1436 lines
35 KiB
C
1436 lines
35 KiB
C
/* $NetBSD: sunxi_emac.c,v 1.1 2017/07/01 16:25:16 jmcneill Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2016-2017 Jared McNeill <jmcneill@invisible.ca>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Allwinner Gigabit Ethernet MAC (EMAC) controller
|
|
*/
|
|
|
|
#include "opt_net_mpsafe.h"
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: sunxi_emac.c,v 1.1 2017/07/01 16:25:16 jmcneill Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/device.h>
|
|
#include <sys/intr.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/gpio.h>
|
|
#include <sys/cprng.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_ether.h>
|
|
#include <net/if_media.h>
|
|
#include <net/bpf.h>
|
|
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/fdt/fdtvar.h>
|
|
|
|
#include <arm/sunxi/sunxi_emac.h>
|
|
|
|
#ifdef NET_MPSAFE
|
|
#define EMAC_MPSAFE 1
|
|
#define CALLOUT_FLAGS CALLOUT_MPSAFE
|
|
#define FDT_INTR_FLAGS FDT_INTR_MPSAFE
|
|
#else
|
|
#define CALLOUT_FLAGS 0
|
|
#define FDT_INTR_FLAGS 0
|
|
#endif
|
|
|
|
#define EMAC_IFNAME "emac%d"
|
|
|
|
#define ETHER_ALIGN 2
|
|
|
|
#define EMAC_LOCK(sc) mutex_enter(&(sc)->mtx)
|
|
#define EMAC_UNLOCK(sc) mutex_exit(&(sc)->mtx)
|
|
#define EMAC_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->mtx))
|
|
|
|
#define DESC_ALIGN 8
|
|
#define TX_DESC_COUNT 1024
|
|
#define TX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * TX_DESC_COUNT)
|
|
#define RX_DESC_COUNT 256
|
|
#define RX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * RX_DESC_COUNT)
|
|
|
|
#define DESC_OFF(n) ((n) * sizeof(struct sunxi_emac_desc))
|
|
#define TX_NEXT(n) (((n) + 1) & (TX_DESC_COUNT - 1))
|
|
#define TX_SKIP(n, o) (((n) + (o)) & (TX_DESC_COUNT - 1))
|
|
#define RX_NEXT(n) (((n) + 1) & (RX_DESC_COUNT - 1))
|
|
|
|
#define TX_MAX_SEGS 128
|
|
|
|
#define SOFT_RST_RETRY 1000
|
|
#define MII_BUSY_RETRY 1000
|
|
#define MDIO_FREQ 2500000
|
|
|
|
#define BURST_LEN_DEFAULT 8
|
|
#define RX_TX_PRI_DEFAULT 0
|
|
#define PAUSE_TIME_DEFAULT 0x400
|
|
#define TX_INTERVAL_DEFAULT 64
|
|
#define RX_BATCH_DEFAULT 64
|
|
|
|
/* syscon EMAC clock register */
|
|
#define EMAC_CLK_EPHY_ADDR (0x1f << 20) /* H3 */
|
|
#define EMAC_CLK_EPHY_ADDR_SHIFT 20
|
|
#define EMAC_CLK_EPHY_LED_POL (1 << 17) /* H3 */
|
|
#define EMAC_CLK_EPHY_SHUTDOWN (1 << 16) /* H3 */
|
|
#define EMAC_CLK_EPHY_SELECT (1 << 15) /* H3 */
|
|
#define EMAC_CLK_RMII_EN (1 << 13)
|
|
#define EMAC_CLK_ETXDC (0x7 << 10)
|
|
#define EMAC_CLK_ETXDC_SHIFT 10
|
|
#define EMAC_CLK_ERXDC (0x1f << 5)
|
|
#define EMAC_CLK_ERXDC_SHIFT 5
|
|
#define EMAC_CLK_PIT (0x1 << 2)
|
|
#define EMAC_CLK_PIT_MII (0 << 2)
|
|
#define EMAC_CLK_PIT_RGMII (1 << 2)
|
|
#define EMAC_CLK_SRC (0x3 << 0)
|
|
#define EMAC_CLK_SRC_MII (0 << 0)
|
|
#define EMAC_CLK_SRC_EXT_RGMII (1 << 0)
|
|
#define EMAC_CLK_SRC_RGMII (2 << 0)
|
|
|
|
/* Burst length of RX and TX DMA transfers */
|
|
static int sunxi_emac_burst_len = BURST_LEN_DEFAULT;
|
|
|
|
/* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
|
|
static int sunxi_emac_rx_tx_pri = RX_TX_PRI_DEFAULT;
|
|
|
|
/* Pause time field in the transmitted control frame */
|
|
static int sunxi_emac_pause_time = PAUSE_TIME_DEFAULT;
|
|
|
|
/* Request a TX interrupt every <n> descriptors */
|
|
static int sunxi_emac_tx_interval = TX_INTERVAL_DEFAULT;
|
|
|
|
/* Maximum number of mbufs to send to if_input */
|
|
static int sunxi_emac_rx_batch = RX_BATCH_DEFAULT;
|
|
|
|
enum sunxi_emac_type {
|
|
EMAC_A83T = 1,
|
|
EMAC_H3,
|
|
};
|
|
|
|
static const struct of_compat_data compat_data[] = {
|
|
{ "allwinner,sun8i-a83t-emac", EMAC_A83T },
|
|
{ "allwinner,sun8i-h3-emac", EMAC_H3 },
|
|
{ NULL }
|
|
};
|
|
|
|
struct sunxi_emac_bufmap {
|
|
bus_dmamap_t map;
|
|
struct mbuf *mbuf;
|
|
};
|
|
|
|
struct sunxi_emac_txring {
|
|
bus_dma_tag_t desc_tag;
|
|
bus_dmamap_t desc_map;
|
|
bus_dma_segment_t desc_dmaseg;
|
|
struct sunxi_emac_desc *desc_ring;
|
|
bus_addr_t desc_ring_paddr;
|
|
bus_dma_tag_t buf_tag;
|
|
struct sunxi_emac_bufmap buf_map[TX_DESC_COUNT];
|
|
u_int cur, next, queued;
|
|
};
|
|
|
|
struct sunxi_emac_rxring {
|
|
bus_dma_tag_t desc_tag;
|
|
bus_dmamap_t desc_map;
|
|
bus_dma_segment_t desc_dmaseg;
|
|
struct sunxi_emac_desc *desc_ring;
|
|
bus_addr_t desc_ring_paddr;
|
|
bus_dma_tag_t buf_tag;
|
|
struct sunxi_emac_bufmap buf_map[RX_DESC_COUNT];
|
|
u_int cur;
|
|
};
|
|
|
|
enum {
|
|
_RES_EMAC,
|
|
_RES_SYSCON,
|
|
_RES_NITEMS
|
|
};
|
|
|
|
struct sunxi_emac_softc {
|
|
device_t dev;
|
|
int phandle;
|
|
enum sunxi_emac_type type;
|
|
bus_space_tag_t bst;
|
|
bus_dma_tag_t dmat;
|
|
|
|
bus_space_handle_t bsh[_RES_NITEMS];
|
|
struct clk *clk_ahb;
|
|
struct clk *clk_ephy;
|
|
struct fdtbus_reset *rst_ahb;
|
|
struct fdtbus_reset *rst_ephy;
|
|
struct fdtbus_regulator *reg_phy;
|
|
struct fdtbus_gpio_pin *pin_reset;
|
|
|
|
kmutex_t mtx;
|
|
struct ethercom ec;
|
|
struct mii_data mii;
|
|
callout_t stat_ch;
|
|
void *ih;
|
|
u_int mdc_div_ratio_m;
|
|
|
|
struct sunxi_emac_txring tx;
|
|
struct sunxi_emac_rxring rx;
|
|
};
|
|
|
|
#define RD4(sc, reg) \
|
|
bus_space_read_4((sc)->bst, (sc)->bsh[_RES_EMAC], (reg))
|
|
#define WR4(sc, reg, val) \
|
|
bus_space_write_4((sc)->bst, (sc)->bsh[_RES_EMAC], (reg), (val))
|
|
|
|
#define SYSCONRD4(sc, reg) \
|
|
bus_space_read_4((sc)->bst, (sc)->bsh[_RES_SYSCON], (reg))
|
|
#define SYSCONWR4(sc, reg, val) \
|
|
bus_space_write_4((sc)->bst, (sc)->bsh[_RES_SYSCON], (reg), (val))
|
|
|
|
static int
|
|
sunxi_emac_mii_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct sunxi_emac_softc *sc = device_private(dev);
|
|
int retry, val;
|
|
|
|
val = 0;
|
|
|
|
WR4(sc, EMAC_MII_CMD,
|
|
(sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
|
|
(phy << PHY_ADDR_SHIFT) |
|
|
(reg << PHY_REG_ADDR_SHIFT) |
|
|
MII_BUSY);
|
|
for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
|
|
if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
|
|
val = RD4(sc, EMAC_MII_DATA);
|
|
break;
|
|
}
|
|
delay(10);
|
|
}
|
|
|
|
if (retry == 0)
|
|
device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
|
|
phy, reg);
|
|
|
|
return val;
|
|
}
|
|
|
|
static void
|
|
sunxi_emac_mii_writereg(device_t dev, int phy, int reg, int val)
|
|
{
|
|
struct sunxi_emac_softc *sc = device_private(dev);
|
|
int retry;
|
|
|
|
WR4(sc, EMAC_MII_DATA, val);
|
|
WR4(sc, EMAC_MII_CMD,
|
|
(sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
|
|
(phy << PHY_ADDR_SHIFT) |
|
|
(reg << PHY_REG_ADDR_SHIFT) |
|
|
MII_WR | MII_BUSY);
|
|
for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
|
|
if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
|
|
break;
|
|
delay(10);
|
|
}
|
|
|
|
if (retry == 0)
|
|
device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
|
|
phy, reg);
|
|
}
|
|
|
|
static void
|
|
sunxi_emac_update_link(struct sunxi_emac_softc *sc)
|
|
{
|
|
struct mii_data *mii = &sc->mii;
|
|
uint32_t val;
|
|
|
|
val = RD4(sc, EMAC_BASIC_CTL_0);
|
|
val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
|
|
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
|
|
IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
|
|
val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
|
|
else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
|
|
val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
|
|
else
|
|
val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
|
|
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
|
|
val |= BASIC_CTL_DUPLEX;
|
|
|
|
WR4(sc, EMAC_BASIC_CTL_0, val);
|
|
|
|
val = RD4(sc, EMAC_RX_CTL_0);
|
|
val &= ~RX_FLOW_CTL_EN;
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
|
|
val |= RX_FLOW_CTL_EN;
|
|
WR4(sc, EMAC_RX_CTL_0, val);
|
|
|
|
val = RD4(sc, EMAC_TX_FLOW_CTL);
|
|
val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
|
|
val |= TX_FLOW_CTL_EN;
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
|
|
val |= sunxi_emac_pause_time << PAUSE_TIME_SHIFT;
|
|
WR4(sc, EMAC_TX_FLOW_CTL, val);
|
|
}
|
|
|
|
static void
|
|
sunxi_emac_mii_statchg(struct ifnet *ifp)
|
|
{
|
|
struct sunxi_emac_softc * const sc = ifp->if_softc;
|
|
|
|
sunxi_emac_update_link(sc);
|
|
}
|
|
|
|
static void
|
|
sunxi_emac_dma_sync(struct sunxi_emac_softc *sc, bus_dma_tag_t dmat,
|
|
bus_dmamap_t map, int start, int end, int total, int flags)
|
|
{
|
|
if (end > start) {
|
|
bus_dmamap_sync(dmat, map, DESC_OFF(start),
|
|
DESC_OFF(end) - DESC_OFF(start), flags);
|
|
} else {
|
|
bus_dmamap_sync(dmat, map, DESC_OFF(start),
|
|
DESC_OFF(total) - DESC_OFF(start), flags);
|
|
bus_dmamap_sync(dmat, map, DESC_OFF(0),
|
|
DESC_OFF(end) - DESC_OFF(0), flags);
|
|
}
|
|
}
|
|
|
|
static void
|
|
sunxi_emac_setup_txdesc(struct sunxi_emac_softc *sc, int index, int flags,
|
|
bus_addr_t paddr, u_int len)
|
|
{
|
|
uint32_t status, size;
|
|
|
|
if (paddr == 0 || len == 0) {
|
|
status = 0;
|
|
size = 0;
|
|
--sc->tx.queued;
|
|
} else {
|
|
status = TX_DESC_CTL;
|
|
size = flags | len;
|
|
if ((index & (sunxi_emac_tx_interval - 1)) == 0)
|
|
size |= TX_INT_CTL;
|
|
++sc->tx.queued;
|
|
}
|
|
|
|
sc->tx.desc_ring[index].addr = htole32((uint32_t)paddr);
|
|
sc->tx.desc_ring[index].size = htole32(size);
|
|
sc->tx.desc_ring[index].status = htole32(status);
|
|
}
|
|
|
|
static int
|
|
sunxi_emac_setup_txbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
|
|
{
|
|
bus_dma_segment_t *segs;
|
|
int error, nsegs, cur, i, flags;
|
|
u_int csum_flags;
|
|
|
|
error = bus_dmamap_load_mbuf(sc->tx.buf_tag,
|
|
sc->tx.buf_map[index].map, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
|
|
if (error == EFBIG) {
|
|
device_printf(sc->dev,
|
|
"TX packet needs too many DMA segments, dropping...\n");
|
|
m_freem(m);
|
|
return 0;
|
|
}
|
|
if (error != 0)
|
|
return 0;
|
|
|
|
segs = sc->tx.buf_map[index].map->dm_segs;
|
|
nsegs = sc->tx.buf_map[index].map->dm_nsegs;
|
|
|
|
flags = TX_FIR_DESC;
|
|
if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
|
|
if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
|
|
csum_flags = TX_CHECKSUM_CTL_FULL;
|
|
else
|
|
csum_flags = TX_CHECKSUM_CTL_IP;
|
|
flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[index].map,
|
|
0, sc->tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);
|
|
|
|
for (cur = index, i = 0; i < nsegs; i++) {
|
|
sc->tx.buf_map[cur].mbuf = (i == 0 ? m : NULL);
|
|
if (i == nsegs - 1)
|
|
flags |= TX_LAST_DESC;
|
|
|
|
sunxi_emac_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
|
|
segs[i].ds_len);
|
|
flags &= ~TX_FIR_DESC;
|
|
cur = TX_NEXT(cur);
|
|
}
|
|
|
|
return nsegs;
|
|
}
|
|
|
|
static void
|
|
sunxi_emac_setup_rxdesc(struct sunxi_emac_softc *sc, int index,
|
|
bus_addr_t paddr)
|
|
{
|
|
uint32_t status, size;
|
|
|
|
status = RX_DESC_CTL;
|
|
size = MCLBYTES - 1;
|
|
|
|
sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
|
|
sc->rx.desc_ring[index].size = htole32(size);
|
|
sc->rx.desc_ring[index].next =
|
|
htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(index)));
|
|
sc->rx.desc_ring[index].status = htole32(status);
|
|
}
|
|
|
|
static int
|
|
sunxi_emac_setup_rxbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
|
|
{
|
|
int error;
|
|
|
|
m_adj(m, ETHER_ALIGN);
|
|
|
|
error = bus_dmamap_load_mbuf(sc->rx.buf_tag,
|
|
sc->rx.buf_map[index].map, m, BUS_DMA_READ|BUS_DMA_NOWAIT);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
|
|
0, sc->rx.buf_map[index].map->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD);
|
|
|
|
sc->rx.buf_map[index].mbuf = m;
|
|
sunxi_emac_setup_rxdesc(sc, index,
|
|
sc->rx.buf_map[index].map->dm_segs[0].ds_addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct mbuf *
|
|
sunxi_emac_alloc_mbufcl(struct sunxi_emac_softc *sc)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
|
|
if (m != NULL)
|
|
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
|
|
|
|
return m;
|
|
}
|
|
|
|
static void
|
|
sunxi_emac_start_locked(struct sunxi_emac_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->ec.ec_if;
|
|
struct mbuf *m;
|
|
uint32_t val;
|
|
int cnt, nsegs, start;
|
|
|
|
EMAC_ASSERT_LOCKED(sc);
|
|
|
|
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
for (cnt = 0, start = sc->tx.cur; ; cnt++) {
|
|
if (sc->tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
IFQ_POLL(&ifp->if_snd, m);
|
|
if (m == NULL)
|
|
break;
|
|
|
|
nsegs = sunxi_emac_setup_txbuf(sc, sc->tx.cur, m);
|
|
if (nsegs == 0) {
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
break;
|
|
}
|
|
IFQ_DEQUEUE(&ifp->if_snd, m);
|
|
bpf_mtap(ifp, m);
|
|
|
|
sc->tx.cur = TX_SKIP(sc->tx.cur, nsegs);
|
|
}
|
|
|
|
if (cnt != 0) {
|
|
sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
|
|
start, sc->tx.cur, TX_DESC_COUNT,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Start and run TX DMA */
|
|
val = RD4(sc, EMAC_TX_CTL_1);
|
|
WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
|
|
}
|
|
}
|
|
|
|
static void
|
|
sunxi_emac_start(struct ifnet *ifp)
|
|
{
|
|
struct sunxi_emac_softc *sc = ifp->if_softc;
|
|
|
|
EMAC_LOCK(sc);
|
|
sunxi_emac_start_locked(sc);
|
|
EMAC_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
sunxi_emac_tick(void *softc)
|
|
{
|
|
struct sunxi_emac_softc *sc = softc;
|
|
struct mii_data *mii = &sc->mii;
|
|
#ifndef EMAC_MPSAFE
|
|
int s = splnet();
|
|
#endif
|
|
|
|
EMAC_LOCK(sc);
|
|
mii_tick(mii);
|
|
callout_schedule(&sc->stat_ch, hz);
|
|
EMAC_UNLOCK(sc);
|
|
|
|
#ifndef EMAC_MPSAFE
|
|
splx(s);
|
|
#endif
|
|
}
|
|
|
|
/* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
|
|
static uint32_t
|
|
bitrev32(uint32_t x)
|
|
{
|
|
x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
|
|
x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
|
|
x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
|
|
x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
|
|
|
|
return (x >> 16) | (x << 16);
|
|
}
|
|
|
|
static void
|
|
sunxi_emac_setup_rxfilter(struct sunxi_emac_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->ec.ec_if;
|
|
uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
const uint8_t *eaddr;
|
|
|
|
EMAC_ASSERT_LOCKED(sc);
|
|
|
|
val = 0;
|
|
hash[0] = hash[1] = 0;
|
|
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0)
|
|
val |= DIS_ADDR_FILTER;
|
|
else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
|
|
val |= RX_ALL_MULTICAST;
|
|
hash[0] = hash[1] = ~0;
|
|
} else {
|
|
val |= HASH_MULTICAST;
|
|
ETHER_FIRST_MULTI(step, &sc->ec, enm);
|
|
while (enm != NULL) {
|
|
crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
|
|
crc &= 0x7f;
|
|
crc = bitrev32(~crc) >> 26;
|
|
hashreg = (crc >> 5);
|
|
hashbit = (crc & 0x1f);
|
|
hash[hashreg] |= (1 << hashbit);
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
}
|
|
|
|
/* Write our unicast address */
|
|
eaddr = CLLADDR(ifp->if_sadl);
|
|
machi = (eaddr[5] << 8) | eaddr[4];
|
|
maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
|
|
(eaddr[0] << 0);
|
|
WR4(sc, EMAC_ADDR_HIGH(0), machi);
|
|
WR4(sc, EMAC_ADDR_LOW(0), maclo);
|
|
|
|
/* Multicast hash filters */
|
|
WR4(sc, EMAC_RX_HASH_0, hash[1]);
|
|
WR4(sc, EMAC_RX_HASH_1, hash[0]);
|
|
|
|
/* RX frame filter config */
|
|
WR4(sc, EMAC_RX_FRM_FLT, val);
|
|
}
|
|
|
|
static void
|
|
sunxi_emac_enable_intr(struct sunxi_emac_softc *sc)
|
|
{
|
|
/* Enable interrupts */
|
|
WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
|
|
}
|
|
|
|
static void
|
|
sunxi_emac_disable_intr(struct sunxi_emac_softc *sc)
|
|
{
|
|
/* Disable interrupts */
|
|
WR4(sc, EMAC_INT_EN, 0);
|
|
}
|
|
|
|
static int
|
|
sunxi_emac_init_locked(struct sunxi_emac_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->ec.ec_if;
|
|
struct mii_data *mii = &sc->mii;
|
|
uint32_t val;
|
|
|
|
EMAC_ASSERT_LOCKED(sc);
|
|
|
|
if ((ifp->if_flags & IFF_RUNNING) != 0)
|
|
return 0;
|
|
|
|
sunxi_emac_setup_rxfilter(sc);
|
|
|
|
/* Configure DMA burst length and priorities */
|
|
val = sunxi_emac_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
|
|
if (sunxi_emac_rx_tx_pri)
|
|
val |= BASIC_CTL_RX_TX_PRI;
|
|
WR4(sc, EMAC_BASIC_CTL_1, val);
|
|
|
|
/* Enable interrupts */
|
|
sunxi_emac_enable_intr(sc);
|
|
|
|
/* Enable transmit DMA */
|
|
val = RD4(sc, EMAC_TX_CTL_1);
|
|
WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
|
|
|
|
/* Enable receive DMA */
|
|
val = RD4(sc, EMAC_RX_CTL_1);
|
|
WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
|
|
|
|
/* Enable transmitter */
|
|
val = RD4(sc, EMAC_TX_CTL_0);
|
|
WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
|
|
|
|
/* Enable receiver */
|
|
val = RD4(sc, EMAC_RX_CTL_0);
|
|
WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
mii_mediachg(mii);
|
|
callout_schedule(&sc->stat_ch, hz);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sunxi_emac_init(struct ifnet *ifp)
|
|
{
|
|
struct sunxi_emac_softc *sc = ifp->if_softc;
|
|
int error;
|
|
|
|
EMAC_LOCK(sc);
|
|
error = sunxi_emac_init_locked(sc);
|
|
EMAC_UNLOCK(sc);
|
|
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
sunxi_emac_stop_locked(struct sunxi_emac_softc *sc, int disable)
|
|
{
|
|
struct ifnet *ifp = &sc->ec.ec_if;
|
|
uint32_t val;
|
|
|
|
EMAC_ASSERT_LOCKED(sc);
|
|
|
|
callout_stop(&sc->stat_ch);
|
|
|
|
mii_down(&sc->mii);
|
|
|
|
/* Stop transmit DMA and flush data in the TX FIFO */
|
|
val = RD4(sc, EMAC_TX_CTL_1);
|
|
val &= ~TX_DMA_EN;
|
|
val |= FLUSH_TX_FIFO;
|
|
WR4(sc, EMAC_TX_CTL_1, val);
|
|
|
|
/* Disable transmitter */
|
|
val = RD4(sc, EMAC_TX_CTL_0);
|
|
WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
|
|
|
|
/* Disable receiver */
|
|
val = RD4(sc, EMAC_RX_CTL_0);
|
|
WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
|
|
|
|
/* Disable interrupts */
|
|
sunxi_emac_disable_intr(sc);
|
|
|
|
/* Disable transmit DMA */
|
|
val = RD4(sc, EMAC_TX_CTL_1);
|
|
WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
|
|
|
|
/* Disable receive DMA */
|
|
val = RD4(sc, EMAC_RX_CTL_1);
|
|
WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
|
|
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
}
|
|
|
|
static void
|
|
sunxi_emac_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct sunxi_emac_softc * const sc = ifp->if_softc;
|
|
|
|
EMAC_LOCK(sc);
|
|
sunxi_emac_stop_locked(sc, disable);
|
|
EMAC_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
sunxi_emac_rxintr(struct sunxi_emac_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->ec.ec_if;
|
|
struct mbuf *m, *m0, *mh, *mt;
|
|
int error, index, len, cnt, npkt;
|
|
uint32_t status;
|
|
|
|
mh = mt = NULL;
|
|
cnt = 0;
|
|
npkt = 0;
|
|
|
|
for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
|
|
sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
|
|
index, index + 1,
|
|
RX_DESC_COUNT, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
status = le32toh(sc->rx.desc_ring[index].status);
|
|
if ((status & RX_DESC_CTL) != 0)
|
|
break;
|
|
|
|
bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
|
|
0, sc->rx.buf_map[index].map->dm_mapsize,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
|
|
|
|
len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
|
|
if (len != 0) {
|
|
m = sc->rx.buf_map[index].mbuf;
|
|
m_set_rcvif(m, ifp);
|
|
m->m_flags |= M_HASFCS;
|
|
m->m_pkthdr.len = len;
|
|
m->m_len = len;
|
|
|
|
if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0 &&
|
|
(status & RX_FRM_TYPE) != 0) {
|
|
m->m_pkthdr.csum_flags = M_CSUM_IPv4;
|
|
if ((status & RX_HEADER_ERR) != 0)
|
|
m->m_pkthdr.csum_flags |=
|
|
M_CSUM_IPv4_BAD;
|
|
if ((status & RX_PAYLOAD_ERR) == 0) {
|
|
m->m_pkthdr.csum_flags |=
|
|
M_CSUM_DATA;
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
}
|
|
|
|
m->m_nextpkt = NULL;
|
|
if (mh == NULL)
|
|
mh = m;
|
|
else
|
|
mt->m_nextpkt = m;
|
|
mt = m;
|
|
++cnt;
|
|
++npkt;
|
|
|
|
if (cnt == sunxi_emac_rx_batch) {
|
|
EMAC_UNLOCK(sc);
|
|
if_percpuq_enqueue(ifp->if_percpuq, mh);
|
|
EMAC_LOCK(sc);
|
|
mh = mt = NULL;
|
|
cnt = 0;
|
|
}
|
|
|
|
}
|
|
|
|
if ((m0 = sunxi_emac_alloc_mbufcl(sc)) != NULL) {
|
|
error = sunxi_emac_setup_rxbuf(sc, index, m0);
|
|
if (error != 0) {
|
|
/* XXX hole in RX ring */
|
|
}
|
|
} else
|
|
ifp->if_ierrors++;
|
|
|
|
sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
|
|
index, index + 1,
|
|
RX_DESC_COUNT, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
}
|
|
|
|
if (mh != NULL) {
|
|
EMAC_UNLOCK(sc);
|
|
if_percpuq_enqueue(ifp->if_percpuq, mh);
|
|
EMAC_LOCK(sc);
|
|
}
|
|
|
|
sc->rx.cur = index;
|
|
|
|
return npkt;
|
|
}
|
|
|
|
static void
|
|
sunxi_emac_txintr(struct sunxi_emac_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->ec.ec_if;
|
|
struct sunxi_emac_bufmap *bmap;
|
|
struct sunxi_emac_desc *desc;
|
|
uint32_t status;
|
|
int i;
|
|
|
|
EMAC_ASSERT_LOCKED(sc);
|
|
|
|
for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
|
|
KASSERT(sc->tx.queued > 0 && sc->tx.queued <= TX_DESC_COUNT);
|
|
sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
|
|
i, i + 1, TX_DESC_COUNT,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
desc = &sc->tx.desc_ring[i];
|
|
status = le32toh(desc->status);
|
|
if ((status & TX_DESC_CTL) != 0)
|
|
break;
|
|
bmap = &sc->tx.buf_map[i];
|
|
if (bmap->mbuf != NULL) {
|
|
bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
|
|
0, bmap->map->dm_mapsize,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
|
|
m_freem(bmap->mbuf);
|
|
bmap->mbuf = NULL;
|
|
}
|
|
|
|
sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
|
|
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
ifp->if_opackets++;
|
|
}
|
|
|
|
sc->tx.next = i;
|
|
}
|
|
|
|
static int
|
|
sunxi_emac_intr(void *arg)
|
|
{
|
|
struct sunxi_emac_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->ec.ec_if;
|
|
uint32_t val;
|
|
|
|
EMAC_LOCK(sc);
|
|
|
|
val = RD4(sc, EMAC_INT_STA);
|
|
WR4(sc, EMAC_INT_STA, val);
|
|
|
|
if (val & RX_INT)
|
|
sunxi_emac_rxintr(sc);
|
|
|
|
if (val & (TX_INT|TX_BUF_UA_INT)) {
|
|
sunxi_emac_txintr(sc);
|
|
if_schedule_deferred_start(ifp);
|
|
}
|
|
|
|
EMAC_UNLOCK(sc);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
sunxi_emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct sunxi_emac_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = &sc->mii;
|
|
struct ifreq *ifr = data;
|
|
int error, s;
|
|
|
|
#ifndef EMAC_MPSAFE
|
|
s = splnet();
|
|
#endif
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
#ifdef EMAC_MPSAFE
|
|
s = splnet();
|
|
#endif
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
|
|
#ifdef EMAC_MPSAFE
|
|
splx(s);
|
|
#endif
|
|
break;
|
|
default:
|
|
#ifdef EMAC_MPSAFE
|
|
s = splnet();
|
|
#endif
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
#ifdef EMAC_MPSAFE
|
|
splx(s);
|
|
#endif
|
|
if (error != ENETRESET)
|
|
break;
|
|
|
|
error = 0;
|
|
|
|
if (cmd == SIOCSIFCAP)
|
|
error = (*ifp->if_init)(ifp);
|
|
else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
|
|
;
|
|
else if ((ifp->if_flags & IFF_RUNNING) != 0) {
|
|
EMAC_LOCK(sc);
|
|
sunxi_emac_setup_rxfilter(sc);
|
|
EMAC_UNLOCK(sc);
|
|
}
|
|
break;
|
|
}
|
|
|
|
#ifndef EMAC_MPSAFE
|
|
splx(s);
|
|
#endif
|
|
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
sunxi_emac_setup_phy(struct sunxi_emac_softc *sc)
|
|
{
|
|
uint32_t reg, tx_delay, rx_delay;
|
|
const char *phy_type;
|
|
|
|
phy_type = fdtbus_get_string(sc->phandle, "phy-mode");
|
|
if (phy_type == NULL)
|
|
return 0;
|
|
|
|
aprint_debug_dev(sc->dev, "PHY type: %s\n", phy_type);
|
|
|
|
reg = SYSCONRD4(sc, 0);
|
|
|
|
reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
|
|
if (strcmp(phy_type, "rgmii") == 0)
|
|
reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
|
|
else if (strcmp(phy_type, "rmii") == 0)
|
|
reg |= EMAC_CLK_RMII_EN;
|
|
else
|
|
reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
|
|
|
|
if (of_getprop_uint32(sc->phandle, "tx-delay", &tx_delay) == 0) {
|
|
reg &= ~EMAC_CLK_ETXDC;
|
|
reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
|
|
}
|
|
if (of_getprop_uint32(sc->phandle, "rx-delay", &rx_delay) == 0) {
|
|
reg &= ~EMAC_CLK_ERXDC;
|
|
reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
|
|
}
|
|
|
|
if (sc->type == EMAC_H3) {
|
|
if (of_hasprop(sc->phandle, "allwinner,use-internal-phy")) {
|
|
reg |= EMAC_CLK_EPHY_SELECT;
|
|
reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
|
|
if (of_hasprop(sc->phandle,
|
|
"allwinner,leds-active-low"))
|
|
reg |= EMAC_CLK_EPHY_LED_POL;
|
|
else
|
|
reg &= ~EMAC_CLK_EPHY_LED_POL;
|
|
|
|
/* Set internal PHY addr to 1 */
|
|
reg &= ~EMAC_CLK_EPHY_ADDR;
|
|
reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
|
|
} else {
|
|
reg &= ~EMAC_CLK_EPHY_SELECT;
|
|
}
|
|
}
|
|
|
|
aprint_debug_dev(sc->dev, "EMAC clock: 0x%08x\n", reg);
|
|
|
|
SYSCONWR4(sc, 0, reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sunxi_emac_setup_resources(struct sunxi_emac_softc *sc)
|
|
{
|
|
u_int freq;
|
|
int error, div;
|
|
|
|
/* Configure PHY for MII or RGMII mode */
|
|
if (sunxi_emac_setup_phy(sc) != 0)
|
|
return ENXIO;
|
|
|
|
/* Enable clocks */
|
|
error = clk_enable(sc->clk_ahb);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->dev, "cannot enable ahb clock\n");
|
|
return error;
|
|
}
|
|
|
|
if (sc->clk_ephy != NULL) {
|
|
error = clk_enable(sc->clk_ephy);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->dev, "cannot enable ephy clock\n");
|
|
return error;
|
|
}
|
|
}
|
|
|
|
/* De-assert reset */
|
|
error = fdtbus_reset_deassert(sc->rst_ahb);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->dev, "cannot de-assert ahb reset\n");
|
|
return error;
|
|
}
|
|
if (sc->rst_ephy != NULL) {
|
|
error = fdtbus_reset_deassert(sc->rst_ephy);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->dev,
|
|
"cannot de-assert ephy reset\n");
|
|
return error;
|
|
}
|
|
}
|
|
|
|
/* Enable PHY regulator if applicable */
|
|
if (sc->reg_phy != NULL) {
|
|
error = fdtbus_regulator_enable(sc->reg_phy);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->dev,
|
|
"cannot enable PHY regulator\n");
|
|
return error;
|
|
}
|
|
}
|
|
|
|
/* Determine MDC clock divide ratio based on AHB clock */
|
|
freq = clk_get_rate(sc->clk_ahb);
|
|
if (freq == 0) {
|
|
aprint_error_dev(sc->dev, "cannot get AHB clock frequency\n");
|
|
return ENXIO;
|
|
}
|
|
div = freq / MDIO_FREQ;
|
|
if (div <= 16)
|
|
sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
|
|
else if (div <= 32)
|
|
sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
|
|
else if (div <= 64)
|
|
sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
|
|
else if (div <= 128)
|
|
sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
|
|
else {
|
|
aprint_error_dev(sc->dev,
|
|
"cannot determine MDC clock divide ratio\n");
|
|
return ENXIO;
|
|
}
|
|
|
|
aprint_debug_dev(sc->dev, "AHB frequency %u Hz, MDC div: 0x%x\n",
|
|
freq, sc->mdc_div_ratio_m);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
sunxi_emac_get_eaddr(struct sunxi_emac_softc *sc, uint8_t *eaddr)
|
|
{
|
|
uint32_t maclo, machi;
|
|
#if notyet
|
|
u_char rootkey[16];
|
|
#endif
|
|
|
|
machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
|
|
maclo = RD4(sc, EMAC_ADDR_LOW(0));
|
|
|
|
if (maclo == 0xffffffff && machi == 0xffff) {
|
|
#if notyet
|
|
/* MAC address in hardware is invalid, create one */
|
|
if (aw_sid_get_rootkey(rootkey) == 0 &&
|
|
(rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
|
|
rootkey[15]) != 0) {
|
|
/* MAC address is derived from the root key in SID */
|
|
maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
|
|
(rootkey[3] << 8) | 0x02;
|
|
machi = (rootkey[15] << 8) | rootkey[14];
|
|
} else {
|
|
#endif
|
|
/* Create one */
|
|
maclo = 0x00f2 | (cprng_strong32() & 0xffff0000);
|
|
machi = cprng_strong32() & 0xffff;
|
|
#if notyet
|
|
}
|
|
#endif
|
|
}
|
|
|
|
eaddr[0] = maclo & 0xff;
|
|
eaddr[1] = (maclo >> 8) & 0xff;
|
|
eaddr[2] = (maclo >> 16) & 0xff;
|
|
eaddr[3] = (maclo >> 24) & 0xff;
|
|
eaddr[4] = machi & 0xff;
|
|
eaddr[5] = (machi >> 8) & 0xff;
|
|
}
|
|
|
|
#ifdef SUNXI_EMAC_DEBUG
|
|
static void
|
|
sunxi_emac_dump_regs(struct sunxi_emac_softc *sc)
|
|
{
|
|
static const struct {
|
|
const char *name;
|
|
u_int reg;
|
|
} regs[] = {
|
|
{ "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
|
|
{ "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
|
|
{ "INT_STA", EMAC_INT_STA },
|
|
{ "INT_EN", EMAC_INT_EN },
|
|
{ "TX_CTL_0", EMAC_TX_CTL_0 },
|
|
{ "TX_CTL_1", EMAC_TX_CTL_1 },
|
|
{ "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
|
|
{ "TX_DMA_LIST", EMAC_TX_DMA_LIST },
|
|
{ "RX_CTL_0", EMAC_RX_CTL_0 },
|
|
{ "RX_CTL_1", EMAC_RX_CTL_1 },
|
|
{ "RX_DMA_LIST", EMAC_RX_DMA_LIST },
|
|
{ "RX_FRM_FLT", EMAC_RX_FRM_FLT },
|
|
{ "RX_HASH_0", EMAC_RX_HASH_0 },
|
|
{ "RX_HASH_1", EMAC_RX_HASH_1 },
|
|
{ "MII_CMD", EMAC_MII_CMD },
|
|
{ "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
|
|
{ "ADDR_LOW0", EMAC_ADDR_LOW(0) },
|
|
{ "TX_DMA_STA", EMAC_TX_DMA_STA },
|
|
{ "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
|
|
{ "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
|
|
{ "RX_DMA_STA", EMAC_RX_DMA_STA },
|
|
{ "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
|
|
{ "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
|
|
{ "RGMII_STA", EMAC_RGMII_STA },
|
|
};
|
|
u_int n;
|
|
|
|
for (n = 0; n < __arraycount(regs); n++)
|
|
device_printf(dev, " %-20s %08x\n", regs[n].name,
|
|
RD4(sc, regs[n].reg));
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
sunxi_emac_phy_reset(struct sunxi_emac_softc *sc)
|
|
{
|
|
uint32_t delay_prop[3];
|
|
int pin_value;
|
|
|
|
if (sc->pin_reset == NULL)
|
|
return 0;
|
|
|
|
if (OF_getprop(sc->phandle, "allwinner,reset-delays-us", delay_prop,
|
|
sizeof(delay_prop)) <= 0)
|
|
return ENXIO;
|
|
|
|
pin_value = of_hasprop(sc->phandle, "allwinner,reset-active-low");
|
|
|
|
fdtbus_gpio_write(sc->pin_reset, pin_value);
|
|
delay(htole32(delay_prop[0]));
|
|
fdtbus_gpio_write(sc->pin_reset, !pin_value);
|
|
delay(htole32(delay_prop[1]));
|
|
fdtbus_gpio_write(sc->pin_reset, pin_value);
|
|
delay(htole32(delay_prop[2]));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sunxi_emac_reset(struct sunxi_emac_softc *sc)
|
|
{
|
|
int retry;
|
|
|
|
/* Reset PHY if necessary */
|
|
if (sunxi_emac_phy_reset(sc) != 0) {
|
|
aprint_error_dev(sc->dev, "failed to reset PHY\n");
|
|
return ENXIO;
|
|
}
|
|
|
|
/* Soft reset all registers and logic */
|
|
WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
|
|
|
|
/* Wait for soft reset bit to self-clear */
|
|
for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
|
|
if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
|
|
break;
|
|
delay(10);
|
|
}
|
|
if (retry == 0) {
|
|
aprint_error_dev(sc->dev, "soft reset timed out\n");
|
|
#ifdef SUNXI_EMAC_DEBUG
|
|
sunxi_emac_dump_regs(sc);
|
|
#endif
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sunxi_emac_setup_dma(struct sunxi_emac_softc *sc)
|
|
{
|
|
struct mbuf *m;
|
|
int error, nsegs, i;
|
|
|
|
/* Setup TX ring */
|
|
sc->tx.buf_tag = sc->tx.desc_tag = sc->dmat;
|
|
error = bus_dmamap_create(sc->dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE, 0,
|
|
BUS_DMA_WAITOK, &sc->tx.desc_map);
|
|
if (error)
|
|
return error;
|
|
error = bus_dmamem_alloc(sc->dmat, TX_DESC_SIZE, DESC_ALIGN, 0,
|
|
&sc->tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
|
|
if (error)
|
|
return error;
|
|
error = bus_dmamem_map(sc->dmat, &sc->tx.desc_dmaseg, nsegs,
|
|
TX_DESC_SIZE, (void *)&sc->tx.desc_ring,
|
|
BUS_DMA_WAITOK | BUS_DMA_COHERENT);
|
|
if (error)
|
|
return error;
|
|
error = bus_dmamap_load(sc->dmat, sc->tx.desc_map, sc->tx.desc_ring,
|
|
TX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
|
|
if (error)
|
|
return error;
|
|
sc->tx.desc_ring_paddr = sc->tx.desc_map->dm_segs[0].ds_addr;
|
|
|
|
memset(sc->tx.desc_ring, 0, TX_DESC_SIZE);
|
|
bus_dmamap_sync(sc->dmat, sc->tx.desc_map, 0, TX_DESC_SIZE,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
|
|
for (i = 0; i < TX_DESC_COUNT; i++)
|
|
sc->tx.desc_ring[i].next =
|
|
htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
|
|
|
|
sc->tx.queued = TX_DESC_COUNT;
|
|
for (i = 0; i < TX_DESC_COUNT; i++) {
|
|
error = bus_dmamap_create(sc->tx.buf_tag, MCLBYTES,
|
|
TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK,
|
|
&sc->tx.buf_map[i].map);
|
|
if (error != 0) {
|
|
device_printf(sc->dev, "cannot create TX buffer map\n");
|
|
return error;
|
|
}
|
|
sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
|
|
}
|
|
|
|
/* Setup RX ring */
|
|
sc->rx.buf_tag = sc->rx.desc_tag = sc->dmat;
|
|
error = bus_dmamap_create(sc->dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE, 0,
|
|
BUS_DMA_WAITOK, &sc->rx.desc_map);
|
|
if (error)
|
|
return error;
|
|
error = bus_dmamem_alloc(sc->dmat, RX_DESC_SIZE, DESC_ALIGN, 0,
|
|
&sc->rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
|
|
if (error)
|
|
return error;
|
|
error = bus_dmamem_map(sc->dmat, &sc->rx.desc_dmaseg, nsegs,
|
|
RX_DESC_SIZE, (void *)&sc->rx.desc_ring,
|
|
BUS_DMA_WAITOK | BUS_DMA_COHERENT);
|
|
if (error)
|
|
return error;
|
|
error = bus_dmamap_load(sc->dmat, sc->rx.desc_map, sc->rx.desc_ring,
|
|
RX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
|
|
if (error)
|
|
return error;
|
|
sc->rx.desc_ring_paddr = sc->rx.desc_map->dm_segs[0].ds_addr;
|
|
|
|
memset(sc->rx.desc_ring, 0, RX_DESC_SIZE);
|
|
|
|
for (i = 0; i < RX_DESC_COUNT; i++) {
|
|
error = bus_dmamap_create(sc->rx.buf_tag, MCLBYTES,
|
|
RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK,
|
|
&sc->rx.buf_map[i].map);
|
|
if (error != 0) {
|
|
device_printf(sc->dev, "cannot create RX buffer map\n");
|
|
return error;
|
|
}
|
|
if ((m = sunxi_emac_alloc_mbufcl(sc)) == NULL) {
|
|
device_printf(sc->dev, "cannot allocate RX mbuf\n");
|
|
return ENOMEM;
|
|
}
|
|
error = sunxi_emac_setup_rxbuf(sc, i, m);
|
|
if (error != 0) {
|
|
device_printf(sc->dev, "cannot create RX buffer\n");
|
|
return error;
|
|
}
|
|
}
|
|
bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
|
|
0, sc->rx.desc_map->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Write transmit and receive descriptor base address registers */
|
|
WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
|
|
WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sunxi_emac_get_resources(struct sunxi_emac_softc *sc)
|
|
{
|
|
const int phandle = sc->phandle;
|
|
bus_addr_t addr, size;
|
|
u_int n;
|
|
|
|
/* Map registers */
|
|
for (n = 0; n < _RES_NITEMS; n++) {
|
|
if (fdtbus_get_reg(phandle, n, &addr, &size) != 0)
|
|
return ENXIO;
|
|
if (bus_space_map(sc->bst, addr, size, 0, &sc->bsh[n]) != 0)
|
|
return ENXIO;
|
|
}
|
|
|
|
/* Get clocks and resets. "ahb" is required, "ephy" is optional. */
|
|
|
|
if ((sc->clk_ahb = fdtbus_clock_get(phandle, "ahb")) == NULL)
|
|
return ENXIO;
|
|
sc->clk_ephy = fdtbus_clock_get(phandle, "ephy");
|
|
|
|
if ((sc->rst_ahb = fdtbus_reset_get(phandle, "ahb")) == NULL)
|
|
return ENXIO;
|
|
sc->rst_ahb = fdtbus_reset_get(phandle, "ephy");
|
|
|
|
/* Regulator is optional */
|
|
sc->reg_phy = fdtbus_regulator_acquire(phandle, "phy-supply");
|
|
|
|
/* Reset GPIO is optional */
|
|
sc->pin_reset = fdtbus_gpio_acquire(sc->phandle,
|
|
"allwinner,reset-gpio", GPIO_PIN_OUTPUT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sunxi_emac_match(device_t parent, cfdata_t cf, void *aux)
|
|
{
|
|
struct fdt_attach_args * const faa = aux;
|
|
|
|
return of_match_compat_data(faa->faa_phandle, compat_data);
|
|
}
|
|
|
|
static void
|
|
sunxi_emac_attach(device_t parent, device_t self, void *aux)
|
|
{
|
|
struct fdt_attach_args * const faa = aux;
|
|
struct sunxi_emac_softc * const sc = device_private(self);
|
|
const int phandle = faa->faa_phandle;
|
|
struct mii_data *mii = &sc->mii;
|
|
struct ifnet *ifp = &sc->ec.ec_if;
|
|
uint8_t eaddr[ETHER_ADDR_LEN];
|
|
char intrstr[128];
|
|
|
|
sc->dev = self;
|
|
sc->phandle = phandle;
|
|
sc->bst = faa->faa_bst;
|
|
sc->dmat = faa->faa_dmat;
|
|
sc->type = of_search_compatible(phandle, compat_data)->data;
|
|
|
|
if (sunxi_emac_get_resources(sc) != 0) {
|
|
aprint_error(": cannot allocate resources for device\n");
|
|
return;
|
|
}
|
|
if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
|
|
aprint_error(": cannot decode interrupt\n");
|
|
return;
|
|
}
|
|
|
|
mutex_init(&sc->mtx, MUTEX_DEFAULT, IPL_NET);
|
|
callout_init(&sc->stat_ch, CALLOUT_FLAGS);
|
|
callout_setfunc(&sc->stat_ch, sunxi_emac_tick, sc);
|
|
|
|
aprint_naive("\n");
|
|
aprint_normal(": EMAC\n");
|
|
|
|
/* Setup clocks and regulators */
|
|
if (sunxi_emac_setup_resources(sc) != 0)
|
|
return;
|
|
|
|
/* Read MAC address before resetting the chip */
|
|
sunxi_emac_get_eaddr(sc, eaddr);
|
|
|
|
/* Soft reset EMAC core */
|
|
if (sunxi_emac_reset(sc) != 0)
|
|
return;
|
|
|
|
/* Setup DMA descriptors */
|
|
if (sunxi_emac_setup_dma(sc) != 0) {
|
|
aprint_error_dev(self, "failed to setup DMA descriptors\n");
|
|
return;
|
|
}
|
|
|
|
/* Install interrupt handler */
|
|
sc->ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
|
|
FDT_INTR_FLAGS, sunxi_emac_intr, sc);
|
|
if (sc->ih == NULL) {
|
|
aprint_error_dev(self, "failed to establish interrupt on %s\n",
|
|
intrstr);
|
|
return;
|
|
}
|
|
aprint_normal_dev(self, "interrupting on %s\n", intrstr);
|
|
|
|
/* Setup ethernet interface */
|
|
ifp->if_softc = sc;
|
|
snprintf(ifp->if_xname, IFNAMSIZ, EMAC_IFNAME, device_unit(self));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
#ifdef EMAC_MPSAFE
|
|
ifp->if_extflags = IFEF_START_MPSAFE;
|
|
#endif
|
|
ifp->if_start = sunxi_emac_start;
|
|
ifp->if_ioctl = sunxi_emac_ioctl;
|
|
ifp->if_init = sunxi_emac_init;
|
|
ifp->if_stop = sunxi_emac_stop;
|
|
ifp->if_capabilities = IFCAP_CSUM_IPv4_Rx |
|
|
IFCAP_CSUM_IPv4_Tx |
|
|
IFCAP_CSUM_TCPv4_Rx |
|
|
IFCAP_CSUM_TCPv4_Tx |
|
|
IFCAP_CSUM_UDPv4_Rx |
|
|
IFCAP_CSUM_UDPv4_Tx;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/* 802.1Q VLAN-sized frames are supported */
|
|
sc->ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
|
|
|
|
/* Attach MII driver */
|
|
sc->ec.ec_mii = mii;
|
|
ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
|
|
mii->mii_ifp = ifp;
|
|
mii->mii_readreg = sunxi_emac_mii_readreg;
|
|
mii->mii_writereg = sunxi_emac_mii_writereg;
|
|
mii->mii_statchg = sunxi_emac_mii_statchg;
|
|
mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY,
|
|
MIIF_DOPAUSE);
|
|
|
|
if (LIST_EMPTY(&mii->mii_phys)) {
|
|
aprint_error_dev(self, "no PHY found!\n");
|
|
return;
|
|
}
|
|
ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_AUTO);
|
|
|
|
/* Attach interface */
|
|
if_attach(ifp);
|
|
if_deferred_start_init(ifp, NULL);
|
|
|
|
/* Attach ethernet interface */
|
|
ether_ifattach(ifp, eaddr);
|
|
}
|
|
|
|
CFATTACH_DECL_NEW(sunxi_emac, sizeof(struct sunxi_emac_softc),
|
|
sunxi_emac_match, sunxi_emac_attach, NULL, NULL);
|