NetBSD/sys/net/if_vlan.c
tih 4c04b994c3 Fix the handling of the state returned from pfil_run_hooks().
pfil_run_hooks() invokes any registered packet filters on the packet
being handled.  It may return a (non-zero) errno, indicating that a
filter has decided that the packet should be discarded, and has freed
the mbuf.  While a non-error (0) return usually means that the packet
should be processed normally, a filter may still free the mbuf if the
packet is a fragment, and the filter is holding it for reassembly and
future evaluation.  Therefore, there must be separate tests for the
return value and for a possible discarded packet.  (See pfil(9).)

OK: christos, martin
2018-03-16 17:00:35 +00:00

1627 lines
38 KiB
C

/* $NetBSD: if_vlan.c,v 1.125 2018/03/16 17:00:35 tih Exp $ */
/*
* Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright 1998 Massachusetts Institute of Technology
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby
* granted, provided that both the above copyright notice and this
* permission notice appear in all copies, that both the above
* copyright notice and this permission notice appear in all
* supporting documentation, and that the name of M.I.T. not be used
* in advertising or publicity pertaining to distribution of the
* software without specific, written prior permission. M.I.T. makes
* no representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied
* warranty.
*
* THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
* ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
* SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
* via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
*/
/*
* if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
* extended some day to also handle IEEE 802.1P priority tagging. This is
* sort of sneaky in the implementation, since we need to pretend to be
* enough of an Ethernet implementation to make ARP work. The way we do
* this is by telling everyone that we are an Ethernet interface, and then
* catch the packets that ether_output() left on our output queue when it
* calls if_start(), rewrite them for use by the real outgoing interface,
* and ask it to send them.
*
* TODO:
*
* - Need some way to notify vlan interfaces when the parent
* interface changes MTU.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.125 2018/03/16 17:00:35 tih Exp $");
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_net_mpsafe.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/kauth.h>
#include <sys/mutex.h>
#include <sys/kmem.h>
#include <sys/cpu.h>
#include <sys/pserialize.h>
#include <sys/psref.h>
#include <sys/pslist.h>
#include <sys/atomic.h>
#include <sys/device.h>
#include <sys/module.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_ether.h>
#include <net/if_vlanvar.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif
#ifdef INET6
#include <netinet6/in6_ifattach.h>
#include <netinet6/in6_var.h>
#endif
#include "ioconf.h"
struct vlan_mc_entry {
LIST_ENTRY(vlan_mc_entry) mc_entries;
/*
* A key to identify this entry. The mc_addr below can't be
* used since multiple sockaddr may mapped into the same
* ether_multi (e.g., AF_UNSPEC).
*/
union {
struct ether_multi *mcu_enm;
} mc_u;
struct sockaddr_storage mc_addr;
};
#define mc_enm mc_u.mcu_enm
struct ifvlan_linkmib {
struct ifvlan *ifvm_ifvlan;
const struct vlan_multisw *ifvm_msw;
int ifvm_encaplen; /* encapsulation length */
int ifvm_mtufudge; /* MTU fudged by this much */
int ifvm_mintu; /* min transmission unit */
uint16_t ifvm_proto; /* encapsulation ethertype */
uint16_t ifvm_tag; /* tag to apply on packets */
struct ifnet *ifvm_p; /* parent interface of this vlan */
struct psref_target ifvm_psref;
};
struct ifvlan {
union {
struct ethercom ifvu_ec;
} ifv_u;
struct ifvlan_linkmib *ifv_mib; /*
* reader must use vlan_getref_linkmib()
* instead of direct dereference
*/
kmutex_t ifv_lock; /* writer lock for ifv_mib */
LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
LIST_ENTRY(ifvlan) ifv_list;
struct pslist_entry ifv_hash;
int ifv_flags;
};
#define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
#define ifv_ec ifv_u.ifvu_ec
#define ifv_if ifv_ec.ec_if
#define ifv_msw ifv_mib.ifvm_msw
#define ifv_encaplen ifv_mib.ifvm_encaplen
#define ifv_mtufudge ifv_mib.ifvm_mtufudge
#define ifv_mintu ifv_mib.ifvm_mintu
#define ifv_tag ifv_mib.ifvm_tag
struct vlan_multisw {
int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
void (*vmsw_purgemulti)(struct ifvlan *);
};
static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
static void vlan_ether_purgemulti(struct ifvlan *);
const struct vlan_multisw vlan_ether_multisw = {
.vmsw_addmulti = vlan_ether_addmulti,
.vmsw_delmulti = vlan_ether_delmulti,
.vmsw_purgemulti = vlan_ether_purgemulti,
};
static int vlan_clone_create(struct if_clone *, int);
static int vlan_clone_destroy(struct ifnet *);
static int vlan_config(struct ifvlan *, struct ifnet *,
uint16_t);
static int vlan_ioctl(struct ifnet *, u_long, void *);
static void vlan_start(struct ifnet *);
static int vlan_transmit(struct ifnet *, struct mbuf *);
static void vlan_unconfig(struct ifnet *);
static int vlan_unconfig_locked(struct ifvlan *,
struct ifvlan_linkmib *);
static void vlan_hash_init(void);
static int vlan_hash_fini(void);
static int vlan_tag_hash(uint16_t, u_long);
static struct ifvlan_linkmib* vlan_getref_linkmib(struct ifvlan *,
struct psref *);
static void vlan_putref_linkmib(struct ifvlan_linkmib *,
struct psref *);
static void vlan_linkmib_update(struct ifvlan *,
struct ifvlan_linkmib *);
static struct ifvlan_linkmib* vlan_lookup_tag_psref(struct ifnet *,
uint16_t, struct psref *);
LIST_HEAD(vlan_ifvlist, ifvlan);
static struct {
kmutex_t lock;
struct vlan_ifvlist list;
} ifv_list __cacheline_aligned;
#if !defined(VLAN_TAG_HASH_SIZE)
#define VLAN_TAG_HASH_SIZE 32
#endif
static struct {
kmutex_t lock;
struct pslist_head *lists;
u_long mask;
} ifv_hash __cacheline_aligned = {
.lists = NULL,
.mask = 0,
};
pserialize_t vlan_psz __read_mostly;
static struct psref_class *ifvm_psref_class __read_mostly;
struct if_clone vlan_cloner =
IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
/* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
static char vlan_zero_pad_buff[ETHER_MIN_LEN];
static inline int
vlan_safe_ifpromisc(struct ifnet *ifp, int pswitch)
{
int e;
KERNEL_LOCK_UNLESS_NET_MPSAFE();
e = ifpromisc(ifp, pswitch);
KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
return e;
}
static inline int
vlan_safe_ifpromisc_locked(struct ifnet *ifp, int pswitch)
{
int e;
KERNEL_LOCK_UNLESS_NET_MPSAFE();
e = ifpromisc_locked(ifp, pswitch);
KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
return e;
}
void
vlanattach(int n)
{
/*
* Nothing to do here, initialization is handled by the
* module initialization code in vlaninit() below.
*/
}
static void
vlaninit(void)
{
mutex_init(&ifv_list.lock, MUTEX_DEFAULT, IPL_NONE);
LIST_INIT(&ifv_list.list);
mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
vlan_psz = pserialize_create();
ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
if_clone_attach(&vlan_cloner);
vlan_hash_init();
}
static int
vlandetach(void)
{
bool is_empty;
int error;
mutex_enter(&ifv_list.lock);
is_empty = LIST_EMPTY(&ifv_list.list);
mutex_exit(&ifv_list.lock);
if (!is_empty)
return EBUSY;
error = vlan_hash_fini();
if (error != 0)
return error;
if_clone_detach(&vlan_cloner);
psref_class_destroy(ifvm_psref_class);
pserialize_destroy(vlan_psz);
mutex_destroy(&ifv_hash.lock);
mutex_destroy(&ifv_list.lock);
return 0;
}
static void
vlan_reset_linkname(struct ifnet *ifp)
{
/*
* We start out with a "802.1Q VLAN" type and zero-length
* addresses. When we attach to a parent interface, we
* inherit its type, address length, address, and data link
* type.
*/
ifp->if_type = IFT_L2VLAN;
ifp->if_addrlen = 0;
ifp->if_dlt = DLT_NULL;
if_alloc_sadl(ifp);
}
static int
vlan_clone_create(struct if_clone *ifc, int unit)
{
struct ifvlan *ifv;
struct ifnet *ifp;
struct ifvlan_linkmib *mib;
int rv;
ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
ifp = &ifv->ifv_if;
LIST_INIT(&ifv->ifv_mc_listhead);
mib->ifvm_ifvlan = ifv;
mib->ifvm_p = NULL;
psref_target_init(&mib->ifvm_psref, ifvm_psref_class);
mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
ifv->ifv_mib = mib;
mutex_enter(&ifv_list.lock);
LIST_INSERT_HEAD(&ifv_list.list, ifv, ifv_list);
mutex_exit(&ifv_list.lock);
if_initname(ifp, ifc->ifc_name, unit);
ifp->if_softc = ifv;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
#ifdef NET_MPSAFE
ifp->if_extflags |= IFEF_MPSAFE;
#endif
ifp->if_start = vlan_start;
ifp->if_transmit = vlan_transmit;
ifp->if_ioctl = vlan_ioctl;
IFQ_SET_READY(&ifp->if_snd);
rv = if_initialize(ifp);
if (rv != 0) {
aprint_error("%s: if_initialize failed(%d)\n", ifp->if_xname,
rv);
goto fail;
}
vlan_reset_linkname(ifp);
if_register(ifp);
return 0;
fail:
mutex_enter(&ifv_list.lock);
LIST_REMOVE(ifv, ifv_list);
mutex_exit(&ifv_list.lock);
mutex_destroy(&ifv->ifv_lock);
psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
free(ifv, M_DEVBUF);
return rv;
}
static int
vlan_clone_destroy(struct ifnet *ifp)
{
struct ifvlan *ifv = ifp->if_softc;
mutex_enter(&ifv_list.lock);
LIST_REMOVE(ifv, ifv_list);
mutex_exit(&ifv_list.lock);
IFNET_LOCK(ifp);
vlan_unconfig(ifp);
IFNET_UNLOCK(ifp);
if_detach(ifp);
psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
mutex_destroy(&ifv->ifv_lock);
free(ifv, M_DEVBUF);
return 0;
}
/*
* Configure a VLAN interface.
*/
static int
vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
{
struct ifnet *ifp = &ifv->ifv_if;
struct ifvlan_linkmib *nmib = NULL;
struct ifvlan_linkmib *omib = NULL;
struct ifvlan_linkmib *checkmib;
struct psref_target *nmib_psref = NULL;
const uint16_t vid = EVL_VLANOFTAG(tag);
int error = 0;
int idx;
bool omib_cleanup = false;
struct psref psref;
/* VLAN ID 0 and 4095 are reserved in the spec */
if ((vid == 0) || (vid == 0xfff))
return EINVAL;
nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
mutex_enter(&ifv->ifv_lock);
omib = ifv->ifv_mib;
if (omib->ifvm_p != NULL) {
error = EBUSY;
goto done;
}
/* Duplicate check */
checkmib = vlan_lookup_tag_psref(p, vid, &psref);
if (checkmib != NULL) {
vlan_putref_linkmib(checkmib, &psref);
error = EEXIST;
goto done;
}
*nmib = *omib;
nmib_psref = &nmib->ifvm_psref;
psref_target_init(nmib_psref, ifvm_psref_class);
switch (p->if_type) {
case IFT_ETHER:
{
struct ethercom *ec = (void *)p;
nmib->ifvm_msw = &vlan_ether_multisw;
nmib->ifvm_encaplen = ETHER_VLAN_ENCAP_LEN;
nmib->ifvm_mintu = ETHERMIN;
if (ec->ec_nvlans++ == 0) {
IFNET_LOCK(p);
error = ether_enable_vlan_mtu(p);
IFNET_UNLOCK(p);
if (error >= 0) {
if (error) {
ec->ec_nvlans--;
goto done;
}
nmib->ifvm_mtufudge = 0;
} else {
/*
* Fudge the MTU by the encapsulation size. This
* makes us incompatible with strictly compliant
* 802.1Q implementations, but allows us to use
* the feature with other NetBSD
* implementations, which might still be useful.
*/
nmib->ifvm_mtufudge = nmib->ifvm_encaplen;
}
error = 0;
}
/*
* If the parent interface can do hardware-assisted
* VLAN encapsulation, then propagate its hardware-
* assisted checksumming flags and tcp segmentation
* offload.
*/
if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
ifp->if_capabilities = p->if_capabilities &
(IFCAP_TSOv4 | IFCAP_TSOv6 |
IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
}
/*
* We inherit the parent's Ethernet address.
*/
ether_ifattach(ifp, CLLADDR(p->if_sadl));
ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
break;
}
default:
error = EPROTONOSUPPORT;
goto done;
}
nmib->ifvm_p = p;
nmib->ifvm_tag = vid;
ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
ifv->ifv_if.if_flags = p->if_flags &
(IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
/*
* Inherit the if_type from the parent. This allows us
* to participate in bridges of that type.
*/
ifv->ifv_if.if_type = p->if_type;
PSLIST_ENTRY_INIT(ifv, ifv_hash);
idx = vlan_tag_hash(vid, ifv_hash.mask);
mutex_enter(&ifv_hash.lock);
PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
mutex_exit(&ifv_hash.lock);
vlan_linkmib_update(ifv, nmib);
nmib = NULL;
nmib_psref = NULL;
omib_cleanup = true;
done:
mutex_exit(&ifv->ifv_lock);
if (nmib_psref)
psref_target_destroy(nmib_psref, ifvm_psref_class);
if (nmib)
kmem_free(nmib, sizeof(*nmib));
if (omib_cleanup)
kmem_free(omib, sizeof(*omib));
return error;
}
/*
* Unconfigure a VLAN interface.
*/
static void
vlan_unconfig(struct ifnet *ifp)
{
struct ifvlan *ifv = ifp->if_softc;
struct ifvlan_linkmib *nmib = NULL;
int error;
KASSERT(IFNET_LOCKED(ifp));
nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
mutex_enter(&ifv->ifv_lock);
error = vlan_unconfig_locked(ifv, nmib);
mutex_exit(&ifv->ifv_lock);
if (error)
kmem_free(nmib, sizeof(*nmib));
}
static int
vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
{
struct ifnet *p;
struct ifnet *ifp = &ifv->ifv_if;
struct psref_target *nmib_psref = NULL;
struct ifvlan_linkmib *omib;
int error = 0;
KASSERT(IFNET_LOCKED(ifp));
KASSERT(mutex_owned(&ifv->ifv_lock));
ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
omib = ifv->ifv_mib;
p = omib->ifvm_p;
if (p == NULL) {
error = -1;
goto done;
}
*nmib = *omib;
nmib_psref = &nmib->ifvm_psref;
psref_target_init(nmib_psref, ifvm_psref_class);
/*
* Since the interface is being unconfigured, we need to empty the
* list of multicast groups that we may have joined while we were
* alive and remove them from the parent's list also.
*/
(*nmib->ifvm_msw->vmsw_purgemulti)(ifv);
/* Disconnect from parent. */
switch (p->if_type) {
case IFT_ETHER:
{
struct ethercom *ec = (void *)p;
if (--ec->ec_nvlans == 0) {
IFNET_LOCK(p);
(void) ether_disable_vlan_mtu(p);
IFNET_UNLOCK(p);
}
ether_ifdetach(ifp);
/* Restore vlan_ioctl overwritten by ether_ifdetach */
ifp->if_ioctl = vlan_ioctl;
vlan_reset_linkname(ifp);
break;
}
default:
panic("%s: impossible", __func__);
}
nmib->ifvm_p = NULL;
ifv->ifv_if.if_mtu = 0;
ifv->ifv_flags = 0;
mutex_enter(&ifv_hash.lock);
PSLIST_WRITER_REMOVE(ifv, ifv_hash);
pserialize_perform(vlan_psz);
mutex_exit(&ifv_hash.lock);
PSLIST_ENTRY_DESTROY(ifv, ifv_hash);
vlan_linkmib_update(ifv, nmib);
mutex_exit(&ifv->ifv_lock);
nmib_psref = NULL;
kmem_free(omib, sizeof(*omib));
#ifdef INET6
KERNEL_LOCK_UNLESS_NET_MPSAFE();
/* To delete v6 link local addresses */
if (in6_present)
in6_ifdetach(ifp);
KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
#endif
if ((ifp->if_flags & IFF_PROMISC) != 0)
vlan_safe_ifpromisc_locked(ifp, 0);
if_down_locked(ifp);
ifp->if_capabilities = 0;
mutex_enter(&ifv->ifv_lock);
done:
if (nmib_psref)
psref_target_destroy(nmib_psref, ifvm_psref_class);
return error;
}
static void
vlan_hash_init(void)
{
ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
&ifv_hash.mask);
}
static int
vlan_hash_fini(void)
{
int i;
mutex_enter(&ifv_hash.lock);
for (i = 0; i < ifv_hash.mask + 1; i++) {
if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
ifv_hash) != NULL) {
mutex_exit(&ifv_hash.lock);
return EBUSY;
}
}
for (i = 0; i < ifv_hash.mask + 1; i++)
PSLIST_DESTROY(&ifv_hash.lists[i]);
mutex_exit(&ifv_hash.lock);
hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);
ifv_hash.lists = NULL;
ifv_hash.mask = 0;
return 0;
}
static int
vlan_tag_hash(uint16_t tag, u_long mask)
{
uint32_t hash;
hash = (tag >> 8) ^ tag;
hash = (hash >> 2) ^ hash;
return hash & mask;
}
static struct ifvlan_linkmib *
vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
{
struct ifvlan_linkmib *mib;
int s;
s = pserialize_read_enter();
mib = sc->ifv_mib;
if (mib == NULL) {
pserialize_read_exit(s);
return NULL;
}
membar_datadep_consumer();
psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
pserialize_read_exit(s);
return mib;
}
static void
vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
{
if (mib == NULL)
return;
psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
}
static struct ifvlan_linkmib *
vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
{
int idx;
int s;
struct ifvlan *sc;
idx = vlan_tag_hash(tag, ifv_hash.mask);
s = pserialize_read_enter();
PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
ifv_hash) {
struct ifvlan_linkmib *mib = sc->ifv_mib;
if (mib == NULL)
continue;
if (mib->ifvm_tag != tag)
continue;
if (mib->ifvm_p != ifp)
continue;
psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
pserialize_read_exit(s);
return mib;
}
pserialize_read_exit(s);
return NULL;
}
static void
vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
{
struct ifvlan_linkmib *omib = ifv->ifv_mib;
KASSERT(mutex_owned(&ifv->ifv_lock));
membar_producer();
ifv->ifv_mib = nmib;
pserialize_perform(vlan_psz);
psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
}
/*
* Called when a parent interface is detaching; destroy any VLAN
* configuration for the parent interface.
*/
void
vlan_ifdetach(struct ifnet *p)
{
struct ifvlan *ifv;
struct ifvlan_linkmib *mib, **nmibs;
struct psref psref;
int error;
int bound;
int i, cnt = 0;
bound = curlwp_bind();
mutex_enter(&ifv_list.lock);
LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
mib = vlan_getref_linkmib(ifv, &psref);
if (mib == NULL)
continue;
if (mib->ifvm_p == p)
cnt++;
vlan_putref_linkmib(mib, &psref);
}
mutex_exit(&ifv_list.lock);
if (cnt == 0) {
curlwp_bindx(bound);
return;
}
/*
* The value of "cnt" does not increase while ifv_list.lock
* and ifv->ifv_lock are released here, because the parent
* interface is detaching.
*/
nmibs = kmem_alloc(sizeof(*nmibs) * cnt, KM_SLEEP);
for (i = 0; i < cnt; i++) {
nmibs[i] = kmem_alloc(sizeof(*nmibs[i]), KM_SLEEP);
}
mutex_enter(&ifv_list.lock);
i = 0;
LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
struct ifnet *ifp = &ifv->ifv_if;
/* IFNET_LOCK must be held before ifv_lock. */
IFNET_LOCK(ifp);
mutex_enter(&ifv->ifv_lock);
/* XXX ifv_mib = NULL? */
if (ifv->ifv_mib->ifvm_p == p) {
KASSERTMSG(i < cnt, "no memory for unconfig, parent=%s",
p->if_xname);
error = vlan_unconfig_locked(ifv, nmibs[i]);
if (!error) {
nmibs[i] = NULL;
i++;
}
}
mutex_exit(&ifv->ifv_lock);
IFNET_UNLOCK(ifp);
}
mutex_exit(&ifv_list.lock);
curlwp_bindx(bound);
for (i = 0; i < cnt; i++) {
if (nmibs[i])
kmem_free(nmibs[i], sizeof(*nmibs[i]));
}
kmem_free(nmibs, sizeof(*nmibs) * cnt);
return;
}
static int
vlan_set_promisc(struct ifnet *ifp)
{
struct ifvlan *ifv = ifp->if_softc;
struct ifvlan_linkmib *mib;
struct psref psref;
int error = 0;
int bound;
bound = curlwp_bind();
mib = vlan_getref_linkmib(ifv, &psref);
if (mib == NULL) {
curlwp_bindx(bound);
return EBUSY;
}
if ((ifp->if_flags & IFF_PROMISC) != 0) {
if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
error = vlan_safe_ifpromisc(mib->ifvm_p, 1);
if (error == 0)
ifv->ifv_flags |= IFVF_PROMISC;
}
} else {
if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
if (error == 0)
ifv->ifv_flags &= ~IFVF_PROMISC;
}
}
vlan_putref_linkmib(mib, &psref);
curlwp_bindx(bound);
return error;
}
static int
vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct lwp *l = curlwp;
struct ifvlan *ifv = ifp->if_softc;
struct ifaddr *ifa = (struct ifaddr *) data;
struct ifreq *ifr = (struct ifreq *) data;
struct ifnet *pr;
struct ifcapreq *ifcr;
struct vlanreq vlr;
struct ifvlan_linkmib *mib;
struct psref psref;
int error = 0;
int bound;
switch (cmd) {
case SIOCSIFMTU:
bound = curlwp_bind();
mib = vlan_getref_linkmib(ifv, &psref);
if (mib == NULL) {
curlwp_bindx(bound);
error = EBUSY;
break;
}
if (mib->ifvm_p == NULL) {
vlan_putref_linkmib(mib, &psref);
curlwp_bindx(bound);
error = EINVAL;
} else if (
ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
vlan_putref_linkmib(mib, &psref);
curlwp_bindx(bound);
error = EINVAL;
} else {
vlan_putref_linkmib(mib, &psref);
curlwp_bindx(bound);
error = ifioctl_common(ifp, cmd, data);
if (error == ENETRESET)
error = 0;
}
break;
case SIOCSETVLAN:
if ((error = kauth_authorize_network(l->l_cred,
KAUTH_NETWORK_INTERFACE,
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
NULL)) != 0)
break;
if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
break;
if (vlr.vlr_parent[0] == '\0') {
bound = curlwp_bind();
mib = vlan_getref_linkmib(ifv, &psref);
if (mib == NULL) {
curlwp_bindx(bound);
error = EBUSY;
break;
}
if (mib->ifvm_p != NULL &&
(ifp->if_flags & IFF_PROMISC) != 0)
error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
vlan_putref_linkmib(mib, &psref);
curlwp_bindx(bound);
vlan_unconfig(ifp);
break;
}
if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
error = EINVAL; /* check for valid tag */
break;
}
if ((pr = ifunit(vlr.vlr_parent)) == NULL) {
error = ENOENT;
break;
}
error = vlan_config(ifv, pr, vlr.vlr_tag);
if (error != 0) {
break;
}
/* Update promiscuous mode, if necessary. */
vlan_set_promisc(ifp);
ifp->if_flags |= IFF_RUNNING;
break;
case SIOCGETVLAN:
memset(&vlr, 0, sizeof(vlr));
bound = curlwp_bind();
mib = vlan_getref_linkmib(ifv, &psref);
if (mib == NULL) {
curlwp_bindx(bound);
error = EBUSY;
break;
}
if (mib->ifvm_p != NULL) {
snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
mib->ifvm_p->if_xname);
vlr.vlr_tag = mib->ifvm_tag;
}
vlan_putref_linkmib(mib, &psref);
curlwp_bindx(bound);
error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
break;
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
/*
* For promiscuous mode, we enable promiscuous mode on
* the parent if we need promiscuous on the VLAN interface.
*/
bound = curlwp_bind();
mib = vlan_getref_linkmib(ifv, &psref);
if (mib == NULL) {
curlwp_bindx(bound);
error = EBUSY;
break;
}
if (mib->ifvm_p != NULL)
error = vlan_set_promisc(ifp);
vlan_putref_linkmib(mib, &psref);
curlwp_bindx(bound);
break;
case SIOCADDMULTI:
mutex_enter(&ifv->ifv_lock);
mib = ifv->ifv_mib;
if (mib == NULL) {
error = EBUSY;
mutex_exit(&ifv->ifv_lock);
break;
}
error = (mib->ifvm_p != NULL) ?
(*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
mib = NULL;
mutex_exit(&ifv->ifv_lock);
break;
case SIOCDELMULTI:
mutex_enter(&ifv->ifv_lock);
mib = ifv->ifv_mib;
if (mib == NULL) {
error = EBUSY;
mutex_exit(&ifv->ifv_lock);
break;
}
error = (mib->ifvm_p != NULL) ?
(*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
mib = NULL;
mutex_exit(&ifv->ifv_lock);
break;
case SIOCSIFCAP:
ifcr = data;
/* make sure caps are enabled on parent */
bound = curlwp_bind();
mib = vlan_getref_linkmib(ifv, &psref);
if (mib == NULL) {
curlwp_bindx(bound);
error = EBUSY;
break;
}
if (mib->ifvm_p == NULL) {
vlan_putref_linkmib(mib, &psref);
curlwp_bindx(bound);
error = EINVAL;
break;
}
if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
ifcr->ifcr_capenable) {
vlan_putref_linkmib(mib, &psref);
curlwp_bindx(bound);
error = EINVAL;
break;
}
vlan_putref_linkmib(mib, &psref);
curlwp_bindx(bound);
if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
error = 0;
break;
case SIOCINITIFADDR:
bound = curlwp_bind();
mib = vlan_getref_linkmib(ifv, &psref);
if (mib == NULL) {
curlwp_bindx(bound);
error = EBUSY;
break;
}
if (mib->ifvm_p == NULL) {
error = EINVAL;
vlan_putref_linkmib(mib, &psref);
curlwp_bindx(bound);
break;
}
vlan_putref_linkmib(mib, &psref);
curlwp_bindx(bound);
ifp->if_flags |= IFF_UP;
#ifdef INET
if (ifa->ifa_addr->sa_family == AF_INET)
arp_ifinit(ifp, ifa);
#endif
break;
default:
error = ether_ioctl(ifp, cmd, data);
}
return error;
}
static int
vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
{
const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
struct vlan_mc_entry *mc;
uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
struct ifvlan_linkmib *mib;
int error;
KASSERT(mutex_owned(&ifv->ifv_lock));
if (sa->sa_len > sizeof(struct sockaddr_storage))
return EINVAL;
error = ether_addmulti(sa, &ifv->ifv_ec);
if (error != ENETRESET)
return error;
/*
* This is a new multicast address. We have to tell parent
* about it. Also, remember this multicast address so that
* we can delete it on unconfigure.
*/
mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
if (mc == NULL) {
error = ENOMEM;
goto alloc_failed;
}
/*
* Since ether_addmulti() returned ENETRESET, the following two
* statements shouldn't fail. Here ifv_ec is implicitly protected
* by the ifv_lock lock.
*/
error = ether_multiaddr(sa, addrlo, addrhi);
KASSERT(error == 0);
ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
KASSERT(mc->mc_enm != NULL);
memcpy(&mc->mc_addr, sa, sa->sa_len);
LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
mib = ifv->ifv_mib;
KERNEL_LOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
IFNET_LOCK(mib->ifvm_p);
error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
IFNET_UNLOCK(mib->ifvm_p);
KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
if (error != 0)
goto ioctl_failed;
return error;
ioctl_failed:
LIST_REMOVE(mc, mc_entries);
free(mc, M_DEVBUF);
alloc_failed:
(void)ether_delmulti(sa, &ifv->ifv_ec);
return error;
}
static int
vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
{
const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
struct ether_multi *enm;
struct vlan_mc_entry *mc;
struct ifvlan_linkmib *mib;
uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
int error;
KASSERT(mutex_owned(&ifv->ifv_lock));
/*
* Find a key to lookup vlan_mc_entry. We have to do this
* before calling ether_delmulti for obvious reasons.
*/
if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
return error;
ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
error = ether_delmulti(sa, &ifv->ifv_ec);
if (error != ENETRESET)
return error;
/* We no longer use this multicast address. Tell parent so. */
mib = ifv->ifv_mib;
IFNET_LOCK(mib->ifvm_p);
error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);
IFNET_UNLOCK(mib->ifvm_p);
if (error == 0) {
/* And forget about this address. */
for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
mc = LIST_NEXT(mc, mc_entries)) {
if (mc->mc_enm == enm) {
LIST_REMOVE(mc, mc_entries);
free(mc, M_DEVBUF);
break;
}
}
KASSERT(mc != NULL);
} else
(void)ether_addmulti(sa, &ifv->ifv_ec);
return error;
}
/*
* Delete any multicast address we have asked to add from parent
* interface. Called when the vlan is being unconfigured.
*/
static void
vlan_ether_purgemulti(struct ifvlan *ifv)
{
struct vlan_mc_entry *mc;
struct ifvlan_linkmib *mib;
KASSERT(mutex_owned(&ifv->ifv_lock));
mib = ifv->ifv_mib;
if (mib == NULL) {
return;
}
while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
IFNET_LOCK(mib->ifvm_p);
(void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
(const struct sockaddr *)&mc->mc_addr);
IFNET_UNLOCK(mib->ifvm_p);
LIST_REMOVE(mc, mc_entries);
free(mc, M_DEVBUF);
}
}
static void
vlan_start(struct ifnet *ifp)
{
struct ifvlan *ifv = ifp->if_softc;
struct ifnet *p;
struct ethercom *ec;
struct mbuf *m;
struct ifvlan_linkmib *mib;
struct psref psref;
int error;
mib = vlan_getref_linkmib(ifv, &psref);
if (mib == NULL)
return;
p = mib->ifvm_p;
ec = (void *)mib->ifvm_p;
ifp->if_flags |= IFF_OACTIVE;
for (;;) {
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
#ifdef ALTQ
/*
* KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is
* defined.
*/
KERNEL_LOCK(1, NULL);
/*
* If ALTQ is enabled on the parent interface, do
* classification; the queueing discipline might
* not require classification, but might require
* the address family/header pointer in the pktattr.
*/
if (ALTQ_IS_ENABLED(&p->if_snd)) {
switch (p->if_type) {
case IFT_ETHER:
altq_etherclassify(&p->if_snd, m);
break;
default:
panic("%s: impossible (altq)", __func__);
}
}
KERNEL_UNLOCK_ONE(NULL);
#endif /* ALTQ */
bpf_mtap(ifp, m);
/*
* If the parent can insert the tag itself, just mark
* the tag in the mbuf header.
*/
if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
vlan_set_tag(m, mib->ifvm_tag);
} else {
/*
* insert the tag ourselves
*/
M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
if (m == NULL) {
printf("%s: unable to prepend encap header",
p->if_xname);
ifp->if_oerrors++;
continue;
}
switch (p->if_type) {
case IFT_ETHER:
{
struct ether_vlan_header *evl;
if (m->m_len < sizeof(struct ether_vlan_header))
m = m_pullup(m,
sizeof(struct ether_vlan_header));
if (m == NULL) {
printf("%s: unable to pullup encap "
"header", p->if_xname);
ifp->if_oerrors++;
continue;
}
/*
* Transform the Ethernet header into an
* Ethernet header with 802.1Q encapsulation.
*/
memmove(mtod(m, void *),
mtod(m, char *) + mib->ifvm_encaplen,
sizeof(struct ether_header));
evl = mtod(m, struct ether_vlan_header *);
evl->evl_proto = evl->evl_encap_proto;
evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
evl->evl_tag = htons(mib->ifvm_tag);
/*
* To cater for VLAN-aware layer 2 ethernet
* switches which may need to strip the tag
* before forwarding the packet, make sure
* the packet+tag is at least 68 bytes long.
* This is necessary because our parent will
* only pad to 64 bytes (ETHER_MIN_LEN) and
* some switches will not pad by themselves
* after deleting a tag.
*/
const size_t min_data_len = ETHER_MIN_LEN -
ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
if (m->m_pkthdr.len < min_data_len) {
m_copyback(m, m->m_pkthdr.len,
min_data_len - m->m_pkthdr.len,
vlan_zero_pad_buff);
}
break;
}
default:
panic("%s: impossible", __func__);
}
}
if ((p->if_flags & IFF_RUNNING) == 0) {
m_freem(m);
continue;
}
error = if_transmit_lock(p, m);
if (error) {
/* mbuf is already freed */
ifp->if_oerrors++;
continue;
}
ifp->if_opackets++;
}
ifp->if_flags &= ~IFF_OACTIVE;
/* Remove reference to mib before release */
vlan_putref_linkmib(mib, &psref);
}
static int
vlan_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct ifvlan *ifv = ifp->if_softc;
struct ifnet *p;
struct ethercom *ec;
struct ifvlan_linkmib *mib;
struct psref psref;
int error;
size_t pktlen = m->m_pkthdr.len;
bool mcast = (m->m_flags & M_MCAST) != 0;
mib = vlan_getref_linkmib(ifv, &psref);
if (mib == NULL) {
m_freem(m);
return ENETDOWN;
}
p = mib->ifvm_p;
ec = (void *)mib->ifvm_p;
bpf_mtap(ifp, m);
if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
goto out;
if (m == NULL)
goto out;
/*
* If the parent can insert the tag itself, just mark
* the tag in the mbuf header.
*/
if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
vlan_set_tag(m, mib->ifvm_tag);
} else {
/*
* insert the tag ourselves
*/
M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
if (m == NULL) {
printf("%s: unable to prepend encap header",
p->if_xname);
ifp->if_oerrors++;
error = ENOBUFS;
goto out;
}
switch (p->if_type) {
case IFT_ETHER:
{
struct ether_vlan_header *evl;
if (m->m_len < sizeof(struct ether_vlan_header))
m = m_pullup(m,
sizeof(struct ether_vlan_header));
if (m == NULL) {
printf("%s: unable to pullup encap "
"header", p->if_xname);
ifp->if_oerrors++;
error = ENOBUFS;
goto out;
}
/*
* Transform the Ethernet header into an
* Ethernet header with 802.1Q encapsulation.
*/
memmove(mtod(m, void *),
mtod(m, char *) + mib->ifvm_encaplen,
sizeof(struct ether_header));
evl = mtod(m, struct ether_vlan_header *);
evl->evl_proto = evl->evl_encap_proto;
evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
evl->evl_tag = htons(mib->ifvm_tag);
/*
* To cater for VLAN-aware layer 2 ethernet
* switches which may need to strip the tag
* before forwarding the packet, make sure
* the packet+tag is at least 68 bytes long.
* This is necessary because our parent will
* only pad to 64 bytes (ETHER_MIN_LEN) and
* some switches will not pad by themselves
* after deleting a tag.
*/
const size_t min_data_len = ETHER_MIN_LEN -
ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
if (m->m_pkthdr.len < min_data_len) {
m_copyback(m, m->m_pkthdr.len,
min_data_len - m->m_pkthdr.len,
vlan_zero_pad_buff);
}
break;
}
default:
panic("%s: impossible", __func__);
}
}
if ((p->if_flags & IFF_RUNNING) == 0) {
m_freem(m);
error = ENETDOWN;
goto out;
}
error = if_transmit_lock(p, m);
if (error) {
/* mbuf is already freed */
ifp->if_oerrors++;
} else {
ifp->if_opackets++;
ifp->if_obytes += pktlen;
if (mcast)
ifp->if_omcasts++;
}
out:
/* Remove reference to mib before release */
vlan_putref_linkmib(mib, &psref);
return error;
}
/*
* Given an Ethernet frame, find a valid vlan interface corresponding to the
* given source interface and tag, then run the real packet through the
* parent's input routine.
*/
void
vlan_input(struct ifnet *ifp, struct mbuf *m)
{
struct ifvlan *ifv;
uint16_t vid;
struct ifvlan_linkmib *mib;
struct psref psref;
bool have_vtag;
have_vtag = vlan_has_tag(m);
if (have_vtag) {
vid = EVL_VLANOFTAG(vlan_get_tag(m));
m->m_flags &= ~M_VLANTAG;
} else {
struct ether_vlan_header *evl;
if (ifp->if_type != IFT_ETHER) {
panic("%s: impossible", __func__);
}
if (m->m_len < sizeof(struct ether_vlan_header) &&
(m = m_pullup(m,
sizeof(struct ether_vlan_header))) == NULL) {
printf("%s: no memory for VLAN header, "
"dropping packet.\n", ifp->if_xname);
return;
}
evl = mtod(m, struct ether_vlan_header *);
KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
vid = EVL_VLANOFTAG(ntohs(evl->evl_tag));
/*
* Restore the original ethertype. We'll remove
* the encapsulation after we've found the vlan
* interface corresponding to the tag.
*/
evl->evl_encap_proto = evl->evl_proto;
}
mib = vlan_lookup_tag_psref(ifp, vid, &psref);
if (mib == NULL) {
m_freem(m);
ifp->if_noproto++;
return;
}
KASSERT(mib->ifvm_encaplen == ETHER_VLAN_ENCAP_LEN);
ifv = mib->ifvm_ifvlan;
if ((ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
(IFF_UP|IFF_RUNNING)) {
m_freem(m);
ifp->if_noproto++;
goto out;
}
/*
* Now, remove the encapsulation header. The original
* header has already been fixed up above.
*/
if (!have_vtag) {
memmove(mtod(m, char *) + mib->ifvm_encaplen,
mtod(m, void *), sizeof(struct ether_header));
m_adj(m, mib->ifvm_encaplen);
}
m_set_rcvif(m, &ifv->ifv_if);
ifv->ifv_if.if_ipackets++;
if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
goto out;
if (m == NULL)
goto out;
m->m_flags &= ~M_PROMISC;
if_input(&ifv->ifv_if, m);
out:
vlan_putref_linkmib(mib, &psref);
}
/*
* Module infrastructure
*/
#include "if_module.h"
IF_MODULE(MODULE_CLASS_DRIVER, vlan, "")