NetBSD/sys/kern/subr_kcov.c
2020-07-03 16:11:11 +00:00

804 lines
16 KiB
C

/* $NetBSD: subr_kcov.c,v 1.16 2020/07/03 16:11:11 maxv Exp $ */
/*
* Copyright (c) 2019-2020 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Siddharth Muralee.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include <sys/module.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <sys/condvar.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/kmem.h>
#include <sys/mman.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <uvm/uvm_extern.h>
#include <sys/kcov.h>
#define KCOV_BUF_MAX_ENTRIES (256 << 10)
#define KCOV_CMP_CONST 1
#define KCOV_CMP_SIZE(x) ((x) << 1)
static dev_type_open(kcov_open);
const struct cdevsw kcov_cdevsw = {
.d_open = kcov_open,
.d_close = noclose,
.d_read = noread,
.d_write = nowrite,
.d_ioctl = noioctl,
.d_stop = nostop,
.d_tty = notty,
.d_poll = nopoll,
.d_mmap = nommap,
.d_kqfilter = nokqfilter,
.d_discard = nodiscard,
.d_flag = D_OTHER | D_MPSAFE
};
static int kcov_fops_ioctl(file_t *, u_long, void *);
static int kcov_fops_close(file_t *);
static int kcov_fops_mmap(file_t *, off_t *, size_t, int, int *, int *,
struct uvm_object **, int *);
const struct fileops kcov_fileops = {
.fo_read = fbadop_read,
.fo_write = fbadop_write,
.fo_ioctl = kcov_fops_ioctl,
.fo_fcntl = fnullop_fcntl,
.fo_poll = fnullop_poll,
.fo_stat = fbadop_stat,
.fo_close = kcov_fops_close,
.fo_kqfilter = fnullop_kqfilter,
.fo_restart = fnullop_restart,
.fo_mmap = kcov_fops_mmap,
};
/*
* The KCOV descriptors (KD) are allocated during open(), and are associated
* with a file descriptor.
*
* An LWP can 'enable' a KD. When this happens, this LWP becomes the owner of
* the KD, and no LWP can 'disable' this KD except the owner.
*
* A KD is freed when its file descriptor is closed _iff_ the KD is not active
* on an LWP. If it is, we ask the LWP to free it when it exits.
*
* The buffers mmapped are in a dedicated uobj, therefore there is no risk
* that the kernel frees a buffer still mmapped in a process: the uobj
* refcount will be non-zero, so the backing is not freed until an munmap
* occurs on said process.
*/
typedef struct kcov_desc {
/* Local only */
kmutex_t lock;
bool lwpfree;
bool silenced;
/* Pointer to the end of the structure, if any */
struct kcov_desc *remote;
/* Can be remote */
kcov_int_t *buf;
struct uvm_object *uobj;
size_t bufnent;
size_t bufsize;
int mode;
bool enabled;
} kcov_t;
/* -------------------------------------------------------------------------- */
static void
kcov_lock(kcov_t *kd)
{
mutex_enter(&kd->lock);
}
static void
kcov_unlock(kcov_t *kd)
{
mutex_exit(&kd->lock);
}
static bool
kcov_mode_is_valid(int mode)
{
switch (mode) {
case KCOV_MODE_NONE:
case KCOV_MODE_TRACE_PC:
case KCOV_MODE_TRACE_CMP:
return true;
default:
return false;
}
}
/* -------------------------------------------------------------------------- */
static void
kcov_free(kcov_t *kd)
{
KASSERT(kd != NULL);
if (kd->buf != NULL) {
uvm_deallocate(kernel_map, (vaddr_t)kd->buf, kd->bufsize);
}
mutex_destroy(&kd->lock);
kmem_free(kd, sizeof(*kd));
}
void
kcov_lwp_free(struct lwp *l)
{
kcov_t *kd = (kcov_t *)l->l_kcov;
if (kd == NULL) {
return;
}
kcov_lock(kd);
kd->enabled = false;
kcov_unlock(kd);
if (kd->lwpfree) {
kcov_free(kd);
}
}
static int
kcov_allocbuf(kcov_t *kd, uint64_t nent)
{
size_t size;
int error;
if (nent < 2 || nent > KCOV_BUF_MAX_ENTRIES)
return EINVAL;
if (kd->buf != NULL)
return EEXIST;
size = roundup(nent * KCOV_ENTRY_SIZE, PAGE_SIZE);
kd->bufnent = nent - 1;
kd->bufsize = size;
kd->uobj = uao_create(kd->bufsize, 0);
/* Map the uobj into the kernel address space, as wired. */
kd->buf = NULL;
error = uvm_map(kernel_map, (vaddr_t *)&kd->buf, kd->bufsize, kd->uobj,
0, 0, UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_SHARE,
UVM_ADV_RANDOM, 0));
if (error) {
uao_detach(kd->uobj);
return error;
}
error = uvm_map_pageable(kernel_map, (vaddr_t)kd->buf,
(vaddr_t)kd->buf + size, false, 0);
if (error) {
uvm_deallocate(kernel_map, (vaddr_t)kd->buf, size);
return error;
}
return 0;
}
/* -------------------------------------------------------------------------- */
typedef struct kcov_remote {
LIST_ENTRY(kcov_remote) list;
uint64_t subsystem;
uint64_t id;
u_int refcount;
kcov_t kd;
} kcov_remote_t;
typedef LIST_HEAD(, kcov_remote) kcov_remote_list_t;
static kcov_remote_list_t kcov_remote_list;
static kcov_remote_t *
kcov_remote_find(uint64_t subsystem, uint64_t id)
{
kcov_remote_t *kr;
LIST_FOREACH(kr, &kcov_remote_list, list) {
if (kr->subsystem == subsystem && kr->id == id)
return kr;
}
return NULL;
}
void
kcov_remote_register(uint64_t subsystem, uint64_t id)
{
kcov_remote_t *kr;
kcov_t *kd;
int error;
if (kcov_remote_find(subsystem, id) != NULL) {
panic("%s: kr already exists", __func__);
}
kr = kmem_zalloc(sizeof(*kr), KM_SLEEP);
kr->subsystem = subsystem;
kr->id = id;
kr->refcount = 0;
kd = &kr->kd;
mutex_init(&kd->lock, MUTEX_DEFAULT, IPL_NONE);
error = kcov_allocbuf(kd, KCOV_BUF_MAX_ENTRIES);
if (error != 0)
panic("%s: failed to allocate buffer", __func__);
LIST_INSERT_HEAD(&kcov_remote_list, kr, list);
}
void
kcov_remote_enter(uint64_t subsystem, uint64_t id)
{
struct lwp *l = curlwp;
kcov_remote_t *kr;
kcov_t *kd;
u_int refs __diagused;
kr = kcov_remote_find(subsystem, id);
if (__predict_false(kr == NULL)) {
panic("%s: unable to find kr", __func__);
}
refs = atomic_inc_uint_nv(&kr->refcount);
KASSERT(refs == 1);
KASSERT(l->l_kcov == NULL);
kd = &kr->kd;
if (atomic_load_relaxed(&kd->enabled)) {
l->l_kcov = kd;
}
}
void
kcov_remote_leave(uint64_t subsystem, uint64_t id)
{
struct lwp *l = curlwp;
kcov_remote_t *kr;
u_int refs __diagused;
kr = kcov_remote_find(subsystem, id);
if (__predict_false(kr == NULL)) {
panic("%s: unable to find kr", __func__);
}
refs = atomic_dec_uint_nv(&kr->refcount);
KASSERT(refs == 0);
l->l_kcov = NULL;
}
static int
kcov_remote_enable(kcov_t *kd, int mode)
{
kcov_lock(kd);
if (kd->enabled) {
kcov_unlock(kd);
return EBUSY;
}
kd->mode = mode;
atomic_store_relaxed(&kd->enabled, true);
kcov_unlock(kd);
return 0;
}
static int
kcov_remote_disable(kcov_t *kd)
{
kcov_lock(kd);
if (!kd->enabled) {
kcov_unlock(kd);
return ENOENT;
}
atomic_store_relaxed(&kd->enabled, false);
kcov_unlock(kd);
return 0;
}
static int
kcov_remote_attach(kcov_t *kd, struct kcov_ioc_remote_attach *args)
{
kcov_remote_t *kr;
if (kd->enabled)
return EEXIST;
kr = kcov_remote_find(args->subsystem, args->id);
if (kr == NULL)
return ENOENT;
kd->remote = &kr->kd;
return 0;
}
static int
kcov_remote_detach(kcov_t *kd)
{
if (kd->enabled)
return EEXIST;
if (kd->remote == NULL)
return ENOENT;
(void)kcov_remote_disable(kd->remote);
kd->remote = NULL;
return 0;
}
/* -------------------------------------------------------------------------- */
static int
kcov_setbufsize(kcov_t *kd, uint64_t *args)
{
if (kd->remote != NULL)
return 0; /* buffer allocated remotely */
if (kd->enabled)
return EBUSY;
return kcov_allocbuf(kd, *((uint64_t *)args));
}
static int
kcov_enable(kcov_t *kd, uint64_t *args)
{
struct lwp *l = curlwp;
int mode;
mode = *((int *)args);
if (!kcov_mode_is_valid(mode))
return EINVAL;
if (kd->remote != NULL)
return kcov_remote_enable(kd->remote, mode);
if (kd->enabled)
return EBUSY;
if (l->l_kcov != NULL)
return EBUSY;
if (kd->buf == NULL)
return ENOBUFS;
l->l_kcov = kd;
kd->mode = mode;
kd->enabled = true;
return 0;
}
static int
kcov_disable(kcov_t *kd)
{
struct lwp *l = curlwp;
if (kd->remote != NULL)
return kcov_remote_disable(kd->remote);
if (!kd->enabled)
return ENOENT;
if (l->l_kcov != kd)
return ENOENT;
l->l_kcov = NULL;
kd->enabled = false;
return 0;
}
/* -------------------------------------------------------------------------- */
void
kcov_silence_enter(void)
{
kcov_t *kd = curlwp->l_kcov;
if (kd != NULL)
kd->silenced = true;
}
void
kcov_silence_leave(void)
{
kcov_t *kd = curlwp->l_kcov;
if (kd != NULL)
kd->silenced = false;
}
/* -------------------------------------------------------------------------- */
static int
kcov_open(dev_t dev, int flag, int mode, struct lwp *l)
{
struct file *fp;
int error, fd;
kcov_t *kd;
error = fd_allocfile(&fp, &fd);
if (error)
return error;
kd = kmem_zalloc(sizeof(*kd), KM_SLEEP);
mutex_init(&kd->lock, MUTEX_DEFAULT, IPL_NONE);
return fd_clone(fp, fd, flag, &kcov_fileops, kd);
}
static int
kcov_fops_close(file_t *fp)
{
kcov_t *kd = fp->f_data;
kcov_lock(kd);
if (kd->remote != NULL)
(void)kcov_remote_disable(kd->remote);
if (kd->enabled) {
kd->lwpfree = true;
kcov_unlock(kd);
} else {
kcov_unlock(kd);
kcov_free(kd);
}
fp->f_data = NULL;
return 0;
}
static int
kcov_fops_ioctl(file_t *fp, u_long cmd, void *addr)
{
kcov_t *kd;
int error;
kd = fp->f_data;
if (kd == NULL)
return ENXIO;
kcov_lock(kd);
switch (cmd) {
case KCOV_IOC_SETBUFSIZE:
error = kcov_setbufsize(kd, addr);
break;
case KCOV_IOC_ENABLE:
error = kcov_enable(kd, addr);
break;
case KCOV_IOC_DISABLE:
error = kcov_disable(kd);
break;
case KCOV_IOC_REMOTE_ATTACH:
error = kcov_remote_attach(kd, addr);
break;
case KCOV_IOC_REMOTE_DETACH:
error = kcov_remote_detach(kd);
break;
default:
error = EINVAL;
}
kcov_unlock(kd);
return error;
}
static int
kcov_fops_mmap(file_t *fp, off_t *offp, size_t size, int prot, int *flagsp,
int *advicep, struct uvm_object **uobjp, int *maxprotp)
{
off_t off = *offp;
kcov_t *kd, *kdbuf;
int error = 0;
if (prot & PROT_EXEC)
return EACCES;
if (off < 0)
return EINVAL;
if (size > KCOV_BUF_MAX_ENTRIES * KCOV_ENTRY_SIZE)
return EINVAL;
if (off > KCOV_BUF_MAX_ENTRIES * KCOV_ENTRY_SIZE)
return EINVAL;
kd = fp->f_data;
if (kd == NULL)
return ENXIO;
kcov_lock(kd);
if (kd->remote != NULL)
kdbuf = kd->remote;
else
kdbuf = kd;
if ((size + off) > kdbuf->bufsize) {
error = ENOMEM;
goto out;
}
uao_reference(kdbuf->uobj);
*uobjp = kdbuf->uobj;
*maxprotp = prot;
*advicep = UVM_ADV_RANDOM;
out:
kcov_unlock(kd);
return error;
}
/* -------------------------------------------------------------------------- */
/*
* Constraints on the functions here: they must be marked with __nomsan, and
* must not make any external call.
*/
static inline bool __nomsan
in_interrupt(void)
{
return curcpu()->ci_idepth >= 0;
}
void __sanitizer_cov_trace_pc(void);
void __nomsan
__sanitizer_cov_trace_pc(void)
{
extern int cold;
uint64_t idx;
kcov_t *kd;
if (__predict_false(cold)) {
/* Do not trace during boot. */
return;
}
if (in_interrupt()) {
/* Do not trace in interrupts. */
return;
}
kd = curlwp->l_kcov;
if (__predict_true(kd == NULL)) {
/* Not traced. */
return;
}
if (!kd->enabled) {
/* Tracing not enabled */
return;
}
if (__predict_false(kd->silenced)) {
/* Silenced. */
return;
}
if (kd->mode != KCOV_MODE_TRACE_PC) {
/* PC tracing mode not enabled */
return;
}
KASSERT(kd->remote == NULL);
idx = kd->buf[0];
if (idx < kd->bufnent) {
kd->buf[idx+1] =
(intptr_t)__builtin_return_address(0);
kd->buf[0] = idx + 1;
}
}
static void __nomsan
trace_cmp(uint64_t type, uint64_t arg1, uint64_t arg2, intptr_t pc)
{
extern int cold;
uint64_t idx;
kcov_t *kd;
if (__predict_false(cold)) {
/* Do not trace during boot. */
return;
}
if (in_interrupt()) {
/* Do not trace in interrupts. */
return;
}
kd = curlwp->l_kcov;
if (__predict_true(kd == NULL)) {
/* Not traced. */
return;
}
if (!kd->enabled) {
/* Tracing not enabled */
return;
}
if (__predict_false(kd->silenced)) {
/* Silenced. */
return;
}
if (kd->mode != KCOV_MODE_TRACE_CMP) {
/* CMP tracing mode not enabled */
return;
}
KASSERT(kd->remote == NULL);
idx = kd->buf[0];
if ((idx * 4 + 4) <= kd->bufnent) {
kd->buf[idx * 4 + 1] = type;
kd->buf[idx * 4 + 2] = arg1;
kd->buf[idx * 4 + 3] = arg2;
kd->buf[idx * 4 + 4] = pc;
kd->buf[0] = idx + 1;
}
}
void __sanitizer_cov_trace_cmp1(uint8_t arg1, uint8_t arg2);
void __nomsan
__sanitizer_cov_trace_cmp1(uint8_t arg1, uint8_t arg2)
{
trace_cmp(KCOV_CMP_SIZE(0), arg1, arg2,
(intptr_t)__builtin_return_address(0));
}
void __sanitizer_cov_trace_cmp2(uint16_t arg1, uint16_t arg2);
void __nomsan
__sanitizer_cov_trace_cmp2(uint16_t arg1, uint16_t arg2)
{
trace_cmp(KCOV_CMP_SIZE(1), arg1, arg2,
(intptr_t)__builtin_return_address(0));
}
void __sanitizer_cov_trace_cmp4(uint32_t arg1, uint32_t arg2);
void __nomsan
__sanitizer_cov_trace_cmp4(uint32_t arg1, uint32_t arg2)
{
trace_cmp(KCOV_CMP_SIZE(2), arg1, arg2,
(intptr_t)__builtin_return_address(0));
}
void __sanitizer_cov_trace_cmp8(uint64_t arg1, uint64_t arg2);
void __nomsan
__sanitizer_cov_trace_cmp8(uint64_t arg1, uint64_t arg2)
{
trace_cmp(KCOV_CMP_SIZE(3), arg1, arg2,
(intptr_t)__builtin_return_address(0));
}
void __sanitizer_cov_trace_const_cmp1(uint8_t arg1, uint8_t arg2);
void __nomsan
__sanitizer_cov_trace_const_cmp1(uint8_t arg1, uint8_t arg2)
{
trace_cmp(KCOV_CMP_SIZE(0) | KCOV_CMP_CONST, arg1, arg2,
(intptr_t)__builtin_return_address(0));
}
void __sanitizer_cov_trace_const_cmp2(uint16_t arg1, uint16_t arg2);
void __nomsan
__sanitizer_cov_trace_const_cmp2(uint16_t arg1, uint16_t arg2)
{
trace_cmp(KCOV_CMP_SIZE(1) | KCOV_CMP_CONST, arg1, arg2,
(intptr_t)__builtin_return_address(0));
}
void __sanitizer_cov_trace_const_cmp4(uint32_t arg1, uint32_t arg2);
void __nomsan
__sanitizer_cov_trace_const_cmp4(uint32_t arg1, uint32_t arg2)
{
trace_cmp(KCOV_CMP_SIZE(2) | KCOV_CMP_CONST, arg1, arg2,
(intptr_t)__builtin_return_address(0));
}
void __sanitizer_cov_trace_const_cmp8(uint64_t arg1, uint64_t arg2);
void __nomsan
__sanitizer_cov_trace_const_cmp8(uint64_t arg1, uint64_t arg2)
{
trace_cmp(KCOV_CMP_SIZE(3) | KCOV_CMP_CONST, arg1, arg2,
(intptr_t)__builtin_return_address(0));
}
void __sanitizer_cov_trace_switch(uint64_t val, uint64_t *cases);
void __nomsan
__sanitizer_cov_trace_switch(uint64_t val, uint64_t *cases)
{
uint64_t i, nbits, ncases, type;
intptr_t pc;
pc = (intptr_t)__builtin_return_address(0);
ncases = cases[0];
nbits = cases[1];
switch (nbits) {
case 8:
type = KCOV_CMP_SIZE(0);
break;
case 16:
type = KCOV_CMP_SIZE(1);
break;
case 32:
type = KCOV_CMP_SIZE(2);
break;
case 64:
type = KCOV_CMP_SIZE(3);
break;
default:
return;
}
type |= KCOV_CMP_CONST;
for (i = 0; i < ncases; i++)
trace_cmp(type, cases[i + 2], val, pc);
}
/* -------------------------------------------------------------------------- */
MODULE(MODULE_CLASS_MISC, kcov, NULL);
static int
kcov_modcmd(modcmd_t cmd, void *arg)
{
switch (cmd) {
case MODULE_CMD_INIT:
return 0;
case MODULE_CMD_FINI:
return EINVAL;
default:
return ENOTTY;
}
}