6ca0ee47b9
- report a correct error. - remove a no-op goto.
455 lines
12 KiB
C
455 lines
12 KiB
C
/* $NetBSD: kern_physio.c,v 1.67 2005/12/04 23:34:00 yamt Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1982, 1986, 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_physio.c 8.1 (Berkeley) 6/10/93
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 1994 Christopher G. Demetriou
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_physio.c 8.1 (Berkeley) 6/10/93
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_physio.c,v 1.67 2005/12/04 23:34:00 yamt Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/once.h>
|
|
#include <sys/workqueue.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
ONCE_DECL(physio_initialized);
|
|
struct workqueue *physio_workqueue;
|
|
|
|
/*
|
|
* The routines implemented in this file are described in:
|
|
* Leffler, et al.: The Design and Implementation of the 4.3BSD
|
|
* UNIX Operating System (Addison Welley, 1989)
|
|
* on pages 231-233.
|
|
*
|
|
* The routines "getphysbuf" and "putphysbuf" steal and return a swap
|
|
* buffer. Leffler, et al., says that swap buffers are used to do the
|
|
* I/O, so raw I/O requests don't have to be single-threaded. Of course,
|
|
* NetBSD doesn't use "swap buffers" -- we have our own memory pool for
|
|
* buffer descriptors.
|
|
*/
|
|
|
|
/* abuse these members/flags of struct buf */
|
|
#define b_running b_freelistindex
|
|
#define b_endoffset b_lblkno
|
|
#define B_DONTFREE B_AGE
|
|
|
|
/*
|
|
* allocate a buffer structure for use in physical I/O.
|
|
*/
|
|
static struct buf *
|
|
getphysbuf(void)
|
|
{
|
|
struct buf *bp;
|
|
int s;
|
|
|
|
s = splbio();
|
|
bp = pool_get(&bufpool, PR_WAITOK);
|
|
splx(s);
|
|
BUF_INIT(bp);
|
|
bp->b_error = 0;
|
|
bp->b_flags = B_BUSY;
|
|
return(bp);
|
|
}
|
|
|
|
/*
|
|
* get rid of a swap buffer structure which has been used in physical I/O.
|
|
*/
|
|
static void
|
|
putphysbuf(struct buf *bp)
|
|
{
|
|
int s;
|
|
|
|
if ((bp->b_flags & B_DONTFREE) != 0) {
|
|
return;
|
|
}
|
|
|
|
if (__predict_false(bp->b_flags & B_WANTED))
|
|
panic("putphysbuf: private buf B_WANTED");
|
|
s = splbio();
|
|
pool_put(&bufpool, bp);
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
physio_done(struct work *wk, void *dummy)
|
|
{
|
|
struct buf *bp = (void *)wk;
|
|
size_t todo = bp->b_bufsize;
|
|
size_t done = bp->b_bcount - bp->b_resid;
|
|
struct buf *mbp = bp->b_private;
|
|
|
|
KASSERT(&bp->b_work == wk);
|
|
KASSERT(bp->b_bcount <= todo);
|
|
KASSERT(bp->b_resid <= bp->b_bcount);
|
|
KASSERT((bp->b_flags & B_PHYS) != 0);
|
|
KASSERT(dummy == NULL);
|
|
|
|
vunmapbuf(bp, todo);
|
|
uvm_vsunlock(bp->b_proc, bp->b_data, todo);
|
|
|
|
simple_lock(&mbp->b_interlock);
|
|
if (__predict_false(done != todo)) {
|
|
off_t endoffset = dbtob(bp->b_blkno) + done;
|
|
|
|
if (mbp->b_endoffset == -1 || endoffset < mbp->b_endoffset) {
|
|
mbp->b_endoffset = endoffset;
|
|
}
|
|
mbp->b_flags |= B_ERROR;
|
|
}
|
|
|
|
/*
|
|
* EINVAL is not very important as it happens for i/o past the end
|
|
* of the partition.
|
|
*/
|
|
|
|
if (__predict_false((bp->b_flags & B_ERROR) != 0 &&
|
|
(mbp->b_error == 0 || mbp->b_error == EINVAL))) {
|
|
if (bp->b_error == 0) {
|
|
mbp->b_error = EIO; /* XXX */
|
|
} else {
|
|
mbp->b_error = bp->b_error;
|
|
}
|
|
mbp->b_flags |= B_ERROR;
|
|
}
|
|
|
|
mbp->b_running--;
|
|
if ((mbp->b_flags & B_WANTED) != 0) {
|
|
mbp->b_flags &= ~B_WANTED;
|
|
wakeup(mbp);
|
|
}
|
|
simple_unlock(&mbp->b_interlock);
|
|
|
|
putphysbuf(bp);
|
|
}
|
|
|
|
static void
|
|
physio_biodone(struct buf *bp)
|
|
{
|
|
#if defined(DIAGNOSTIC)
|
|
struct buf *mbp = bp->b_private;
|
|
size_t todo = bp->b_bufsize;
|
|
|
|
KASSERT(mbp->b_running > 0);
|
|
KASSERT(bp->b_bcount <= todo);
|
|
KASSERT(bp->b_resid <= bp->b_bcount);
|
|
#endif /* defined(DIAGNOSTIC) */
|
|
|
|
workqueue_enqueue(physio_workqueue, &bp->b_work);
|
|
}
|
|
|
|
static int
|
|
physio_wait(struct buf *bp, int n, const char *wchan)
|
|
{
|
|
int error = 0;
|
|
|
|
LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
|
|
|
|
while (bp->b_running > n) {
|
|
bp->b_flags |= B_WANTED;
|
|
error = ltsleep(bp, PRIBIO + 1, wchan, 0, &bp->b_interlock);
|
|
if (error) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
physio_init(void)
|
|
{
|
|
|
|
KASSERT(physio_workqueue == NULL);
|
|
|
|
if (workqueue_create(&physio_workqueue, "physiod",
|
|
physio_done, NULL, PRIBIO, 0/* IPL_BIO notyet */, 0)) {
|
|
panic("physiod create");
|
|
}
|
|
}
|
|
|
|
#define PHYSIO_CONCURRENCY 16 /* XXX tune */
|
|
|
|
/*
|
|
* Do "physical I/O" on behalf of a user. "Physical I/O" is I/O directly
|
|
* from the raw device to user buffers, and bypasses the buffer cache.
|
|
*
|
|
* Comments in brackets are from Leffler, et al.'s pseudo-code implementation.
|
|
*/
|
|
int
|
|
physio(void (*strategy)(struct buf *), struct buf *obp, dev_t dev, int flags,
|
|
void (*min_phys)(struct buf *), struct uio *uio)
|
|
{
|
|
struct iovec *iovp;
|
|
struct lwp *l = curlwp;
|
|
struct proc *p = l->l_proc;
|
|
int i, s;
|
|
int error = 0;
|
|
int error2;
|
|
size_t todo;
|
|
struct buf *bp = NULL;
|
|
struct buf *mbp;
|
|
int concurrency = PHYSIO_CONCURRENCY - 1;
|
|
|
|
RUN_ONCE(&physio_initialized, physio_init);
|
|
|
|
flags &= B_READ | B_WRITE;
|
|
|
|
/* Make sure we have a buffer, creating one if necessary. */
|
|
if (obp != NULL) {
|
|
/* [raise the processor priority level to splbio;] */
|
|
s = splbio();
|
|
simple_lock(&obp->b_interlock);
|
|
|
|
/* [while the buffer is marked busy] */
|
|
while (obp->b_flags & B_BUSY) {
|
|
/* [mark the buffer wanted] */
|
|
obp->b_flags |= B_WANTED;
|
|
/* [wait until the buffer is available] */
|
|
ltsleep(obp, PRIBIO+1, "physbuf", 0, &bp->b_interlock);
|
|
}
|
|
|
|
/* Mark it busy, so nobody else will use it. */
|
|
obp->b_flags = B_BUSY | B_DONTFREE;
|
|
|
|
/* [lower the priority level] */
|
|
simple_unlock(&obp->b_interlock);
|
|
splx(s);
|
|
|
|
concurrency = 0; /* see "XXXkludge" comment below */
|
|
}
|
|
|
|
mbp = getphysbuf();
|
|
mbp->b_running = 0;
|
|
mbp->b_endoffset = -1;
|
|
|
|
PHOLD(l);
|
|
|
|
for (i = 0; i < uio->uio_iovcnt; i++) {
|
|
iovp = &uio->uio_iov[i];
|
|
while (iovp->iov_len > 0) {
|
|
simple_lock(&mbp->b_interlock);
|
|
if ((mbp->b_flags & B_ERROR) != 0) {
|
|
error = mbp->b_error;
|
|
goto done_locked;
|
|
}
|
|
error = physio_wait(mbp, concurrency, "physio1");
|
|
if (error) {
|
|
goto done_locked;
|
|
}
|
|
simple_unlock(&mbp->b_interlock);
|
|
if (obp != NULL) {
|
|
/*
|
|
* XXXkludge
|
|
* some drivers use "obp" as an identifier.
|
|
*/
|
|
bp = obp;
|
|
} else {
|
|
bp = getphysbuf();
|
|
}
|
|
bp->b_dev = dev;
|
|
bp->b_proc = p;
|
|
bp->b_private = mbp;
|
|
bp->b_vp = NULL;
|
|
|
|
/*
|
|
* [mark the buffer busy for physical I/O]
|
|
* (i.e. set B_PHYS (because it's an I/O to user
|
|
* memory, and B_RAW, because B_RAW is to be
|
|
* "Set by physio for raw transfers.", in addition
|
|
* to the "busy" and read/write flag.)
|
|
*/
|
|
bp->b_flags = (bp->b_flags & B_DONTFREE) |
|
|
B_BUSY | B_PHYS | B_RAW | B_CALL | flags;
|
|
bp->b_iodone = physio_biodone;
|
|
|
|
/* [set up the buffer for a maximum-sized transfer] */
|
|
bp->b_blkno = btodb(uio->uio_offset);
|
|
if (dbtob(bp->b_blkno) != uio->uio_offset) {
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
bp->b_bcount = MIN(MAXPHYS, iovp->iov_len);
|
|
bp->b_data = iovp->iov_base;
|
|
|
|
/*
|
|
* [call minphys to bound the transfer size]
|
|
* and remember the amount of data to transfer,
|
|
* for later comparison.
|
|
*/
|
|
(*min_phys)(bp);
|
|
todo = bp->b_bufsize = bp->b_bcount;
|
|
#if defined(DIAGNOSTIC)
|
|
if (todo > MAXPHYS)
|
|
panic("todo(%zu) > MAXPHYS; minphys broken",
|
|
todo);
|
|
#endif /* defined(DIAGNOSTIC) */
|
|
|
|
/*
|
|
* [lock the part of the user address space involved
|
|
* in the transfer]
|
|
* Beware vmapbuf(); it clobbers b_data and
|
|
* saves it in b_saveaddr. However, vunmapbuf()
|
|
* restores it.
|
|
*/
|
|
error = uvm_vslock(p, bp->b_data, todo,
|
|
(flags & B_READ) ? VM_PROT_WRITE : VM_PROT_READ);
|
|
if (error) {
|
|
goto done;
|
|
}
|
|
vmapbuf(bp, todo);
|
|
|
|
BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
|
|
|
|
simple_lock(&mbp->b_interlock);
|
|
mbp->b_running++;
|
|
simple_unlock(&mbp->b_interlock);
|
|
|
|
/* [call strategy to start the transfer] */
|
|
(*strategy)(bp);
|
|
bp = NULL;
|
|
|
|
iovp->iov_len -= todo;
|
|
iovp->iov_base = (caddr_t)iovp->iov_base + todo;
|
|
uio->uio_offset += todo;
|
|
uio->uio_resid -= todo;
|
|
}
|
|
}
|
|
|
|
done:
|
|
simple_lock(&mbp->b_interlock);
|
|
done_locked:
|
|
error2 = physio_wait(mbp, 0, "physio2");
|
|
if (error == 0) {
|
|
error = error2;
|
|
}
|
|
simple_unlock(&mbp->b_interlock);
|
|
|
|
if ((mbp->b_flags & B_ERROR) != 0) {
|
|
uio->uio_resid = uio->uio_offset - mbp->b_endoffset;
|
|
} else {
|
|
KASSERT(mbp->b_endoffset == -1);
|
|
}
|
|
if (bp != NULL) {
|
|
putphysbuf(bp);
|
|
}
|
|
if (error == 0) {
|
|
error = mbp->b_error;
|
|
}
|
|
putphysbuf(mbp);
|
|
|
|
/*
|
|
* [clean up the state of the buffer]
|
|
* Remember if somebody wants it, so we can wake them up below.
|
|
* Also, if we had to steal it, give it back.
|
|
*/
|
|
if (obp != NULL) {
|
|
KASSERT((obp->b_flags & B_BUSY) != 0);
|
|
KASSERT((obp->b_flags & B_DONTFREE) != 0);
|
|
|
|
/*
|
|
* [if another process is waiting for the raw I/O buffer,
|
|
* wake up processes waiting to do physical I/O;
|
|
*/
|
|
s = splbio();
|
|
simple_lock(&obp->b_interlock);
|
|
obp->b_flags &=
|
|
~(B_BUSY | B_PHYS | B_RAW | B_CALL | B_DONTFREE);
|
|
if ((obp->b_flags & B_WANTED) != 0) {
|
|
obp->b_flags &= ~B_WANTED;
|
|
wakeup(obp);
|
|
}
|
|
simple_unlock(&obp->b_interlock);
|
|
splx(s);
|
|
}
|
|
PRELE(l);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Leffler, et al., says on p. 231:
|
|
* "The minphys() routine is called by physio() to adjust the
|
|
* size of each I/O transfer before the latter is passed to
|
|
* the strategy routine..."
|
|
*
|
|
* so, just adjust the buffer's count accounting to MAXPHYS here,
|
|
* and return the new count;
|
|
*/
|
|
void
|
|
minphys(struct buf *bp)
|
|
{
|
|
|
|
if (bp->b_bcount > MAXPHYS)
|
|
bp->b_bcount = MAXPHYS;
|
|
}
|