NetBSD/sys/dev/podulebus/oak.c
riastradh d1579b2d70 Rename min/max -> uimin/uimax for better honesty.
These functions are defined on unsigned int.  The generic name
min/max should not silently truncate to 32 bits on 64-bit systems.
This is purely a name change -- no functional change intended.

HOWEVER!  Some subsystems have

	#define min(a, b)	((a) < (b) ? (a) : (b))
	#define max(a, b)	((a) > (b) ? (a) : (b))

even though our standard name for that is MIN/MAX.  Although these
may invite multiple evaluation bugs, these do _not_ cause integer
truncation.

To avoid `fixing' these cases, I first changed the name in libkern,
and then compile-tested every file where min/max occurred in order to
confirm that it failed -- and thus confirm that nothing shadowed
min/max -- before changing it.

I have left a handful of bootloaders that are too annoying to
compile-test, and some dead code:

cobalt ews4800mips hp300 hppa ia64 luna68k vax
acorn32/if_ie.c (not included in any kernels)
macppc/if_gm.c (superseded by gem(4))

It should be easy to fix the fallout once identified -- this way of
doing things fails safe, and the goal here, after all, is to _avoid_
silent integer truncations, not introduce them.

Maybe one day we can reintroduce min/max as type-generic things that
never silently truncate.  But we should avoid doing that for a while,
so that existing code has a chance to be detected by the compiler for
conversion to uimin/uimax without changing the semantics until we can
properly audit it all.  (Who knows, maybe in some cases integer
truncation is actually intended!)
2018-09-03 16:29:22 +00:00

396 lines
11 KiB
C

/* $NetBSD: oak.c,v 1.21 2018/09/03 16:29:33 riastradh Exp $ */
/*
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Mark Brinicombe of Causality Limited.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Oak Solutions SCSI 1 driver using the generic NCR5380 driver.
*
* From <URL:http://foldoc.doc.ic.ac.uk/acorn/doc/scsi>:
* --------8<--------
* From: Hugo Fiennes
* [...]
* The oak scsi plays some other tricks to get max around 2.2Mb/sec:
* it is a 16- bit interface (using their own hardware and an 8-bit
* scsi controller to 'double-up' the data). What it does is: every
* 128 bytes it uses a polling loop (see above) to check data is
* present and the drive has reported no errors, etc. Inside each 128
* byte block it just reads data as fast as it can: on a normal card
* this would result in disaster if the drive wasn't fast enough to
* feed the machine: on the oak card however, the hardware will not
* assert IOGT (IO grant), so hanging the machine in a wait state
* until data is ready. This can have problems: if the drive is to
* slow (unlikely) the machine will completely stiff as the ARM3 can't
* be kept in such a state for more than 10(?) us.
* -------->8--------
*
* So far, my attempts at doing this have failed, though.
*
* This card has to be polled: it doesn't have anything connected to
* PIRQ*. This seems to be a common failing of Archimedes disc
* controllers.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: oak.c,v 1.21 2018/09/03 16:29:33 riastradh Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/buf.h>
#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsiconf.h>
#include <dev/ic/ncr5380reg.h>
#include <dev/ic/ncr5380var.h>
#include <machine/bootconfig.h>
#include <dev/podulebus/podulebus.h>
#include <dev/podulebus/podules.h>
#include <dev/podulebus/powerromreg.h>
#include <dev/podulebus/oakreg.h>
int oak_match(device_t, cfdata_t, void *);
void oak_attach(device_t, device_t, void *);
#if 0
static int oak_pdma_in(struct ncr5380_softc *, int, int, uint8_t *);
static int oak_pdma_out(struct ncr5380_softc *, int, int, uint8_t *);
#endif
/*
* Oak SCSI 1 softc structure.
*
* Contains the generic ncr5380 device node, podule information and
* global information required by the driver.
*/
struct oak_softc {
struct ncr5380_softc sc_ncr5380;
bus_space_tag_t sc_pdmat;
bus_space_handle_t sc_pdmah;
};
CFATTACH_DECL_NEW(oak, sizeof(struct oak_softc),
oak_match, oak_attach, NULL, NULL);
/*
* Card probe function
*
* Just match the manufacturer and podule ID's
*/
int
oak_match(device_t parent, cfdata_t cf, void *aux)
{
struct podulebus_attach_args *pa = aux;
if (pa->pa_product == PODULE_OAK_SCSI)
return 1;
/* PowerROM */
if (pa->pa_product == PODULE_ALSYSTEMS_SCSI &&
podulebus_initloader(pa) == 0 &&
podloader_callloader(pa, 0, 0) == PRID_OAK_SCSI1)
return 1;
return 0;
}
/*
* Card attach function
*
*/
void
oak_attach(device_t parent, device_t self, void *aux)
{
struct oak_softc *sc = device_private(self);
struct ncr5380_softc *ncr_sc = &sc->sc_ncr5380;
struct podulebus_attach_args *pa = aux;
#ifndef NCR5380_USE_BUS_SPACE
uint8_t *iobase;
#endif
char hi_option[sizeof(device_xname(self)) + 8];
ncr_sc->sc_dev = self;
ncr_sc->sc_flags |= NCR5380_FORCE_POLLING;
ncr_sc->sc_min_dma_len = 0;
ncr_sc->sc_no_disconnect = 0xff;
ncr_sc->sc_parity_disable = 0;
ncr_sc->sc_dma_alloc = NULL;
ncr_sc->sc_dma_free = NULL;
ncr_sc->sc_dma_poll = NULL;
ncr_sc->sc_dma_setup = NULL;
ncr_sc->sc_dma_start = NULL;
ncr_sc->sc_dma_eop = NULL;
ncr_sc->sc_dma_stop = NULL;
ncr_sc->sc_intr_on = NULL;
ncr_sc->sc_intr_off = NULL;
#ifdef NCR5380_USE_BUS_SPACE
ncr_sc->sc_regt = pa->pa_mod_t;
bus_space_map(ncr_sc->sc_regt, pa->pa_mod_base, 8, 0,
&ncr_sc->sc_regh);
ncr_sc->sci_r0 = 0;
ncr_sc->sci_r1 = 1;
ncr_sc->sci_r2 = 2;
ncr_sc->sci_r3 = 3;
ncr_sc->sci_r4 = 4;
ncr_sc->sci_r5 = 5;
ncr_sc->sci_r6 = 6;
ncr_sc->sci_r7 = 7;
#else
iobase = (uint8_t *)pa->pa_mod_base;
ncr_sc->sci_r0 = iobase + 0;
ncr_sc->sci_r1 = iobase + 4;
ncr_sc->sci_r2 = iobase + 8;
ncr_sc->sci_r3 = iobase + 12;
ncr_sc->sci_r4 = iobase + 16;
ncr_sc->sci_r5 = iobase + 20;
ncr_sc->sci_r6 = iobase + 24;
ncr_sc->sci_r7 = iobase + 28;
#endif
sc->sc_pdmat = pa->pa_mod_t;
bus_space_map(sc->sc_pdmat, pa->pa_mod_base + OAK_PDMA_OFFSET, 0x20, 0,
&sc->sc_pdmah);
ncr_sc->sc_rev = NCR_VARIANT_NCR5380;
ncr_sc->sc_pio_in = ncr5380_pio_in;
ncr_sc->sc_pio_out = ncr5380_pio_out;
/* Provide an override for the host id */
ncr_sc->sc_channel.chan_id = 7;
snprintf(hi_option, sizeof(hi_option), "%s.hostid",
device_xname(self));
(void)get_bootconf_option(boot_args, hi_option,
BOOTOPT_TYPE_INT, &ncr_sc->sc_channel.chan_id);
ncr_sc->sc_adapter.adapt_minphys = minphys;
aprint_normal(": host=%d, using 8 bit PIO\n",
ncr_sc->sc_channel.chan_id);
ncr5380_attach(ncr_sc);
}
/*
* XXX The code below doesn't work correctly. I probably need more
* details on how the card works. [bjh21 20011202]
*/
#if 0
#ifndef OAK_TSIZE_OUT
#define OAK_TSIZE_OUT 128
#endif
#ifndef OAK_TSIZE_IN
#define OAK_TSIZE_IN 128
#endif
#define TIMEOUT 1000000
static inline int
oak_ready(struct ncr5380_softc *sc)
{
int i;
int status;
for (i = TIMEOUT; i > 0; i--) {
status = NCR5380_READ(sc, sci_csr);
if ((status & (SCI_CSR_DREQ | SCI_CSR_PHASE_MATCH)) ==
(SCI_CSR_DREQ | SCI_CSR_PHASE_MATCH))
return 1;
if ((status & SCI_CSR_PHASE_MATCH) == 0 ||
SCI_BUSY(sc) == 0)
return 0;
}
printf("%s: ready timeout\n", device_xname(sc->sc_dev));
return 0;
#if 0 /* The Linux driver does this: */
struct oak_softc *sc = (void *)ncr_sc;
bus_space_tag_t pdmat = sc->sc_pdmat;
bus_space_handle_t pdmah = sc->sc_pdmah;
int i, status;
for (i = TIMEOUT; i > 0; i--) {
status = bus_space_read_2(pdmat, pdmah, OAK_PDMA_STATUS);
if (status & 0x200)
return 0;
if (status & 0x100)
return 1;
}
printf("%s: ready timeout, status = 0x%x\n",
device_xname(ncr_sc->sc_dev), status);
return 0;
#endif
}
/* Return zero on success. */
static inline void oak_wait_not_req(struct ncr5380_softc *sc)
{
int timo;
for (timo = TIMEOUT; timo; timo--) {
if ((NCR5380_READ(sc, sci_bus_csr) & SCI_BUS_REQ) == 0 ||
(NCR5380_READ(sc, sci_csr) & SCI_CSR_PHASE_MATCH) == 0 ||
SCI_BUSY(sc) == 0) {
return;
}
}
printf("%s: pdma not_req timeout\n", device_xname(sc->sc_dev));
}
static int
oak_pdma_in(struct ncr5380_softc *ncr_sc, int phase, int datalen,
uint8_t *data)
{
struct oak_softc *sc = (void *)ncr_sc;
bus_space_tag_t pdmat = sc->sc_pdmat;
bus_space_handle_t pdmah = sc->sc_pdmah;
int s, resid, len;
s = splbio();
NCR5380_WRITE(ncr_sc, sci_mode,
NCR5380_READ(ncr_sc, sci_mode) | SCI_MODE_DMA);
NCR5380_WRITE(ncr_sc, sci_irecv, 0);
resid = datalen;
while (resid > 0) {
len = uimin(resid, OAK_TSIZE_IN);
if (oak_ready(ncr_sc) == 0)
goto interrupt;
KASSERT(BUS_SPACE_ALIGNED_POINTER(data, uint16_t));
bus_space_read_multi_2(pdmat, pdmah, OAK_PDMA_READ,
(uint16_t *)data, len / 2);
data += len;
resid -= len;
}
oak_wait_not_req(ncr_sc);
interrupt:
SCI_CLR_INTR(ncr_sc);
NCR5380_WRITE(ncr_sc, sci_mode,
NCR5380_READ(ncr_sc, sci_mode) & ~SCI_MODE_DMA);
splx(s);
return datalen - resid;
}
static int
oak_pdma_out(struct ncr5380_softc *ncr_sc, int phase, int datalen,
uint8_t *data)
{
struct oak_softc *sc = (struct oak_softc *)ncr_sc;
bus_space_tag_t pdmat = sc->sc_pdmat;
bus_space_handle_t pdmah = sc->sc_pdmah;
int i, s, icmd, resid;
s = splbio();
icmd = NCR5380_READ(ncr_sc, sci_icmd) & SCI_ICMD_RMASK;
NCR5380_WRITE(ncr_sc, sci_icmd, icmd | SCI_ICMD_DATA);
NCR5380_WRITE(ncr_sc, sci_mode,
NCR5380_READ(ncr_sc, sci_mode) | SCI_MODE_DMA);
NCR5380_WRITE(ncr_sc, sci_dma_send, 0);
resid = datalen;
if (oak_ready(ncr_sc) == 0)
goto interrupt;
if (resid > OAK_TSIZE_OUT) {
/*
* Because of the chips DMA prefetch, phase changes
* etc, won't be detected until we have written at
* least one byte more. We pre-write 4 bytes so
* subsequent transfers will be aligned to a 4 byte
* boundary. Assuming disconects will only occur on
* block boundaries, we then correct for the pre-write
* when and if we get a phase change. If the chip had
* DMA byte counting hardware, the assumption would not
* be necessary.
*/
KASSERT(BUS_SPACE_ALIGNED_POINTER(data, uint16_t));
bus_space_write_multi_2(pdmat, pdmah, OAK_PDMA_WRITE,
(uint16_t *)data, 4 / 2);
data += 4;
resid -= 4;
for (; resid >= OAK_TSIZE_OUT; resid -= OAK_TSIZE_OUT) {
if (oak_ready(ncr_sc) == 0) {
resid += 4; /* Overshot */
goto interrupt;
}
bus_space_write_multi_2(pdmat, pdmah, OAK_PDMA_WRITE,
(uint16_t *)data, OAK_TSIZE_OUT / 2);
data += OAK_TSIZE_OUT;
}
if (oak_ready(ncr_sc) == 0) {
resid += 4; /* Overshot */
goto interrupt;
}
}
if (resid) {
bus_space_write_multi_2(pdmat, pdmah, OAK_PDMA_WRITE,
(uint16_t *)data, resid / 2);
resid = 0;
}
for (i = TIMEOUT; i > 0; i--) {
if ((NCR5380_READ(ncr_sc, sci_csr)
& (SCI_CSR_DREQ|SCI_CSR_PHASE_MATCH))
!= SCI_CSR_DREQ)
break;
}
if (i != 0)
bus_space_write_2(pdmat, pdmah, OAK_PDMA_WRITE, 0);
else
printf("%s: timeout waiting for final SCI_DSR_DREQ.\n",
device_xname(ncr_sc->sc_dev));
oak_wait_not_req(ncr_sc);
interrupt:
SCI_CLR_INTR(ncr_sc);
NCR5380_WRITE(ncr_sc, sci_mode,
NCR5380_READ(ncr_sc, sci_mode) & ~SCI_MODE_DMA);
NCR5380_WRITE(ncr_sc, sci_icmd, icmd);
splx(s);
return datalen - resid;
}
#endif