NetBSD/lib/libcurses/getch.c
2010-12-07 22:02:52 +00:00

968 lines
24 KiB
C

/* $NetBSD: getch.c,v 1.57 2010/12/07 22:02:52 joerg Exp $ */
/*
* Copyright (c) 1981, 1993, 1994
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#ifndef lint
#if 0
static char sccsid[] = "@(#)getch.c 8.2 (Berkeley) 5/4/94";
#else
__RCSID("$NetBSD: getch.c,v 1.57 2010/12/07 22:02:52 joerg Exp $");
#endif
#endif /* not lint */
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include "curses.h"
#include "curses_private.h"
#include "keymap.h"
short state; /* state of the inkey function */
static const struct tcdata tc[] = {
{TICODE_kSAV, KEY_SSAVE},
{TICODE_kSPD, KEY_SSUSPEND},
{TICODE_kUND, KEY_SUNDO},
{TICODE_kHLP, KEY_SHELP},
{TICODE_kHOM, KEY_SHOME},
{TICODE_kIC, KEY_SIC},
{TICODE_kLFT, KEY_SLEFT},
{TICODE_krdo, KEY_REDO},
{TICODE_khlp, KEY_HELP},
{TICODE_kmrk, KEY_MARK},
{TICODE_kmsg, KEY_MESSAGE},
{TICODE_kmov, KEY_MOVE},
{TICODE_knxt, KEY_NEXT},
{TICODE_kopn, KEY_OPEN},
{TICODE_kopt, KEY_OPTIONS},
{TICODE_kprv, KEY_PREVIOUS},
{TICODE_kprt, KEY_PRINT},
{TICODE_kMSG, KEY_SMESSAGE},
{TICODE_kMOV, KEY_SMOVE},
{TICODE_kNXT, KEY_SNEXT},
{TICODE_kOPT, KEY_SOPTIONS},
{TICODE_kPRV, KEY_SPREVIOUS},
{TICODE_kPRT, KEY_SPRINT},
{TICODE_kRDO, KEY_SREDO},
{TICODE_kRPL, KEY_SREPLACE},
{TICODE_kRIT, KEY_SRIGHT},
{TICODE_kRES, KEY_SRSUME},
{TICODE_kCAN, KEY_SCANCEL},
{TICODE_kref, KEY_REFERENCE},
{TICODE_krfr, KEY_REFRESH},
{TICODE_krpl, KEY_REPLACE},
{TICODE_krst, KEY_RESTART},
{TICODE_kres, KEY_RESUME},
{TICODE_ksav, KEY_SAVE},
{TICODE_kspd, KEY_SUSPEND},
{TICODE_kund, KEY_UNDO},
{TICODE_kBEG, KEY_SBEG},
{TICODE_kFND, KEY_SFIND},
{TICODE_kCMD, KEY_SCOMMAND},
{TICODE_kCPY, KEY_SCOPY},
{TICODE_kCRT, KEY_SCREATE},
{TICODE_kDC, KEY_SDC},
{TICODE_kDL, KEY_SDL},
{TICODE_kslt, KEY_SELECT},
{TICODE_kEND, KEY_SEND},
{TICODE_kEOL, KEY_SEOL},
{TICODE_kEXT, KEY_SEXIT},
{TICODE_kfnd, KEY_FIND},
{TICODE_kbeg, KEY_BEG},
{TICODE_kcan, KEY_CANCEL},
{TICODE_kclo, KEY_CLOSE},
{TICODE_kcmd, KEY_COMMAND},
{TICODE_kcpy, KEY_COPY},
{TICODE_kcrt, KEY_CREATE},
{TICODE_kend, KEY_END},
{TICODE_kent, KEY_ENTER},
{TICODE_kext, KEY_EXIT},
{TICODE_kf11, KEY_F(11)},
{TICODE_kf12, KEY_F(12)},
{TICODE_kf13, KEY_F(13)},
{TICODE_kf14, KEY_F(14)},
{TICODE_kf15, KEY_F(15)},
{TICODE_kf16, KEY_F(16)},
{TICODE_kf17, KEY_F(17)},
{TICODE_kf18, KEY_F(18)},
{TICODE_kf19, KEY_F(19)},
{TICODE_kf20, KEY_F(20)},
{TICODE_kf21, KEY_F(21)},
{TICODE_kf22, KEY_F(22)},
{TICODE_kf23, KEY_F(23)},
{TICODE_kf24, KEY_F(24)},
{TICODE_kf25, KEY_F(25)},
{TICODE_kf26, KEY_F(26)},
{TICODE_kf27, KEY_F(27)},
{TICODE_kf28, KEY_F(28)},
{TICODE_kf29, KEY_F(29)},
{TICODE_kf30, KEY_F(30)},
{TICODE_kf31, KEY_F(31)},
{TICODE_kf32, KEY_F(32)},
{TICODE_kf33, KEY_F(33)},
{TICODE_kf34, KEY_F(34)},
{TICODE_kf35, KEY_F(35)},
{TICODE_kf36, KEY_F(36)},
{TICODE_kf37, KEY_F(37)},
{TICODE_kf38, KEY_F(38)},
{TICODE_kf39, KEY_F(39)},
{TICODE_kf40, KEY_F(40)},
{TICODE_kf41, KEY_F(41)},
{TICODE_kf42, KEY_F(42)},
{TICODE_kf43, KEY_F(43)},
{TICODE_kf44, KEY_F(44)},
{TICODE_kf45, KEY_F(45)},
{TICODE_kf46, KEY_F(46)},
{TICODE_kf47, KEY_F(47)},
{TICODE_kf48, KEY_F(48)},
{TICODE_kf49, KEY_F(49)},
{TICODE_kf50, KEY_F(50)},
{TICODE_kf51, KEY_F(51)},
{TICODE_kf52, KEY_F(52)},
{TICODE_kf53, KEY_F(53)},
{TICODE_kf54, KEY_F(54)},
{TICODE_kf55, KEY_F(55)},
{TICODE_kf56, KEY_F(56)},
{TICODE_kf57, KEY_F(57)},
{TICODE_kf58, KEY_F(58)},
{TICODE_kf59, KEY_F(59)},
{TICODE_kf60, KEY_F(60)},
{TICODE_kf61, KEY_F(61)},
{TICODE_kf62, KEY_F(62)},
{TICODE_kf63, KEY_F(63)},
{TICODE_ka1, KEY_A1},
{TICODE_kb2, KEY_B2},
{TICODE_ka3, KEY_A3},
{TICODE_kc1, KEY_C1},
{TICODE_kc3, KEY_C3},
{TICODE_kmous, KEY_MOUSE},
{TICODE_kf0, KEY_F0},
{TICODE_kf1, KEY_F(1)},
{TICODE_kf2, KEY_F(2)},
{TICODE_kf3, KEY_F(3)},
{TICODE_kf4, KEY_F(4)},
{TICODE_kf5, KEY_F(5)},
{TICODE_kf6, KEY_F(6)},
{TICODE_kf7, KEY_F(7)},
{TICODE_kf8, KEY_F(8)},
{TICODE_kf9, KEY_F(9)},
{TICODE_kf10, KEY_F(10)},
{TICODE_kil1, KEY_IL},
{TICODE_ktbc, KEY_CATAB},
{TICODE_kcbt, KEY_BTAB},
{TICODE_kbs, KEY_BACKSPACE},
{TICODE_kclr, KEY_CLEAR},
{TICODE_kdch1, KEY_DC},
{TICODE_kcud1, KEY_DOWN},
{TICODE_kel, KEY_EOL},
{TICODE_kind, KEY_SF},
{TICODE_kll, KEY_LL},
{TICODE_khome, KEY_HOME},
{TICODE_kich1, KEY_IC},
{TICODE_kdl1, KEY_DL},
{TICODE_kcub1, KEY_LEFT},
{TICODE_krmir, KEY_EIC},
{TICODE_knp, KEY_NPAGE},
{TICODE_kpp, KEY_PPAGE},
{TICODE_kri, KEY_SR},
{TICODE_kcuf1, KEY_RIGHT},
{TICODE_ked, KEY_EOS},
{TICODE_khts, KEY_STAB},
{TICODE_kctab, KEY_CTAB},
{TICODE_kcuu1, KEY_UP}
};
/* Number of TC entries .... */
static const int num_tcs = (sizeof(tc) / sizeof(struct tcdata));
int ESCDELAY = 300; /* Delay in ms between keys for esc seq's */
/* Key buffer */
#define INBUF_SZ 16 /* size of key buffer - must be larger than
* longest multi-key sequence */
static wchar_t inbuf[INBUF_SZ];
static int start, end, working; /* pointers for manipulating inbuf data */
/* prototypes for private functions */
static void add_key_sequence(SCREEN *screen, char *sequence, int key_type);
static key_entry_t *add_new_key(keymap_t *current, char ch, int key_type,
int symbol);
static void delete_key_sequence(keymap_t *current, int key_type);
static void do_keyok(keymap_t *current, int key_type, bool flag, int *retval);
static keymap_t *new_keymap(void); /* create a new keymap */
static key_entry_t *new_key(void); /* create a new key entry */
static wchar_t inkey(int to, int delay);
/*
* Free the storage associated with the given keymap
*/
void
_cursesi_free_keymap(keymap_t *map)
{
int i;
/* check for, and free, child keymaps */
for (i = 0; i < MAX_CHAR; i++) {
if (map->mapping[i] >= 0) {
if (map->key[map->mapping[i]]->type == KEYMAP_MULTI)
_cursesi_free_keymap(
map->key[map->mapping[i]]->value.next);
}
}
/* now free any allocated keymap structs */
for (i = 0; i < map->count; i += KEYMAP_ALLOC_CHUNK) {
free(map->key[i]);
}
free(map->key);
free(map);
}
/*
* Add a new key entry to the keymap pointed to by current. Entry
* contains the character to add to the keymap, type is the type of
* entry to add (either multikey or leaf) and symbol is the symbolic
* value for a leaf type entry. The function returns a pointer to the
* new keymap entry.
*/
static key_entry_t *
add_new_key(keymap_t *current, char chr, int key_type, int symbol)
{
key_entry_t *the_key;
int i, ki;
#ifdef DEBUG
__CTRACE(__CTRACE_MISC,
"Adding character %s of type %d, symbol 0x%x\n",
unctrl(chr), key_type, symbol);
#endif
if (current->mapping[(unsigned char) chr] < 0) {
if (current->mapping[(unsigned char) chr] == MAPPING_UNUSED) {
/* first time for this char */
current->mapping[(unsigned char) chr] =
current->count; /* map new entry */
ki = current->count;
/* make sure we have room in the key array first */
if ((current->count & (KEYMAP_ALLOC_CHUNK - 1)) == 0)
{
if ((current->key =
realloc(current->key,
ki * sizeof(key_entry_t *)
+ KEYMAP_ALLOC_CHUNK * sizeof(key_entry_t *))) == NULL) {
fprintf(stderr,
"Could not malloc for key entry\n");
exit(1);
}
the_key = new_key();
for (i = 0; i < KEYMAP_ALLOC_CHUNK; i++) {
current->key[ki + i] = &the_key[i];
}
}
} else {
/* the mapping was used but freed, reuse it */
ki = - current->mapping[(unsigned char) chr];
current->mapping[(unsigned char) chr] = ki;
}
current->count++;
/* point at the current key array element to use */
the_key = current->key[ki];
the_key->type = key_type;
switch (key_type) {
case KEYMAP_MULTI:
/* need for next key */
#ifdef DEBUG
__CTRACE(__CTRACE_MISC, "Creating new keymap\n");
#endif
the_key->value.next = new_keymap();
the_key->enable = TRUE;
break;
case KEYMAP_LEAF:
/* the associated symbol for the key */
#ifdef DEBUG
__CTRACE(__CTRACE_MISC, "Adding leaf key\n");
#endif
the_key->value.symbol = symbol;
the_key->enable = TRUE;
break;
default:
fprintf(stderr, "add_new_key: bad type passed\n");
exit(1);
}
} else {
/* the key is already known - just return the address. */
#ifdef DEBUG
__CTRACE(__CTRACE_MISC, "Keymap already known\n");
#endif
the_key = current->key[current->mapping[(unsigned char) chr]];
}
return the_key;
}
/*
* Delete the given key symbol from the key mappings for the screen.
*
*/
void
delete_key_sequence(keymap_t *current, int key_type)
{
key_entry_t *key;
int i;
/*
* we need to iterate over all the keys as there may be
* multiple instances of the leaf symbol.
*/
for (i = 0; i < MAX_CHAR; i++) {
if (current->mapping[i] < 0)
continue; /* no mapping for the key, next! */
key = current->key[current->mapping[i]];
if (key->type == KEYMAP_MULTI) {
/* have not found the leaf, recurse down */
delete_key_sequence(key->value.next, key_type);
/* if we deleted the last key in the map, free */
if (key->value.next->count == 0)
_cursesi_free_keymap(key->value.next);
} else if ((key->type == KEYMAP_LEAF)
&& (key->value.symbol == key_type)) {
/*
* delete the mapping by negating the current
* index - this "holds" the position in the
* allocation just in case we later re-add
* the key for that mapping.
*/
current->mapping[i] = - current->mapping[i];
current->count--;
}
}
}
/*
* Add the sequence of characters given in sequence as the key mapping
* for the given key symbol.
*/
void
add_key_sequence(SCREEN *screen, char *sequence, int key_type)
{
key_entry_t *tmp_key;
keymap_t *current;
int length, j, key_ent;
#ifdef DEBUG
__CTRACE(__CTRACE_MISC, "add_key_sequence: add key sequence: %s(%s)\n",
sequence, keyname(key_type));
#endif /* DEBUG */
current = screen->base_keymap; /* always start with
* base keymap. */
length = (int) strlen(sequence);
/*
* OK - we really should never get a zero length string here, either
* the termcap entry is there and it has a value or we are not called
* at all. Unfortunately, if someone assigns a termcap string to the
* ^@ value we get passed a null string which messes up our length.
* So, if we get a null string then just insert a leaf value in
* the 0th char position of the root keymap. Note that we are
* totally screwed if someone terminates a multichar sequence
* with ^@... oh well.
*/
if (length == 0)
length = 1;
for (j = 0; j < length - 1; j++) {
/* add the entry to the struct */
tmp_key = add_new_key(current, sequence[j], KEYMAP_MULTI, 0);
/* index into the key array - it's
clearer if we stash this */
key_ent = current->mapping[(unsigned char) sequence[j]];
current->key[key_ent] = tmp_key;
/* next key uses this map... */
current = current->key[key_ent]->value.next;
}
/*
* This is the last key in the sequence (it may have been the
* only one but that does not matter) this means it is a leaf
* key and should have a symbol associated with it.
*/
tmp_key = add_new_key(current, sequence[length - 1], KEYMAP_LEAF,
key_type);
current->key[current->mapping[(int)sequence[length - 1]]] = tmp_key;
}
/*
* Init_getch - initialise all the pointers & structures needed to make
* getch work in keypad mode.
*
*/
void
__init_getch(SCREEN *screen)
{
char entry[1024], *p;
const char *s;
int i;
size_t limit, l;
#ifdef DEBUG
int k, length;
#endif
/* init the inkey state variable */
state = INKEY_NORM;
/* init the base keymap */
screen->base_keymap = new_keymap();
/* key input buffer pointers */
start = end = working = 0;
/* now do the terminfo snarfing ... */
for (i = 0; i < num_tcs; i++) {
p = entry;
limit = 1023;
s = screen->term->strs[tc[i].code];
if (s == NULL)
continue;
l = strlen(s) + 1;
if (limit < l)
continue;
strlcpy(p, s, limit);
p += l;
limit -= l;
#ifdef DEBUG
__CTRACE(__CTRACE_INIT,
"Processing termcap entry %d, sequence ",
tc[i].code);
length = (int) strlen(entry);
for (k = 0; k <= length -1; k++)
__CTRACE(__CTRACE_INIT, "%s", unctrl(entry[k]));
__CTRACE(__CTRACE_INIT, "\n");
#endif
add_key_sequence(screen, entry, tc[i].symbol);
}
}
/*
* new_keymap - allocates & initialises a new keymap structure. This
* function returns a pointer to the new keymap.
*
*/
static keymap_t *
new_keymap(void)
{
int i;
keymap_t *new_map;
if ((new_map = malloc(sizeof(keymap_t))) == NULL) {
perror("Inkey: Cannot allocate new keymap");
exit(2);
}
/* Initialise the new map */
new_map->count = 0;
for (i = 0; i < MAX_CHAR; i++) {
new_map->mapping[i] = MAPPING_UNUSED; /* no mapping for char */
}
/* key array will be allocated when first key is added */
new_map->key = NULL;
return new_map;
}
/*
* new_key - allocates & initialises a new key entry. This function returns
* a pointer to the newly allocated key entry.
*
*/
static key_entry_t *
new_key(void)
{
key_entry_t *new_one;
int i;
if ((new_one = malloc(KEYMAP_ALLOC_CHUNK * sizeof(key_entry_t)))
== NULL) {
perror("inkey: Cannot allocate new key entry chunk");
exit(2);
}
for (i = 0; i < KEYMAP_ALLOC_CHUNK; i++) {
new_one[i].type = 0;
new_one[i].value.next = NULL;
}
return new_one;
}
/*
* inkey - do the work to process keyboard input, check for multi-key
* sequences and return the appropriate symbol if we get a match.
*
*/
wchar_t
inkey(int to, int delay)
{
wchar_t k;
int c, mapping;
keymap_t *current = _cursesi_screen->base_keymap;
FILE *infd = _cursesi_screen->infd;
k = 0; /* XXX gcc -Wuninitialized */
#ifdef DEBUG
__CTRACE(__CTRACE_INPUT, "inkey (%d, %d)\n", to, delay);
#endif
for (;;) { /* loop until we get a complete key sequence */
reread:
if (state == INKEY_NORM) {
if (delay && __timeout(delay) == ERR)
return ERR;
c = fgetc(infd);
if (c == EOF) {
clearerr(infd);
return ERR;
}
if (delay && (__notimeout() == ERR))
return ERR;
k = (wchar_t) c;
#ifdef DEBUG
__CTRACE(__CTRACE_INPUT,
"inkey (state normal) got '%s'\n", unctrl(k));
#endif
working = start;
inbuf[working] = k;
INC_POINTER(working);
end = working;
state = INKEY_ASSEMBLING; /* go to the assembling
* state now */
} else if (state == INKEY_BACKOUT) {
k = inbuf[working];
INC_POINTER(working);
if (working == end) { /* see if we have run
* out of keys in the
* backlog */
/* if we have then switch to assembling */
state = INKEY_ASSEMBLING;
}
} else if (state == INKEY_ASSEMBLING) {
/* assembling a key sequence */
if (delay) {
if (__timeout(to ? (ESCDELAY / 100) : delay)
== ERR)
return ERR;
} else {
if (to && (__timeout(ESCDELAY / 100) == ERR))
return ERR;
}
c = fgetc(infd);
if (ferror(infd)) {
clearerr(infd);
return ERR;
}
if ((to || delay) && (__notimeout() == ERR))
return ERR;
#ifdef DEBUG
__CTRACE(__CTRACE_INPUT,
"inkey (state assembling) got '%s'\n", unctrl(k));
#endif
if (feof(infd) || c == -1) { /* inter-char timeout,
* start backing out */
clearerr(infd);
if (start == end)
/* no chars in the buffer, restart */
goto reread;
k = inbuf[start];
state = INKEY_TIMEOUT;
} else {
k = (wchar_t) c;
inbuf[working] = k;
INC_POINTER(working);
end = working;
}
} else {
fprintf(stderr, "Inkey state screwed - exiting!!!");
exit(2);
}
/*
* Check key has no special meaning and we have not
* timed out and the key has not been disabled
*/
mapping = current->mapping[k];
if (((state == INKEY_TIMEOUT) || (mapping < 0))
|| ((current->key[mapping]->type == KEYMAP_LEAF)
&& (current->key[mapping]->enable == FALSE))) {
/* return the first key we know about */
k = inbuf[start];
INC_POINTER(start);
working = start;
if (start == end) { /* only one char processed */
state = INKEY_NORM;
} else {/* otherwise we must have more than one char
* to backout */
state = INKEY_BACKOUT;
}
return k;
} else { /* must be part of a multikey sequence */
/* check for completed key sequence */
if (current->key[current->mapping[k]]->type == KEYMAP_LEAF) {
start = working; /* eat the key sequence
* in inbuf */
/* check if inbuf empty now */
if (start == end) {
/* if it is go back to normal */
state = INKEY_NORM;
} else {
/* otherwise go to backout state */
state = INKEY_BACKOUT;
}
/* return the symbol */
return current->key[current->mapping[k]]->value.symbol;
} else {
/*
* Step on to next part of the multi-key
* sequence.
*/
current = current->key[current->mapping[k]]->value.next;
}
}
}
}
#ifndef _CURSES_USE_MACROS
/*
* getch --
* Read in a character from stdscr.
*/
int
getch(void)
{
return wgetch(stdscr);
}
/*
* mvgetch --
* Read in a character from stdscr at the given location.
*/
int
mvgetch(int y, int x)
{
return mvwgetch(stdscr, y, x);
}
/*
* mvwgetch --
* Read in a character from stdscr at the given location in the
* given window.
*/
int
mvwgetch(WINDOW *win, int y, int x)
{
if (wmove(win, y, x) == ERR)
return ERR;
return wgetch(win);
}
#endif
/*
* keyok --
* Set the enable flag for a keysym, if the flag is false then
* getch will not return this keysym even if the matching key sequence
* is seen.
*/
int
keyok(int key_type, bool flag)
{
int result = ERR;
do_keyok(_cursesi_screen->base_keymap, key_type, flag, &result);
return result;
}
/*
* do_keyok --
* Does the actual work for keyok, we need to recurse through the
* keymaps finding the passed key symbol.
*/
void
do_keyok(keymap_t *current, int key_type, bool flag, int *retval)
{
key_entry_t *key;
int i;
/*
* we need to iterate over all the keys as there may be
* multiple instances of the leaf symbol.
*/
for (i = 0; i < MAX_CHAR; i++) {
if (current->mapping[i] < 0)
continue; /* no mapping for the key, next! */
key = current->key[current->mapping[i]];
if (key->type == KEYMAP_MULTI)
do_keyok(key->value.next, key_type, flag, retval);
else if ((key->type == KEYMAP_LEAF)
&& (key->value.symbol == key_type)) {
key->enable = flag;
*retval = OK; /* we found at least one instance, ok */
}
}
}
/*
* define_key --
* Add a custom mapping of a key sequence to key symbol.
*
*/
int
define_key(char *sequence, int symbol)
{
if (symbol <= 0)
return ERR;
if (sequence == NULL)
delete_key_sequence(_cursesi_screen->base_keymap, symbol);
else
add_key_sequence(_cursesi_screen, sequence, symbol);
return OK;
}
/*
* wgetch --
* Read in a character from the window.
*/
int
wgetch(WINDOW *win)
{
int inp, weset;
int c;
FILE *infd = _cursesi_screen->infd;
#ifdef DEBUG
__CTRACE(__CTRACE_INPUT, "wgetch: win(%p)\n", win);
#endif
if (!(win->flags & __SCROLLOK) && (win->flags & __FULLWIN)
&& win->curx == win->maxx - 1 && win->cury == win->maxy - 1
&& __echoit)
return (ERR);
if (is_wintouched(win))
wrefresh(win);
#ifdef DEBUG
__CTRACE(__CTRACE_INPUT, "wgetch: __echoit = %d, "
"__rawmode = %d, __nl = %d, flags = %#.4x, delay = %d\n",
__echoit, __rawmode, _cursesi_screen->nl, win->flags, win->delay);
#endif
if (_cursesi_screen->resized) {
_cursesi_screen->resized = 0;
#ifdef DEBUG
__CTRACE(__CTRACE_INPUT, "wgetch returning KEY_RESIZE\n");
#endif
return KEY_RESIZE;
}
if (_cursesi_screen->unget_pos) {
#ifdef DEBUG
__CTRACE(__CTRACE_INPUT, "wgetch returning char at %d\n",
_cursesi_screen->unget_pos);
#endif
_cursesi_screen->unget_pos--;
c = _cursesi_screen->unget_list[_cursesi_screen->unget_pos];
if (__echoit)
waddch(win, (chtype) c);
return c;
}
if (__echoit && !__rawmode) {
cbreak();
weset = 1;
} else
weset = 0;
__save_termios();
if (win->flags & __KEYPAD) {
switch (win->delay)
{
case -1:
inp = inkey (win->flags & __NOTIMEOUT ? 0 : 1, 0);
break;
case 0:
if (__nodelay() == ERR)
return ERR;
inp = inkey(0, 0);
break;
default:
inp = inkey(win->flags & __NOTIMEOUT ? 0 : 1, win->delay);
break;
}
} else {
switch (win->delay)
{
case -1:
if (__delay() == ERR)
return ERR;
break;
case 0:
if (__nodelay() == ERR)
return ERR;
break;
default:
if (__timeout(win->delay) == ERR)
return ERR;
break;
}
c = fgetc(infd);
if (feof(infd)) {
clearerr(infd);
__restore_termios();
return ERR; /* we have timed out */
}
if (ferror(infd)) {
clearerr(infd);
inp = ERR;
} else {
inp = c;
}
}
#ifdef DEBUG
if (inp > 255)
/* we have a key symbol - treat it differently */
/* XXXX perhaps __unctrl should be expanded to include
* XXXX the keysyms in the table....
*/
__CTRACE(__CTRACE_INPUT, "wgetch assembled keysym 0x%x\n", inp);
else
__CTRACE(__CTRACE_INPUT, "wgetch got '%s'\n", unctrl(inp));
#endif
if (win->delay > -1) {
if (__delay() == ERR)
return ERR;
}
__restore_termios();
if ((__echoit) && (inp < KEY_MIN))
waddch(win, (chtype) inp);
if (weset)
nocbreak();
if (_cursesi_screen->nl && inp == 13)
inp = 10;
return ((inp < 0) || (inp == ERR) ? ERR : inp);
}
/*
* ungetch --
* Put the character back into the input queue.
*/
int
ungetch(int c)
{
return __unget((wint_t) c);
}
/*
* __unget --
* Do the work for ungetch() and unget_wch();
*/
int
__unget(wint_t c)
{
wchar_t *p;
int len;
#ifdef DEBUG
__CTRACE(__CTRACE_INPUT, "__unget(%x)\n", c);
#endif
if (_cursesi_screen->unget_pos >= _cursesi_screen->unget_len) {
len = _cursesi_screen->unget_len + 32;
if ((p = realloc(_cursesi_screen->unget_list,
sizeof(wchar_t) * len)) == NULL) {
/* Can't realloc(), so just lose the oldest entry */
memmove(_cursesi_screen->unget_list,
_cursesi_screen->unget_list + sizeof(wchar_t),
_cursesi_screen->unget_len - 1);
_cursesi_screen->unget_list[_cursesi_screen->unget_len
- 1] = c;
_cursesi_screen->unget_pos =
_cursesi_screen->unget_len;
return OK;
} else {
_cursesi_screen->unget_pos =
_cursesi_screen->unget_len;
_cursesi_screen->unget_len = len;
_cursesi_screen->unget_list = p;
}
}
_cursesi_screen->unget_list[_cursesi_screen->unget_pos] = c;
_cursesi_screen->unget_pos++;
return OK;
}