NetBSD/sys/dev/acpi/acpi_cpu_tstate.c
chs fd34ea77eb remove checks for failure after memory allocation calls that cannot fail:
kmem_alloc() with KM_SLEEP
  kmem_zalloc() with KM_SLEEP
  percpu_alloc()
  pserialize_create()
  psref_class_create()

all of these paths include an assertion that the allocation has not failed,
so callers should not assert that again.
2017-06-01 02:45:05 +00:00

883 lines
18 KiB
C

/* $NetBSD: acpi_cpu_tstate.c,v 1.33 2017/06/01 02:45:09 chs Exp $ */
/*-
* Copyright (c) 2010 Jukka Ruohonen <jruohonen@iki.fi>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi_cpu_tstate.c,v 1.33 2017/06/01 02:45:09 chs Exp $");
#include <sys/param.h>
#include <sys/kmem.h>
#include <sys/xcall.h>
#include <dev/acpi/acpireg.h>
#include <dev/acpi/acpivar.h>
#include <dev/acpi/acpi_cpu.h>
#define _COMPONENT ACPI_BUS_COMPONENT
ACPI_MODULE_NAME ("acpi_cpu_tstate")
static ACPI_STATUS acpicpu_tstate_tss(struct acpicpu_softc *);
static ACPI_STATUS acpicpu_tstate_tss_add(struct acpicpu_tstate *,
ACPI_OBJECT *);
static ACPI_STATUS acpicpu_tstate_ptc(struct acpicpu_softc *);
static ACPI_STATUS acpicpu_tstate_dep(struct acpicpu_softc *);
static ACPI_STATUS acpicpu_tstate_fadt(struct acpicpu_softc *);
static ACPI_STATUS acpicpu_tstate_change(struct acpicpu_softc *);
static void acpicpu_tstate_reset(struct acpicpu_softc *);
static void acpicpu_tstate_set_xcall(void *, void *);
extern struct acpicpu_softc **acpicpu_sc;
void
acpicpu_tstate_attach(device_t self)
{
struct acpicpu_softc *sc = device_private(self);
const char *str;
ACPI_HANDLE tmp;
ACPI_STATUS rv;
/*
* Disable T-states for PIIX4.
*/
if ((sc->sc_flags & ACPICPU_FLAG_PIIX4) != 0)
return;
rv = acpicpu_tstate_tss(sc);
if (ACPI_FAILURE(rv)) {
str = "_TSS";
goto out;
}
rv = acpicpu_tstate_ptc(sc);
if (ACPI_FAILURE(rv)) {
str = "_PTC";
goto out;
}
/*
* Query the optional _TSD.
*/
rv = acpicpu_tstate_dep(sc);
if (ACPI_SUCCESS(rv))
sc->sc_flags |= ACPICPU_FLAG_T_DEP;
/*
* Comparable to P-states, the _TPC object may
* be absent in some systems, even though it is
* required by ACPI 3.0 along with _TSS and _PTC.
*/
rv = AcpiGetHandle(sc->sc_node->ad_handle, "_TPC", &tmp);
if (ACPI_FAILURE(rv)) {
aprint_debug_dev(self, "_TPC missing\n");
rv = AE_OK;
}
out:
if (ACPI_FAILURE(rv)) {
if (rv != AE_NOT_FOUND)
aprint_error_dev(sc->sc_dev, "failed to evaluate "
"%s: %s\n", str, AcpiFormatException(rv));
rv = acpicpu_tstate_fadt(sc);
if (ACPI_FAILURE(rv))
return;
sc->sc_flags |= ACPICPU_FLAG_T_FADT;
}
sc->sc_flags |= ACPICPU_FLAG_T;
acpicpu_tstate_reset(sc);
}
void
acpicpu_tstate_detach(device_t self)
{
struct acpicpu_softc *sc = device_private(self);
size_t size;
if ((sc->sc_flags & ACPICPU_FLAG_T) == 0)
return;
size = sc->sc_tstate_count * sizeof(*sc->sc_tstate);
if (sc->sc_tstate != NULL)
kmem_free(sc->sc_tstate, size);
sc->sc_flags &= ~ACPICPU_FLAG_T;
}
void
acpicpu_tstate_start(device_t self)
{
/* Nothing. */
}
void
acpicpu_tstate_suspend(void *aux)
{
struct acpicpu_softc *sc;
device_t self = aux;
sc = device_private(self);
mutex_enter(&sc->sc_mtx);
acpicpu_tstate_reset(sc);
mutex_exit(&sc->sc_mtx);
}
void
acpicpu_tstate_resume(void *aux)
{
/* Nothing. */
}
void
acpicpu_tstate_callback(void *aux)
{
struct acpicpu_softc *sc;
device_t self = aux;
uint32_t omax, omin;
int i;
sc = device_private(self);
if ((sc->sc_flags & ACPICPU_FLAG_T_FADT) != 0)
return;
mutex_enter(&sc->sc_mtx);
/*
* If P-states are in use, we should ignore
* the interrupt unless we are in the highest
* P-state (see ACPI 4.0, section 8.4.3.3).
*/
if ((sc->sc_flags & ACPICPU_FLAG_P) != 0) {
for (i = sc->sc_pstate_count - 1; i >= 0; i--) {
if (sc->sc_pstate[i].ps_freq != 0)
break;
}
if (sc->sc_pstate_current != sc->sc_pstate[i].ps_freq) {
mutex_exit(&sc->sc_mtx);
return;
}
}
omax = sc->sc_tstate_max;
omin = sc->sc_tstate_min;
(void)acpicpu_tstate_change(sc);
if (omax != sc->sc_tstate_max || omin != sc->sc_tstate_min) {
aprint_debug_dev(sc->sc_dev, "throttling window "
"changed from %u-%u %% to %u-%u %%\n",
sc->sc_tstate[omax].ts_percent,
sc->sc_tstate[omin].ts_percent,
sc->sc_tstate[sc->sc_tstate_max].ts_percent,
sc->sc_tstate[sc->sc_tstate_min].ts_percent);
}
mutex_exit(&sc->sc_mtx);
}
static ACPI_STATUS
acpicpu_tstate_tss(struct acpicpu_softc *sc)
{
struct acpicpu_tstate *ts;
ACPI_OBJECT *obj;
ACPI_BUFFER buf;
ACPI_STATUS rv;
uint32_t count;
uint32_t i, j;
rv = acpi_eval_struct(sc->sc_node->ad_handle, "_TSS", &buf);
if (ACPI_FAILURE(rv))
return rv;
obj = buf.Pointer;
if (obj->Type != ACPI_TYPE_PACKAGE) {
rv = AE_TYPE;
goto out;
}
sc->sc_tstate_count = obj->Package.Count;
if (sc->sc_tstate_count == 0) {
rv = AE_NOT_EXIST;
goto out;
}
sc->sc_tstate = kmem_zalloc(sc->sc_tstate_count *
sizeof(struct acpicpu_tstate), KM_SLEEP);
if (sc->sc_tstate == NULL) {
rv = AE_NO_MEMORY;
goto out;
}
for (count = i = 0; i < sc->sc_tstate_count; i++) {
ts = &sc->sc_tstate[i];
rv = acpicpu_tstate_tss_add(ts, &obj->Package.Elements[i]);
if (ACPI_FAILURE(rv)) {
ts->ts_percent = 0;
continue;
}
for (j = 0; j < i; j++) {
if (ts->ts_percent >= sc->sc_tstate[j].ts_percent) {
ts->ts_percent = 0;
break;
}
}
if (ts->ts_percent != 0)
count++;
}
if (count == 0) {
rv = AE_NOT_EXIST;
goto out;
}
/*
* There must be an entry with the percent
* field of 100. If this is not true, and if
* this entry is not in the expected index,
* invalidate the use of T-states via _TSS.
*/
if (sc->sc_tstate[0].ts_percent != 100) {
rv = AE_BAD_DECIMAL_CONSTANT;
goto out;
}
out:
if (buf.Pointer != NULL)
ACPI_FREE(buf.Pointer);
return rv;
}
static ACPI_STATUS
acpicpu_tstate_tss_add(struct acpicpu_tstate *ts, ACPI_OBJECT *obj)
{
ACPI_OBJECT *elm;
uint32_t val[5];
uint32_t *p;
int i;
if (obj->Type != ACPI_TYPE_PACKAGE)
return AE_TYPE;
if (obj->Package.Count != 5)
return AE_BAD_DATA;
elm = obj->Package.Elements;
for (i = 0; i < 5; i++) {
if (elm[i].Type != ACPI_TYPE_INTEGER)
return AE_TYPE;
if (elm[i].Integer.Value > UINT32_MAX)
return AE_AML_NUMERIC_OVERFLOW;
val[i] = elm[i].Integer.Value;
}
p = &ts->ts_percent;
for (i = 0; i < 5; i++, p++)
*p = val[i];
/*
* The minimum should be either 12.5 % or 6.5 %,
* the latter 4-bit dynamic range being available
* in some newer models; see Section 14.5.3.1 in
*
* Intel 64 and IA-32 Architectures Software
* Developer's Manual. Volume 3B, Part 2. 2013.
*/
if (ts->ts_percent < 6 || ts->ts_percent > 100)
return AE_BAD_DECIMAL_CONSTANT;
if (ts->ts_latency == 0 || ts->ts_latency > 1000)
ts->ts_latency = 1;
return AE_OK;
}
ACPI_STATUS
acpicpu_tstate_ptc(struct acpicpu_softc *sc)
{
static const size_t size = sizeof(struct acpicpu_reg);
struct acpicpu_reg *reg[2];
ACPI_OBJECT *elm, *obj;
ACPI_BUFFER buf;
ACPI_STATUS rv;
int i;
rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PTC", &buf);
if (ACPI_FAILURE(rv))
return rv;
obj = buf.Pointer;
if (obj->Type != ACPI_TYPE_PACKAGE) {
rv = AE_TYPE;
goto out;
}
if (obj->Package.Count != 2) {
rv = AE_LIMIT;
goto out;
}
for (i = 0; i < 2; i++) {
elm = &obj->Package.Elements[i];
if (elm->Type != ACPI_TYPE_BUFFER) {
rv = AE_TYPE;
goto out;
}
if (size > elm->Buffer.Length) {
rv = AE_AML_BAD_RESOURCE_LENGTH;
goto out;
}
reg[i] = (struct acpicpu_reg *)elm->Buffer.Pointer;
switch (reg[i]->reg_spaceid) {
case ACPI_ADR_SPACE_SYSTEM_IO:
if (reg[i]->reg_addr == 0) {
rv = AE_AML_ILLEGAL_ADDRESS;
goto out;
}
/*
* Check that the values match the IA32 clock
* modulation MSR, where the bit 0 is reserved,
* bits 1 through 3 define the duty cycle, and
* the fourth bit enables the modulation.
*/
if (reg[i]->reg_bitwidth != 4) {
rv = AE_AML_BAD_RESOURCE_VALUE;
goto out;
}
if (reg[i]->reg_bitoffset != 1) {
rv = AE_AML_BAD_RESOURCE_VALUE;
goto out;
}
break;
case ACPI_ADR_SPACE_FIXED_HARDWARE:
if ((sc->sc_flags & ACPICPU_FLAG_T_FFH) == 0) {
rv = AE_SUPPORT;
goto out;
}
break;
default:
rv = AE_AML_INVALID_SPACE_ID;
goto out;
}
}
if (reg[0]->reg_spaceid != reg[1]->reg_spaceid) {
rv = AE_AML_INVALID_SPACE_ID;
goto out;
}
(void)memcpy(&sc->sc_tstate_control, reg[0], size);
(void)memcpy(&sc->sc_tstate_status, reg[1], size);
out:
if (buf.Pointer != NULL)
ACPI_FREE(buf.Pointer);
return rv;
}
static ACPI_STATUS
acpicpu_tstate_dep(struct acpicpu_softc *sc)
{
ACPI_OBJECT *elm, *obj;
ACPI_BUFFER buf;
ACPI_STATUS rv;
uint32_t val;
uint8_t i, n;
rv = acpi_eval_struct(sc->sc_node->ad_handle, "_TSD", &buf);
if (ACPI_FAILURE(rv))
goto out;
obj = buf.Pointer;
if (obj->Type != ACPI_TYPE_PACKAGE) {
rv = AE_TYPE;
goto out;
}
if (obj->Package.Count != 1) {
rv = AE_LIMIT;
goto out;
}
elm = &obj->Package.Elements[0];
if (obj->Type != ACPI_TYPE_PACKAGE) {
rv = AE_TYPE;
goto out;
}
n = elm->Package.Count;
if (n != 5) {
rv = AE_LIMIT;
goto out;
}
elm = elm->Package.Elements;
for (i = 0; i < n; i++) {
if (elm[i].Type != ACPI_TYPE_INTEGER) {
rv = AE_TYPE;
goto out;
}
if (elm[i].Integer.Value > UINT32_MAX) {
rv = AE_AML_NUMERIC_OVERFLOW;
goto out;
}
}
val = elm[1].Integer.Value;
if (val != 0)
aprint_debug_dev(sc->sc_dev, "invalid revision in _TSD\n");
val = elm[3].Integer.Value;
if (val < ACPICPU_DEP_SW_ALL || val > ACPICPU_DEP_HW_ALL) {
rv = AE_AML_BAD_RESOURCE_VALUE;
goto out;
}
val = elm[4].Integer.Value;
if (val > sc->sc_ncpus) {
rv = AE_BAD_VALUE;
goto out;
}
sc->sc_tstate_dep.dep_domain = elm[2].Integer.Value;
sc->sc_tstate_dep.dep_type = elm[3].Integer.Value;
sc->sc_tstate_dep.dep_ncpus = elm[4].Integer.Value;
out:
if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND)
aprint_debug_dev(sc->sc_dev, "failed to evaluate "
"_TSD: %s\n", AcpiFormatException(rv));
if (buf.Pointer != NULL)
ACPI_FREE(buf.Pointer);
return rv;
}
static ACPI_STATUS
acpicpu_tstate_fadt(struct acpicpu_softc *sc)
{
static const size_t size = sizeof(struct acpicpu_tstate);
const uint8_t offset = AcpiGbl_FADT.DutyOffset;
const uint8_t width = AcpiGbl_FADT.DutyWidth;
uint8_t beta, count, i;
if (sc->sc_object.ao_pblkaddr == 0)
return AE_AML_ILLEGAL_ADDRESS;
/*
* A zero DUTY_WIDTH may be used announce
* that T-states are not available via FADT
* (ACPI 4.0, p. 121). See also (section 9.3):
*
* Advanced Micro Devices: BIOS and Kernel
* Developer's Guide for AMD Athlon 64 and
* AMD Opteron Processors. Revision 3.30,
* February 2006.
*/
if (width == 0 || width + offset > 4)
return AE_AML_BAD_RESOURCE_VALUE;
count = 1 << width;
if (sc->sc_tstate != NULL)
kmem_free(sc->sc_tstate, sc->sc_tstate_count * size);
sc->sc_tstate = kmem_zalloc(count * size, KM_SLEEP);
sc->sc_tstate_count = count;
/*
* Approximate duty cycles and set the MSR values.
*/
for (beta = 100 / count, i = 0; i < count; i++) {
sc->sc_tstate[i].ts_percent = 100 - beta * i;
sc->sc_tstate[i].ts_latency = 1;
}
for (i = 1; i < count; i++)
sc->sc_tstate[i].ts_control = (count - i) | __BIT(3);
/*
* Fake values for throttling registers.
*/
(void)memset(&sc->sc_tstate_status, 0, sizeof(struct acpicpu_reg));
(void)memset(&sc->sc_tstate_control, 0, sizeof(struct acpicpu_reg));
sc->sc_tstate_status.reg_bitwidth = width;
sc->sc_tstate_status.reg_bitoffset = offset;
sc->sc_tstate_status.reg_addr = sc->sc_object.ao_pblkaddr;
sc->sc_tstate_status.reg_spaceid = ACPI_ADR_SPACE_SYSTEM_IO;
sc->sc_tstate_control.reg_bitwidth = width;
sc->sc_tstate_control.reg_bitoffset = offset;
sc->sc_tstate_control.reg_addr = sc->sc_object.ao_pblkaddr;
sc->sc_tstate_control.reg_spaceid = ACPI_ADR_SPACE_SYSTEM_IO;
return AE_OK;
}
static ACPI_STATUS
acpicpu_tstate_change(struct acpicpu_softc *sc)
{
ACPI_INTEGER val;
ACPI_STATUS rv;
acpicpu_tstate_reset(sc);
/*
* Evaluate the available T-state window:
*
* _TPC : either this maximum or any lower power
* (i.e. higher numbered) state may be used.
*
* _TDL : either this minimum or any higher power
* (i.e. lower numbered) state may be used.
*
* _TDL >= _TPC || _TDL >= _TSS[last entry].
*/
rv = acpi_eval_integer(sc->sc_node->ad_handle, "_TPC", &val);
if (ACPI_SUCCESS(rv) && val < sc->sc_tstate_count) {
if (sc->sc_tstate[val].ts_percent != 0)
sc->sc_tstate_max = val;
}
rv = acpi_eval_integer(sc->sc_node->ad_handle, "_TDL", &val);
if (ACPI_SUCCESS(rv) && val < sc->sc_tstate_count) {
if (val >= sc->sc_tstate_max &&
sc->sc_tstate[val].ts_percent != 0)
sc->sc_tstate_min = val;
}
return AE_OK;
}
static void
acpicpu_tstate_reset(struct acpicpu_softc *sc)
{
sc->sc_tstate_max = 0;
sc->sc_tstate_min = sc->sc_tstate_count - 1;
}
int
acpicpu_tstate_get(struct cpu_info *ci, uint32_t *percent)
{
struct acpicpu_tstate *ts = NULL;
struct acpicpu_softc *sc;
uint32_t i, val = 0;
uint8_t offset;
uint64_t addr;
int rv;
sc = acpicpu_sc[ci->ci_acpiid];
if (__predict_false(sc == NULL)) {
rv = ENXIO;
goto fail;
}
if (__predict_false(sc->sc_cold != false)) {
rv = EBUSY;
goto fail;
}
if (__predict_false((sc->sc_flags & ACPICPU_FLAG_T) == 0)) {
rv = ENODEV;
goto fail;
}
mutex_enter(&sc->sc_mtx);
if (sc->sc_tstate_current != ACPICPU_T_STATE_UNKNOWN) {
*percent = sc->sc_tstate_current;
mutex_exit(&sc->sc_mtx);
return 0;
}
mutex_exit(&sc->sc_mtx);
switch (sc->sc_tstate_status.reg_spaceid) {
case ACPI_ADR_SPACE_FIXED_HARDWARE:
rv = acpicpu_md_tstate_get(sc, percent);
if (__predict_false(rv != 0))
goto fail;
break;
case ACPI_ADR_SPACE_SYSTEM_IO:
addr = sc->sc_tstate_status.reg_addr;
offset = sc->sc_tstate_status.reg_bitoffset;
(void)AcpiOsReadPort(addr, &val, 8);
val = (val >> offset) & 0x0F;
for (i = 0; i < sc->sc_tstate_count; i++) {
if (sc->sc_tstate[i].ts_percent == 0)
continue;
if (val == sc->sc_tstate[i].ts_status) {
ts = &sc->sc_tstate[i];
break;
}
}
if (ts == NULL) {
rv = EIO;
goto fail;
}
*percent = ts->ts_percent;
break;
default:
rv = ENOTTY;
goto fail;
}
mutex_enter(&sc->sc_mtx);
sc->sc_tstate_current = *percent;
mutex_exit(&sc->sc_mtx);
return 0;
fail:
aprint_error_dev(sc->sc_dev, "failed "
"to get T-state (err %d)\n", rv);
mutex_enter(&sc->sc_mtx);
*percent = sc->sc_tstate_current = ACPICPU_T_STATE_UNKNOWN;
mutex_exit(&sc->sc_mtx);
return rv;
}
void
acpicpu_tstate_set(struct cpu_info *ci, uint32_t percent)
{
uint64_t xc;
xc = xc_broadcast(0, acpicpu_tstate_set_xcall, &percent, NULL);
xc_wait(xc);
}
static void
acpicpu_tstate_set_xcall(void *arg1, void *arg2)
{
struct acpicpu_tstate *ts = NULL;
struct cpu_info *ci = curcpu();
struct acpicpu_softc *sc;
uint32_t i, percent, val;
uint8_t offset;
uint64_t addr;
int rv;
percent = *(uint32_t *)arg1;
sc = acpicpu_sc[ci->ci_acpiid];
if (__predict_false(sc == NULL)) {
rv = ENXIO;
goto fail;
}
if (__predict_false(sc->sc_cold != false)) {
rv = EBUSY;
goto fail;
}
if (__predict_false((sc->sc_flags & ACPICPU_FLAG_T) == 0)) {
rv = ENODEV;
goto fail;
}
mutex_enter(&sc->sc_mtx);
if (sc->sc_tstate_current == percent) {
mutex_exit(&sc->sc_mtx);
return;
}
for (i = sc->sc_tstate_max; i <= sc->sc_tstate_min; i++) {
if (__predict_false(sc->sc_tstate[i].ts_percent == 0))
continue;
if (sc->sc_tstate[i].ts_percent == percent) {
ts = &sc->sc_tstate[i];
break;
}
}
mutex_exit(&sc->sc_mtx);
if (__predict_false(ts == NULL)) {
rv = EINVAL;
goto fail;
}
switch (sc->sc_tstate_control.reg_spaceid) {
case ACPI_ADR_SPACE_FIXED_HARDWARE:
rv = acpicpu_md_tstate_set(ts);
if (__predict_false(rv != 0))
goto fail;
break;
case ACPI_ADR_SPACE_SYSTEM_IO:
addr = sc->sc_tstate_control.reg_addr;
offset = sc->sc_tstate_control.reg_bitoffset;
val = (ts->ts_control & 0x0F) << offset;
if (ts->ts_percent != 100 && (val & __BIT(4)) == 0) {
rv = EINVAL;
goto fail;
}
(void)AcpiOsWritePort(addr, val, 8);
/*
* If the status field is zero, the transition is
* specified to be "asynchronous" and there is no
* need to check the status (ACPI 4.0, 8.4.3.2).
*/
if (ts->ts_status == 0)
break;
addr = sc->sc_tstate_status.reg_addr;
offset = sc->sc_tstate_status.reg_bitoffset;
for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
(void)AcpiOsReadPort(addr, &val, 8);
val = (val >> offset) & 0x0F;
if (val == ts->ts_status)
break;
DELAY(ts->ts_latency);
}
if (i == ACPICPU_T_STATE_RETRY) {
rv = EAGAIN;
goto fail;
}
break;
default:
rv = ENOTTY;
goto fail;
}
mutex_enter(&sc->sc_mtx);
ts->ts_evcnt.ev_count++;
sc->sc_tstate_current = percent;
mutex_exit(&sc->sc_mtx);
return;
fail:
if (rv != EINVAL)
aprint_error_dev(sc->sc_dev, "failed to "
"throttle to %u %% (err %d)\n", percent, rv);
mutex_enter(&sc->sc_mtx);
sc->sc_tstate_current = ACPICPU_T_STATE_UNKNOWN;
mutex_exit(&sc->sc_mtx);
}