NetBSD/sys/opencrypto/aesxcbcmac.c
christos 3ee5c00a54 From Alexander Nasonov:
- Make constants static: Shrinks code and data size.
- Avoid overflow in limit calculation.
- Use uint8_t instead of u_char to match types
While here:
- Remove unnecessary casts
- s/u_int8_t/uint8_t/g
2016-09-26 14:50:54 +00:00

145 lines
4.6 KiB
C

/* $NetBSD: aesxcbcmac.c,v 1.2 2016/09/26 14:50:54 christos Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, 1998 and 2003 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: aesxcbcmac.c,v 1.2 2016/09/26 14:50:54 christos Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <crypto/rijndael/rijndael.h>
#include <opencrypto/aesxcbcmac.h>
int
aes_xcbc_mac_init(void *vctx, const uint8_t *key, u_int16_t keylen)
{
static const uint8_t k1seed[AES_BLOCKSIZE] =
{ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 };
static const uint8_t k2seed[AES_BLOCKSIZE] =
{ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 };
static const uint8_t k3seed[AES_BLOCKSIZE] =
{ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 };
u_int32_t r_ks[(RIJNDAEL_MAXNR+1)*4];
aesxcbc_ctx *ctx;
uint8_t k1[AES_BLOCKSIZE];
ctx = vctx;
memset(ctx, 0, sizeof(*ctx));
if ((ctx->r_nr = rijndaelKeySetupEnc(r_ks, key, keylen * 8)) == 0)
return -1;
rijndaelEncrypt(r_ks, ctx->r_nr, k1seed, k1);
rijndaelEncrypt(r_ks, ctx->r_nr, k2seed, ctx->k2);
rijndaelEncrypt(r_ks, ctx->r_nr, k3seed, ctx->k3);
if (rijndaelKeySetupEnc(ctx->r_k1s, k1, AES_BLOCKSIZE * 8) == 0)
return -1;
if (rijndaelKeySetupEnc(ctx->r_k2s, ctx->k2, AES_BLOCKSIZE * 8) == 0)
return -1;
if (rijndaelKeySetupEnc(ctx->r_k3s, ctx->k3, AES_BLOCKSIZE * 8) == 0)
return -1;
return 0;
}
int
aes_xcbc_mac_loop(void *vctx, const uint8_t *addr, u_int16_t len)
{
uint8_t buf[AES_BLOCKSIZE];
aesxcbc_ctx *ctx;
const uint8_t *ep;
int i;
ctx = vctx;
ep = addr + len;
if (ctx->buflen == sizeof(ctx->buf)) {
for (i = 0; i < sizeof(ctx->e); i++)
ctx->buf[i] ^= ctx->e[i];
rijndaelEncrypt(ctx->r_k1s, ctx->r_nr, ctx->buf, ctx->e);
ctx->buflen = 0;
}
if (ctx->buflen + len < sizeof(ctx->buf)) {
memcpy(ctx->buf + ctx->buflen, addr, len);
ctx->buflen += len;
return 0;
}
if (ctx->buflen && ctx->buflen + len > sizeof(ctx->buf)) {
memcpy(ctx->buf + ctx->buflen, addr,
sizeof(ctx->buf) - ctx->buflen);
for (i = 0; i < sizeof(ctx->e); i++)
ctx->buf[i] ^= ctx->e[i];
rijndaelEncrypt(ctx->r_k1s, ctx->r_nr, ctx->buf, ctx->e);
addr += sizeof(ctx->buf) - ctx->buflen;
ctx->buflen = 0;
}
/* due to the special processing for M[n], "=" case is not included */
while (ep - addr > AES_BLOCKSIZE) {
memcpy(buf, addr, AES_BLOCKSIZE);
for (i = 0; i < sizeof(buf); i++)
buf[i] ^= ctx->e[i];
rijndaelEncrypt(ctx->r_k1s, ctx->r_nr, buf, ctx->e);
addr += AES_BLOCKSIZE;
}
if (addr < ep) {
memcpy(ctx->buf + ctx->buflen, addr, ep - addr);
ctx->buflen += ep - addr;
}
return 0;
}
void
aes_xcbc_mac_result(uint8_t *addr, void *vctx)
{
uint8_t digest[AES_BLOCKSIZE];
aesxcbc_ctx *ctx;
int i;
ctx = vctx;
if (ctx->buflen == sizeof(ctx->buf)) {
for (i = 0; i < sizeof(ctx->buf); i++) {
ctx->buf[i] ^= ctx->e[i];
ctx->buf[i] ^= ctx->k2[i];
}
rijndaelEncrypt(ctx->r_k1s, ctx->r_nr, ctx->buf, digest);
} else {
for (i = ctx->buflen; i < sizeof(ctx->buf); i++)
ctx->buf[i] = (i == ctx->buflen) ? 0x80 : 0x00;
for (i = 0; i < sizeof(ctx->buf); i++) {
ctx->buf[i] ^= ctx->e[i];
ctx->buf[i] ^= ctx->k3[i];
}
rijndaelEncrypt(ctx->r_k1s, ctx->r_nr, ctx->buf, digest);
}
memcpy(addr, digest, sizeof(digest));
}