82ca45b101
C11-style memory fences and atomic primitives; in NetBSD, this translates to using the atomic_loadstore(9) primitives. To be pulled up (just in case).
991 lines
26 KiB
C
991 lines
26 KiB
C
/* $NetBSD: subr_thmap.c,v 1.6 2020/05/23 19:52:12 rmind Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2018 Mindaugas Rasiukevicius <rmind at noxt eu>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* Upstream: https://github.com/rmind/thmap/
|
|
*/
|
|
|
|
/*
|
|
* Concurrent trie-hash map.
|
|
*
|
|
* The data structure is conceptually a radix trie on hashed keys.
|
|
* Keys are hashed using a 32-bit function. The root level is a special
|
|
* case: it is managed using the compare-and-swap (CAS) atomic operation
|
|
* and has a fanout of 64. The subsequent levels are constructed using
|
|
* intermediate nodes with a fanout of 16 (using 4 bits). As more levels
|
|
* are created, more blocks of the 32-bit hash value might be generated
|
|
* by incrementing the seed parameter of the hash function.
|
|
*
|
|
* Concurrency
|
|
*
|
|
* - READERS: Descending is simply walking through the slot values of
|
|
* the intermediate nodes. It is lock-free as there is no intermediate
|
|
* state: the slot is either empty or has a pointer to the child node.
|
|
* The main assumptions here are the following:
|
|
*
|
|
* i) modifications must preserve consistency with the respect to the
|
|
* readers i.e. the readers can only see the valid node values;
|
|
*
|
|
* ii) any invalid view must "fail" the reads, e.g. by making them
|
|
* re-try from the root; this is a case for deletions and is achieved
|
|
* using the NODE_DELETED flag.
|
|
*
|
|
* iii) the node destruction must be synchronized with the readers,
|
|
* e.g. by using the Epoch-based reclamation or other techniques.
|
|
*
|
|
* - WRITERS AND LOCKING: Each intermediate node has a spin-lock (which
|
|
* is implemented using the NODE_LOCKED bit) -- it provides mutual
|
|
* exclusion amongst concurrent writers. The lock order for the nodes
|
|
* is "bottom-up" i.e. they are locked as we ascend the trie. A key
|
|
* constraint here is that parent pointer never changes.
|
|
*
|
|
* - DELETES: In addition to writer's locking, the deletion keeps the
|
|
* intermediate nodes in a valid state and sets the NODE_DELETED flag,
|
|
* to indicate that the readers must re-start the walk from the root.
|
|
* As the levels are collapsed, NODE_DELETED gets propagated up-tree.
|
|
* The leaf nodes just stay as-is until they are reclaimed.
|
|
*
|
|
* - ROOT LEVEL: The root level is a special case, as it is implemented
|
|
* as an array (rather than intermediate node). The root-level slot can
|
|
* only be set using CAS and it can only be set to a valid intermediate
|
|
* node. The root-level slot can only be cleared when the node it points
|
|
* at becomes empty, is locked and marked as NODE_DELETED (this causes
|
|
* the insert/delete operations to re-try until the slot is set to NULL).
|
|
*
|
|
* References:
|
|
*
|
|
* W. Litwin, 1981, Trie Hashing.
|
|
* Proceedings of the 1981 ACM SIGMOD, p. 19-29
|
|
* https://dl.acm.org/citation.cfm?id=582322
|
|
*
|
|
* P. L. Lehman and S. B. Yao.
|
|
* Efficient locking for concurrent operations on B-trees.
|
|
* ACM TODS, 6(4):650-670, 1981
|
|
* https://www.csd.uoc.gr/~hy460/pdf/p650-lehman.pdf
|
|
*/
|
|
|
|
#ifdef _KERNEL
|
|
#include <sys/cdefs.h>
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
#include <sys/thmap.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/hash.h>
|
|
#define THMAP_RCSID(a) __KERNEL_RCSID(0, a)
|
|
#else
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include <inttypes.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
#define THMAP_RCSID(a) __RCSID(a)
|
|
|
|
#include "thmap.h"
|
|
#include "utils.h"
|
|
#endif
|
|
|
|
THMAP_RCSID("$NetBSD: subr_thmap.c,v 1.6 2020/05/23 19:52:12 rmind Exp $");
|
|
|
|
/*
|
|
* NetBSD kernel wrappers
|
|
*/
|
|
#ifdef _KERNEL
|
|
#define ASSERT KASSERT
|
|
#define atomic_thread_fence(x) membar_sync()
|
|
#define atomic_compare_exchange_weak_explicit_32(p, e, n, m1, m2) \
|
|
(atomic_cas_32((p), *(e), (n)) == *(e))
|
|
#define atomic_compare_exchange_weak_explicit_ptr(p, e, n, m1, m2) \
|
|
(atomic_cas_ptr((p), *(void **)(e), (void *)(n)) == *(void **)(e))
|
|
#define atomic_exchange_explicit(o, n, m1) atomic_swap_ptr((o), (n))
|
|
#define murmurhash3 murmurhash2
|
|
#endif
|
|
|
|
/*
|
|
* The root level fanout is 64 (indexed by the last 6 bits of the hash
|
|
* value XORed with the length). Each subsequent level, represented by
|
|
* intermediate nodes, has a fanout of 16 (using 4 bits).
|
|
*
|
|
* The hash function produces 32-bit values.
|
|
*/
|
|
|
|
#define HASHVAL_BITS (32)
|
|
#define HASHVAL_MOD (HASHVAL_BITS - 1)
|
|
#define HASHVAL_SHIFT (5)
|
|
|
|
#define ROOT_BITS (6)
|
|
#define ROOT_SIZE (1 << ROOT_BITS)
|
|
#define ROOT_MASK (ROOT_SIZE - 1)
|
|
#define ROOT_MSBITS (HASHVAL_BITS - ROOT_BITS)
|
|
|
|
#define LEVEL_BITS (4)
|
|
#define LEVEL_SIZE (1 << LEVEL_BITS)
|
|
#define LEVEL_MASK (LEVEL_SIZE - 1)
|
|
|
|
/*
|
|
* Instead of raw pointers, we use offsets from the base address.
|
|
* This accommodates the use of this data structure in shared memory,
|
|
* where mappings can be in different address spaces.
|
|
*
|
|
* The pointers must be aligned, since pointer tagging is used to
|
|
* differentiate the intermediate nodes from leaves. We reserve the
|
|
* least significant bit.
|
|
*/
|
|
typedef uintptr_t thmap_ptr_t;
|
|
typedef uintptr_t atomic_thmap_ptr_t; // C11 _Atomic
|
|
|
|
#define THMAP_NULL ((thmap_ptr_t)0)
|
|
|
|
#define THMAP_LEAF_BIT (0x1)
|
|
|
|
#define THMAP_ALIGNED_P(p) (((uintptr_t)(p) & 3) == 0)
|
|
#define THMAP_ALIGN(p) ((uintptr_t)(p) & ~(uintptr_t)3)
|
|
#define THMAP_INODE_P(p) (((uintptr_t)(p) & THMAP_LEAF_BIT) == 0)
|
|
|
|
#define THMAP_GETPTR(th, p) ((void *)((th)->baseptr + (uintptr_t)(p)))
|
|
#define THMAP_GETOFF(th, p) ((thmap_ptr_t)((uintptr_t)(p) - (th)->baseptr))
|
|
#define THMAP_NODE(th, p) THMAP_GETPTR(th, THMAP_ALIGN(p))
|
|
|
|
/*
|
|
* State field.
|
|
*/
|
|
|
|
#define NODE_LOCKED (1U << 31) // lock (writers)
|
|
#define NODE_DELETED (1U << 30) // node deleted
|
|
#define NODE_COUNT(s) ((s) & 0x3fffffff) // slot count mask
|
|
|
|
/*
|
|
* There are two types of nodes:
|
|
* - Intermediate nodes -- arrays pointing to another level or a leaf;
|
|
* - Leaves, which store a key-value pair.
|
|
*/
|
|
|
|
typedef struct {
|
|
uint32_t state; // C11 _Atomic
|
|
thmap_ptr_t parent;
|
|
atomic_thmap_ptr_t slots[LEVEL_SIZE];
|
|
} thmap_inode_t;
|
|
|
|
#define THMAP_INODE_LEN sizeof(thmap_inode_t)
|
|
|
|
typedef struct {
|
|
thmap_ptr_t key;
|
|
size_t len;
|
|
void * val;
|
|
} thmap_leaf_t;
|
|
|
|
typedef struct {
|
|
unsigned rslot; // root-level slot index
|
|
unsigned level; // current level in the tree
|
|
unsigned hashidx; // current hash index (block of bits)
|
|
uint32_t hashval; // current hash value
|
|
} thmap_query_t;
|
|
|
|
typedef struct {
|
|
uintptr_t addr;
|
|
size_t len;
|
|
void * next;
|
|
} thmap_gc_t;
|
|
|
|
#define THMAP_ROOT_LEN (sizeof(thmap_ptr_t) * ROOT_SIZE)
|
|
|
|
struct thmap {
|
|
uintptr_t baseptr;
|
|
atomic_thmap_ptr_t * root;
|
|
unsigned flags;
|
|
const thmap_ops_t * ops;
|
|
thmap_gc_t * gc_list; // C11 _Atomic
|
|
};
|
|
|
|
static void stage_mem_gc(thmap_t *, uintptr_t, size_t);
|
|
|
|
/*
|
|
* A few low-level helper routines.
|
|
*/
|
|
|
|
static uintptr_t
|
|
alloc_wrapper(size_t len)
|
|
{
|
|
return (uintptr_t)kmem_intr_alloc(len, KM_NOSLEEP);
|
|
}
|
|
|
|
static void
|
|
free_wrapper(uintptr_t addr, size_t len)
|
|
{
|
|
kmem_intr_free((void *)addr, len);
|
|
}
|
|
|
|
static const thmap_ops_t thmap_default_ops = {
|
|
.alloc = alloc_wrapper,
|
|
.free = free_wrapper
|
|
};
|
|
|
|
/*
|
|
* NODE LOCKING.
|
|
*/
|
|
|
|
#ifdef DIAGNOSTIC
|
|
static inline bool
|
|
node_locked_p(thmap_inode_t *node)
|
|
{
|
|
return (atomic_load_relaxed(&node->state) & NODE_LOCKED) != 0;
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
lock_node(thmap_inode_t *node)
|
|
{
|
|
unsigned bcount = SPINLOCK_BACKOFF_MIN;
|
|
uint32_t s;
|
|
again:
|
|
s = atomic_load_relaxed(&node->state);
|
|
if (s & NODE_LOCKED) {
|
|
SPINLOCK_BACKOFF(bcount);
|
|
goto again;
|
|
}
|
|
/* Acquire from prior release in unlock_node.() */
|
|
if (!atomic_compare_exchange_weak_explicit_32(&node->state,
|
|
&s, s | NODE_LOCKED, memory_order_acquire, memory_order_relaxed)) {
|
|
bcount = SPINLOCK_BACKOFF_MIN;
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
static void
|
|
unlock_node(thmap_inode_t *node)
|
|
{
|
|
uint32_t s = atomic_load_relaxed(&node->state) & ~NODE_LOCKED;
|
|
|
|
ASSERT(node_locked_p(node));
|
|
/* Release to subsequent acquire in lock_node(). */
|
|
atomic_store_release(&node->state, s);
|
|
}
|
|
|
|
/*
|
|
* HASH VALUE AND KEY OPERATIONS.
|
|
*/
|
|
|
|
static inline void
|
|
hashval_init(thmap_query_t *query, const void * restrict key, size_t len)
|
|
{
|
|
const uint32_t hashval = murmurhash3(key, len, 0);
|
|
|
|
query->rslot = ((hashval >> ROOT_MSBITS) ^ len) & ROOT_MASK;
|
|
query->level = 0;
|
|
query->hashval = hashval;
|
|
query->hashidx = 0;
|
|
}
|
|
|
|
/*
|
|
* hashval_getslot: given the key, compute the hash (if not already cached)
|
|
* and return the offset for the current level.
|
|
*/
|
|
static unsigned
|
|
hashval_getslot(thmap_query_t *query, const void * restrict key, size_t len)
|
|
{
|
|
const unsigned offset = query->level * LEVEL_BITS;
|
|
const unsigned shift = offset & HASHVAL_MOD;
|
|
const unsigned i = offset >> HASHVAL_SHIFT;
|
|
|
|
if (query->hashidx != i) {
|
|
/* Generate a hash value for a required range. */
|
|
query->hashval = murmurhash3(key, len, i);
|
|
query->hashidx = i;
|
|
}
|
|
return (query->hashval >> shift) & LEVEL_MASK;
|
|
}
|
|
|
|
static unsigned
|
|
hashval_getleafslot(const thmap_t *thmap,
|
|
const thmap_leaf_t *leaf, unsigned level)
|
|
{
|
|
const void *key = THMAP_GETPTR(thmap, leaf->key);
|
|
const unsigned offset = level * LEVEL_BITS;
|
|
const unsigned shift = offset & HASHVAL_MOD;
|
|
const unsigned i = offset >> HASHVAL_SHIFT;
|
|
|
|
return (murmurhash3(key, leaf->len, i) >> shift) & LEVEL_MASK;
|
|
}
|
|
|
|
static inline unsigned
|
|
hashval_getl0slot(const thmap_t *thmap, const thmap_query_t *query,
|
|
const thmap_leaf_t *leaf)
|
|
{
|
|
if (__predict_true(query->hashidx == 0)) {
|
|
return query->hashval & LEVEL_MASK;
|
|
}
|
|
return hashval_getleafslot(thmap, leaf, 0);
|
|
}
|
|
|
|
static bool
|
|
key_cmp_p(const thmap_t *thmap, const thmap_leaf_t *leaf,
|
|
const void * restrict key, size_t len)
|
|
{
|
|
const void *leafkey = THMAP_GETPTR(thmap, leaf->key);
|
|
return len == leaf->len && memcmp(key, leafkey, len) == 0;
|
|
}
|
|
|
|
/*
|
|
* INTER-NODE OPERATIONS.
|
|
*/
|
|
|
|
static thmap_inode_t *
|
|
node_create(thmap_t *thmap, thmap_inode_t *parent)
|
|
{
|
|
thmap_inode_t *node;
|
|
uintptr_t p;
|
|
|
|
p = thmap->ops->alloc(THMAP_INODE_LEN);
|
|
if (!p) {
|
|
return NULL;
|
|
}
|
|
node = THMAP_GETPTR(thmap, p);
|
|
ASSERT(THMAP_ALIGNED_P(node));
|
|
|
|
memset(node, 0, THMAP_INODE_LEN);
|
|
if (parent) {
|
|
/* Not yet published, no need for ordering. */
|
|
atomic_store_relaxed(&node->state, NODE_LOCKED);
|
|
node->parent = THMAP_GETOFF(thmap, parent);
|
|
}
|
|
return node;
|
|
}
|
|
|
|
static void
|
|
node_insert(thmap_inode_t *node, unsigned slot, thmap_ptr_t child)
|
|
{
|
|
ASSERT(node_locked_p(node) || node->parent == THMAP_NULL);
|
|
ASSERT((atomic_load_relaxed(&node->state) & NODE_DELETED) == 0);
|
|
ASSERT(atomic_load_relaxed(&node->slots[slot]) == THMAP_NULL);
|
|
|
|
ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) < LEVEL_SIZE);
|
|
|
|
/*
|
|
* If node is public already, caller is responsible for issuing
|
|
* release fence; if node is not public, no ordering is needed.
|
|
* Hence relaxed ordering.
|
|
*/
|
|
atomic_store_relaxed(&node->slots[slot], child);
|
|
atomic_store_relaxed(&node->state,
|
|
atomic_load_relaxed(&node->state) + 1);
|
|
}
|
|
|
|
static void
|
|
node_remove(thmap_inode_t *node, unsigned slot)
|
|
{
|
|
ASSERT(node_locked_p(node));
|
|
ASSERT((atomic_load_relaxed(&node->state) & NODE_DELETED) == 0);
|
|
ASSERT(atomic_load_relaxed(&node->slots[slot]) != THMAP_NULL);
|
|
|
|
ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) > 0);
|
|
ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) <= LEVEL_SIZE);
|
|
|
|
/* Element will be GC-ed later; no need for ordering here. */
|
|
atomic_store_relaxed(&node->slots[slot], THMAP_NULL);
|
|
atomic_store_relaxed(&node->state,
|
|
atomic_load_relaxed(&node->state) - 1);
|
|
}
|
|
|
|
/*
|
|
* LEAF OPERATIONS.
|
|
*/
|
|
|
|
static thmap_leaf_t *
|
|
leaf_create(const thmap_t *thmap, const void *key, size_t len, void *val)
|
|
{
|
|
thmap_leaf_t *leaf;
|
|
uintptr_t leaf_off, key_off;
|
|
|
|
leaf_off = thmap->ops->alloc(sizeof(thmap_leaf_t));
|
|
if (!leaf_off) {
|
|
return NULL;
|
|
}
|
|
leaf = THMAP_GETPTR(thmap, leaf_off);
|
|
ASSERT(THMAP_ALIGNED_P(leaf));
|
|
|
|
if ((thmap->flags & THMAP_NOCOPY) == 0) {
|
|
/*
|
|
* Copy the key.
|
|
*/
|
|
key_off = thmap->ops->alloc(len);
|
|
if (!key_off) {
|
|
thmap->ops->free(leaf_off, sizeof(thmap_leaf_t));
|
|
return NULL;
|
|
}
|
|
memcpy(THMAP_GETPTR(thmap, key_off), key, len);
|
|
leaf->key = key_off;
|
|
} else {
|
|
/* Otherwise, we use a reference. */
|
|
leaf->key = (uintptr_t)key;
|
|
}
|
|
leaf->len = len;
|
|
leaf->val = val;
|
|
return leaf;
|
|
}
|
|
|
|
static void
|
|
leaf_free(const thmap_t *thmap, thmap_leaf_t *leaf)
|
|
{
|
|
if ((thmap->flags & THMAP_NOCOPY) == 0) {
|
|
thmap->ops->free(leaf->key, leaf->len);
|
|
}
|
|
thmap->ops->free(THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
|
|
}
|
|
|
|
static thmap_leaf_t *
|
|
get_leaf(const thmap_t *thmap, thmap_inode_t *parent, unsigned slot)
|
|
{
|
|
thmap_ptr_t node;
|
|
|
|
/* Consume from prior release in thmap_put(). */
|
|
node = atomic_load_consume(&parent->slots[slot]);
|
|
if (THMAP_INODE_P(node)) {
|
|
return NULL;
|
|
}
|
|
return THMAP_NODE(thmap, node);
|
|
}
|
|
|
|
/*
|
|
* ROOT OPERATIONS.
|
|
*/
|
|
|
|
/*
|
|
* root_try_put: Try to set a root pointer at query->rslot.
|
|
*
|
|
* => Implies release operation on success.
|
|
* => Implies no ordering on failure.
|
|
*/
|
|
static inline bool
|
|
root_try_put(thmap_t *thmap, const thmap_query_t *query, thmap_leaf_t *leaf)
|
|
{
|
|
thmap_ptr_t expected;
|
|
const unsigned i = query->rslot;
|
|
thmap_inode_t *node;
|
|
thmap_ptr_t nptr;
|
|
unsigned slot;
|
|
|
|
/*
|
|
* Must pre-check first. No ordering required because we will
|
|
* check again before taking any actions, and start over if
|
|
* this changes from null.
|
|
*/
|
|
if (atomic_load_relaxed(&thmap->root[i])) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Create an intermediate node. Since there is no parent set,
|
|
* it will be created unlocked and the CAS operation will
|
|
* release it to readers.
|
|
*/
|
|
node = node_create(thmap, NULL);
|
|
slot = hashval_getl0slot(thmap, query, leaf);
|
|
node_insert(node, slot, THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT);
|
|
nptr = THMAP_GETOFF(thmap, node);
|
|
again:
|
|
if (atomic_load_relaxed(&thmap->root[i])) {
|
|
thmap->ops->free(nptr, THMAP_INODE_LEN);
|
|
return false;
|
|
}
|
|
/* Release to subsequent consume in find_edge_node(). */
|
|
expected = THMAP_NULL;
|
|
if (!atomic_compare_exchange_weak_explicit_ptr(&thmap->root[i], &expected,
|
|
nptr, memory_order_release, memory_order_relaxed)) {
|
|
goto again;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* find_edge_node: given the hash, traverse the tree to find the edge node.
|
|
*
|
|
* => Returns an aligned (clean) pointer to the parent node.
|
|
* => Returns the slot number and sets current level.
|
|
*/
|
|
static thmap_inode_t *
|
|
find_edge_node(const thmap_t *thmap, thmap_query_t *query,
|
|
const void * restrict key, size_t len, unsigned *slot)
|
|
{
|
|
thmap_ptr_t root_slot;
|
|
thmap_inode_t *parent;
|
|
thmap_ptr_t node;
|
|
unsigned off;
|
|
|
|
ASSERT(query->level == 0);
|
|
|
|
/* Consume from prior release in root_try_put(). */
|
|
root_slot = atomic_load_consume(&thmap->root[query->rslot]);
|
|
parent = THMAP_NODE(thmap, root_slot);
|
|
if (!parent) {
|
|
return NULL;
|
|
}
|
|
descend:
|
|
off = hashval_getslot(query, key, len);
|
|
/* Consume from prior release in thmap_put(). */
|
|
node = atomic_load_consume(&parent->slots[off]);
|
|
|
|
/* Descend the tree until we find a leaf or empty slot. */
|
|
if (node && THMAP_INODE_P(node)) {
|
|
parent = THMAP_NODE(thmap, node);
|
|
query->level++;
|
|
goto descend;
|
|
}
|
|
/*
|
|
* NODE_DELETED does not become stale until GC runs, which
|
|
* cannot happen while we are in the middle of an operation,
|
|
* hence relaxed ordering.
|
|
*/
|
|
if (atomic_load_relaxed(&parent->state) & NODE_DELETED) {
|
|
return NULL;
|
|
}
|
|
*slot = off;
|
|
return parent;
|
|
}
|
|
|
|
/*
|
|
* find_edge_node_locked: traverse the tree, like find_edge_node(),
|
|
* but attempt to lock the edge node.
|
|
*
|
|
* => Returns NULL if the deleted node is found. This indicates that
|
|
* the caller must re-try from the root, as the root slot might have
|
|
* changed too.
|
|
*/
|
|
static thmap_inode_t *
|
|
find_edge_node_locked(const thmap_t *thmap, thmap_query_t *query,
|
|
const void * restrict key, size_t len, unsigned *slot)
|
|
{
|
|
thmap_inode_t *node;
|
|
thmap_ptr_t target;
|
|
retry:
|
|
/*
|
|
* Find the edge node and lock it! Re-check the state since
|
|
* the tree might change by the time we acquire the lock.
|
|
*/
|
|
node = find_edge_node(thmap, query, key, len, slot);
|
|
if (!node) {
|
|
/* The root slot is empty -- let the caller decide. */
|
|
query->level = 0;
|
|
return NULL;
|
|
}
|
|
lock_node(node);
|
|
if (__predict_false(atomic_load_relaxed(&node->state) & NODE_DELETED)) {
|
|
/*
|
|
* The node has been deleted. The tree might have a new
|
|
* shape now, therefore we must re-start from the root.
|
|
*/
|
|
unlock_node(node);
|
|
query->level = 0;
|
|
return NULL;
|
|
}
|
|
target = atomic_load_relaxed(&node->slots[*slot]);
|
|
if (__predict_false(target && THMAP_INODE_P(target))) {
|
|
/*
|
|
* The target slot has been changed and it is now an
|
|
* intermediate node. Re-start from the top internode.
|
|
*/
|
|
unlock_node(node);
|
|
query->level = 0;
|
|
goto retry;
|
|
}
|
|
return node;
|
|
}
|
|
|
|
/*
|
|
* thmap_get: lookup a value given the key.
|
|
*/
|
|
void *
|
|
thmap_get(thmap_t *thmap, const void *key, size_t len)
|
|
{
|
|
thmap_query_t query;
|
|
thmap_inode_t *parent;
|
|
thmap_leaf_t *leaf;
|
|
unsigned slot;
|
|
|
|
hashval_init(&query, key, len);
|
|
parent = find_edge_node(thmap, &query, key, len, &slot);
|
|
if (!parent) {
|
|
return NULL;
|
|
}
|
|
leaf = get_leaf(thmap, parent, slot);
|
|
if (!leaf) {
|
|
return NULL;
|
|
}
|
|
if (!key_cmp_p(thmap, leaf, key, len)) {
|
|
return NULL;
|
|
}
|
|
return leaf->val;
|
|
}
|
|
|
|
/*
|
|
* thmap_put: insert a value given the key.
|
|
*
|
|
* => If the key is already present, return the associated value.
|
|
* => Otherwise, on successful insert, return the given value.
|
|
*/
|
|
void *
|
|
thmap_put(thmap_t *thmap, const void *key, size_t len, void *val)
|
|
{
|
|
thmap_query_t query;
|
|
thmap_leaf_t *leaf, *other;
|
|
thmap_inode_t *parent, *child;
|
|
unsigned slot, other_slot;
|
|
thmap_ptr_t target;
|
|
|
|
/*
|
|
* First, pre-allocate and initialize the leaf node.
|
|
*/
|
|
leaf = leaf_create(thmap, key, len, val);
|
|
if (__predict_false(!leaf)) {
|
|
return NULL;
|
|
}
|
|
hashval_init(&query, key, len);
|
|
retry:
|
|
/*
|
|
* Try to insert into the root first, if its slot is empty.
|
|
*/
|
|
if (root_try_put(thmap, &query, leaf)) {
|
|
/* Success: the leaf was inserted; no locking involved. */
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Release node via store in node_insert (*) to subsequent
|
|
* consume in get_leaf() or find_edge_node().
|
|
*/
|
|
atomic_thread_fence(memory_order_release);
|
|
|
|
/*
|
|
* Find the edge node and the target slot.
|
|
*/
|
|
parent = find_edge_node_locked(thmap, &query, key, len, &slot);
|
|
if (!parent) {
|
|
goto retry;
|
|
}
|
|
target = atomic_load_relaxed(&parent->slots[slot]); // tagged offset
|
|
if (THMAP_INODE_P(target)) {
|
|
/*
|
|
* Empty slot: simply insert the new leaf. The release
|
|
* fence is already issued for us.
|
|
*/
|
|
target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
|
|
node_insert(parent, slot, target); /* (*) */
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Collision or duplicate.
|
|
*/
|
|
other = THMAP_NODE(thmap, target);
|
|
if (key_cmp_p(thmap, other, key, len)) {
|
|
/*
|
|
* Duplicate. Free the pre-allocated leaf and
|
|
* return the present value.
|
|
*/
|
|
leaf_free(thmap, leaf);
|
|
val = other->val;
|
|
goto out;
|
|
}
|
|
descend:
|
|
/*
|
|
* Collision -- expand the tree. Create an intermediate node
|
|
* which will be locked (NODE_LOCKED) for us. At this point,
|
|
* we advance to the next level.
|
|
*/
|
|
child = node_create(thmap, parent);
|
|
if (__predict_false(!child)) {
|
|
leaf_free(thmap, leaf);
|
|
val = NULL;
|
|
goto out;
|
|
}
|
|
query.level++;
|
|
|
|
/*
|
|
* Insert the other (colliding) leaf first. The new child is
|
|
* not yet published, so memory order is relaxed.
|
|
*/
|
|
other_slot = hashval_getleafslot(thmap, other, query.level);
|
|
target = THMAP_GETOFF(thmap, other) | THMAP_LEAF_BIT;
|
|
node_insert(child, other_slot, target);
|
|
|
|
/*
|
|
* Insert the intermediate node into the parent node.
|
|
* It becomes the new parent for the our new leaf.
|
|
*
|
|
* Ensure that stores to the child (and leaf) reach global
|
|
* visibility before it gets inserted to the parent, as
|
|
* consumed by get_leaf() or find_edge_node().
|
|
*/
|
|
atomic_store_release(&parent->slots[slot], THMAP_GETOFF(thmap, child));
|
|
|
|
unlock_node(parent);
|
|
ASSERT(node_locked_p(child));
|
|
parent = child;
|
|
|
|
/*
|
|
* Get the new slot and check for another collision
|
|
* at the next level.
|
|
*/
|
|
slot = hashval_getslot(&query, key, len);
|
|
if (slot == other_slot) {
|
|
/* Another collision -- descend and expand again. */
|
|
goto descend;
|
|
}
|
|
|
|
/*
|
|
* Insert our new leaf once we expanded enough. The release
|
|
* fence is already issued for us.
|
|
*/
|
|
target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
|
|
node_insert(parent, slot, target); /* (*) */
|
|
out:
|
|
unlock_node(parent);
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* thmap_del: remove the entry given the key.
|
|
*/
|
|
void *
|
|
thmap_del(thmap_t *thmap, const void *key, size_t len)
|
|
{
|
|
thmap_query_t query;
|
|
thmap_leaf_t *leaf;
|
|
thmap_inode_t *parent;
|
|
unsigned slot;
|
|
void *val;
|
|
|
|
hashval_init(&query, key, len);
|
|
parent = find_edge_node_locked(thmap, &query, key, len, &slot);
|
|
if (!parent) {
|
|
/* Root slot empty: not found. */
|
|
return NULL;
|
|
}
|
|
leaf = get_leaf(thmap, parent, slot);
|
|
if (!leaf || !key_cmp_p(thmap, leaf, key, len)) {
|
|
/* Not found. */
|
|
unlock_node(parent);
|
|
return NULL;
|
|
}
|
|
|
|
/* Remove the leaf. */
|
|
ASSERT(THMAP_NODE(thmap, atomic_load_relaxed(&parent->slots[slot]))
|
|
== leaf);
|
|
node_remove(parent, slot);
|
|
|
|
/*
|
|
* Collapse the levels if removing the last item.
|
|
*/
|
|
while (query.level &&
|
|
NODE_COUNT(atomic_load_relaxed(&parent->state)) == 0) {
|
|
thmap_inode_t *node = parent;
|
|
|
|
ASSERT(atomic_load_relaxed(&node->state) == NODE_LOCKED);
|
|
|
|
/*
|
|
* Ascend one level up.
|
|
* => Mark our current parent as deleted.
|
|
* => Lock the parent one level up.
|
|
*/
|
|
query.level--;
|
|
slot = hashval_getslot(&query, key, len);
|
|
parent = THMAP_NODE(thmap, node->parent);
|
|
ASSERT(parent != NULL);
|
|
|
|
lock_node(parent);
|
|
ASSERT((atomic_load_relaxed(&parent->state) & NODE_DELETED)
|
|
== 0);
|
|
|
|
/*
|
|
* Lock is exclusive, so nobody else can be writing at
|
|
* the same time, and no need for atomic R/M/W, but
|
|
* readers may read without the lock and so need atomic
|
|
* load/store. No ordering here needed because the
|
|
* entry itself stays valid until GC.
|
|
*/
|
|
atomic_store_relaxed(&node->state,
|
|
atomic_load_relaxed(&node->state) | NODE_DELETED);
|
|
unlock_node(node); // memory_order_release
|
|
|
|
ASSERT(THMAP_NODE(thmap,
|
|
atomic_load_relaxed(&parent->slots[slot])) == node);
|
|
node_remove(parent, slot);
|
|
|
|
/* Stage the removed node for G/C. */
|
|
stage_mem_gc(thmap, THMAP_GETOFF(thmap, node), THMAP_INODE_LEN);
|
|
}
|
|
|
|
/*
|
|
* If the top node is empty, then we need to remove it from the
|
|
* root level. Mark the node as deleted and clear the slot.
|
|
*
|
|
* Note: acquiring the lock on the top node effectively prevents
|
|
* the root slot from changing.
|
|
*/
|
|
if (NODE_COUNT(atomic_load_relaxed(&parent->state)) == 0) {
|
|
const unsigned rslot = query.rslot;
|
|
const thmap_ptr_t nptr =
|
|
atomic_load_relaxed(&thmap->root[rslot]);
|
|
|
|
ASSERT(query.level == 0);
|
|
ASSERT(parent->parent == THMAP_NULL);
|
|
ASSERT(THMAP_GETOFF(thmap, parent) == nptr);
|
|
|
|
/* Mark as deleted and remove from the root-level slot. */
|
|
atomic_store_relaxed(&parent->state,
|
|
atomic_load_relaxed(&parent->state) | NODE_DELETED);
|
|
atomic_store_relaxed(&thmap->root[rslot], THMAP_NULL);
|
|
|
|
stage_mem_gc(thmap, nptr, THMAP_INODE_LEN);
|
|
}
|
|
unlock_node(parent);
|
|
|
|
/*
|
|
* Save the value and stage the leaf for G/C.
|
|
*/
|
|
val = leaf->val;
|
|
if ((thmap->flags & THMAP_NOCOPY) == 0) {
|
|
stage_mem_gc(thmap, leaf->key, leaf->len);
|
|
}
|
|
stage_mem_gc(thmap, THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* G/C routines.
|
|
*/
|
|
|
|
static void
|
|
stage_mem_gc(thmap_t *thmap, uintptr_t addr, size_t len)
|
|
{
|
|
thmap_gc_t *head, *gc;
|
|
|
|
gc = kmem_intr_alloc(sizeof(thmap_gc_t), KM_NOSLEEP);
|
|
gc->addr = addr;
|
|
gc->len = len;
|
|
retry:
|
|
head = atomic_load_relaxed(&thmap->gc_list);
|
|
gc->next = head; // not yet published
|
|
|
|
/* Release to subsequent acquire in thmap_stage_gc(). */
|
|
if (!atomic_compare_exchange_weak_explicit_ptr(&thmap->gc_list, &head, gc,
|
|
memory_order_release, memory_order_relaxed)) {
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
void *
|
|
thmap_stage_gc(thmap_t *thmap)
|
|
{
|
|
/* Acquire from prior release in stage_mem_gc(). */
|
|
return atomic_exchange_explicit(&thmap->gc_list, NULL,
|
|
memory_order_acquire);
|
|
}
|
|
|
|
void
|
|
thmap_gc(thmap_t *thmap, void *ref)
|
|
{
|
|
thmap_gc_t *gc = ref;
|
|
|
|
while (gc) {
|
|
thmap_gc_t *next = gc->next;
|
|
thmap->ops->free(gc->addr, gc->len);
|
|
kmem_intr_free(gc, sizeof(thmap_gc_t));
|
|
gc = next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* thmap_create: construct a new trie-hash map object.
|
|
*/
|
|
thmap_t *
|
|
thmap_create(uintptr_t baseptr, const thmap_ops_t *ops, unsigned flags)
|
|
{
|
|
thmap_t *thmap;
|
|
uintptr_t root;
|
|
|
|
/*
|
|
* Setup the map object.
|
|
*/
|
|
if (!THMAP_ALIGNED_P(baseptr)) {
|
|
return NULL;
|
|
}
|
|
thmap = kmem_zalloc(sizeof(thmap_t), KM_SLEEP);
|
|
if (!thmap) {
|
|
return NULL;
|
|
}
|
|
thmap->baseptr = baseptr;
|
|
thmap->ops = ops ? ops : &thmap_default_ops;
|
|
thmap->flags = flags;
|
|
|
|
if ((thmap->flags & THMAP_SETROOT) == 0) {
|
|
/* Allocate the root level. */
|
|
root = thmap->ops->alloc(THMAP_ROOT_LEN);
|
|
thmap->root = THMAP_GETPTR(thmap, root);
|
|
if (!thmap->root) {
|
|
kmem_free(thmap, sizeof(thmap_t));
|
|
return NULL;
|
|
}
|
|
memset(thmap->root, 0, THMAP_ROOT_LEN);
|
|
atomic_thread_fence(memory_order_release); /* XXX */
|
|
}
|
|
return thmap;
|
|
}
|
|
|
|
int
|
|
thmap_setroot(thmap_t *thmap, uintptr_t root_off)
|
|
{
|
|
if (thmap->root) {
|
|
return -1;
|
|
}
|
|
thmap->root = THMAP_GETPTR(thmap, root_off);
|
|
atomic_thread_fence(memory_order_release); /* XXX */
|
|
return 0;
|
|
}
|
|
|
|
uintptr_t
|
|
thmap_getroot(const thmap_t *thmap)
|
|
{
|
|
return THMAP_GETOFF(thmap, thmap->root);
|
|
}
|
|
|
|
void
|
|
thmap_destroy(thmap_t *thmap)
|
|
{
|
|
uintptr_t root = THMAP_GETOFF(thmap, thmap->root);
|
|
void *ref;
|
|
|
|
ref = thmap_stage_gc(thmap);
|
|
thmap_gc(thmap, ref);
|
|
|
|
if ((thmap->flags & THMAP_SETROOT) == 0) {
|
|
thmap->ops->free(root, THMAP_ROOT_LEN);
|
|
}
|
|
kmem_free(thmap, sizeof(thmap_t));
|
|
}
|