rttvar && i)
|
|
rt->rt_rmx.rmx_rttvar =
|
|
(rt->rt_rmx.rmx_rttvar + i) / 2;
|
|
else
|
|
rt->rt_rmx.rmx_rttvar = i;
|
|
}
|
|
/*
|
|
* update the pipelimit (ssthresh) if it has been updated
|
|
* already or if a pipesize was specified & the threshhold
|
|
* got below half the pipesize. I.e., wait for bad news
|
|
* before we start updating, then update on both good
|
|
* and bad news.
|
|
*/
|
|
if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
|
|
(i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
|
|
i < (rt->rt_rmx.rmx_sendpipe / 2)) {
|
|
/*
|
|
* convert the limit from user data bytes to
|
|
* packets then to packet data bytes.
|
|
*/
|
|
i = (i + tp->t_segsz / 2) / tp->t_segsz;
|
|
if (i < 2)
|
|
i = 2;
|
|
i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
|
|
if (rt->rt_rmx.rmx_ssthresh)
|
|
rt->rt_rmx.rmx_ssthresh =
|
|
(rt->rt_rmx.rmx_ssthresh + i) / 2;
|
|
else
|
|
rt->rt_rmx.rmx_ssthresh = i;
|
|
}
|
|
}
|
|
#endif /* RTV_RTT */
|
|
/* free the reassembly queue, if any */
|
|
TCP_REASS_LOCK(tp);
|
|
(void) tcp_freeq(tp);
|
|
TCP_REASS_UNLOCK(tp);
|
|
|
|
/* free the SACK holes list. */
|
|
tcp_free_sackholes(tp);
|
|
|
|
tp->t_congctl->refcnt--;
|
|
|
|
tcp_canceltimers(tp);
|
|
TCP_CLEAR_DELACK(tp);
|
|
syn_cache_cleanup(tp);
|
|
|
|
if (tp->t_template) {
|
|
m_free(tp->t_template);
|
|
tp->t_template = NULL;
|
|
}
|
|
if (tcp_timers_invoking(tp))
|
|
tp->t_flags |= TF_DEAD;
|
|
else
|
|
pool_put(&tcpcb_pool, tp);
|
|
|
|
if (inp) {
|
|
inp->inp_ppcb = 0;
|
|
soisdisconnected(so);
|
|
in_pcbdetach(inp);
|
|
}
|
|
#ifdef INET6
|
|
else if (in6p) {
|
|
in6p->in6p_ppcb = 0;
|
|
soisdisconnected(so);
|
|
in6_pcbdetach(in6p);
|
|
}
|
|
#endif
|
|
tcpstat.tcps_closed++;
|
|
return ((struct tcpcb *)0);
|
|
}
|
|
|
|
int
|
|
tcp_freeq(tp)
|
|
struct tcpcb *tp;
|
|
{
|
|
struct ipqent *qe;
|
|
int rv = 0;
|
|
#ifdef TCPREASS_DEBUG
|
|
int i = 0;
|
|
#endif
|
|
|
|
TCP_REASS_LOCK_CHECK(tp);
|
|
|
|
while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
|
|
#ifdef TCPREASS_DEBUG
|
|
printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
|
|
tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
|
|
qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
|
|
#endif
|
|
TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
|
|
TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
|
|
m_freem(qe->ipqe_m);
|
|
tcpipqent_free(qe);
|
|
rv = 1;
|
|
}
|
|
tp->t_segqlen = 0;
|
|
KASSERT(TAILQ_EMPTY(&tp->timeq));
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Protocol drain routine. Called when memory is in short supply.
|
|
*/
|
|
void
|
|
tcp_drain(void)
|
|
{
|
|
struct inpcb_hdr *inph;
|
|
struct tcpcb *tp;
|
|
|
|
/*
|
|
* Free the sequence queue of all TCP connections.
|
|
*/
|
|
CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
|
|
switch (inph->inph_af) {
|
|
case AF_INET:
|
|
tp = intotcpcb((struct inpcb *)inph);
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
tp = in6totcpcb((struct in6pcb *)inph);
|
|
break;
|
|
#endif
|
|
default:
|
|
tp = NULL;
|
|
break;
|
|
}
|
|
if (tp != NULL) {
|
|
/*
|
|
* We may be called from a device's interrupt
|
|
* context. If the tcpcb is already busy,
|
|
* just bail out now.
|
|
*/
|
|
if (tcp_reass_lock_try(tp) == 0)
|
|
continue;
|
|
if (tcp_freeq(tp))
|
|
tcpstat.tcps_connsdrained++;
|
|
TCP_REASS_UNLOCK(tp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Notify a tcp user of an asynchronous error;
|
|
* store error as soft error, but wake up user
|
|
* (for now, won't do anything until can select for soft error).
|
|
*/
|
|
void
|
|
tcp_notify(struct inpcb *inp, int error)
|
|
{
|
|
struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
|
|
struct socket *so = inp->inp_socket;
|
|
|
|
/*
|
|
* Ignore some errors if we are hooked up.
|
|
* If connection hasn't completed, has retransmitted several times,
|
|
* and receives a second error, give up now. This is better
|
|
* than waiting a long time to establish a connection that
|
|
* can never complete.
|
|
*/
|
|
if (tp->t_state == TCPS_ESTABLISHED &&
|
|
(error == EHOSTUNREACH || error == ENETUNREACH ||
|
|
error == EHOSTDOWN)) {
|
|
return;
|
|
} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
|
|
tp->t_rxtshift > 3 && tp->t_softerror)
|
|
so->so_error = error;
|
|
else
|
|
tp->t_softerror = error;
|
|
wakeup((void *) &so->so_timeo);
|
|
sorwakeup(so);
|
|
sowwakeup(so);
|
|
}
|
|
|
|
#ifdef INET6
|
|
void
|
|
tcp6_notify(struct in6pcb *in6p, int error)
|
|
{
|
|
struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
|
|
struct socket *so = in6p->in6p_socket;
|
|
|
|
/*
|
|
* Ignore some errors if we are hooked up.
|
|
* If connection hasn't completed, has retransmitted several times,
|
|
* and receives a second error, give up now. This is better
|
|
* than waiting a long time to establish a connection that
|
|
* can never complete.
|
|
*/
|
|
if (tp->t_state == TCPS_ESTABLISHED &&
|
|
(error == EHOSTUNREACH || error == ENETUNREACH ||
|
|
error == EHOSTDOWN)) {
|
|
return;
|
|
} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
|
|
tp->t_rxtshift > 3 && tp->t_softerror)
|
|
so->so_error = error;
|
|
else
|
|
tp->t_softerror = error;
|
|
wakeup((void *) &so->so_timeo);
|
|
sorwakeup(so);
|
|
sowwakeup(so);
|
|
}
|
|
#endif
|
|
|
|
#ifdef INET6
|
|
void
|
|
tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
|
|
{
|
|
struct tcphdr th;
|
|
void (*notify)(struct in6pcb *, int) = tcp6_notify;
|
|
int nmatch;
|
|
struct ip6_hdr *ip6;
|
|
const struct sockaddr_in6 *sa6_src = NULL;
|
|
const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
|
|
struct mbuf *m;
|
|
int off;
|
|
|
|
if (sa->sa_family != AF_INET6 ||
|
|
sa->sa_len != sizeof(struct sockaddr_in6))
|
|
return;
|
|
if ((unsigned)cmd >= PRC_NCMDS)
|
|
return;
|
|
else if (cmd == PRC_QUENCH) {
|
|
/*
|
|
* Don't honor ICMP Source Quench messages meant for
|
|
* TCP connections.
|
|
*/
|
|
return;
|
|
} else if (PRC_IS_REDIRECT(cmd))
|
|
notify = in6_rtchange, d = NULL;
|
|
else if (cmd == PRC_MSGSIZE)
|
|
; /* special code is present, see below */
|
|
else if (cmd == PRC_HOSTDEAD)
|
|
d = NULL;
|
|
else if (inet6ctlerrmap[cmd] == 0)
|
|
return;
|
|
|
|
/* if the parameter is from icmp6, decode it. */
|
|
if (d != NULL) {
|
|
struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
|
|
m = ip6cp->ip6c_m;
|
|
ip6 = ip6cp->ip6c_ip6;
|
|
off = ip6cp->ip6c_off;
|
|
sa6_src = ip6cp->ip6c_src;
|
|
} else {
|
|
m = NULL;
|
|
ip6 = NULL;
|
|
sa6_src = &sa6_any;
|
|
off = 0;
|
|
}
|
|
|
|
if (ip6) {
|
|
/*
|
|
* XXX: We assume that when ip6 is non NULL,
|
|
* M and OFF are valid.
|
|
*/
|
|
|
|
/* check if we can safely examine src and dst ports */
|
|
if (m->m_pkthdr.len < off + sizeof(th)) {
|
|
if (cmd == PRC_MSGSIZE)
|
|
icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
|
|
return;
|
|
}
|
|
|
|
bzero(&th, sizeof(th));
|
|
m_copydata(m, off, sizeof(th), (void *)&th);
|
|
|
|
if (cmd == PRC_MSGSIZE) {
|
|
int valid = 0;
|
|
|
|
/*
|
|
* Check to see if we have a valid TCP connection
|
|
* corresponding to the address in the ICMPv6 message
|
|
* payload.
|
|
*/
|
|
if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
|
|
th.th_dport,
|
|
(const struct in6_addr *)&sa6_src->sin6_addr,
|
|
th.th_sport, 0))
|
|
valid++;
|
|
|
|
/*
|
|
* Depending on the value of "valid" and routing table
|
|
* size (mtudisc_{hi,lo}wat), we will:
|
|
* - recalcurate the new MTU and create the
|
|
* corresponding routing entry, or
|
|
* - ignore the MTU change notification.
|
|
*/
|
|
icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
|
|
|
|
/*
|
|
* no need to call in6_pcbnotify, it should have been
|
|
* called via callback if necessary
|
|
*/
|
|
return;
|
|
}
|
|
|
|
nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
|
|
(const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
|
|
if (nmatch == 0 && syn_cache_count &&
|
|
(inet6ctlerrmap[cmd] == EHOSTUNREACH ||
|
|
inet6ctlerrmap[cmd] == ENETUNREACH ||
|
|
inet6ctlerrmap[cmd] == EHOSTDOWN))
|
|
syn_cache_unreach((const struct sockaddr *)sa6_src,
|
|
sa, &th);
|
|
} else {
|
|
(void) in6_pcbnotify(&tcbtable, sa, 0,
|
|
(const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef INET
|
|
/* assumes that ip header and tcp header are contiguous on mbuf */
|
|
void *
|
|
tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
|
|
{
|
|
struct ip *ip = v;
|
|
struct tcphdr *th;
|
|
struct icmp *icp;
|
|
extern const int inetctlerrmap[];
|
|
void (*notify)(struct inpcb *, int) = tcp_notify;
|
|
int errno;
|
|
int nmatch;
|
|
struct tcpcb *tp;
|
|
u_int mtu;
|
|
tcp_seq seq;
|
|
struct inpcb *inp;
|
|
#ifdef INET6
|
|
struct in6pcb *in6p;
|
|
struct in6_addr src6, dst6;
|
|
#endif
|
|
|
|
if (sa->sa_family != AF_INET ||
|
|
sa->sa_len != sizeof(struct sockaddr_in))
|
|
return NULL;
|
|
if ((unsigned)cmd >= PRC_NCMDS)
|
|
return NULL;
|
|
errno = inetctlerrmap[cmd];
|
|
if (cmd == PRC_QUENCH)
|
|
/*
|
|
* Don't honor ICMP Source Quench messages meant for
|
|
* TCP connections.
|
|
*/
|
|
return NULL;
|
|
else if (PRC_IS_REDIRECT(cmd))
|
|
notify = in_rtchange, ip = 0;
|
|
else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
|
|
/*
|
|
* Check to see if we have a valid TCP connection
|
|
* corresponding to the address in the ICMP message
|
|
* payload.
|
|
*
|
|
* Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
|
|
*/
|
|
th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
|
|
#ifdef INET6
|
|
memset(&src6, 0, sizeof(src6));
|
|
memset(&dst6, 0, sizeof(dst6));
|
|
src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
|
|
memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
|
|
memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
|
|
#endif
|
|
if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
|
|
th->th_dport, ip->ip_src, th->th_sport)) != NULL)
|
|
#ifdef INET6
|
|
in6p = NULL;
|
|
#else
|
|
;
|
|
#endif
|
|
#ifdef INET6
|
|
else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
|
|
th->th_dport, &src6, th->th_sport, 0)) != NULL)
|
|
;
|
|
#endif
|
|
else
|
|
return NULL;
|
|
|
|
/*
|
|
* Now that we've validated that we are actually communicating
|
|
* with the host indicated in the ICMP message, locate the
|
|
* ICMP header, recalculate the new MTU, and create the
|
|
* corresponding routing entry.
|
|
*/
|
|
icp = (struct icmp *)((char *)ip -
|
|
offsetof(struct icmp, icmp_ip));
|
|
if (inp) {
|
|
if ((tp = intotcpcb(inp)) == NULL)
|
|
return NULL;
|
|
}
|
|
#ifdef INET6
|
|
else if (in6p) {
|
|
if ((tp = in6totcpcb(in6p)) == NULL)
|
|
return NULL;
|
|
}
|
|
#endif
|
|
else
|
|
return NULL;
|
|
seq = ntohl(th->th_seq);
|
|
if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
|
|
return NULL;
|
|
/*
|
|
* If the ICMP message advertises a Next-Hop MTU
|
|
* equal or larger than the maximum packet size we have
|
|
* ever sent, drop the message.
|
|
*/
|
|
mtu = (u_int)ntohs(icp->icmp_nextmtu);
|
|
if (mtu >= tp->t_pmtud_mtu_sent)
|
|
return NULL;
|
|
if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
|
|
/*
|
|
* Calculate new MTU, and create corresponding
|
|
* route (traditional PMTUD).
|
|
*/
|
|
tp->t_flags &= ~TF_PMTUD_PEND;
|
|
icmp_mtudisc(icp, ip->ip_dst);
|
|
} else {
|
|
/*
|
|
* Record the information got in the ICMP
|
|
* message; act on it later.
|
|
* If we had already recorded an ICMP message,
|
|
* replace the old one only if the new message
|
|
* refers to an older TCP segment
|
|
*/
|
|
if (tp->t_flags & TF_PMTUD_PEND) {
|
|
if (SEQ_LT(tp->t_pmtud_th_seq, seq))
|
|
return NULL;
|
|
} else
|
|
tp->t_flags |= TF_PMTUD_PEND;
|
|
tp->t_pmtud_th_seq = seq;
|
|
tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
|
|
tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
|
|
tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
|
|
}
|
|
return NULL;
|
|
} else if (cmd == PRC_HOSTDEAD)
|
|
ip = 0;
|
|
else if (errno == 0)
|
|
return NULL;
|
|
if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
|
|
th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
|
|
nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
|
|
th->th_dport, ip->ip_src, th->th_sport, errno, notify);
|
|
if (nmatch == 0 && syn_cache_count &&
|
|
(inetctlerrmap[cmd] == EHOSTUNREACH ||
|
|
inetctlerrmap[cmd] == ENETUNREACH ||
|
|
inetctlerrmap[cmd] == EHOSTDOWN)) {
|
|
struct sockaddr_in sin;
|
|
bzero(&sin, sizeof(sin));
|
|
sin.sin_len = sizeof(sin);
|
|
sin.sin_family = AF_INET;
|
|
sin.sin_port = th->th_sport;
|
|
sin.sin_addr = ip->ip_src;
|
|
syn_cache_unreach((struct sockaddr *)&sin, sa, th);
|
|
}
|
|
|
|
/* XXX mapped address case */
|
|
} else
|
|
in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
|
|
notify);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* When a source quench is received, we are being notified of congestion.
|
|
* Close the congestion window down to the Loss Window (one segment).
|
|
* We will gradually open it again as we proceed.
|
|
*/
|
|
void
|
|
tcp_quench(struct inpcb *inp, int errno)
|
|
{
|
|
struct tcpcb *tp = intotcpcb(inp);
|
|
|
|
if (tp) {
|
|
tp->snd_cwnd = tp->t_segsz;
|
|
tp->t_bytes_acked = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef INET6
|
|
void
|
|
tcp6_quench(struct in6pcb *in6p, int errno)
|
|
{
|
|
struct tcpcb *tp = in6totcpcb(in6p);
|
|
|
|
if (tp) {
|
|
tp->snd_cwnd = tp->t_segsz;
|
|
tp->t_bytes_acked = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef INET
|
|
/*
|
|
* Path MTU Discovery handlers.
|
|
*/
|
|
void
|
|
tcp_mtudisc_callback(struct in_addr faddr)
|
|
{
|
|
#ifdef INET6
|
|
struct in6_addr in6;
|
|
#endif
|
|
|
|
in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
|
|
#ifdef INET6
|
|
memset(&in6, 0, sizeof(in6));
|
|
in6.s6_addr16[5] = 0xffff;
|
|
memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
|
|
tcp6_mtudisc_callback(&in6);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* On receipt of path MTU corrections, flush old route and replace it
|
|
* with the new one. Retransmit all unacknowledged packets, to ensure
|
|
* that all packets will be received.
|
|
*/
|
|
void
|
|
tcp_mtudisc(struct inpcb *inp, int errno)
|
|
{
|
|
struct tcpcb *tp = intotcpcb(inp);
|
|
struct rtentry *rt = in_pcbrtentry(inp);
|
|
|
|
if (tp != 0) {
|
|
if (rt != 0) {
|
|
/*
|
|
* If this was not a host route, remove and realloc.
|
|
*/
|
|
if ((rt->rt_flags & RTF_HOST) == 0) {
|
|
in_rtchange(inp, errno);
|
|
if ((rt = in_pcbrtentry(inp)) == 0)
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Slow start out of the error condition. We
|
|
* use the MTU because we know it's smaller
|
|
* than the previously transmitted segment.
|
|
*
|
|
* Note: This is more conservative than the
|
|
* suggestion in draft-floyd-incr-init-win-03.
|
|
*/
|
|
if (rt->rt_rmx.rmx_mtu != 0)
|
|
tp->snd_cwnd =
|
|
TCP_INITIAL_WINDOW(tcp_init_win,
|
|
rt->rt_rmx.rmx_mtu);
|
|
}
|
|
|
|
/*
|
|
* Resend unacknowledged packets.
|
|
*/
|
|
tp->snd_nxt = tp->snd_una;
|
|
tcp_output(tp);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef INET6
|
|
/*
|
|
* Path MTU Discovery handlers.
|
|
*/
|
|
void
|
|
tcp6_mtudisc_callback(struct in6_addr *faddr)
|
|
{
|
|
struct sockaddr_in6 sin6;
|
|
|
|
bzero(&sin6, sizeof(sin6));
|
|
sin6.sin6_family = AF_INET6;
|
|
sin6.sin6_len = sizeof(struct sockaddr_in6);
|
|
sin6.sin6_addr = *faddr;
|
|
(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
|
|
(const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
|
|
}
|
|
|
|
void
|
|
tcp6_mtudisc(struct in6pcb *in6p, int errno)
|
|
{
|
|
struct tcpcb *tp = in6totcpcb(in6p);
|
|
struct rtentry *rt = in6_pcbrtentry(in6p);
|
|
|
|
if (tp != 0) {
|
|
if (rt != 0) {
|
|
/*
|
|
* If this was not a host route, remove and realloc.
|
|
*/
|
|
if ((rt->rt_flags & RTF_HOST) == 0) {
|
|
in6_rtchange(in6p, errno);
|
|
if ((rt = in6_pcbrtentry(in6p)) == 0)
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Slow start out of the error condition. We
|
|
* use the MTU because we know it's smaller
|
|
* than the previously transmitted segment.
|
|
*
|
|
* Note: This is more conservative than the
|
|
* suggestion in draft-floyd-incr-init-win-03.
|
|
*/
|
|
if (rt->rt_rmx.rmx_mtu != 0)
|
|
tp->snd_cwnd =
|
|
TCP_INITIAL_WINDOW(tcp_init_win,
|
|
rt->rt_rmx.rmx_mtu);
|
|
}
|
|
|
|
/*
|
|
* Resend unacknowledged packets.
|
|
*/
|
|
tp->snd_nxt = tp->snd_una;
|
|
tcp_output(tp);
|
|
}
|
|
}
|
|
#endif /* INET6 */
|
|
|
|
/*
|
|
* Compute the MSS to advertise to the peer. Called only during
|
|
* the 3-way handshake. If we are the server (peer initiated
|
|
* connection), we are called with a pointer to the interface
|
|
* on which the SYN packet arrived. If we are the client (we
|
|
* initiated connection), we are called with a pointer to the
|
|
* interface out which this connection should go.
|
|
*
|
|
* NOTE: Do not subtract IP option/extension header size nor IPsec
|
|
* header size from MSS advertisement. MSS option must hold the maximum
|
|
* segment size we can accept, so it must always be:
|
|
* max(if mtu) - ip header - tcp header
|
|
*/
|
|
u_long
|
|
tcp_mss_to_advertise(const struct ifnet *ifp, int af)
|
|
{
|
|
extern u_long in_maxmtu;
|
|
u_long mss = 0;
|
|
u_long hdrsiz;
|
|
|
|
/*
|
|
* In order to avoid defeating path MTU discovery on the peer,
|
|
* we advertise the max MTU of all attached networks as our MSS,
|
|
* per RFC 1191, section 3.1.
|
|
*
|
|
* We provide the option to advertise just the MTU of
|
|
* the interface on which we hope this connection will
|
|
* be receiving. If we are responding to a SYN, we
|
|
* will have a pretty good idea about this, but when
|
|
* initiating a connection there is a bit more doubt.
|
|
*
|
|
* We also need to ensure that loopback has a large enough
|
|
* MSS, as the loopback MTU is never included in in_maxmtu.
|
|
*/
|
|
|
|
if (ifp != NULL)
|
|
switch (af) {
|
|
case AF_INET:
|
|
mss = ifp->if_mtu;
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
mss = IN6_LINKMTU(ifp);
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
if (tcp_mss_ifmtu == 0)
|
|
switch (af) {
|
|
case AF_INET:
|
|
mss = max(in_maxmtu, mss);
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
mss = max(in6_maxmtu, mss);
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
switch (af) {
|
|
case AF_INET:
|
|
hdrsiz = sizeof(struct ip);
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
hdrsiz = sizeof(struct ip6_hdr);
|
|
break;
|
|
#endif
|
|
default:
|
|
hdrsiz = 0;
|
|
break;
|
|
}
|
|
hdrsiz += sizeof(struct tcphdr);
|
|
if (mss > hdrsiz)
|
|
mss -= hdrsiz;
|
|
|
|
mss = max(tcp_mssdflt, mss);
|
|
return (mss);
|
|
}
|
|
|
|
/*
|
|
* Set connection variables based on the peer's advertised MSS.
|
|
* We are passed the TCPCB for the actual connection. If we
|
|
* are the server, we are called by the compressed state engine
|
|
* when the 3-way handshake is complete. If we are the client,
|
|
* we are called when we receive the SYN,ACK from the server.
|
|
*
|
|
* NOTE: Our advertised MSS value must be initialized in the TCPCB
|
|
* before this routine is called!
|
|
*/
|
|
void
|
|
tcp_mss_from_peer(struct tcpcb *tp, int offer)
|
|
{
|
|
struct socket *so;
|
|
#if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
|
|
struct rtentry *rt;
|
|
#endif
|
|
u_long bufsize;
|
|
int mss;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (tp->t_inpcb && tp->t_in6pcb)
|
|
panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
|
|
#endif
|
|
so = NULL;
|
|
rt = NULL;
|
|
#ifdef INET
|
|
if (tp->t_inpcb) {
|
|
so = tp->t_inpcb->inp_socket;
|
|
#if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
|
|
rt = in_pcbrtentry(tp->t_inpcb);
|
|
#endif
|
|
}
|
|
#endif
|
|
#ifdef INET6
|
|
if (tp->t_in6pcb) {
|
|
so = tp->t_in6pcb->in6p_socket;
|
|
#if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
|
|
rt = in6_pcbrtentry(tp->t_in6pcb);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* As per RFC1122, use the default MSS value, unless they
|
|
* sent us an offer. Do not accept offers less than 256 bytes.
|
|
*/
|
|
mss = tcp_mssdflt;
|
|
if (offer)
|
|
mss = offer;
|
|
mss = max(mss, 256); /* sanity */
|
|
tp->t_peermss = mss;
|
|
mss -= tcp_optlen(tp);
|
|
#ifdef INET
|
|
if (tp->t_inpcb)
|
|
mss -= ip_optlen(tp->t_inpcb);
|
|
#endif
|
|
#ifdef INET6
|
|
if (tp->t_in6pcb)
|
|
mss -= ip6_optlen(tp->t_in6pcb);
|
|
#endif
|
|
|
|
/*
|
|
* If there's a pipesize, change the socket buffer to that size.
|
|
* Make the socket buffer an integral number of MSS units. If
|
|
* the MSS is larger than the socket buffer, artificially decrease
|
|
* the MSS.
|
|
*/
|
|
#ifdef RTV_SPIPE
|
|
if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
|
|
bufsize = rt->rt_rmx.rmx_sendpipe;
|
|
else
|
|
#endif
|
|
{
|
|
KASSERT(so != NULL);
|
|
bufsize = so->so_snd.sb_hiwat;
|
|
}
|
|
if (bufsize < mss)
|
|
mss = bufsize;
|
|
else {
|
|
bufsize = roundup(bufsize, mss);
|
|
if (bufsize > sb_max)
|
|
bufsize = sb_max;
|
|
(void) sbreserve(&so->so_snd, bufsize, so);
|
|
}
|
|
tp->t_segsz = mss;
|
|
|
|
#ifdef RTV_SSTHRESH
|
|
if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
|
|
/*
|
|
* There's some sort of gateway or interface buffer
|
|
* limit on the path. Use this to set the slow
|
|
* start threshold, but set the threshold to no less
|
|
* than 2 * MSS.
|
|
*/
|
|
tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Processing necessary when a TCP connection is established.
|
|
*/
|
|
void
|
|
tcp_established(struct tcpcb *tp)
|
|
{
|
|
struct socket *so;
|
|
#ifdef RTV_RPIPE
|
|
struct rtentry *rt;
|
|
#endif
|
|
u_long bufsize;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (tp->t_inpcb && tp->t_in6pcb)
|
|
panic("tcp_established: both t_inpcb and t_in6pcb are set");
|
|
#endif
|
|
so = NULL;
|
|
rt = NULL;
|
|
#ifdef INET
|
|
if (tp->t_inpcb) {
|
|
so = tp->t_inpcb->inp_socket;
|
|
#if defined(RTV_RPIPE)
|
|
rt = in_pcbrtentry(tp->t_inpcb);
|
|
#endif
|
|
}
|
|
#endif
|
|
#ifdef INET6
|
|
if (tp->t_in6pcb) {
|
|
so = tp->t_in6pcb->in6p_socket;
|
|
#if defined(RTV_RPIPE)
|
|
rt = in6_pcbrtentry(tp->t_in6pcb);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
tp->t_state = TCPS_ESTABLISHED;
|
|
TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
|
|
|
|
#ifdef RTV_RPIPE
|
|
if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
|
|
bufsize = rt->rt_rmx.rmx_recvpipe;
|
|
else
|
|
#endif
|
|
{
|
|
KASSERT(so != NULL);
|
|
bufsize = so->so_rcv.sb_hiwat;
|
|
}
|
|
if (bufsize > tp->t_ourmss) {
|
|
bufsize = roundup(bufsize, tp->t_ourmss);
|
|
if (bufsize > sb_max)
|
|
bufsize = sb_max;
|
|
(void) sbreserve(&so->so_rcv, bufsize, so);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if there's an initial rtt or rttvar. Convert from the
|
|
* route-table units to scaled multiples of the slow timeout timer.
|
|
* Called only during the 3-way handshake.
|
|
*/
|
|
void
|
|
tcp_rmx_rtt(struct tcpcb *tp)
|
|
{
|
|
#ifdef RTV_RTT
|
|
struct rtentry *rt = NULL;
|
|
int rtt;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (tp->t_inpcb && tp->t_in6pcb)
|
|
panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
|
|
#endif
|
|
#ifdef INET
|
|
if (tp->t_inpcb)
|
|
rt = in_pcbrtentry(tp->t_inpcb);
|
|
#endif
|
|
#ifdef INET6
|
|
if (tp->t_in6pcb)
|
|
rt = in6_pcbrtentry(tp->t_in6pcb);
|
|
#endif
|
|
if (rt == NULL)
|
|
return;
|
|
|
|
if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
|
|
/*
|
|
* XXX The lock bit for MTU indicates that the value
|
|
* is also a minimum value; this is subject to time.
|
|
*/
|
|
if (rt->rt_rmx.rmx_locks & RTV_RTT)
|
|
TCPT_RANGESET(tp->t_rttmin,
|
|
rtt / (RTM_RTTUNIT / PR_SLOWHZ),
|
|
TCPTV_MIN, TCPTV_REXMTMAX);
|
|
tp->t_srtt = rtt /
|
|
((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
|
|
if (rt->rt_rmx.rmx_rttvar) {
|
|
tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
|
|
((RTM_RTTUNIT / PR_SLOWHZ) >>
|
|
(TCP_RTTVAR_SHIFT + 2));
|
|
} else {
|
|
/* Default variation is +- 1 rtt */
|
|
tp->t_rttvar =
|
|
tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
|
|
}
|
|
TCPT_RANGESET(tp->t_rxtcur,
|
|
((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
|
|
tp->t_rttmin, TCPTV_REXMTMAX);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
|
|
#if NRND > 0
|
|
u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
|
|
#endif
|
|
|
|
/*
|
|
* Get a new sequence value given a tcp control block
|
|
*/
|
|
tcp_seq
|
|
tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
|
|
{
|
|
|
|
#ifdef INET
|
|
if (tp->t_inpcb != NULL) {
|
|
return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
|
|
&tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
|
|
tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
|
|
addin));
|
|
}
|
|
#endif
|
|
#ifdef INET6
|
|
if (tp->t_in6pcb != NULL) {
|
|
return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
|
|
&tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
|
|
tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
|
|
addin));
|
|
}
|
|
#endif
|
|
/* Not possible. */
|
|
panic("tcp_new_iss");
|
|
}
|
|
|
|
/*
|
|
* This routine actually generates a new TCP initial sequence number.
|
|
*/
|
|
tcp_seq
|
|
tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
|
|
size_t addrsz, tcp_seq addin)
|
|
{
|
|
tcp_seq tcp_iss;
|
|
|
|
#if NRND > 0
|
|
static int beenhere;
|
|
|
|
/*
|
|
* If we haven't been here before, initialize our cryptographic
|
|
* hash secret.
|
|
*/
|
|
if (beenhere == 0) {
|
|
rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
|
|
RND_EXTRACT_ANY);
|
|
beenhere = 1;
|
|
}
|
|
|
|
if (tcp_do_rfc1948) {
|
|
MD5_CTX ctx;
|
|
u_int8_t hash[16]; /* XXX MD5 knowledge */
|
|
|
|
/*
|
|
* Compute the base value of the ISS. It is a hash
|
|
* of (saddr, sport, daddr, dport, secret).
|
|
*/
|
|
MD5Init(&ctx);
|
|
|
|
MD5Update(&ctx, (u_char *) laddr, addrsz);
|
|
MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
|
|
|
|
MD5Update(&ctx, (u_char *) faddr, addrsz);
|
|
MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
|
|
|
|
MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
|
|
|
|
MD5Final(hash, &ctx);
|
|
|
|
memcpy(&tcp_iss, hash, sizeof(tcp_iss));
|
|
|
|
/*
|
|
* Now increment our "timer", and add it in to
|
|
* the computed value.
|
|
*
|
|
* XXX Use `addin'?
|
|
* XXX TCP_ISSINCR too large to use?
|
|
*/
|
|
tcp_iss_seq += TCP_ISSINCR;
|
|
#ifdef TCPISS_DEBUG
|
|
printf("ISS hash 0x%08x, ", tcp_iss);
|
|
#endif
|
|
tcp_iss += tcp_iss_seq + addin;
|
|
#ifdef TCPISS_DEBUG
|
|
printf("new ISS 0x%08x\n", tcp_iss);
|
|
#endif
|
|
} else
|
|
#endif /* NRND > 0 */
|
|
{
|
|
/*
|
|
* Randomize.
|
|
*/
|
|
#if NRND > 0
|
|
rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
|
|
#else
|
|
tcp_iss = arc4random();
|
|
#endif
|
|
|
|
/*
|
|
* If we were asked to add some amount to a known value,
|
|
* we will take a random value obtained above, mask off
|
|
* the upper bits, and add in the known value. We also
|
|
* add in a constant to ensure that we are at least a
|
|
* certain distance from the original value.
|
|
*
|
|
* This is used when an old connection is in timed wait
|
|
* and we have a new one coming in, for instance.
|
|
*/
|
|
if (addin != 0) {
|
|
#ifdef TCPISS_DEBUG
|
|
printf("Random %08x, ", tcp_iss);
|
|
#endif
|
|
tcp_iss &= TCP_ISS_RANDOM_MASK;
|
|
tcp_iss += addin + TCP_ISSINCR;
|
|
#ifdef TCPISS_DEBUG
|
|
printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
|
|
#endif
|
|
} else {
|
|
tcp_iss &= TCP_ISS_RANDOM_MASK;
|
|
tcp_iss += tcp_iss_seq;
|
|
tcp_iss_seq += TCP_ISSINCR;
|
|
#ifdef TCPISS_DEBUG
|
|
printf("ISS %08x\n", tcp_iss);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (tcp_compat_42) {
|
|
/*
|
|
* Limit it to the positive range for really old TCP
|
|
* implementations.
|
|
* Just AND off the top bit instead of checking if
|
|
* is set first - saves a branch 50% of the time.
|
|
*/
|
|
tcp_iss &= 0x7fffffff; /* XXX */
|
|
}
|
|
|
|
return (tcp_iss);
|
|
}
|
|
|
|
#if defined(IPSEC) || defined(FAST_IPSEC)
|
|
/* compute ESP/AH header size for TCP, including outer IP header. */
|
|
size_t
|
|
ipsec4_hdrsiz_tcp(struct tcpcb *tp)
|
|
{
|
|
struct inpcb *inp;
|
|
size_t hdrsiz;
|
|
|
|
/* XXX mapped addr case (tp->t_in6pcb) */
|
|
if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
|
|
return 0;
|
|
switch (tp->t_family) {
|
|
case AF_INET:
|
|
/* XXX: should use currect direction. */
|
|
hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
|
|
break;
|
|
default:
|
|
hdrsiz = 0;
|
|
break;
|
|
}
|
|
|
|
return hdrsiz;
|
|
}
|
|
|
|
#ifdef INET6
|
|
size_t
|
|
ipsec6_hdrsiz_tcp(struct tcpcb *tp)
|
|
{
|
|
struct in6pcb *in6p;
|
|
size_t hdrsiz;
|
|
|
|
if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
|
|
return 0;
|
|
switch (tp->t_family) {
|
|
case AF_INET6:
|
|
/* XXX: should use currect direction. */
|
|
hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
|
|
break;
|
|
case AF_INET:
|
|
/* mapped address case - tricky */
|
|
default:
|
|
hdrsiz = 0;
|
|
break;
|
|
}
|
|
|
|
return hdrsiz;
|
|
}
|
|
#endif
|
|
#endif /*IPSEC*/
|
|
|
|
/*
|
|
* Determine the length of the TCP options for this connection.
|
|
*
|
|
* XXX: What do we do for SACK, when we add that? Just reserve
|
|
* all of the space? Otherwise we can't exactly be incrementing
|
|
* cwnd by an amount that varies depending on the amount we last
|
|
* had to SACK!
|
|
*/
|
|
|
|
u_int
|
|
tcp_optlen(struct tcpcb *tp)
|
|
{
|
|
u_int optlen;
|
|
|
|
optlen = 0;
|
|
if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
|
|
(TF_REQ_TSTMP | TF_RCVD_TSTMP))
|
|
optlen += TCPOLEN_TSTAMP_APPA;
|
|
|
|
#ifdef TCP_SIGNATURE
|
|
if (tp->t_flags & TF_SIGNATURE)
|
|
optlen += TCPOLEN_SIGNATURE + 2;
|
|
#endif /* TCP_SIGNATURE */
|
|
|
|
return optlen;
|
|
}
|
|
|
|
u_int
|
|
tcp_hdrsz(struct tcpcb *tp)
|
|
{
|
|
u_int hlen;
|
|
|
|
switch (tp->t_family) {
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
hlen = sizeof(struct ip6_hdr);
|
|
break;
|
|
#endif
|
|
case AF_INET:
|
|
hlen = sizeof(struct ip);
|
|
break;
|
|
default:
|
|
hlen = 0;
|
|
break;
|
|
}
|
|
hlen += sizeof(struct tcphdr);
|
|
|
|
if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
|
|
(tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
|
|
hlen += TCPOLEN_TSTAMP_APPA;
|
|
#ifdef TCP_SIGNATURE
|
|
if (tp->t_flags & TF_SIGNATURE)
|
|
hlen += TCPOLEN_SIGLEN;
|
|
#endif
|
|
return hlen;
|
|
}
|