NetBSD/lib/libpthread_dbg/pthread_dbg.c
2003-07-17 21:14:49 +00:00

945 lines
21 KiB
C

/* $NetBSD: pthread_dbg.c,v 1.8 2003/07/17 21:14:49 nathanw Exp $ */
/*-
* Copyright (c) 2002 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Nathan J. Williams for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__RCSID("$NetBSD: pthread_dbg.c,v 1.8 2003/07/17 21:14:49 nathanw Exp $");
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/types.h>
#include <unistd.h>
#include <pthread.h>
#include <pthread_int.h>
#include <pthread_dbg.h>
#include <pthread_dbg_int.h>
#include <machine/reg.h>
#define MIN(a,b) ((a)<(b) ? (a) : (b))
static int td__getthread(td_proc_t *proc, caddr_t addr, td_thread_t **threadp);
static int td__getsync(td_proc_t *proc, caddr_t addr, td_sync_t **syncp);
int
td_open(struct td_proc_callbacks_t *cb, void *arg, td_proc_t **procp)
{
td_proc_t *proc;
caddr_t dbgaddr;
int dbg;
int val;
proc = malloc(sizeof(*proc));
if (proc == NULL)
return TD_ERR_NOMEM;
proc->cb = cb;
proc->arg = arg;
val = LOOKUP(proc, "pthread__dbg", &dbgaddr);
if (val != 0) {
if (val == TD_ERR_NOSYM)
val = TD_ERR_NOLIB;
goto error;
}
val = READ(proc, dbgaddr, &dbg, sizeof(int));
if (val != 0)
goto error;
if (dbg != 0) {
/* Another instance of libpthread_dbg is already attached. */
val = TD_ERR_INUSE;
goto error;
}
dbg = getpid();
/*
* If this fails it probably means we're debugging a core file and
* can't write to it.
* If it's something else we'll lose the next time we hit WRITE,
* but not before, and that's OK.
*/
WRITE(proc, dbgaddr, &dbg, sizeof(int));
proc->allqueue = 0;
PTQ_INIT(&proc->threads);
PTQ_INIT(&proc->syncs);
*procp = proc;
return 0;
error:
free(proc);
return val;
}
int
td_close(td_proc_t *proc)
{
caddr_t dbgaddr;
int dbg;
int val;
td_thread_t *t, *next;
td_sync_t *s, *nexts;
val = LOOKUP(proc, "pthread__dbg", &dbgaddr);
if (val != 0)
return val;
dbg = 0;
/*
* Error returns from this write are mot really a problem;
* the process doesn't exist any more.
*/
WRITE(proc, dbgaddr, &dbg, sizeof(int));
/* Deallocate the list of thread structures */
for (t = PTQ_FIRST(&proc->threads); t; t = next) {
next = PTQ_NEXT(t, list);
PTQ_REMOVE(&proc->threads, t, list);
free(t);
}
/* Deallocate the list of sync objects */
for (s = PTQ_FIRST(&proc->syncs); s; s = nexts) {
nexts = PTQ_NEXT(s, list);
PTQ_REMOVE(&proc->syncs, s, list);
free(s);
}
free(proc);
return 0;
}
int
td_thr_iter(td_proc_t *proc, int (*call)(td_thread_t *, void *), void *callarg)
{
int val;
caddr_t allqaddr, next;
struct pthread_queue_t allq;
td_thread_t *thread;
if (proc->allqueue == 0) {
val = LOOKUP(proc, "pthread__allqueue", &allqaddr);
if (val != 0)
return val;
proc->allqueue = allqaddr;
} else {
allqaddr = proc->allqueue;
}
val = READ(proc, allqaddr, &allq, sizeof(allq));
if (val != 0)
return val;
next = (void *)allq.ptqh_first;
while (next != NULL) {
val = td__getthread(proc, next, &thread);
if (val != 0)
return val;
val = (*call)(thread, callarg);
if (val != 0)
return 0;
val = READ(proc,
next + offsetof(struct __pthread_st, pt_allq.ptqe_next),
&next, sizeof(next));
if (val != 0)
return val;
}
return 0;
}
int
td_thr_info(td_thread_t *thread, td_thread_info_t *info)
{
int val, tmp;
struct pthread_queue_t queue;
val = READ(thread->proc, thread->addr, &tmp, sizeof(tmp));
if (val != 0)
return val;
if (tmp != PT_MAGIC)
return TD_ERR_BADTHREAD;
info->thread_addr = thread->addr;
if ((val = READ(thread->proc,
thread->addr + offsetof(struct __pthread_st, pt_state),
&tmp, sizeof(tmp))) != 0)
return val;
switch (tmp) {
case PT_STATE_RUNNING:
info->thread_state = TD_STATE_RUNNING;
break;
case PT_STATE_RUNNABLE:
info->thread_state = TD_STATE_RUNNABLE;
break;
case PT_STATE_BLOCKED_SYS:
info->thread_state = TD_STATE_BLOCKED;
break;
case PT_STATE_BLOCKED_QUEUE:
info->thread_state = TD_STATE_SLEEPING;
break;
case PT_STATE_ZOMBIE:
info->thread_state = TD_STATE_ZOMBIE;
break;
default:
info->thread_state = TD_STATE_UNKNOWN;
}
if ((val = READ(thread->proc,
thread->addr + offsetof(struct __pthread_st, pt_type),
&tmp, sizeof(tmp))) != 0)
return val;
switch (tmp) {
case PT_THREAD_NORMAL:
info->thread_type = TD_TYPE_USER;
break;
case PT_THREAD_UPCALL:
case PT_THREAD_IDLE:
info->thread_type = TD_TYPE_SYSTEM;
break;
default:
info->thread_type = TD_TYPE_UNKNOWN;
}
if ((val = READ(thread->proc,
thread->addr + offsetof(struct __pthread_st, pt_stack),
&info->thread_stack, sizeof(stack_t))) != 0)
return val;
if ((val = READ(thread->proc,
thread->addr + offsetof(struct __pthread_st, pt_joiners),
&queue, sizeof(queue))) != 0)
return val;
if (PTQ_EMPTY(&queue))
info->thread_hasjoiners = 0;
else
info->thread_hasjoiners = 1;
if ((val = READ(thread->proc,
thread->addr + offsetof(struct __pthread_st, pt_errno),
&info->thread_errno, sizeof(info->thread_errno))) != 0)
return val;
if ((val = READ(thread->proc,
thread->addr + offsetof(struct __pthread_st, pt_num),
&info->thread_id, sizeof(info->thread_id))) != 0)
return val;
if ((val = READ(thread->proc,
thread->addr + offsetof(struct __pthread_st, pt_sigmask),
&info->thread_sigmask, sizeof(info->thread_sigmask))) != 0)
return val;
if ((val = READ(thread->proc,
thread->addr + offsetof(struct __pthread_st, pt_siglist),
&info->thread_sigpending, sizeof(info->thread_sigpending))) != 0)
return val;
return 0;
}
int
td_thr_getname(td_thread_t *thread, char *name, int len)
{
int val, tmp;
caddr_t nameaddr;
val = READ(thread->proc, thread->addr, &tmp, sizeof(tmp));
if (val != 0)
return val;
if (tmp != PT_MAGIC)
return TD_ERR_BADTHREAD;
if ((val = READ(thread->proc,
thread->addr + offsetof(struct __pthread_st, pt_name),
&nameaddr, sizeof(nameaddr))) != 0)
return val;
if (nameaddr == 0)
name[0] = '\0';
else if ((val = READ(thread->proc, nameaddr,
name, MIN(PTHREAD_MAX_NAMELEN_NP, len))) != 0)
return val;
return 0;
}
int
td_thr_getregs(td_thread_t *thread, int regset, void *buf)
{
int tmp, val;
caddr_t addr;
ucontext_t uc;
val = READ(thread->proc,
thread->addr + offsetof(struct __pthread_st, pt_state),
&tmp, sizeof(tmp));
if (val != 0)
return val;
switch (tmp) {
case PT_STATE_RUNNING:
/*
* The register state of the thread is live in the
* inferior process's register state.
*/
val = GETREGS(thread->proc, regset, thread->lwp, buf);
if (val != 0)
return val;
break;
case PT_STATE_RUNNABLE:
case PT_STATE_BLOCKED_SYS:
case PT_STATE_BLOCKED_QUEUE:
/*
* The register state of the thread is in the ucontext_t
* of the thread structure.
*/
val = READ(thread->proc,
thread->addr + offsetof(struct __pthread_st, pt_trapuc),
&addr, sizeof(addr));
if (val != 0)
return val;
if (addr == 0) {
val = READ(thread->proc,
thread->addr + offsetof(struct __pthread_st, pt_uc),
&addr, sizeof(addr));
if (val != 0)
return val;
}
val = READ(thread->proc, addr, &uc, sizeof(uc));
if (val != 0)
return val;
switch (regset) {
case 0:
PTHREAD_UCONTEXT_TO_REG((struct reg *)buf, &uc);
break;
case 1:
PTHREAD_UCONTEXT_TO_FPREG((struct fpreg *)buf, &uc);
break;
case 2:
return TD_ERR_INVAL;
}
break;
case PT_STATE_ZOMBIE:
default:
return TD_ERR_BADTHREAD;
}
return 0;
}
int
td_thr_setregs(td_thread_t *thread, int regset, void *buf)
{
int tmp, val;
caddr_t addr;
ucontext_t uc;
val = READ(thread->proc,
thread->addr + offsetof(struct __pthread_st, pt_state),
&tmp, sizeof(tmp));
if (val != 0)
return val;
switch (tmp) {
case PT_STATE_RUNNING:
/*
* The register state of the thread is live in the
* inferior process's register state.
*/
val = SETREGS(thread->proc, regset, thread->lwp, buf);
if (val != 0)
return val;
break;
case PT_STATE_RUNNABLE:
case PT_STATE_BLOCKED_SYS:
case PT_STATE_BLOCKED_QUEUE:
/*
* The register state of the thread is in the ucontext_t
* of the thread structure.
*
* Fetch the uc first, since there is state in it
* besides the registers that should be preserved.
*/
val = READ(thread->proc,
thread->addr + offsetof(struct __pthread_st, pt_trapuc),
&addr, sizeof(addr));
if (val != 0)
return val;
if (addr == 0) {
val = READ(thread->proc,
thread->addr + offsetof(struct __pthread_st, pt_uc),
&addr, sizeof(addr));
if (val != 0)
return val;
}
val = READ(thread->proc,
addr, &uc, sizeof(uc));
if (val != 0)
return val;
switch (regset) {
case 0:
PTHREAD_REG_TO_UCONTEXT(&uc,
(struct reg *)(void *)buf);
break;
case 1:
PTHREAD_FPREG_TO_UCONTEXT(&uc,
(struct fpreg *)(void *)buf);
break;
case 2:
return TD_ERR_INVAL;
}
val = WRITE(thread->proc,
addr, &uc, sizeof(uc));
if (val != 0)
return val;
break;
case PT_STATE_ZOMBIE:
default:
return TD_ERR_BADTHREAD;
}
return 0;
}
int
td_thr_join_iter(td_thread_t *thread, int (*call)(td_thread_t *, void *),
void *arg)
{
int val;
caddr_t next;
td_thread_t *thread2;
struct pthread_queue_t queue;
if ((val = READ(thread->proc,
thread->addr + offsetof(struct __pthread_st, pt_joiners),
&queue, sizeof(queue))) != 0)
return val;
next = (void *)queue.ptqh_first;
while (next != NULL) {
val = td__getthread(thread->proc, next, &thread2);
if (val != 0)
return val;
val = (*call)(thread2, arg);
if (val != 0)
return 0;
val = READ(thread->proc,
next + offsetof(struct __pthread_st, pt_sleep.ptqe_next),
&next, sizeof(next));
if (val != 0)
return val;
}
return 0;
}
int
td_sync_info(td_sync_t *s, td_sync_info_t *info)
{
int val, magic, n;
struct pthread_queue_t queue;
pthread_spin_t slock;
pthread_t taddr;
val = READ(s->proc, s->addr, &magic, sizeof(magic));
if (val != 0)
return val;
info->sync_type = TD_SYNC_UNKNOWN;
info->sync_size = 0;
info->sync_haswaiters = 0;
switch (magic) {
case _PT_MUTEX_MAGIC:
info->sync_type = TD_SYNC_MUTEX;
info->sync_size = sizeof(struct __pthread_mutex_st);
if ((val = READ(s->proc,
s->addr + offsetof(struct __pthread_mutex_st, ptm_blocked),
&queue, sizeof(queue))) != 0)
return val;
if (!PTQ_EMPTY(&queue))
info->sync_haswaiters = 1;
/*
* The cast to (void *) is to explicitly throw away the
* volatile qualifier on pthread_spin_t,
* from __cpu_simple_lock_t.
*/
if ((val = READ(s->proc,
s->addr + offsetof(struct __pthread_mutex_st, ptm_lock),
(void *)&slock, sizeof(slock))) != 0)
return val;
if (slock == __SIMPLELOCK_LOCKED) {
info->sync_data.mutex.locked = 1;
if ((val = READ(s->proc,
s->addr + offsetof(struct __pthread_mutex_st,
ptm_owner),
&taddr, sizeof(taddr))) != 0)
return val;
taddr = pthread__id(taddr);
td__getthread(s->proc, (void *)taddr,
&info->sync_data.mutex.owner);
} else
info->sync_data.mutex.locked = 0;
break;
case _PT_COND_MAGIC:
info->sync_type = TD_SYNC_COND;
info->sync_size = sizeof(struct __pthread_cond_st);
if ((val = READ(s->proc,
s->addr + offsetof(struct __pthread_cond_st, ptc_waiters),
&queue, sizeof(queue))) != 0)
return val;
if (!PTQ_EMPTY(&queue))
info->sync_haswaiters = 1;
break;
case _PT_SPINLOCK_MAGIC:
info->sync_type = TD_SYNC_SPIN;
info->sync_size = sizeof(struct __pthread_spinlock_st);
if ((val = READ(s->proc,
s->addr + offsetof(struct __pthread_spinlock_st, pts_spin),
(void *)&slock, sizeof(slock))) != 0)
return val;
if (slock == __SIMPLELOCK_LOCKED)
info->sync_data.spin.locked = 1;
break;
case PT_MAGIC:
info->sync_type = TD_SYNC_JOIN;
info->sync_size = sizeof(struct __pthread_st);
td__getthread(s->proc, s->addr,
&info->sync_data.join.thread);
if ((val = READ(s->proc,
s->addr + offsetof(struct __pthread_st, pt_joiners),
&queue, sizeof(queue))) != 0)
return val;
if (!PTQ_EMPTY(&queue))
info->sync_haswaiters = 1;
break;
case (int)_PT_RWLOCK_MAGIC:
info->sync_type = TD_SYNC_RWLOCK;
info->sync_size = sizeof(struct __pthread_rwlock_st);
if ((val = READ(s->proc,
s->addr + offsetof(struct __pthread_rwlock_st, ptr_rblocked),
&queue, sizeof(queue))) != 0)
return val;
if (!PTQ_EMPTY(&queue))
info->sync_haswaiters = 1;
if ((val = READ(s->proc,
s->addr + offsetof(struct __pthread_rwlock_st, ptr_wblocked),
&queue, sizeof(queue))) != 0)
return val;
if (!PTQ_EMPTY(&queue))
info->sync_haswaiters = 1;
info->sync_data.rwlock.locked = 0;
if ((val = READ(s->proc,
s->addr + offsetof(struct __pthread_rwlock_st, ptr_nreaders),
&n, sizeof(n))) != 0)
return val;
info->sync_data.rwlock.readlocks = n;
if (n > 0)
info->sync_data.rwlock.locked = 1;
if ((val = READ(s->proc,
s->addr + offsetof(struct __pthread_rwlock_st, ptr_writer),
&taddr, sizeof(taddr))) != 0)
return val;
if (taddr != 0) {
info->sync_data.rwlock.locked = 1;
td__getthread(s->proc, (void *)taddr,
&info->sync_data.rwlock.writeowner);
}
/*FALLTHROUGH*/
default:
return (0);
}
info->sync_addr = s->addr;
return 0;
}
int
td_sync_waiters_iter(td_sync_t *s, int (*call)(td_thread_t *, void *),
void *arg)
{
int val, magic;
caddr_t next;
struct pthread_queue_t queue;
td_thread_t *thread;
val = READ(s->proc, s->addr, &magic, sizeof(magic));
if (val != 0)
return val;
switch (magic) {
case _PT_MUTEX_MAGIC:
if ((val = READ(s->proc,
s->addr + offsetof(struct __pthread_mutex_st, ptm_blocked),
&queue, sizeof(queue))) != 0)
return val;
break;
case _PT_COND_MAGIC:
if ((val = READ(s->proc,
s->addr + offsetof(struct __pthread_cond_st, ptc_waiters),
&queue, sizeof(queue))) != 0)
return val;
break;
case PT_MAGIC:
/* Redundant with join_iter, but what the hell... */
if ((val = READ(s->proc,
s->addr + offsetof(struct __pthread_st, pt_joiners),
&queue, sizeof(queue))) != 0)
return val;
break;
default:
return (0);
}
next = (void *)queue.ptqh_first;
while (next != NULL) {
val = td__getthread(s->proc, next, &thread);
if (val != 0)
return val;
val = (*call)(thread, arg);
if (val != 0)
return 0;
val = READ(s->proc,
next + offsetof(struct __pthread_st, pt_sleep.ptqe_next),
&next, sizeof(next));
if (val != 0)
return val;
}
return 0;
}
int
td_map_addr2sync(td_proc_t *proc, caddr_t addr, td_sync_t **syncp)
{
int magic, val;
val = READ(proc, addr, &magic, sizeof(magic));
if (val != 0)
return val;
if ((magic != _PT_MUTEX_MAGIC) &&
(magic != _PT_COND_MAGIC) &&
(magic != _PT_SPINLOCK_MAGIC))
return TD_ERR_NOOBJ;
val = td__getsync(proc, addr, syncp);
if (val != 0)
return val;
return 0;
}
int
td_map_pth2thr(td_proc_t *proc, pthread_t thread, td_thread_t **threadp)
{
int magic, val;
val = READ(proc, (void *)thread, &magic, sizeof(magic));
if (val != 0)
return val;
if (magic != PT_MAGIC)
return TD_ERR_NOOBJ;
val = td__getthread(proc, (void *)thread, threadp);
if (val != 0)
return val;
return 0;
}
int
td_map_id2thr(td_proc_t *proc, int threadid, td_thread_t **threadp)
{
int val, num;
caddr_t allqaddr, next;
struct pthread_queue_t allq;
td_thread_t *thread;
if (proc->allqueue == 0) {
val = LOOKUP(proc, "pthread__allqueue", &allqaddr);
if (val != 0)
return val;
proc->allqueue = allqaddr;
} else {
allqaddr = proc->allqueue;
}
val = READ(proc, allqaddr, &allq, sizeof(allq));
if (val != 0)
return val;
next = (void *)allq.ptqh_first;
while (next != NULL) {
val = READ(proc,
next + offsetof(struct __pthread_st, pt_num),
&num, sizeof(num));
if (num == threadid)
break;
val = READ(proc,
next + offsetof(struct __pthread_st, pt_allq.ptqe_next),
&next, sizeof(next));
if (val != 0)
return val;
}
if (next == 0) {
/* A matching thread was not found. */
return TD_ERR_NOOBJ;
}
val = td__getthread(proc, next, &thread);
if (val != 0)
return val;
*threadp = thread;
return 0;
}
/* Return the thread handle of the thread running on the given LWP */
int
td_map_lwp2thr(td_proc_t *proc, int lwp, td_thread_t **threadp)
{
int val, magic;
struct reg gregs;
ucontext_t uc;
void *th;
val = GETREGS(proc, 0, lwp, &gregs);
if (val != 0)
return val;
PTHREAD_REG_TO_UCONTEXT(&uc, &gregs);
th = pthread__id(pthread__uc_sp(&uc));
val = READ(proc, th, &magic, sizeof(magic));
if (val != 0)
return val;
if (magic != PT_MAGIC)
return TD_ERR_NOOBJ;
val = td__getthread(proc, th, threadp);
if (val != 0)
return val;
(*threadp)->lwp = lwp;
return 0;
}
int
td_map_lwps(td_proc_t *proc)
{
int i, val, nlwps;
caddr_t addr;
td_thread_t *thread;
val = LOOKUP(proc, "pthread__maxlwps", &addr);
if (val != 0)
return val;
val = READ(proc, addr, &nlwps, sizeof(nlwps));
if (val != 0)
return val;
for (i = 1; i <= nlwps; i++) {
/*
* Errors are deliberately ignored for the call to
* td_map_lwp2thr(); it is entirely likely that not
* all LWPs in the range 1..nlwps exist, and that's
* not a problem.
*/
td_map_lwp2thr(proc, i, &thread);
}
return 0;
}
int
td_tsd_iter(td_proc_t *proc,
int (*call)(pthread_key_t, void (*)(void *), void *), void *arg)
{
caddr_t desaddr, allocaddr;
int val;
int i, allocated;
void (*destructor)(void *);
val = LOOKUP(proc, "pthread__tsd_alloc", &allocaddr);
if (val != 0)
return val;
val = LOOKUP(proc, "pthread__tsd_destructors", &desaddr);
if (val != 0)
return val;
for (i = 0; i < PTHREAD_KEYS_MAX; i++) {
val = READ(proc, allocaddr + i * sizeof(int),
&allocated, sizeof(allocated));
if (val != 0)
return val;
if (allocated) {
val = READ(proc, desaddr + i * sizeof(destructor),
&destructor, sizeof(destructor));
if (val != 0)
return val;
val = (call)(i, destructor, arg);
if (val != 0)
return val;
}
}
return 0;
}
/* Get the synchronization object that the thread is sleeping on */
int
td_thr_sleepinfo(td_thread_t *thread, td_sync_t **s)
{
int val;
caddr_t addr;
if ((val = READ(thread->proc,
thread->addr + offsetof(struct __pthread_st, pt_sleepobj),
&addr, sizeof(addr))) != 0)
return val;
td__getsync(thread->proc, addr, s);
return 0;
}
static int
td__getthread(td_proc_t *proc, caddr_t addr, td_thread_t **threadp)
{
td_thread_t *thread;
/*
* Check if we've allocated a descriptor for this thread.
* Sadly, this makes iterating over a set of threads O(N^2)
* in the number of threads. More sophisticated data structures
* can wait.
*/
PTQ_FOREACH(thread, &proc->threads, list) {
if (thread->addr == addr)
break;
}
if (thread == NULL) {
thread = malloc(sizeof(*thread));
if (thread == NULL)
return TD_ERR_NOMEM;
thread->proc = proc;
thread->addr = addr;
thread->lwp = 0;
PTQ_INSERT_HEAD(&proc->threads, thread, list);
}
*threadp = thread;
return 0;
}
static int
td__getsync(td_proc_t *proc, caddr_t addr, td_sync_t **syncp)
{
td_sync_t *s;
/* Check if we've allocated a descriptor for this object. */
PTQ_FOREACH(s, &proc->syncs, list) {
if (s->addr == addr)
break;
}
/* Allocate a fresh one */
if (s == NULL) {
s = malloc(sizeof(*s));
if (s == NULL)
return TD_ERR_NOMEM;
s->proc = proc;
s->addr = addr;
PTQ_INSERT_HEAD(&proc->syncs, s, list);
}
*syncp = s;
return 0;
}
int
td_thr_tsd(td_thread_t *thread, pthread_key_t key, void **value)
{
int val;
val = READ(thread->proc, thread->addr +
offsetof(struct __pthread_st, pt_specific) +
key * sizeof(void *), value, sizeof(*value));
return val;
}