NetBSD/lib/librumpuser/rumpuser_dl.c
pooka 23dfcd7408 Use autoconf for rump kernel posix hypercall layer.
This gets rid of homegrown hacks and puts all probes in one place.

Tested for NetBSD (build.sh + anita) and Linux (buildrump.sh)
2014-11-04 19:05:17 +00:00

488 lines
13 KiB
C

/* $NetBSD: rumpuser_dl.c,v 1.30 2014/11/04 19:05:17 pooka Exp $ */
/*
* Copyright (c) 2009 Antti Kantee. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Load all module link sets and feed symbol table to the kernel.
* Called during rump bootstrap.
*/
/*
* Solaris libelf.h doesn't support _FILE_OFFSET_BITS=64. Luckily,
* for this module it doesn't matter.
*/
#if defined(__sun__)
#define RUMPUSER_NO_FILE_OFFSET_BITS
#endif
#include "rumpuser_port.h"
#if !defined(lint)
__RCSID("$NetBSD: rumpuser_dl.c,v 1.30 2014/11/04 19:05:17 pooka Exp $");
#endif /* !lint */
#include <sys/types.h>
#include <sys/time.h>
#include <assert.h>
#include <dlfcn.h>
#include <errno.h>
#include <fcntl.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <rump/rumpuser.h>
#if defined(__ELF__) && defined(HAVE_DLINFO)
#include <elf.h>
#include <link.h>
static size_t symtabsize = 0, strtabsize = 0;
static size_t symtaboff = 0, strtaboff = 0;
static uint8_t *symtab = NULL;
static char *strtab = NULL;
static unsigned char eident;
/* nb5 compat */
#ifndef Elf_Symindx
#define Elf_Symindx uint32_t
#endif
static void *
reservespace(void *store, size_t *storesize,
size_t storeoff, size_t required)
{
size_t chunk, newsize;
assert(storeoff <= *storesize);
chunk = *storesize - storeoff;
if (chunk >= required)
return store;
newsize = *storesize + ((size_t)required - chunk);
store = realloc(store, newsize);
if (store == NULL) {
return NULL;
}
*((uint8_t *)store + storeoff) = '\0';
*storesize = newsize;
return store;
}
/*
* Macros to make handling elf32/64 in the code a little saner.
*/
#define DYNn_GETMEMBER(base, n, thevar, result) \
do { \
if (eident == ELFCLASS32) { \
const Elf32_Dyn *dyn = base; \
/*LINTED*/ \
result = dyn[n].thevar; \
} else { \
const Elf64_Dyn *dyn = base; \
/*LINTED*/ \
result = dyn[n].thevar; \
} \
} while (/*CONSTCOND*/0)
#define SYMn_GETMEMBER(base, n, thevar, result) \
do { \
if (eident == ELFCLASS32) { \
const Elf32_Sym *sym = base; \
/*LINTED*/ \
result = sym[n].thevar; \
} else { \
const Elf64_Sym *sym = base; \
/*LINTED*/ \
result = sym[n].thevar; \
} \
} while (/*CONSTCOND*/0)
#define SYMn_SETMEMBER(base, n, thevar, value) \
do { \
if (eident == ELFCLASS32) { \
Elf32_Sym *sym = base; \
/*LINTED*/ \
sym[n].thevar = value; \
} else { \
Elf64_Sym *sym = base; \
/*LINTED*/ \
sym[n].thevar = value; \
} \
} while (/*CONSTCOND*/0)
#define SYM_GETSIZE() ((eident==ELFCLASS32)?sizeof(Elf32_Sym):sizeof(Elf64_Sym))
/*
* On NetBSD, the dynamic section pointer values seem to be relative to
* the address the dso is mapped at. On glibc, they seem to contain
* the absolute address. I couldn't find anything definite from a quick
* read of the standard and therefore I will not go and figure beyond ifdef.
* On Solaris and DragonFly / FreeBSD, the main object works differently
* ... uuuuh.
*/
#if defined(__GLIBC__) && !defined(__mips__)
#define adjptr(_map_, _ptr_) ((void *)(_ptr_))
#elif defined(__sun__) || defined(__DragonFly__) || defined(__FreeBSD__)
#define adjptr(_map_, _ptr_) \
(ismainobj ? (void *)(_ptr_) : (void *)(_map_->l_addr + (_ptr_)))
#else
/* NetBSD and some others, e.g. Linux + musl */
#define adjptr(_map_, _ptr_) ((void *)(_map_->l_addr + (_ptr_)))
#endif
static int
getsymbols(struct link_map *map, int ismainobj)
{
char *str_base;
void *syms_base = NULL; /* XXXgcc */
size_t curstrsize;
const void *ed_base;
uint64_t ed_tag;
size_t cursymcount;
unsigned i;
if (map->l_addr) {
if (memcmp((void *)map->l_addr, ELFMAG, SELFMAG) != 0)
return ENOEXEC;
eident = *(unsigned char *)(map->l_addr + EI_CLASS);
if (eident != ELFCLASS32 && eident != ELFCLASS64)
return ENOEXEC;
}
/*
* ok, we probably have only the main object. instead of going
* to disk and reading the ehdr, just try to guess the size.
*/
if (eident == 0) {
if (/*CONSTCOND*/sizeof(void *) == 4)
eident = ELFCLASS32;
else
eident = ELFCLASS64;
}
/*
* Find symtab and strtab and their sizes.
*/
str_base = NULL;
curstrsize = 0;
cursymcount = 0;
ed_base = map->l_ld;
DYNn_GETMEMBER(ed_base, 0, d_tag, ed_tag);
for (i = 0; ed_tag != DT_NULL;) {
uintptr_t edptr;
size_t edval;
Elf_Symindx *hashtab;
switch (ed_tag) {
case DT_SYMTAB:
DYNn_GETMEMBER(ed_base, i, d_un.d_ptr, edptr);
syms_base = adjptr(map, edptr);
break;
case DT_STRTAB:
DYNn_GETMEMBER(ed_base, i, d_un.d_ptr, edptr);
str_base = adjptr(map, edptr);
break;
case DT_STRSZ:
DYNn_GETMEMBER(ed_base, i, d_un.d_val, edval);
curstrsize = edval;
break;
case DT_HASH:
DYNn_GETMEMBER(ed_base, i, d_un.d_ptr, edptr);
hashtab = (Elf_Symindx *)adjptr(map, edptr);
cursymcount = hashtab[1];
break;
#ifdef DT_GNU_HASH
/*
* DT_GNU_HASH is a bit more complicated than DT_HASH
* in this regard since apparently there is no field
* telling us the total symbol count. Instead, we look
* for the last valid hash bucket and add its chain lenght
* to the bucket's base index.
*/
case DT_GNU_HASH: {
Elf32_Word nbuck, symndx, maskwords, maxchain = 0;
Elf32_Word *gnuhash, *buckets, *ptr;
int bi;
DYNn_GETMEMBER(ed_base, i, d_un.d_ptr, edptr);
gnuhash = (Elf32_Word *)adjptr(map, edptr);
nbuck = gnuhash[0];
symndx = gnuhash[1];
maskwords = gnuhash[2];
/*
* First, find the last valid bucket and grab its index
*/
if (eident == ELFCLASS64)
maskwords *= 2; /* sizeof(*buckets) == 4 */
buckets = gnuhash + 4 + maskwords;
for (bi = nbuck-1; bi >= 0; bi--) {
if (buckets[bi] != 0) {
maxchain = buckets[bi];
break;
}
}
if (maxchain == 0 || maxchain < symndx)
break;
/*
* Then, traverse the last chain and count symbols.
*/
cursymcount = maxchain;
ptr = buckets + nbuck + (maxchain - symndx);
do {
cursymcount++;
} while ((*ptr++ & 1) == 0);
}
break;
#endif
case DT_SYMENT:
DYNn_GETMEMBER(ed_base, i, d_un.d_val, edval);
assert(edval == SYM_GETSIZE());
break;
default:
break;
}
i++;
DYNn_GETMEMBER(ed_base, i, d_tag, ed_tag);
}
if (str_base == NULL || syms_base == NULL ||
curstrsize == 0 || cursymcount == 0) {
fprintf(stderr, "could not find strtab, symtab or their sizes "
"in %s\n", map->l_name);
return ENOEXEC;
}
/*
* Make sure we have enough space for the contents of the symbol
* and string tables we are currently processing. The total used
* space will be smaller due to undefined symbols we are not
* interested in.
*/
symtab = reservespace(symtab, &symtabsize,
symtaboff, cursymcount * SYM_GETSIZE());
strtab = reservespace(strtab, &strtabsize, strtaboff, curstrsize);
if (symtab == NULL || strtab == NULL) {
fprintf(stderr, "failed to reserve memory");
return ENOMEM;
}
/* iterate over all symbols in current symtab */
for (i = 0; i < cursymcount; i++) {
const char *cursymname;
int shndx, name;
uintptr_t value;
void *csym;
SYMn_GETMEMBER(syms_base, i, st_shndx, shndx);
SYMn_GETMEMBER(syms_base, i, st_value, value);
if (shndx == SHN_UNDEF || value == 0)
continue;
/* get symbol name */
SYMn_GETMEMBER(syms_base, i, st_name, name);
cursymname = name + str_base;
/*
* Only accept symbols which are decidedly in
* the rump kernel namespace.
* XXX: quirks, but they wouldn't matter here
*/
if (strncmp(cursymname, "rump", 4) != 0 &&
strncmp(cursymname, "RUMP", 4) != 0 &&
strncmp(cursymname, "__", 2) != 0) {
continue;
}
memcpy(symtab + symtaboff,
(const uint8_t *)syms_base + i*SYM_GETSIZE(),SYM_GETSIZE());
/*
* set name to point at new strtab, offset symbol value
* with lib base address.
*/
csym = symtab + symtaboff;
SYMn_SETMEMBER(csym, 0, st_name, strtaboff);
SYMn_GETMEMBER(csym, 0, st_value, value);
SYMn_SETMEMBER(csym, 0, st_value,(intptr_t)(value+map->l_addr));
symtaboff += SYM_GETSIZE();
strcpy(strtab + strtaboff, cursymname);
strtaboff += strlen(cursymname)+1;
}
return 0;
}
static void
process_object(void *handle,
rump_modinit_fn domodinit, rump_compload_fn docompload)
{
const struct modinfo *const *mi_start, *const *mi_end;
struct rump_component *const *rc, *const *rc_end;
mi_start = dlsym(handle, "__start_link_set_modules");
mi_end = dlsym(handle, "__stop_link_set_modules");
if (mi_start && mi_end)
domodinit(mi_start, (size_t)(mi_end-mi_start));
rc = dlsym(handle, "__start_link_set_rump_components");
rc_end = dlsym(handle, "__stop_link_set_rump_components");
if (rc && rc_end) {
for (; rc < rc_end; rc++)
docompload(*rc);
assert(rc == rc_end);
}
}
/*
* Get the linkmap from the dynlinker. Try to load kernel modules
* from all objects in the linkmap.
*/
void
rumpuser_dl_bootstrap(rump_modinit_fn domodinit,
rump_symload_fn symload, rump_compload_fn compload)
{
struct link_map *map, *origmap, *mainmap;
void *mainhandle;
int error;
mainhandle = dlopen(NULL, RTLD_NOW);
/* Will be null if statically linked so just return */
if (mainhandle == NULL)
return;
if (dlinfo(mainhandle, RTLD_DI_LINKMAP, &mainmap) == -1) {
fprintf(stderr, "warning: rumpuser module bootstrap "
"failed: %s\n", dlerror());
return;
}
origmap = mainmap;
/*
* Use a heuristic to determine if we are static linked.
* A dynamically linked binary should always have at least
* two objects: itself and ld.so.
*
* In a statically linked binary with glibc the linkmap
* contains some "info" that leads to a segfault. Since we
* can't really do anything useful in here without ld.so, just
* simply bail and let the symbol references in librump do the
* right things.
*/
if (origmap->l_next == NULL && origmap->l_prev == NULL) {
dlclose(mainhandle);
return;
}
/*
* Process last->first because that's the most probable
* order for dependencies
*/
for (; origmap->l_next; origmap = origmap->l_next)
continue;
/*
* Build symbol table to hand to the rump kernel. Do this by
* iterating over all rump libraries and collecting symbol
* addresses and relocation info.
*/
error = 0;
for (map = origmap; map && !error; map = map->l_prev) {
if (strstr(map->l_name, "librump") != NULL || map == mainmap)
error = getsymbols(map, map == mainmap);
}
if (error == 0) {
void *trimmedsym, *trimmedstr;
/*
* Allocate optimum-sized memory for storing tables
* and feed to kernel. If memory allocation fails,
* just give the ones with extra context (although
* I'm pretty sure we'll die moments later due to
* memory running out).
*/
if ((trimmedsym = malloc(symtaboff)) != NULL) {
memcpy(trimmedsym, symtab, symtaboff);
} else {
trimmedsym = symtab;
symtab = NULL;
}
if ((trimmedstr = malloc(strtaboff)) != NULL) {
memcpy(trimmedstr, strtab, strtaboff);
} else {
trimmedstr = strtab;
strtab = NULL;
}
symload(trimmedsym, symtaboff, trimmedstr, strtaboff);
}
free(symtab);
free(strtab);
/*
* Next, load modules and components.
*
* Simply loop through all objects, ones unrelated to rump kernels
* will not contain link_set_rump_components (well, not including
* "sabotage", but that needs to be solved at another level anyway).
*/
for (map = origmap; map; map = map->l_prev) {
void *handle;
if (map == mainmap) {
handle = mainhandle;
} else {
handle = dlopen(map->l_name, RTLD_LAZY);
if (handle == NULL)
continue;
}
process_object(handle, domodinit, compload);
if (map != mainmap)
dlclose(handle);
}
}
#else
/*
* no dynamic linking supported
*/
void
rumpuser_dl_bootstrap(rump_modinit_fn domodinit,
rump_symload_fn symload, rump_compload_fn compload)
{
return;
}
#endif