3249 lines
86 KiB
C
3249 lines
86 KiB
C
/* $NetBSD: if_bge.c,v 1.40 2003/06/01 20:26:14 fvdl Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2001 Wind River Systems
|
|
* Copyright (c) 1997, 1998, 1999, 2001
|
|
* Bill Paul <wpaul@windriver.com>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
|
|
*/
|
|
|
|
/*
|
|
* Broadcom BCM570x family gigabit ethernet driver for NetBSD.
|
|
*
|
|
* NetBSD version by:
|
|
*
|
|
* Frank van der Linden <fvdl@wasabisystems.com>
|
|
* Jason Thorpe <thorpej@wasabisystems.com>
|
|
* Jonathan Stone <jonathan@dsg.stanford.edu>
|
|
*
|
|
* Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
|
|
* Senior Engineer, Wind River Systems
|
|
*/
|
|
|
|
/*
|
|
* The Broadcom BCM5700 is based on technology originally developed by
|
|
* Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
|
|
* MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
|
|
* two on-board MIPS R4000 CPUs and can have as much as 16MB of external
|
|
* SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
|
|
* frames, highly configurable RX filtering, and 16 RX and TX queues
|
|
* (which, along with RX filter rules, can be used for QOS applications).
|
|
* Other features, such as TCP segmentation, may be available as part
|
|
* of value-added firmware updates. Unlike the Tigon I and Tigon II,
|
|
* firmware images can be stored in hardware and need not be compiled
|
|
* into the driver.
|
|
*
|
|
* The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
|
|
* function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
|
|
*
|
|
* The BCM5701 is a single-chip solution incorporating both the BCM5700
|
|
* MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
|
|
* does not support external SSRAM.
|
|
*
|
|
* Broadcom also produces a variation of the BCM5700 under the "Altima"
|
|
* brand name, which is functionally similar but lacks PCI-X support.
|
|
*
|
|
* Without external SSRAM, you can only have at most 4 TX rings,
|
|
* and the use of the mini RX ring is disabled. This seems to imply
|
|
* that these features are simply not available on the BCM5701. As a
|
|
* result, this driver does not implement any support for the mini RX
|
|
* ring.
|
|
*/
|
|
|
|
#include "bpfilter.h"
|
|
#include "vlan.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/device.h>
|
|
#include <sys/socket.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
#endif
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcidevs.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
#include <dev/mii/miidevs.h>
|
|
#include <dev/mii/brgphyreg.h>
|
|
|
|
#include <dev/pci/if_bgereg.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
int bge_probe(struct device *, struct cfdata *, void *);
|
|
void bge_attach(struct device *, struct device *, void *);
|
|
void bge_release_resources(struct bge_softc *);
|
|
void bge_txeof(struct bge_softc *);
|
|
void bge_rxeof(struct bge_softc *);
|
|
|
|
void bge_tick(void *);
|
|
void bge_stats_update(struct bge_softc *);
|
|
int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
|
|
|
|
int bge_intr(void *);
|
|
void bge_start(struct ifnet *);
|
|
int bge_ioctl(struct ifnet *, u_long, caddr_t);
|
|
int bge_init(struct ifnet *);
|
|
void bge_stop(struct bge_softc *);
|
|
void bge_watchdog(struct ifnet *);
|
|
void bge_shutdown(void *);
|
|
int bge_ifmedia_upd(struct ifnet *);
|
|
void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
|
|
|
|
u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
|
|
int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
|
|
|
|
void bge_setmulti(struct bge_softc *);
|
|
|
|
void bge_handle_events(struct bge_softc *);
|
|
int bge_alloc_jumbo_mem(struct bge_softc *);
|
|
void bge_free_jumbo_mem(struct bge_softc *);
|
|
void *bge_jalloc(struct bge_softc *);
|
|
void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
|
|
int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
|
|
int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
|
|
int bge_init_rx_ring_std(struct bge_softc *);
|
|
void bge_free_rx_ring_std(struct bge_softc *);
|
|
int bge_init_rx_ring_jumbo(struct bge_softc *);
|
|
void bge_free_rx_ring_jumbo(struct bge_softc *);
|
|
void bge_free_tx_ring(struct bge_softc *);
|
|
int bge_init_tx_ring(struct bge_softc *);
|
|
|
|
int bge_chipinit(struct bge_softc *);
|
|
int bge_blockinit(struct bge_softc *);
|
|
int bge_setpowerstate(struct bge_softc *, int);
|
|
|
|
#ifdef notdef
|
|
u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
|
|
void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
|
|
void bge_vpd_read(struct bge_softc *);
|
|
#endif
|
|
|
|
u_int32_t bge_readmem_ind(struct bge_softc *, int);
|
|
void bge_writemem_ind(struct bge_softc *, int, int);
|
|
#ifdef notdef
|
|
u_int32_t bge_readreg_ind(struct bge_softc *, int);
|
|
#endif
|
|
void bge_writereg_ind(struct bge_softc *, int, int);
|
|
|
|
int bge_miibus_readreg(struct device *, int, int);
|
|
void bge_miibus_writereg(struct device *, int, int, int);
|
|
void bge_miibus_statchg(struct device *);
|
|
|
|
void bge_reset(struct bge_softc *);
|
|
|
|
void bge_dump_status(struct bge_softc *);
|
|
void bge_dump_rxbd(struct bge_rx_bd *);
|
|
|
|
#define BGE_DEBUG
|
|
#ifdef BGE_DEBUG
|
|
#define DPRINTF(x) if (bgedebug) printf x
|
|
#define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
|
|
int bgedebug = 0;
|
|
#else
|
|
#define DPRINTF(x)
|
|
#define DPRINTFN(n,x)
|
|
#endif
|
|
|
|
/* Various chip quirks. */
|
|
#define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
|
|
#define BGE_QUIRK_CSUM_BROKEN 0x00000002
|
|
#define BGE_QUIRK_ONLY_PHY_1 0x00000004
|
|
#define BGE_QUIRK_5700_SMALLDMA 0x00000008
|
|
#define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
|
|
#define BGE_QUIRK_PRODUCER_BUG 0x00000020
|
|
#define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
|
|
|
|
/* following bugs are common to bcm5700 rev B, all flavours */
|
|
#define BGE_QUIRK_5700_COMMON \
|
|
(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
|
|
|
|
CFATTACH_DECL(bge, sizeof(struct bge_softc),
|
|
bge_probe, bge_attach, NULL, NULL);
|
|
|
|
u_int32_t
|
|
bge_readmem_ind(sc, off)
|
|
struct bge_softc *sc;
|
|
int off;
|
|
{
|
|
struct pci_attach_args *pa = &(sc->bge_pa);
|
|
pcireg_t val;
|
|
|
|
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
|
|
val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
|
|
return val;
|
|
}
|
|
|
|
void
|
|
bge_writemem_ind(sc, off, val)
|
|
struct bge_softc *sc;
|
|
int off, val;
|
|
{
|
|
struct pci_attach_args *pa = &(sc->bge_pa);
|
|
|
|
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
|
|
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
|
|
}
|
|
|
|
#ifdef notdef
|
|
u_int32_t
|
|
bge_readreg_ind(sc, off)
|
|
struct bge_softc *sc;
|
|
int off;
|
|
{
|
|
struct pci_attach_args *pa = &(sc->bge_pa);
|
|
|
|
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
|
|
return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
|
|
}
|
|
#endif
|
|
|
|
void
|
|
bge_writereg_ind(sc, off, val)
|
|
struct bge_softc *sc;
|
|
int off, val;
|
|
{
|
|
struct pci_attach_args *pa = &(sc->bge_pa);
|
|
|
|
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
|
|
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
|
|
}
|
|
|
|
#ifdef notdef
|
|
u_int8_t
|
|
bge_vpd_readbyte(sc, addr)
|
|
struct bge_softc *sc;
|
|
int addr;
|
|
{
|
|
int i;
|
|
u_int32_t val;
|
|
struct pci_attach_args *pa = &(sc->bge_pa);
|
|
|
|
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
|
|
for (i = 0; i < BGE_TIMEOUT * 10; i++) {
|
|
DELAY(10);
|
|
if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
|
|
BGE_VPD_FLAG)
|
|
break;
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
|
|
return(0);
|
|
}
|
|
|
|
val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
|
|
|
|
return((val >> ((addr % 4) * 8)) & 0xFF);
|
|
}
|
|
|
|
void
|
|
bge_vpd_read_res(sc, res, addr)
|
|
struct bge_softc *sc;
|
|
struct vpd_res *res;
|
|
int addr;
|
|
{
|
|
int i;
|
|
u_int8_t *ptr;
|
|
|
|
ptr = (u_int8_t *)res;
|
|
for (i = 0; i < sizeof(struct vpd_res); i++)
|
|
ptr[i] = bge_vpd_readbyte(sc, i + addr);
|
|
}
|
|
|
|
void
|
|
bge_vpd_read(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
int pos = 0, i;
|
|
struct vpd_res res;
|
|
|
|
if (sc->bge_vpd_prodname != NULL)
|
|
free(sc->bge_vpd_prodname, M_DEVBUF);
|
|
if (sc->bge_vpd_readonly != NULL)
|
|
free(sc->bge_vpd_readonly, M_DEVBUF);
|
|
sc->bge_vpd_prodname = NULL;
|
|
sc->bge_vpd_readonly = NULL;
|
|
|
|
bge_vpd_read_res(sc, &res, pos);
|
|
|
|
if (res.vr_id != VPD_RES_ID) {
|
|
printf("%s: bad VPD resource id: expected %x got %x\n",
|
|
sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
|
|
return;
|
|
}
|
|
|
|
pos += sizeof(res);
|
|
sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
|
|
if (sc->bge_vpd_prodname == NULL)
|
|
panic("bge_vpd_read");
|
|
for (i = 0; i < res.vr_len; i++)
|
|
sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
|
|
sc->bge_vpd_prodname[i] = '\0';
|
|
pos += i;
|
|
|
|
bge_vpd_read_res(sc, &res, pos);
|
|
|
|
if (res.vr_id != VPD_RES_READ) {
|
|
printf("%s: bad VPD resource id: expected %x got %x\n",
|
|
sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
|
|
return;
|
|
}
|
|
|
|
pos += sizeof(res);
|
|
sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
|
|
if (sc->bge_vpd_readonly == NULL)
|
|
panic("bge_vpd_read");
|
|
for (i = 0; i < res.vr_len + 1; i++)
|
|
sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Read a byte of data stored in the EEPROM at address 'addr.' The
|
|
* BCM570x supports both the traditional bitbang interface and an
|
|
* auto access interface for reading the EEPROM. We use the auto
|
|
* access method.
|
|
*/
|
|
u_int8_t
|
|
bge_eeprom_getbyte(sc, addr, dest)
|
|
struct bge_softc *sc;
|
|
int addr;
|
|
u_int8_t *dest;
|
|
{
|
|
int i;
|
|
u_int32_t byte = 0;
|
|
|
|
/*
|
|
* Enable use of auto EEPROM access so we can avoid
|
|
* having to use the bitbang method.
|
|
*/
|
|
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
|
|
|
|
/* Reset the EEPROM, load the clock period. */
|
|
CSR_WRITE_4(sc, BGE_EE_ADDR,
|
|
BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
|
|
DELAY(20);
|
|
|
|
/* Issue the read EEPROM command. */
|
|
CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
|
|
|
|
/* Wait for completion */
|
|
for(i = 0; i < BGE_TIMEOUT * 10; i++) {
|
|
DELAY(10);
|
|
if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
|
|
break;
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
|
|
return(0);
|
|
}
|
|
|
|
/* Get result. */
|
|
byte = CSR_READ_4(sc, BGE_EE_DATA);
|
|
|
|
*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Read a sequence of bytes from the EEPROM.
|
|
*/
|
|
int
|
|
bge_read_eeprom(sc, dest, off, cnt)
|
|
struct bge_softc *sc;
|
|
caddr_t dest;
|
|
int off;
|
|
int cnt;
|
|
{
|
|
int err = 0, i;
|
|
u_int8_t byte = 0;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
err = bge_eeprom_getbyte(sc, off + i, &byte);
|
|
if (err)
|
|
break;
|
|
*(dest + i) = byte;
|
|
}
|
|
|
|
return(err ? 1 : 0);
|
|
}
|
|
|
|
int
|
|
bge_miibus_readreg(dev, phy, reg)
|
|
struct device *dev;
|
|
int phy, reg;
|
|
{
|
|
struct bge_softc *sc = (struct bge_softc *)dev;
|
|
struct ifnet *ifp;
|
|
u_int32_t val;
|
|
u_int32_t saved_autopoll;
|
|
int i;
|
|
|
|
ifp = &sc->ethercom.ec_if;
|
|
|
|
/*
|
|
* Several chips with builtin PHYs will incorrectly answer to
|
|
* other PHY instances than the builtin PHY at id 1.
|
|
*/
|
|
if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
|
|
return(0);
|
|
|
|
/* Reading with autopolling on may trigger PCI errors */
|
|
saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
|
|
if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
|
|
CSR_WRITE_4(sc, BGE_MI_MODE,
|
|
saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
|
|
DELAY(40);
|
|
}
|
|
|
|
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
|
|
BGE_MIPHY(phy)|BGE_MIREG(reg));
|
|
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
val = CSR_READ_4(sc, BGE_MI_COMM);
|
|
if (!(val & BGE_MICOMM_BUSY))
|
|
break;
|
|
delay(10);
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
|
|
val = 0;
|
|
goto done;
|
|
}
|
|
|
|
val = CSR_READ_4(sc, BGE_MI_COMM);
|
|
|
|
done:
|
|
if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
|
|
CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
|
|
DELAY(40);
|
|
}
|
|
|
|
if (val & BGE_MICOMM_READFAIL)
|
|
return(0);
|
|
|
|
return(val & 0xFFFF);
|
|
}
|
|
|
|
void
|
|
bge_miibus_writereg(dev, phy, reg, val)
|
|
struct device *dev;
|
|
int phy, reg, val;
|
|
{
|
|
struct bge_softc *sc = (struct bge_softc *)dev;
|
|
u_int32_t saved_autopoll;
|
|
int i;
|
|
|
|
/* Touching the PHY while autopolling is on may trigger PCI errors */
|
|
saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
|
|
if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
|
|
delay(40);
|
|
CSR_WRITE_4(sc, BGE_MI_MODE,
|
|
saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
|
|
delay(10); /* 40 usec is supposed to be adequate */
|
|
}
|
|
|
|
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
|
|
BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
|
|
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
|
|
break;
|
|
delay(10);
|
|
}
|
|
|
|
if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
|
|
CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
|
|
delay(40);
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
|
|
}
|
|
}
|
|
|
|
void
|
|
bge_miibus_statchg(dev)
|
|
struct device *dev;
|
|
{
|
|
struct bge_softc *sc = (struct bge_softc *)dev;
|
|
struct mii_data *mii = &sc->bge_mii;
|
|
|
|
BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
|
|
BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
|
|
} else {
|
|
BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
|
|
}
|
|
|
|
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
|
|
BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
|
|
} else {
|
|
BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle events that have triggered interrupts.
|
|
*/
|
|
void
|
|
bge_handle_events(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Memory management for jumbo frames.
|
|
*/
|
|
|
|
int
|
|
bge_alloc_jumbo_mem(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
caddr_t ptr, kva;
|
|
bus_dma_segment_t seg;
|
|
int i, rseg, state, error;
|
|
struct bge_jpool_entry *entry;
|
|
|
|
state = error = 0;
|
|
|
|
/* Grab a big chunk o' storage. */
|
|
if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
|
|
&seg, 1, &rseg, BUS_DMA_NOWAIT)) {
|
|
printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
state = 1;
|
|
if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
|
|
BUS_DMA_NOWAIT)) {
|
|
printf("%s: can't map DMA buffers (%d bytes)\n",
|
|
sc->bge_dev.dv_xname, (int)BGE_JMEM);
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
|
|
state = 2;
|
|
if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
|
|
BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
|
|
printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
|
|
state = 3;
|
|
if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
|
|
kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
|
|
printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
|
|
state = 4;
|
|
sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
|
|
DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
|
|
|
|
SLIST_INIT(&sc->bge_jfree_listhead);
|
|
SLIST_INIT(&sc->bge_jinuse_listhead);
|
|
|
|
/*
|
|
* Now divide it up into 9K pieces and save the addresses
|
|
* in an array.
|
|
*/
|
|
ptr = sc->bge_cdata.bge_jumbo_buf;
|
|
for (i = 0; i < BGE_JSLOTS; i++) {
|
|
sc->bge_cdata.bge_jslots[i] = ptr;
|
|
ptr += BGE_JLEN;
|
|
entry = malloc(sizeof(struct bge_jpool_entry),
|
|
M_DEVBUF, M_NOWAIT);
|
|
if (entry == NULL) {
|
|
printf("%s: no memory for jumbo buffer queue!\n",
|
|
sc->bge_dev.dv_xname);
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
entry->slot = i;
|
|
SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
|
|
entry, jpool_entries);
|
|
}
|
|
out:
|
|
if (error != 0) {
|
|
switch (state) {
|
|
case 4:
|
|
bus_dmamap_unload(sc->bge_dmatag,
|
|
sc->bge_cdata.bge_rx_jumbo_map);
|
|
case 3:
|
|
bus_dmamap_destroy(sc->bge_dmatag,
|
|
sc->bge_cdata.bge_rx_jumbo_map);
|
|
case 2:
|
|
bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
|
|
case 1:
|
|
bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Allocate a jumbo buffer.
|
|
*/
|
|
void *
|
|
bge_jalloc(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
struct bge_jpool_entry *entry;
|
|
|
|
entry = SLIST_FIRST(&sc->bge_jfree_listhead);
|
|
|
|
if (entry == NULL) {
|
|
printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
|
|
return(NULL);
|
|
}
|
|
|
|
SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
|
|
SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
|
|
return(sc->bge_cdata.bge_jslots[entry->slot]);
|
|
}
|
|
|
|
/*
|
|
* Release a jumbo buffer.
|
|
*/
|
|
void
|
|
bge_jfree(m, buf, size, arg)
|
|
struct mbuf *m;
|
|
caddr_t buf;
|
|
size_t size;
|
|
void *arg;
|
|
{
|
|
struct bge_jpool_entry *entry;
|
|
struct bge_softc *sc;
|
|
int i, s;
|
|
|
|
/* Extract the softc struct pointer. */
|
|
sc = (struct bge_softc *)arg;
|
|
|
|
if (sc == NULL)
|
|
panic("bge_jfree: can't find softc pointer!");
|
|
|
|
/* calculate the slot this buffer belongs to */
|
|
|
|
i = ((caddr_t)buf
|
|
- (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
|
|
|
|
if ((i < 0) || (i >= BGE_JSLOTS))
|
|
panic("bge_jfree: asked to free buffer that we don't manage!");
|
|
|
|
s = splvm();
|
|
entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
|
|
if (entry == NULL)
|
|
panic("bge_jfree: buffer not in use!");
|
|
entry->slot = i;
|
|
SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
|
|
SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
|
|
|
|
if (__predict_true(m != NULL))
|
|
pool_cache_put(&mbpool_cache, m);
|
|
splx(s);
|
|
}
|
|
|
|
|
|
/*
|
|
* Intialize a standard receive ring descriptor.
|
|
*/
|
|
int
|
|
bge_newbuf_std(sc, i, m, dmamap)
|
|
struct bge_softc *sc;
|
|
int i;
|
|
struct mbuf *m;
|
|
bus_dmamap_t dmamap;
|
|
{
|
|
struct mbuf *m_new = NULL;
|
|
struct bge_rx_bd *r;
|
|
int error;
|
|
|
|
if (dmamap == NULL) {
|
|
error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
|
|
MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
|
|
if (error != 0)
|
|
return error;
|
|
}
|
|
|
|
sc->bge_cdata.bge_rx_std_map[i] = dmamap;
|
|
|
|
if (m == NULL) {
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL) {
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
MCLGET(m_new, M_DONTWAIT);
|
|
if (!(m_new->m_flags & M_EXT)) {
|
|
m_freem(m_new);
|
|
return(ENOBUFS);
|
|
}
|
|
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
|
|
if (!sc->bge_rx_alignment_bug)
|
|
m_adj(m_new, ETHER_ALIGN);
|
|
|
|
if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
|
|
BUS_DMA_READ|BUS_DMA_NOWAIT))
|
|
return(ENOBUFS);
|
|
} else {
|
|
m_new = m;
|
|
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
|
|
m_new->m_data = m_new->m_ext.ext_buf;
|
|
if (!sc->bge_rx_alignment_bug)
|
|
m_adj(m_new, ETHER_ALIGN);
|
|
}
|
|
|
|
sc->bge_cdata.bge_rx_std_chain[i] = m_new;
|
|
r = &sc->bge_rdata->bge_rx_std_ring[i];
|
|
bge_set_hostaddr(&r->bge_addr,
|
|
dmamap->dm_segs[0].ds_addr);
|
|
r->bge_flags = BGE_RXBDFLAG_END;
|
|
r->bge_len = m_new->m_len;
|
|
r->bge_idx = i;
|
|
|
|
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
|
|
offsetof(struct bge_ring_data, bge_rx_std_ring) +
|
|
i * sizeof (struct bge_rx_bd),
|
|
sizeof (struct bge_rx_bd),
|
|
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Initialize a jumbo receive ring descriptor. This allocates
|
|
* a jumbo buffer from the pool managed internally by the driver.
|
|
*/
|
|
int
|
|
bge_newbuf_jumbo(sc, i, m)
|
|
struct bge_softc *sc;
|
|
int i;
|
|
struct mbuf *m;
|
|
{
|
|
struct mbuf *m_new = NULL;
|
|
struct bge_rx_bd *r;
|
|
|
|
if (m == NULL) {
|
|
caddr_t *buf = NULL;
|
|
|
|
/* Allocate the mbuf. */
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL) {
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
/* Allocate the jumbo buffer */
|
|
buf = bge_jalloc(sc);
|
|
if (buf == NULL) {
|
|
m_freem(m_new);
|
|
printf("%s: jumbo allocation failed "
|
|
"-- packet dropped!\n", sc->bge_dev.dv_xname);
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
/* Attach the buffer to the mbuf. */
|
|
m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
|
|
MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
|
|
bge_jfree, sc);
|
|
} else {
|
|
m_new = m;
|
|
m_new->m_data = m_new->m_ext.ext_buf;
|
|
m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
|
|
}
|
|
|
|
if (!sc->bge_rx_alignment_bug)
|
|
m_adj(m_new, ETHER_ALIGN);
|
|
/* Set up the descriptor. */
|
|
r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
|
|
sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
|
|
bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
|
|
r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
|
|
r->bge_len = m_new->m_len;
|
|
r->bge_idx = i;
|
|
|
|
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
|
|
offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
|
|
i * sizeof (struct bge_rx_bd),
|
|
sizeof (struct bge_rx_bd),
|
|
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
|
|
* that's 1MB or memory, which is a lot. For now, we fill only the first
|
|
* 256 ring entries and hope that our CPU is fast enough to keep up with
|
|
* the NIC.
|
|
*/
|
|
int
|
|
bge_init_rx_ring_std(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
if (sc->bge_flags & BGE_RXRING_VALID)
|
|
return 0;
|
|
|
|
for (i = 0; i < BGE_SSLOTS; i++) {
|
|
if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
sc->bge_std = i - 1;
|
|
CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
|
|
|
|
sc->bge_flags |= BGE_RXRING_VALID;
|
|
|
|
return(0);
|
|
}
|
|
|
|
void
|
|
bge_free_rx_ring_std(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
if (!(sc->bge_flags & BGE_RXRING_VALID))
|
|
return;
|
|
|
|
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
|
|
if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
|
|
m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
|
|
sc->bge_cdata.bge_rx_std_chain[i] = NULL;
|
|
bus_dmamap_destroy(sc->bge_dmatag,
|
|
sc->bge_cdata.bge_rx_std_map[i]);
|
|
}
|
|
memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
|
|
sizeof(struct bge_rx_bd));
|
|
}
|
|
|
|
sc->bge_flags &= ~BGE_RXRING_VALID;
|
|
}
|
|
|
|
int
|
|
bge_init_rx_ring_jumbo(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
int i;
|
|
volatile struct bge_rcb *rcb;
|
|
|
|
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
|
|
if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
|
|
return(ENOBUFS);
|
|
};
|
|
|
|
sc->bge_jumbo = i - 1;
|
|
|
|
rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
|
|
rcb->bge_maxlen_flags = 0;
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
|
|
|
|
CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
|
|
|
|
return(0);
|
|
}
|
|
|
|
void
|
|
bge_free_rx_ring_jumbo(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
|
|
return;
|
|
|
|
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
|
|
if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
|
|
m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
|
|
sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
|
|
}
|
|
memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
|
|
sizeof(struct bge_rx_bd));
|
|
}
|
|
|
|
sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
|
|
}
|
|
|
|
void
|
|
bge_free_tx_ring(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
int i, freed;
|
|
struct txdmamap_pool_entry *dma;
|
|
|
|
if (!(sc->bge_flags & BGE_TXRING_VALID))
|
|
return;
|
|
|
|
freed = 0;
|
|
|
|
for (i = 0; i < BGE_TX_RING_CNT; i++) {
|
|
if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
|
|
freed++;
|
|
m_freem(sc->bge_cdata.bge_tx_chain[i]);
|
|
sc->bge_cdata.bge_tx_chain[i] = NULL;
|
|
SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
|
|
link);
|
|
sc->txdma[i] = 0;
|
|
}
|
|
memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
|
|
sizeof(struct bge_tx_bd));
|
|
}
|
|
|
|
while ((dma = SLIST_FIRST(&sc->txdma_list))) {
|
|
SLIST_REMOVE_HEAD(&sc->txdma_list, link);
|
|
bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
|
|
free(dma, M_DEVBUF);
|
|
}
|
|
|
|
sc->bge_flags &= ~BGE_TXRING_VALID;
|
|
}
|
|
|
|
int
|
|
bge_init_tx_ring(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
int i;
|
|
bus_dmamap_t dmamap;
|
|
struct txdmamap_pool_entry *dma;
|
|
|
|
if (sc->bge_flags & BGE_TXRING_VALID)
|
|
return 0;
|
|
|
|
sc->bge_txcnt = 0;
|
|
sc->bge_tx_saved_considx = 0;
|
|
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
|
|
if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
|
|
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
|
|
|
|
CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
|
|
if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
|
|
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
|
|
|
|
SLIST_INIT(&sc->txdma_list);
|
|
for (i = 0; i < BGE_RSLOTS; i++) {
|
|
if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
|
|
BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
|
|
&dmamap))
|
|
return(ENOBUFS);
|
|
if (dmamap == NULL)
|
|
panic("dmamap NULL in bge_init_tx_ring");
|
|
dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
|
|
if (dma == NULL) {
|
|
printf("%s: can't alloc txdmamap_pool_entry\n",
|
|
sc->bge_dev.dv_xname);
|
|
bus_dmamap_destroy(sc->bge_dmatag, dmamap);
|
|
return (ENOMEM);
|
|
}
|
|
dma->dmamap = dmamap;
|
|
SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
|
|
}
|
|
|
|
sc->bge_flags |= BGE_TXRING_VALID;
|
|
|
|
return(0);
|
|
}
|
|
|
|
void
|
|
bge_setmulti(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
struct ethercom *ac = &sc->ethercom;
|
|
struct ifnet *ifp = &ac->ec_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
u_int32_t hashes[4] = { 0, 0, 0, 0 };
|
|
u_int32_t h;
|
|
int i;
|
|
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
goto allmulti;
|
|
|
|
/* Now program new ones. */
|
|
ETHER_FIRST_MULTI(step, ac, enm);
|
|
while (enm != NULL) {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
*/
|
|
goto allmulti;
|
|
}
|
|
|
|
h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
|
|
|
|
/* Just want the 7 least-significant bits. */
|
|
h &= 0x7f;
|
|
|
|
hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
goto setit;
|
|
|
|
allmulti:
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
|
|
|
|
setit:
|
|
for (i = 0; i < 4; i++)
|
|
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
|
|
}
|
|
|
|
const int bge_swapbits[] = {
|
|
0,
|
|
BGE_MODECTL_BYTESWAP_DATA,
|
|
BGE_MODECTL_WORDSWAP_DATA,
|
|
BGE_MODECTL_BYTESWAP_NONFRAME,
|
|
BGE_MODECTL_WORDSWAP_NONFRAME,
|
|
|
|
BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
|
|
BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
|
|
BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
|
|
|
|
BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
|
|
BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
|
|
|
|
BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
|
|
|
|
BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
|
|
BGE_MODECTL_BYTESWAP_NONFRAME,
|
|
BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
|
|
BGE_MODECTL_WORDSWAP_NONFRAME,
|
|
BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
|
|
BGE_MODECTL_WORDSWAP_NONFRAME,
|
|
BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
|
|
BGE_MODECTL_WORDSWAP_NONFRAME,
|
|
|
|
BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
|
|
BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
|
|
};
|
|
|
|
int bge_swapindex = 0;
|
|
|
|
/*
|
|
* Do endian, PCI and DMA initialization. Also check the on-board ROM
|
|
* self-test results.
|
|
*/
|
|
int
|
|
bge_chipinit(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
u_int32_t cachesize;
|
|
int i;
|
|
u_int32_t dma_rw_ctl;
|
|
struct pci_attach_args *pa = &(sc->bge_pa);
|
|
|
|
|
|
/* Set endianness before we access any non-PCI registers. */
|
|
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
|
|
BGE_INIT);
|
|
|
|
/* Set power state to D0. */
|
|
bge_setpowerstate(sc, 0);
|
|
|
|
/*
|
|
* Check the 'ROM failed' bit on the RX CPU to see if
|
|
* self-tests passed.
|
|
*/
|
|
if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
|
|
printf("%s: RX CPU self-diagnostics failed!\n",
|
|
sc->bge_dev.dv_xname);
|
|
return(ENODEV);
|
|
}
|
|
|
|
/* Clear the MAC control register */
|
|
CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
|
|
|
|
/*
|
|
* Clear the MAC statistics block in the NIC's
|
|
* internal memory.
|
|
*/
|
|
for (i = BGE_STATS_BLOCK;
|
|
i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
|
|
BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
|
|
|
|
for (i = BGE_STATUS_BLOCK;
|
|
i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
|
|
BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
|
|
|
|
/* Set up the PCI DMA control register. */
|
|
if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
|
|
BGE_PCISTATE_PCI_BUSMODE) {
|
|
/* Conventional PCI bus */
|
|
DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
|
|
dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
|
|
(0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
|
|
(0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
|
|
(0x0F));
|
|
} else {
|
|
DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
|
|
/* PCI-X bus */
|
|
dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
|
|
(0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
|
|
(0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
|
|
(0x0F);
|
|
/*
|
|
* 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
|
|
* for hardware bugs, which means we should also clear
|
|
* the low-order MINDMA bits. In addition, the 5704
|
|
* uses a different encoding of read/write watermarks.
|
|
*/
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5704_A0 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5704_A1 ||
|
|
sc->bge_asicrev == BGE_ASICREV_BCM5704_A2) {
|
|
dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
|
|
/* should be 0x1f0000 */
|
|
(0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
|
|
(0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
|
|
dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
|
|
}
|
|
else if ((sc->bge_asicrev >> 28) ==
|
|
(BGE_ASICREV_BCM5703_A0 >> 28)) {
|
|
dma_rw_ctl &= 0xfffffff0;
|
|
dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
|
|
}
|
|
}
|
|
|
|
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
|
|
|
|
/*
|
|
* Set up general mode register.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
|
|
BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
|
|
BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
|
|
BGE_MODECTL_RX_NO_PHDR_CSUM);
|
|
|
|
/* Get cache line size. */
|
|
cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
|
|
|
|
/*
|
|
* Avoid violating PCI spec on certain chip revs.
|
|
*/
|
|
if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
|
|
PCIM_CMD_MWIEN) {
|
|
switch(cachesize) {
|
|
case 1:
|
|
PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
|
|
BGE_PCI_WRITE_BNDRY_16BYTES);
|
|
break;
|
|
case 2:
|
|
PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
|
|
BGE_PCI_WRITE_BNDRY_32BYTES);
|
|
break;
|
|
case 4:
|
|
PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
|
|
BGE_PCI_WRITE_BNDRY_64BYTES);
|
|
break;
|
|
case 8:
|
|
PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
|
|
BGE_PCI_WRITE_BNDRY_128BYTES);
|
|
break;
|
|
case 16:
|
|
PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
|
|
BGE_PCI_WRITE_BNDRY_256BYTES);
|
|
break;
|
|
case 32:
|
|
PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
|
|
BGE_PCI_WRITE_BNDRY_512BYTES);
|
|
break;
|
|
case 64:
|
|
PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
|
|
BGE_PCI_WRITE_BNDRY_1024BYTES);
|
|
break;
|
|
default:
|
|
/* Disable PCI memory write and invalidate. */
|
|
#if 0
|
|
if (bootverbose)
|
|
printf("%s: cache line size %d not "
|
|
"supported; disabling PCI MWI\n",
|
|
sc->bge_dev.dv_xname, cachesize);
|
|
#endif
|
|
PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
|
|
PCIM_CMD_MWIEN);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Disable memory write invalidate. Apparently it is not supported
|
|
* properly by these devices.
|
|
*/
|
|
PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
|
|
|
|
|
|
#ifdef __brokenalpha__
|
|
/*
|
|
* Must insure that we do not cross an 8K (bytes) boundary
|
|
* for DMA reads. Our highest limit is 1K bytes. This is a
|
|
* restriction on some ALPHA platforms with early revision
|
|
* 21174 PCI chipsets, such as the AlphaPC 164lx
|
|
*/
|
|
PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
|
|
#endif
|
|
|
|
/* Set the timer prescaler (always 66MHz) */
|
|
CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
|
|
|
|
return(0);
|
|
}
|
|
|
|
int
|
|
bge_blockinit(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
volatile struct bge_rcb *rcb;
|
|
bus_size_t rcb_addr;
|
|
int i;
|
|
struct ifnet *ifp = &sc->ethercom.ec_if;
|
|
bge_hostaddr taddr;
|
|
|
|
/*
|
|
* Initialize the memory window pointer register so that
|
|
* we can access the first 32K of internal NIC RAM. This will
|
|
* allow us to set up the TX send ring RCBs and the RX return
|
|
* ring RCBs, plus other things which live in NIC memory.
|
|
*/
|
|
|
|
pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
|
|
BGE_PCI_MEMWIN_BASEADDR, 0);
|
|
|
|
/* Configure mbuf memory pool */
|
|
if (sc->bge_extram) {
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
|
|
} else {
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
|
|
}
|
|
|
|
/* Configure DMA resource pool */
|
|
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
|
|
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
|
|
|
|
/* Configure mbuf pool watermarks */
|
|
#ifdef ORIG_WPAUL_VALUES
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
|
|
#else
|
|
/* new broadcom docs strongly recommend these: */
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
|
|
#endif
|
|
|
|
/* Configure DMA resource watermarks */
|
|
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
|
|
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
|
|
|
|
/* Enable buffer manager */
|
|
CSR_WRITE_4(sc, BGE_BMAN_MODE,
|
|
BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
|
|
|
|
/* Poll for buffer manager start indication */
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
printf("%s: buffer manager failed to start\n",
|
|
sc->bge_dev.dv_xname);
|
|
return(ENXIO);
|
|
}
|
|
|
|
/* Enable flow-through queues */
|
|
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
|
|
|
|
/* Wait until queue initialization is complete */
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
printf("%s: flow-through queue init failed\n",
|
|
sc->bge_dev.dv_xname);
|
|
return(ENXIO);
|
|
}
|
|
|
|
/* Initialize the standard RX ring control block */
|
|
rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
|
|
bge_set_hostaddr(&rcb->bge_hostaddr,
|
|
BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
|
|
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
|
|
if (sc->bge_extram)
|
|
rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
|
|
else
|
|
rcb->bge_nicaddr = BGE_STD_RX_RINGS;
|
|
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
|
|
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
|
|
CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
|
|
CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
|
|
|
|
/*
|
|
* Initialize the jumbo RX ring control block
|
|
* We set the 'ring disabled' bit in the flags
|
|
* field until we're actually ready to start
|
|
* using this ring (i.e. once we set the MTU
|
|
* high enough to require it).
|
|
*/
|
|
rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
|
|
bge_set_hostaddr(&rcb->bge_hostaddr,
|
|
BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
|
|
rcb->bge_maxlen_flags =
|
|
BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, BGE_RCB_FLAG_RING_DISABLED);
|
|
if (sc->bge_extram)
|
|
rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
|
|
else
|
|
rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
|
|
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
|
|
|
|
/* Set up dummy disabled mini ring RCB */
|
|
rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
|
|
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
|
|
BGE_RCB_FLAG_RING_DISABLED);
|
|
CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
|
|
|
|
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
|
|
offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Set the BD ring replentish thresholds. The recommended
|
|
* values are 1/8th the number of descriptors allocated to
|
|
* each ring.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
|
|
CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
|
|
|
|
/*
|
|
* Disable all unused send rings by setting the 'ring disabled'
|
|
* bit in the flags field of all the TX send ring control blocks.
|
|
* These are located in NIC memory.
|
|
*/
|
|
rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
|
|
for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
|
|
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
|
|
BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
|
|
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
|
|
rcb_addr += sizeof(struct bge_rcb);
|
|
}
|
|
|
|
/* Configure TX RCB 0 (we use only the first ring) */
|
|
rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
|
|
bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
|
|
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
|
|
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
|
|
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
|
|
BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
|
|
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
|
|
BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
|
|
|
|
/* Disable all unused RX return rings */
|
|
rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
|
|
for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
|
|
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
|
|
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
|
|
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
|
|
BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,
|
|
BGE_RCB_FLAG_RING_DISABLED));
|
|
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
|
|
CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
|
|
(i * (sizeof(u_int64_t))), 0);
|
|
rcb_addr += sizeof(struct bge_rcb);
|
|
}
|
|
|
|
/* Initialize RX ring indexes */
|
|
CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
|
|
CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
|
|
CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
|
|
|
|
/*
|
|
* Set up RX return ring 0
|
|
* Note that the NIC address for RX return rings is 0x00000000.
|
|
* The return rings live entirely within the host, so the
|
|
* nicaddr field in the RCB isn't used.
|
|
*/
|
|
rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
|
|
bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
|
|
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
|
|
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
|
|
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
|
|
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
|
|
BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,0));
|
|
|
|
/* Set random backoff seed for TX */
|
|
CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
|
|
LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
|
|
LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
|
|
LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
|
|
BGE_TX_BACKOFF_SEED_MASK);
|
|
|
|
/* Set inter-packet gap */
|
|
CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
|
|
|
|
/*
|
|
* Specify which ring to use for packets that don't match
|
|
* any RX rules.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
|
|
|
|
/*
|
|
* Configure number of RX lists. One interrupt distribution
|
|
* list, sixteen active lists, one bad frames class.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
|
|
|
|
/* Inialize RX list placement stats mask. */
|
|
CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
|
|
CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
|
|
|
|
/* Disable host coalescing until we get it set up */
|
|
CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
|
|
|
|
/* Poll to make sure it's shut down. */
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
printf("%s: host coalescing engine failed to idle\n",
|
|
sc->bge_dev.dv_xname);
|
|
return(ENXIO);
|
|
}
|
|
|
|
/* Set up host coalescing defaults */
|
|
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
|
|
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
|
|
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
|
|
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
|
|
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
|
|
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
|
|
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
|
|
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
|
|
CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
|
|
|
|
/* Set up address of statistics block */
|
|
bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
|
|
CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
|
|
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
|
|
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
|
|
|
|
/* Set up address of status block */
|
|
bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
|
|
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
|
|
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
|
|
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
|
|
sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
|
|
sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
|
|
|
|
/* Turn on host coalescing state machine */
|
|
CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
|
|
|
|
/* Turn on RX BD completion state machine and enable attentions */
|
|
CSR_WRITE_4(sc, BGE_RBDC_MODE,
|
|
BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
|
|
|
|
/* Turn on RX list placement state machine */
|
|
CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
|
|
|
|
/* Turn on RX list selector state machine. */
|
|
CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
|
|
|
|
/* Turn on DMA, clear stats */
|
|
CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
|
|
BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
|
|
BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
|
|
BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
|
|
(sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
|
|
|
|
/* Set misc. local control, enable interrupts on attentions */
|
|
sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
|
|
|
|
#ifdef notdef
|
|
/* Assert GPIO pins for PHY reset */
|
|
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
|
|
BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
|
|
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
|
|
BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
|
|
#endif
|
|
|
|
#if defined(not_quite_yet)
|
|
/* Linux driver enables enable gpio pin #1 on 5700s */
|
|
if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
|
|
sc->bge_local_ctrl_reg |=
|
|
(BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
|
|
}
|
|
#endif
|
|
CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
|
|
|
|
/* Turn on DMA completion state machine */
|
|
CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
|
|
|
|
/* Turn on write DMA state machine */
|
|
CSR_WRITE_4(sc, BGE_WDMA_MODE,
|
|
BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
|
|
|
|
/* Turn on read DMA state machine */
|
|
CSR_WRITE_4(sc, BGE_RDMA_MODE,
|
|
BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
|
|
|
|
/* Turn on RX data completion state machine */
|
|
CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
|
|
|
|
/* Turn on RX BD initiator state machine */
|
|
CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
|
|
|
|
/* Turn on RX data and RX BD initiator state machine */
|
|
CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
|
|
|
|
/* Turn on Mbuf cluster free state machine */
|
|
CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
|
|
|
|
/* Turn on send BD completion state machine */
|
|
CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
|
|
|
|
/* Turn on send data completion state machine */
|
|
CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
|
|
|
|
/* Turn on send data initiator state machine */
|
|
CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
|
|
|
|
/* Turn on send BD initiator state machine */
|
|
CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
|
|
|
|
/* Turn on send BD selector state machine */
|
|
CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
|
|
|
|
CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
|
|
CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
|
|
BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
|
|
|
|
/* init LED register */
|
|
CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
|
|
|
|
/* ack/clear link change events */
|
|
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
|
|
BGE_MACSTAT_CFG_CHANGED);
|
|
CSR_WRITE_4(sc, BGE_MI_STS, 0);
|
|
|
|
/* Enable PHY auto polling (for MII/GMII only) */
|
|
if (sc->bge_tbi) {
|
|
CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
|
|
} else {
|
|
BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
|
|
if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
|
|
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
|
|
BGE_EVTENB_MI_INTERRUPT);
|
|
}
|
|
|
|
/* Enable link state change attentions. */
|
|
BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static const struct bge_revision {
|
|
uint32_t br_asicrev;
|
|
uint32_t br_quirks;
|
|
const char *br_name;
|
|
} bge_revisions[] = {
|
|
{ BGE_ASICREV_BCM5700_A0,
|
|
BGE_QUIRK_LINK_STATE_BROKEN,
|
|
"BCM5700 A0" },
|
|
|
|
{ BGE_ASICREV_BCM5700_A1,
|
|
BGE_QUIRK_LINK_STATE_BROKEN,
|
|
"BCM5700 A1" },
|
|
|
|
{ BGE_ASICREV_BCM5700_B0,
|
|
BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
|
|
"BCM5700 B0" },
|
|
|
|
{ BGE_ASICREV_BCM5700_B1,
|
|
BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
|
|
"BCM5700 B1" },
|
|
|
|
{ BGE_ASICREV_BCM5700_B2,
|
|
BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
|
|
"BCM5700 B2" },
|
|
|
|
/* This is treated like a BCM5700 Bx */
|
|
{ BGE_ASICREV_BCM5700_ALTIMA,
|
|
BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
|
|
"BCM5700 Altima" },
|
|
|
|
{ BGE_ASICREV_BCM5700_C0,
|
|
0,
|
|
"BCM5700 C0" },
|
|
|
|
{ BGE_ASICREV_BCM5701_A0,
|
|
0, /*XXX really, just not known */
|
|
"BCM5701 A0" },
|
|
|
|
{ BGE_ASICREV_BCM5701_B0,
|
|
BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
|
|
"BCM5701 B0" },
|
|
|
|
{ BGE_ASICREV_BCM5701_B2,
|
|
BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
|
|
"BCM5701 B2" },
|
|
|
|
{ BGE_ASICREV_BCM5701_B5,
|
|
BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
|
|
"BCM5701 B5" },
|
|
|
|
{ BGE_ASICREV_BCM5703_A0,
|
|
0,
|
|
"BCM5703 A0" },
|
|
|
|
{ BGE_ASICREV_BCM5703_A1,
|
|
0,
|
|
"BCM5703 A1" },
|
|
|
|
{ BGE_ASICREV_BCM5703_A2,
|
|
BGE_QUIRK_ONLY_PHY_1,
|
|
"BCM5703 A2" },
|
|
|
|
{ BGE_ASICREV_BCM5704_A0,
|
|
BGE_QUIRK_ONLY_PHY_1,
|
|
"BCM5704 A0" },
|
|
|
|
{ BGE_ASICREV_BCM5704_A1,
|
|
BGE_QUIRK_ONLY_PHY_1,
|
|
"BCM5704 A1" },
|
|
|
|
{ BGE_ASICREV_BCM5704_A2,
|
|
BGE_QUIRK_ONLY_PHY_1,
|
|
"BCM5704 A2" },
|
|
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static const struct bge_revision *
|
|
bge_lookup_rev(uint32_t asicrev)
|
|
{
|
|
const struct bge_revision *br;
|
|
|
|
for (br = bge_revisions; br->br_name != NULL; br++) {
|
|
if (br->br_asicrev == asicrev)
|
|
return (br);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static const struct bge_product {
|
|
pci_vendor_id_t bp_vendor;
|
|
pci_product_id_t bp_product;
|
|
const char *bp_name;
|
|
} bge_products[] = {
|
|
/*
|
|
* The BCM5700 documentation seems to indicate that the hardware
|
|
* still has the Alteon vendor ID burned into it, though it
|
|
* should always be overridden by the value in the EEPROM. We'll
|
|
* check for it anyway.
|
|
*/
|
|
{ PCI_VENDOR_ALTEON,
|
|
PCI_PRODUCT_ALTEON_BCM5700,
|
|
"Broadcom BCM5700 Gigabit Ethernet" },
|
|
{ PCI_VENDOR_ALTEON,
|
|
PCI_PRODUCT_ALTEON_BCM5701,
|
|
"Broadcom BCM5701 Gigabit Ethernet" },
|
|
|
|
{ PCI_VENDOR_ALTIMA,
|
|
PCI_PRODUCT_ALTIMA_AC1000,
|
|
"Altima AC1000 Gigabit Ethernet" },
|
|
{ PCI_VENDOR_ALTIMA,
|
|
PCI_PRODUCT_ALTIMA_AC1001,
|
|
"Altima AC1001 Gigabit Ethernet" },
|
|
{ PCI_VENDOR_ALTIMA,
|
|
PCI_PRODUCT_ALTIMA_AC9100,
|
|
"Altima AC9100 Gigabit Ethernet" },
|
|
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5700,
|
|
"Broadcom BCM5700 Gigabit Ethernet" },
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5701,
|
|
"Broadcom BCM5701 Gigabit Ethernet" },
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5702,
|
|
"Broadcom BCM5702 Gigabit Ethernet" },
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5702X,
|
|
"Broadcom BCM5702X Gigabit Ethernet" },
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5703,
|
|
"Broadcom BCM5703 Gigabit Ethernet" },
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5703X,
|
|
"Broadcom BCM5703X Gigabit Ethernet" },
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5704C,
|
|
"Broadcom BCM5704C Dual Gigabit Ethernet" },
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5704S,
|
|
"Broadcom BCM5704S Dual Gigabit Ethernet" },
|
|
|
|
|
|
{ PCI_VENDOR_SCHNEIDERKOCH,
|
|
PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
|
|
"SysKonnect SK-9Dx1 Gigabit Ethernet" },
|
|
|
|
{ PCI_VENDOR_3COM,
|
|
PCI_PRODUCT_3COM_3C996,
|
|
"3Com 3c996 Gigabit Ethernet" },
|
|
|
|
{ 0,
|
|
0,
|
|
NULL },
|
|
};
|
|
|
|
static const struct bge_product *
|
|
bge_lookup(const struct pci_attach_args *pa)
|
|
{
|
|
const struct bge_product *bp;
|
|
|
|
for (bp = bge_products; bp->bp_name != NULL; bp++) {
|
|
if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
|
|
PCI_PRODUCT(pa->pa_id) == bp->bp_product)
|
|
return (bp);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
int
|
|
bge_setpowerstate(sc, powerlevel)
|
|
struct bge_softc *sc;
|
|
int powerlevel;
|
|
{
|
|
#ifdef NOTYET
|
|
u_int32_t pm_ctl = 0;
|
|
|
|
/* XXX FIXME: make sure indirect accesses enabled? */
|
|
pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
|
|
pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
|
|
pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
|
|
|
|
/* clear the PME_assert bit and power state bits, enable PME */
|
|
pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
|
|
pm_ctl &= ~PCIM_PSTAT_DMASK;
|
|
pm_ctl |= (1 << 8);
|
|
|
|
if (powerlevel == 0) {
|
|
pm_ctl |= PCIM_PSTAT_D0;
|
|
pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
|
|
pm_ctl, 2);
|
|
DELAY(10000);
|
|
CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
|
|
DELAY(10000);
|
|
|
|
#ifdef NOTYET
|
|
/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
|
|
bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
|
|
#endif
|
|
DELAY(40); DELAY(40); DELAY(40);
|
|
DELAY(10000); /* above not quite adequate on 5700 */
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Entering ACPI power states D1-D3 is achieved by wiggling
|
|
* GMII gpio pins. Example code assumes all hardware vendors
|
|
* followed Broadom's sample pcb layout. Until we verify that
|
|
* for all supported OEM cards, states D1-D3 are unsupported.
|
|
*/
|
|
printf("%s: power state %d unimplemented; check GPIO pins\n",
|
|
sc->bge_dev.dv_xname, powerlevel);
|
|
#endif
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
|
|
/*
|
|
* Probe for a Broadcom chip. Check the PCI vendor and device IDs
|
|
* against our list and return its name if we find a match. Note
|
|
* that since the Broadcom controller contains VPD support, we
|
|
* can get the device name string from the controller itself instead
|
|
* of the compiled-in string. This is a little slow, but it guarantees
|
|
* we'll always announce the right product name.
|
|
*/
|
|
int
|
|
bge_probe(parent, match, aux)
|
|
struct device *parent;
|
|
struct cfdata *match;
|
|
void *aux;
|
|
{
|
|
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
|
|
|
|
if (bge_lookup(pa) != NULL)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
bge_attach(parent, self, aux)
|
|
struct device *parent, *self;
|
|
void *aux;
|
|
{
|
|
struct bge_softc *sc = (struct bge_softc *)self;
|
|
struct pci_attach_args *pa = aux;
|
|
const struct bge_product *bp;
|
|
const struct bge_revision *br;
|
|
pci_chipset_tag_t pc = pa->pa_pc;
|
|
pci_intr_handle_t ih;
|
|
const char *intrstr = NULL;
|
|
bus_dma_segment_t seg;
|
|
int rseg;
|
|
u_int32_t hwcfg = 0;
|
|
u_int32_t mac_addr = 0;
|
|
u_int32_t command;
|
|
struct ifnet *ifp;
|
|
caddr_t kva;
|
|
u_char eaddr[ETHER_ADDR_LEN];
|
|
pcireg_t memtype;
|
|
bus_addr_t memaddr;
|
|
bus_size_t memsize;
|
|
u_int32_t pm_ctl;
|
|
|
|
bp = bge_lookup(pa);
|
|
KASSERT(bp != NULL);
|
|
|
|
sc->bge_pa = *pa;
|
|
|
|
aprint_naive(": Ethernet controller\n");
|
|
aprint_normal(": %s\n", bp->bp_name);
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
DPRINTFN(5, ("Map control/status regs\n"));
|
|
command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
|
|
command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
|
|
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
|
|
command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
|
|
|
|
if (!(command & PCI_COMMAND_MEM_ENABLE)) {
|
|
aprint_error("%s: failed to enable memory mapping!\n",
|
|
sc->bge_dev.dv_xname);
|
|
return;
|
|
}
|
|
|
|
DPRINTFN(5, ("pci_mem_find\n"));
|
|
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
|
|
switch (memtype) {
|
|
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
|
|
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
|
|
if (pci_mapreg_map(pa, BGE_PCI_BAR0,
|
|
memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
|
|
&memaddr, &memsize) == 0)
|
|
break;
|
|
default:
|
|
aprint_error("%s: can't find mem space\n",
|
|
sc->bge_dev.dv_xname);
|
|
return;
|
|
}
|
|
|
|
DPRINTFN(5, ("pci_intr_map\n"));
|
|
if (pci_intr_map(pa, &ih)) {
|
|
aprint_error("%s: couldn't map interrupt\n",
|
|
sc->bge_dev.dv_xname);
|
|
return;
|
|
}
|
|
|
|
DPRINTFN(5, ("pci_intr_string\n"));
|
|
intrstr = pci_intr_string(pc, ih);
|
|
|
|
DPRINTFN(5, ("pci_intr_establish\n"));
|
|
sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
|
|
|
|
if (sc->bge_intrhand == NULL) {
|
|
aprint_error("%s: couldn't establish interrupt",
|
|
sc->bge_dev.dv_xname);
|
|
if (intrstr != NULL)
|
|
aprint_normal(" at %s", intrstr);
|
|
aprint_normal("\n");
|
|
return;
|
|
}
|
|
aprint_normal("%s: interrupting at %s\n",
|
|
sc->bge_dev.dv_xname, intrstr);
|
|
|
|
/*
|
|
* Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
|
|
* can clobber the chip's PCI config-space power control registers,
|
|
* leaving the card in D3 powersave state.
|
|
* We do not have memory-mapped registers in this state,
|
|
* so force device into D0 state before starting initialization.
|
|
*/
|
|
pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
|
|
pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
|
|
pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
|
|
pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
|
|
DELAY(1000); /* 27 usec is allegedly sufficent */
|
|
|
|
/* Try to reset the chip. */
|
|
DPRINTFN(5, ("bge_reset\n"));
|
|
bge_reset(sc);
|
|
|
|
if (bge_chipinit(sc)) {
|
|
aprint_error("%s: chip initialization failed\n",
|
|
sc->bge_dev.dv_xname);
|
|
bge_release_resources(sc);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Get station address from the EEPROM.
|
|
*/
|
|
mac_addr = bge_readmem_ind(sc, 0x0c14);
|
|
if ((mac_addr >> 16) == 0x484b) {
|
|
eaddr[0] = (u_char)(mac_addr >> 8);
|
|
eaddr[1] = (u_char)(mac_addr >> 0);
|
|
mac_addr = bge_readmem_ind(sc, 0x0c18);
|
|
eaddr[2] = (u_char)(mac_addr >> 24);
|
|
eaddr[3] = (u_char)(mac_addr >> 16);
|
|
eaddr[4] = (u_char)(mac_addr >> 8);
|
|
eaddr[5] = (u_char)(mac_addr >> 0);
|
|
} else if (bge_read_eeprom(sc, (caddr_t)eaddr,
|
|
BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
|
|
aprint_error("%s: failed to read station address\n",
|
|
sc->bge_dev.dv_xname);
|
|
bge_release_resources(sc);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Save ASIC rev. Look up any quirks associated with this
|
|
* ASIC.
|
|
*/
|
|
sc->bge_asicrev =
|
|
pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
|
|
BGE_PCIMISCCTL_ASICREV;
|
|
br = bge_lookup_rev(sc->bge_asicrev);
|
|
|
|
aprint_normal("%s: ", sc->bge_dev.dv_xname);
|
|
if (br == NULL) {
|
|
aprint_normal("unknown ASIC 0x%08x", sc->bge_asicrev);
|
|
sc->bge_quirks = 0;
|
|
} else {
|
|
aprint_normal("ASIC %s", br->br_name);
|
|
sc->bge_quirks = br->br_quirks;
|
|
}
|
|
aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
|
|
|
|
/* Allocate the general information block and ring buffers. */
|
|
sc->bge_dmatag = pa->pa_dmat;
|
|
DPRINTFN(5, ("bus_dmamem_alloc\n"));
|
|
if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
|
|
PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
|
|
aprint_error("%s: can't alloc rx buffers\n",
|
|
sc->bge_dev.dv_xname);
|
|
return;
|
|
}
|
|
DPRINTFN(5, ("bus_dmamem_map\n"));
|
|
if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
|
|
sizeof(struct bge_ring_data), &kva,
|
|
BUS_DMA_NOWAIT)) {
|
|
aprint_error("%s: can't map DMA buffers (%d bytes)\n",
|
|
sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
|
|
bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
|
|
return;
|
|
}
|
|
DPRINTFN(5, ("bus_dmamem_create\n"));
|
|
if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
|
|
sizeof(struct bge_ring_data), 0,
|
|
BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
|
|
aprint_error("%s: can't create DMA map\n",
|
|
sc->bge_dev.dv_xname);
|
|
bus_dmamem_unmap(sc->bge_dmatag, kva,
|
|
sizeof(struct bge_ring_data));
|
|
bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
|
|
return;
|
|
}
|
|
DPRINTFN(5, ("bus_dmamem_load\n"));
|
|
if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
|
|
sizeof(struct bge_ring_data), NULL,
|
|
BUS_DMA_NOWAIT)) {
|
|
bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
|
|
bus_dmamem_unmap(sc->bge_dmatag, kva,
|
|
sizeof(struct bge_ring_data));
|
|
bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
|
|
return;
|
|
}
|
|
|
|
DPRINTFN(5, ("bzero\n"));
|
|
sc->bge_rdata = (struct bge_ring_data *)kva;
|
|
|
|
memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
|
|
|
|
/* Try to allocate memory for jumbo buffers. */
|
|
if (bge_alloc_jumbo_mem(sc)) {
|
|
aprint_error("%s: jumbo buffer allocation failed\n",
|
|
sc->bge_dev.dv_xname);
|
|
} else
|
|
sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
|
|
|
|
/* Set default tuneable values. */
|
|
sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
|
|
sc->bge_rx_coal_ticks = 150;
|
|
sc->bge_rx_max_coal_bds = 64;
|
|
#ifdef ORIG_WPAUL_VALUES
|
|
sc->bge_tx_coal_ticks = 150;
|
|
sc->bge_tx_max_coal_bds = 128;
|
|
#else
|
|
sc->bge_tx_coal_ticks = 300;
|
|
sc->bge_tx_max_coal_bds = 400;
|
|
#endif
|
|
|
|
/* Set up ifnet structure */
|
|
ifp = &sc->ethercom.ec_if;
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = bge_ioctl;
|
|
ifp->if_start = bge_start;
|
|
ifp->if_init = bge_init;
|
|
ifp->if_watchdog = bge_watchdog;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1);
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
DPRINTFN(5, ("bcopy\n"));
|
|
strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
|
|
|
|
if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
|
|
sc->ethercom.ec_if.if_capabilities |=
|
|
IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
|
|
sc->ethercom.ec_capabilities |=
|
|
ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
|
|
|
|
/*
|
|
* Do MII setup.
|
|
*/
|
|
DPRINTFN(5, ("mii setup\n"));
|
|
sc->bge_mii.mii_ifp = ifp;
|
|
sc->bge_mii.mii_readreg = bge_miibus_readreg;
|
|
sc->bge_mii.mii_writereg = bge_miibus_writereg;
|
|
sc->bge_mii.mii_statchg = bge_miibus_statchg;
|
|
|
|
/*
|
|
* Figure out what sort of media we have by checking the
|
|
* hardware config word in the first 32k of NIC internal memory,
|
|
* or fall back to the config word in the EEPROM. Note: on some BCM5700
|
|
* cards, this value appears to be unset. If that's the
|
|
* case, we have to rely on identifying the NIC by its PCI
|
|
* subsystem ID, as we do below for the SysKonnect SK-9D41.
|
|
*/
|
|
if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
|
|
hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
|
|
} else {
|
|
bge_read_eeprom(sc, (caddr_t)&hwcfg,
|
|
BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
|
|
hwcfg = be32toh(hwcfg);
|
|
}
|
|
if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
|
|
sc->bge_tbi = 1;
|
|
|
|
/* The SysKonnect SK-9D41 is a 1000baseSX card. */
|
|
if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
|
|
SK_SUBSYSID_9D41)
|
|
sc->bge_tbi = 1;
|
|
|
|
if (sc->bge_tbi) {
|
|
ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
|
|
bge_ifmedia_sts);
|
|
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
|
|
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
|
|
0, NULL);
|
|
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
|
|
ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
|
|
} else {
|
|
/*
|
|
* Do transceiver setup.
|
|
*/
|
|
ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
|
|
bge_ifmedia_sts);
|
|
mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
|
|
MII_PHY_ANY, MII_OFFSET_ANY, 0);
|
|
|
|
if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
|
|
printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
|
|
ifmedia_add(&sc->bge_mii.mii_media,
|
|
IFM_ETHER|IFM_MANUAL, 0, NULL);
|
|
ifmedia_set(&sc->bge_mii.mii_media,
|
|
IFM_ETHER|IFM_MANUAL);
|
|
} else
|
|
ifmedia_set(&sc->bge_mii.mii_media,
|
|
IFM_ETHER|IFM_AUTO);
|
|
}
|
|
|
|
/*
|
|
* When using the BCM5701 in PCI-X mode, data corruption has
|
|
* been observed in the first few bytes of some received packets.
|
|
* Aligning the packet buffer in memory eliminates the corruption.
|
|
* Unfortunately, this misaligns the packet payloads. On platforms
|
|
* which do not support unaligned accesses, we will realign the
|
|
* payloads by copying the received packets.
|
|
*/
|
|
if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
|
|
/* If in PCI-X mode, work around the alignment bug. */
|
|
if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
|
|
(BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
|
|
BGE_PCISTATE_PCI_BUSSPEED)
|
|
sc->bge_rx_alignment_bug = 1;
|
|
}
|
|
|
|
/*
|
|
* Call MI attach routine.
|
|
*/
|
|
DPRINTFN(5, ("if_attach\n"));
|
|
if_attach(ifp);
|
|
DPRINTFN(5, ("ether_ifattach\n"));
|
|
ether_ifattach(ifp, eaddr);
|
|
DPRINTFN(5, ("callout_init\n"));
|
|
callout_init(&sc->bge_timeout);
|
|
}
|
|
|
|
void
|
|
bge_release_resources(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
if (sc->bge_vpd_prodname != NULL)
|
|
free(sc->bge_vpd_prodname, M_DEVBUF);
|
|
|
|
if (sc->bge_vpd_readonly != NULL)
|
|
free(sc->bge_vpd_readonly, M_DEVBUF);
|
|
}
|
|
|
|
void
|
|
bge_reset(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
struct pci_attach_args *pa = &sc->bge_pa;
|
|
u_int32_t cachesize, command, pcistate;
|
|
int i, val = 0;
|
|
|
|
/* Save some important PCI state. */
|
|
cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
|
|
command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
|
|
pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
|
|
|
|
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
|
|
BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
|
|
BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
|
|
|
|
/* Issue global reset */
|
|
bge_writereg_ind(sc, BGE_MISC_CFG,
|
|
BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
|
|
|
|
DELAY(1000);
|
|
|
|
/* Reset some of the PCI state that got zapped by reset */
|
|
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
|
|
BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
|
|
BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
|
|
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
|
|
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
|
|
bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
|
|
|
|
/* Enable memory arbiter. */
|
|
CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
|
|
|
|
/*
|
|
* Prevent PXE restart: write a magic number to the
|
|
* general communications memory at 0xB50.
|
|
*/
|
|
bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
|
|
|
|
/*
|
|
* Poll the value location we just wrote until
|
|
* we see the 1's complement of the magic number.
|
|
* This indicates that the firmware initialization
|
|
* is complete.
|
|
*/
|
|
for (i = 0; i < 750; i++) {
|
|
val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
|
|
if (val == ~BGE_MAGIC_NUMBER)
|
|
break;
|
|
DELAY(1000);
|
|
}
|
|
|
|
if (i == 750) {
|
|
printf("%s: firmware handshake timed out, val = %x\n",
|
|
sc->bge_dev.dv_xname, val);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* XXX Wait for the value of the PCISTATE register to
|
|
* return to its original pre-reset state. This is a
|
|
* fairly good indicator of reset completion. If we don't
|
|
* wait for the reset to fully complete, trying to read
|
|
* from the device's non-PCI registers may yield garbage
|
|
* results.
|
|
*/
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
|
|
pcistate)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
|
|
/* Enable memory arbiter. */
|
|
CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
|
|
|
|
/* Fix up byte swapping */
|
|
CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
|
|
|
|
CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
|
|
|
|
DELAY(10000);
|
|
}
|
|
|
|
/*
|
|
* Frame reception handling. This is called if there's a frame
|
|
* on the receive return list.
|
|
*
|
|
* Note: we have to be able to handle two possibilities here:
|
|
* 1) the frame is from the jumbo recieve ring
|
|
* 2) the frame is from the standard receive ring
|
|
*/
|
|
|
|
void
|
|
bge_rxeof(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
int stdcnt = 0, jumbocnt = 0;
|
|
int have_tag = 0;
|
|
u_int16_t vlan_tag = 0;
|
|
bus_dmamap_t dmamap;
|
|
bus_addr_t offset, toff;
|
|
bus_size_t tlen;
|
|
int tosync;
|
|
|
|
ifp = &sc->ethercom.ec_if;
|
|
|
|
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
|
|
offsetof(struct bge_ring_data, bge_status_block),
|
|
sizeof (struct bge_status_block),
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
|
|
tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
|
|
sc->bge_rx_saved_considx;
|
|
|
|
toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
|
|
|
|
if (tosync < 0) {
|
|
tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
|
|
sizeof (struct bge_rx_bd);
|
|
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
|
|
toff, tlen, BUS_DMASYNC_POSTREAD);
|
|
tosync = -tosync;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
|
|
offset, tosync * sizeof (struct bge_rx_bd),
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
while(sc->bge_rx_saved_considx !=
|
|
sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
|
|
struct bge_rx_bd *cur_rx;
|
|
u_int32_t rxidx;
|
|
struct mbuf *m = NULL;
|
|
|
|
cur_rx = &sc->bge_rdata->
|
|
bge_rx_return_ring[sc->bge_rx_saved_considx];
|
|
|
|
rxidx = cur_rx->bge_idx;
|
|
BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
|
|
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
|
|
have_tag = 1;
|
|
vlan_tag = cur_rx->bge_vlan_tag;
|
|
}
|
|
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
|
|
BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
|
|
m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
|
|
sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
|
|
jumbocnt++;
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
|
|
ifp->if_ierrors++;
|
|
bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
|
|
continue;
|
|
}
|
|
if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
|
|
NULL)== ENOBUFS) {
|
|
ifp->if_ierrors++;
|
|
bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
|
|
continue;
|
|
}
|
|
} else {
|
|
BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
|
|
m = sc->bge_cdata.bge_rx_std_chain[rxidx];
|
|
sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
|
|
stdcnt++;
|
|
dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
|
|
sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
|
|
ifp->if_ierrors++;
|
|
bge_newbuf_std(sc, sc->bge_std, m, dmamap);
|
|
continue;
|
|
}
|
|
if (bge_newbuf_std(sc, sc->bge_std,
|
|
NULL, dmamap) == ENOBUFS) {
|
|
ifp->if_ierrors++;
|
|
bge_newbuf_std(sc, sc->bge_std, m, dmamap);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
ifp->if_ipackets++;
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
/*
|
|
* XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
|
|
* the Rx buffer has the layer-2 header unaligned.
|
|
* If our CPU requires alignment, re-align by copying.
|
|
*/
|
|
if (sc->bge_rx_alignment_bug) {
|
|
memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
|
|
cur_rx->bge_len);
|
|
m->m_data += ETHER_ALIGN;
|
|
}
|
|
#endif
|
|
|
|
m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Handle BPF listeners. Let the BPF user see the packet.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
#endif
|
|
|
|
if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0) {
|
|
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
|
|
if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
|
|
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
|
|
#if 0 /* XXX appears to be broken */
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
|
|
m->m_pkthdr.csum_data =
|
|
cur_rx->bge_tcp_udp_csum;
|
|
m->m_pkthdr.csum_flags |=
|
|
(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* If we received a packet with a vlan tag, pass it
|
|
* to vlan_input() instead of ether_input().
|
|
*/
|
|
if (have_tag) {
|
|
struct m_tag *mtag;
|
|
|
|
mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
|
|
M_NOWAIT);
|
|
if (mtag != NULL) {
|
|
*(u_int *)(mtag + 1) = vlan_tag;
|
|
m_tag_prepend(m, mtag);
|
|
have_tag = vlan_tag = 0;
|
|
} else {
|
|
printf("%s: no mbuf for tag\n", ifp->if_xname);
|
|
m_freem(m);
|
|
have_tag = vlan_tag = 0;
|
|
continue;
|
|
}
|
|
}
|
|
(*ifp->if_input)(ifp, m);
|
|
}
|
|
|
|
CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
|
|
if (stdcnt)
|
|
CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
|
|
if (jumbocnt)
|
|
CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
|
|
}
|
|
|
|
void
|
|
bge_txeof(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
struct bge_tx_bd *cur_tx = NULL;
|
|
struct ifnet *ifp;
|
|
struct txdmamap_pool_entry *dma;
|
|
bus_addr_t offset, toff;
|
|
bus_size_t tlen;
|
|
int tosync;
|
|
struct mbuf *m;
|
|
|
|
ifp = &sc->ethercom.ec_if;
|
|
|
|
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
|
|
offsetof(struct bge_ring_data, bge_status_block),
|
|
sizeof (struct bge_status_block),
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
offset = offsetof(struct bge_ring_data, bge_tx_ring);
|
|
tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
|
|
sc->bge_tx_saved_considx;
|
|
|
|
toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
|
|
|
|
if (tosync < 0) {
|
|
tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
|
|
sizeof (struct bge_tx_bd);
|
|
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
|
|
toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
tosync = -tosync;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
|
|
offset, tosync * sizeof (struct bge_tx_bd),
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
/*
|
|
* Go through our tx ring and free mbufs for those
|
|
* frames that have been sent.
|
|
*/
|
|
while (sc->bge_tx_saved_considx !=
|
|
sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
|
|
u_int32_t idx = 0;
|
|
|
|
idx = sc->bge_tx_saved_considx;
|
|
cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
|
|
if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
|
|
ifp->if_opackets++;
|
|
m = sc->bge_cdata.bge_tx_chain[idx];
|
|
if (m != NULL) {
|
|
sc->bge_cdata.bge_tx_chain[idx] = NULL;
|
|
dma = sc->txdma[idx];
|
|
bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
|
|
dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
|
|
SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
|
|
sc->txdma[idx] = NULL;
|
|
|
|
m_freem(m);
|
|
}
|
|
sc->bge_txcnt--;
|
|
BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
if (cur_tx != NULL)
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
}
|
|
|
|
int
|
|
bge_intr(xsc)
|
|
void *xsc;
|
|
{
|
|
struct bge_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = xsc;
|
|
ifp = &sc->ethercom.ec_if;
|
|
|
|
#ifdef notdef
|
|
/* Avoid this for now -- checking this register is expensive. */
|
|
/* Make sure this is really our interrupt. */
|
|
if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
|
|
return (0);
|
|
#endif
|
|
/* Ack interrupt and stop others from occuring. */
|
|
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
|
|
|
|
/*
|
|
* Process link state changes.
|
|
* Grrr. The link status word in the status block does
|
|
* not work correctly on the BCM5700 rev AX and BX chips,
|
|
* according to all avaibable information. Hence, we have
|
|
* to enable MII interrupts in order to properly obtain
|
|
* async link changes. Unfortunately, this also means that
|
|
* we have to read the MAC status register to detect link
|
|
* changes, thereby adding an additional register access to
|
|
* the interrupt handler.
|
|
*/
|
|
|
|
if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
|
|
u_int32_t status;
|
|
|
|
status = CSR_READ_4(sc, BGE_MAC_STS);
|
|
if (status & BGE_MACSTAT_MI_INTERRUPT) {
|
|
sc->bge_link = 0;
|
|
callout_stop(&sc->bge_timeout);
|
|
bge_tick(sc);
|
|
/* Clear the interrupt */
|
|
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
|
|
BGE_EVTENB_MI_INTERRUPT);
|
|
bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
|
|
bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
|
|
BRGPHY_INTRS);
|
|
}
|
|
} else {
|
|
if (sc->bge_rdata->bge_status_block.bge_status &
|
|
BGE_STATFLAG_LINKSTATE_CHANGED) {
|
|
sc->bge_link = 0;
|
|
callout_stop(&sc->bge_timeout);
|
|
bge_tick(sc);
|
|
/* Clear the interrupt */
|
|
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
|
|
BGE_MACSTAT_CFG_CHANGED);
|
|
}
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
/* Check RX return ring producer/consumer */
|
|
bge_rxeof(sc);
|
|
|
|
/* Check TX ring producer/consumer */
|
|
bge_txeof(sc);
|
|
}
|
|
|
|
bge_handle_events(sc);
|
|
|
|
/* Re-enable interrupts. */
|
|
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
|
|
|
|
if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
|
|
bge_start(ifp);
|
|
|
|
return (1);
|
|
}
|
|
|
|
void
|
|
bge_tick(xsc)
|
|
void *xsc;
|
|
{
|
|
struct bge_softc *sc = xsc;
|
|
struct mii_data *mii = &sc->bge_mii;
|
|
struct ifmedia *ifm = NULL;
|
|
struct ifnet *ifp = &sc->ethercom.ec_if;
|
|
int s;
|
|
|
|
s = splnet();
|
|
|
|
bge_stats_update(sc);
|
|
callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
|
|
if (sc->bge_link) {
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
if (sc->bge_tbi) {
|
|
ifm = &sc->bge_ifmedia;
|
|
if (CSR_READ_4(sc, BGE_MAC_STS) &
|
|
BGE_MACSTAT_TBI_PCS_SYNCHED) {
|
|
sc->bge_link++;
|
|
CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
|
|
if (!IFQ_IS_EMPTY(&ifp->if_snd))
|
|
bge_start(ifp);
|
|
}
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
mii_tick(mii);
|
|
|
|
if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
|
|
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
|
|
sc->bge_link++;
|
|
if (!IFQ_IS_EMPTY(&ifp->if_snd))
|
|
bge_start(ifp);
|
|
}
|
|
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
bge_stats_update(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->ethercom.ec_if;
|
|
bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
|
|
|
|
#define READ_STAT(sc, stats, stat) \
|
|
CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
|
|
|
|
ifp->if_collisions +=
|
|
(READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
|
|
READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
|
|
READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
|
|
READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
|
|
ifp->if_collisions;
|
|
|
|
#undef READ_STAT
|
|
|
|
#ifdef notdef
|
|
ifp->if_collisions +=
|
|
(sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
|
|
sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
|
|
sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
|
|
sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
|
|
ifp->if_collisions;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
|
|
* pointers to descriptors.
|
|
*/
|
|
int
|
|
bge_encap(sc, m_head, txidx)
|
|
struct bge_softc *sc;
|
|
struct mbuf *m_head;
|
|
u_int32_t *txidx;
|
|
{
|
|
struct bge_tx_bd *f = NULL;
|
|
u_int32_t frag, cur, cnt = 0;
|
|
u_int16_t csum_flags = 0;
|
|
struct txdmamap_pool_entry *dma;
|
|
bus_dmamap_t dmamap;
|
|
int i = 0;
|
|
struct m_tag *mtag;
|
|
struct mbuf *prev, *m;
|
|
int totlen, prevlen;
|
|
|
|
cur = frag = *txidx;
|
|
|
|
if (m_head->m_pkthdr.csum_flags) {
|
|
if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
|
|
csum_flags |= BGE_TXBDFLAG_IP_CSUM;
|
|
if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
|
|
csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
|
|
}
|
|
|
|
if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
|
|
goto doit;
|
|
/*
|
|
* bcm5700 Revision B silicon cannot handle DMA descriptors with
|
|
* less than eight bytes. If we encounter a teeny mbuf
|
|
* at the end of a chain, we can pad. Otherwise, copy.
|
|
*/
|
|
prev = NULL;
|
|
totlen = 0;
|
|
for (m = m_head; m != NULL; prev = m,m = m->m_next) {
|
|
int mlen = m->m_len;
|
|
|
|
totlen += mlen;
|
|
if (mlen == 0) {
|
|
/* print a warning? */
|
|
continue;
|
|
}
|
|
if (mlen >= 8)
|
|
continue;
|
|
|
|
/* If we get here, mbuf data is too small for DMA engine. */
|
|
if (m->m_next != 0) {
|
|
/* Internal frag. If fits in prev, copy it there. */
|
|
if (prev && M_TRAILINGSPACE(prev) >= m->m_len &&
|
|
!M_READONLY(prev)) {
|
|
bcopy(m->m_data,
|
|
prev->m_data+prev->m_len,
|
|
mlen);
|
|
prev->m_len += mlen;
|
|
m->m_len = 0;
|
|
MFREE(m, prev->m_next); /* XXX stitch chain */
|
|
m = prev;
|
|
continue;
|
|
} else {
|
|
struct mbuf *n;
|
|
/* slow copy */
|
|
slowcopy:
|
|
n = m_dup(m_head, 0, M_COPYALL, M_DONTWAIT);
|
|
m_freem(m_head);
|
|
if (n == 0)
|
|
return 0;
|
|
m_head = n;
|
|
goto doit;
|
|
}
|
|
} else if ((totlen -mlen +8) >= 1500) {
|
|
goto slowcopy;
|
|
}
|
|
prevlen = m->m_len;
|
|
}
|
|
|
|
doit:
|
|
dma = SLIST_FIRST(&sc->txdma_list);
|
|
if (dma == NULL)
|
|
return ENOBUFS;
|
|
dmamap = dma->dmamap;
|
|
|
|
/*
|
|
* Start packing the mbufs in this chain into
|
|
* the fragment pointers. Stop when we run out
|
|
* of fragments or hit the end of the mbuf chain.
|
|
*/
|
|
if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
|
|
BUS_DMA_NOWAIT))
|
|
return(ENOBUFS);
|
|
|
|
mtag = sc->ethercom.ec_nvlans ?
|
|
m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
|
|
|
|
for (i = 0; i < dmamap->dm_nsegs; i++) {
|
|
f = &sc->bge_rdata->bge_tx_ring[frag];
|
|
if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
|
|
break;
|
|
bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
|
|
f->bge_len = dmamap->dm_segs[i].ds_len;
|
|
f->bge_flags = csum_flags;
|
|
|
|
if (mtag != NULL) {
|
|
f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
|
|
f->bge_vlan_tag = *(u_int *)(mtag + 1);
|
|
} else {
|
|
f->bge_vlan_tag = 0;
|
|
}
|
|
/*
|
|
* Sanity check: avoid coming within 16 descriptors
|
|
* of the end of the ring.
|
|
*/
|
|
if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
|
|
return(ENOBUFS);
|
|
cur = frag;
|
|
BGE_INC(frag, BGE_TX_RING_CNT);
|
|
cnt++;
|
|
}
|
|
|
|
if (i < dmamap->dm_nsegs)
|
|
return ENOBUFS;
|
|
|
|
bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
if (frag == sc->bge_tx_saved_considx)
|
|
return(ENOBUFS);
|
|
|
|
sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
|
|
sc->bge_cdata.bge_tx_chain[cur] = m_head;
|
|
SLIST_REMOVE_HEAD(&sc->txdma_list, link);
|
|
sc->txdma[cur] = dma;
|
|
sc->bge_txcnt += cnt;
|
|
|
|
*txidx = frag;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
|
|
* to the mbuf data regions directly in the transmit descriptors.
|
|
*/
|
|
void
|
|
bge_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct bge_softc *sc;
|
|
struct mbuf *m_head = NULL;
|
|
u_int32_t prodidx = 0;
|
|
int pkts = 0;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
|
|
return;
|
|
|
|
prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
|
|
|
|
while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
|
|
IFQ_POLL(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
#if 0
|
|
/*
|
|
* XXX
|
|
* safety overkill. If this is a fragmented packet chain
|
|
* with delayed TCP/UDP checksums, then only encapsulate
|
|
* it if we have enough descriptors to handle the entire
|
|
* chain at once.
|
|
* (paranoia -- may not actually be needed)
|
|
*/
|
|
if (m_head->m_flags & M_FIRSTFRAG &&
|
|
m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
|
|
if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
|
|
m_head->m_pkthdr.csum_data + 16) {
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Pack the data into the transmit ring. If we
|
|
* don't have room, set the OACTIVE flag and wait
|
|
* for the NIC to drain the ring.
|
|
*/
|
|
if (bge_encap(sc, m_head, &prodidx)) {
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
/* now we are committed to transmit the packet */
|
|
IFQ_DEQUEUE(&ifp->if_snd, m_head);
|
|
pkts++;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m_head);
|
|
#endif
|
|
}
|
|
if (pkts == 0)
|
|
return;
|
|
|
|
/* Transmit */
|
|
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
|
|
if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
|
|
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
|
|
|
|
/*
|
|
* Set a timeout in case the chip goes out to lunch.
|
|
*/
|
|
ifp->if_timer = 5;
|
|
}
|
|
|
|
int
|
|
bge_init(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct bge_softc *sc = ifp->if_softc;
|
|
u_int16_t *m;
|
|
int s, error;
|
|
|
|
s = splnet();
|
|
|
|
ifp = &sc->ethercom.ec_if;
|
|
|
|
/* Cancel pending I/O and flush buffers. */
|
|
bge_stop(sc);
|
|
bge_reset(sc);
|
|
bge_chipinit(sc);
|
|
|
|
/*
|
|
* Init the various state machines, ring
|
|
* control blocks and firmware.
|
|
*/
|
|
error = bge_blockinit(sc);
|
|
if (error != 0) {
|
|
printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
|
|
error);
|
|
splx(s);
|
|
return error;
|
|
}
|
|
|
|
ifp = &sc->ethercom.ec_if;
|
|
|
|
/* Specify MTU. */
|
|
CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
|
|
ETHER_HDR_LEN + ETHER_CRC_LEN);
|
|
|
|
/* Load our MAC address. */
|
|
m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
|
|
CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
|
|
CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
|
|
|
|
/* Enable or disable promiscuous mode as needed. */
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
|
|
} else {
|
|
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
|
|
}
|
|
|
|
/* Program multicast filter. */
|
|
bge_setmulti(sc);
|
|
|
|
/* Init RX ring. */
|
|
bge_init_rx_ring_std(sc);
|
|
|
|
/* Init jumbo RX ring. */
|
|
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
|
|
bge_init_rx_ring_jumbo(sc);
|
|
|
|
/* Init our RX return ring index */
|
|
sc->bge_rx_saved_considx = 0;
|
|
|
|
/* Init TX ring. */
|
|
bge_init_tx_ring(sc);
|
|
|
|
/* Turn on transmitter */
|
|
BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
|
|
|
|
/* Turn on receiver */
|
|
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
|
|
|
|
/* Tell firmware we're alive. */
|
|
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
|
|
|
|
/* Enable host interrupts. */
|
|
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
|
|
BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
|
|
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
|
|
|
|
bge_ifmedia_upd(ifp);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
splx(s);
|
|
|
|
callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
int
|
|
bge_ifmedia_upd(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct bge_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = &sc->bge_mii;
|
|
struct ifmedia *ifm = &sc->bge_ifmedia;
|
|
|
|
/* If this is a 1000baseX NIC, enable the TBI port. */
|
|
if (sc->bge_tbi) {
|
|
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
|
|
return(EINVAL);
|
|
switch(IFM_SUBTYPE(ifm->ifm_media)) {
|
|
case IFM_AUTO:
|
|
break;
|
|
case IFM_1000_SX:
|
|
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
|
|
BGE_CLRBIT(sc, BGE_MAC_MODE,
|
|
BGE_MACMODE_HALF_DUPLEX);
|
|
} else {
|
|
BGE_SETBIT(sc, BGE_MAC_MODE,
|
|
BGE_MACMODE_HALF_DUPLEX);
|
|
}
|
|
break;
|
|
default:
|
|
return(EINVAL);
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
sc->bge_link = 0;
|
|
mii_mediachg(mii);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
void
|
|
bge_ifmedia_sts(ifp, ifmr)
|
|
struct ifnet *ifp;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct bge_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = &sc->bge_mii;
|
|
|
|
if (sc->bge_tbi) {
|
|
ifmr->ifm_status = IFM_AVALID;
|
|
ifmr->ifm_active = IFM_ETHER;
|
|
if (CSR_READ_4(sc, BGE_MAC_STS) &
|
|
BGE_MACSTAT_TBI_PCS_SYNCHED)
|
|
ifmr->ifm_status |= IFM_ACTIVE;
|
|
ifmr->ifm_active |= IFM_1000_SX;
|
|
if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
|
|
ifmr->ifm_active |= IFM_HDX;
|
|
else
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
return;
|
|
}
|
|
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
}
|
|
|
|
int
|
|
bge_ioctl(ifp, command, data)
|
|
struct ifnet *ifp;
|
|
u_long command;
|
|
caddr_t data;
|
|
{
|
|
struct bge_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
int s, error = 0;
|
|
struct mii_data *mii;
|
|
|
|
s = splnet();
|
|
|
|
switch(command) {
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
/*
|
|
* If only the state of the PROMISC flag changed,
|
|
* then just use the 'set promisc mode' command
|
|
* instead of reinitializing the entire NIC. Doing
|
|
* a full re-init means reloading the firmware and
|
|
* waiting for it to start up, which may take a
|
|
* second or two.
|
|
*/
|
|
if (ifp->if_flags & IFF_RUNNING &&
|
|
ifp->if_flags & IFF_PROMISC &&
|
|
!(sc->bge_if_flags & IFF_PROMISC)) {
|
|
BGE_SETBIT(sc, BGE_RX_MODE,
|
|
BGE_RXMODE_RX_PROMISC);
|
|
} else if (ifp->if_flags & IFF_RUNNING &&
|
|
!(ifp->if_flags & IFF_PROMISC) &&
|
|
sc->bge_if_flags & IFF_PROMISC) {
|
|
BGE_CLRBIT(sc, BGE_RX_MODE,
|
|
BGE_RXMODE_RX_PROMISC);
|
|
} else
|
|
bge_init(ifp);
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
bge_stop(sc);
|
|
}
|
|
}
|
|
sc->bge_if_flags = ifp->if_flags;
|
|
error = 0;
|
|
break;
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
if (sc->bge_tbi) {
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
|
|
command);
|
|
} else {
|
|
mii = &sc->bge_mii;
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
|
|
command);
|
|
}
|
|
error = 0;
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
if (error == ENETRESET) {
|
|
bge_setmulti(sc);
|
|
error = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
splx(s);
|
|
|
|
return(error);
|
|
}
|
|
|
|
void
|
|
bge_watchdog(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct bge_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
|
|
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
bge_init(ifp);
|
|
|
|
ifp->if_oerrors++;
|
|
}
|
|
|
|
static void
|
|
bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
|
|
{
|
|
int i;
|
|
|
|
BGE_CLRBIT(sc, reg, bit);
|
|
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
if ((CSR_READ_4(sc, reg) & bit) == 0)
|
|
return;
|
|
delay(100);
|
|
}
|
|
|
|
printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
|
|
sc->bge_dev.dv_xname, (u_long) reg, bit);
|
|
}
|
|
|
|
/*
|
|
* Stop the adapter and free any mbufs allocated to the
|
|
* RX and TX lists.
|
|
*/
|
|
void
|
|
bge_stop(sc)
|
|
struct bge_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->ethercom.ec_if;
|
|
|
|
callout_stop(&sc->bge_timeout);
|
|
|
|
/*
|
|
* Disable all of the receiver blocks
|
|
*/
|
|
bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
|
|
|
|
/*
|
|
* Disable all of the transmit blocks
|
|
*/
|
|
bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
|
|
|
|
/*
|
|
* Shut down all of the memory managers and related
|
|
* state machines.
|
|
*/
|
|
bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
|
|
|
|
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
|
|
|
|
bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
|
|
|
|
/* Disable host interrupts. */
|
|
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
|
|
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
|
|
|
|
/*
|
|
* Tell firmware we're shutting down.
|
|
*/
|
|
BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
|
|
|
|
/* Free the RX lists. */
|
|
bge_free_rx_ring_std(sc);
|
|
|
|
/* Free jumbo RX list. */
|
|
bge_free_rx_ring_jumbo(sc);
|
|
|
|
/* Free TX buffers. */
|
|
bge_free_tx_ring(sc);
|
|
|
|
/*
|
|
* Isolate/power down the PHY.
|
|
*/
|
|
if (!sc->bge_tbi)
|
|
mii_down(&sc->bge_mii);
|
|
|
|
sc->bge_link = 0;
|
|
|
|
sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
|
|
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
}
|
|
|
|
/*
|
|
* Stop all chip I/O so that the kernel's probe routines don't
|
|
* get confused by errant DMAs when rebooting.
|
|
*/
|
|
void
|
|
bge_shutdown(xsc)
|
|
void *xsc;
|
|
{
|
|
struct bge_softc *sc = (struct bge_softc *)xsc;
|
|
|
|
bge_stop(sc);
|
|
bge_reset(sc);
|
|
}
|